]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge remote-tracking branch 'hid/for-next'
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89  * order without overlap.  There may be several bio's per stripe+device, and
90  * a bio could span several devices.
91  * When walking this list for a particular stripe+device, we must never proceed
92  * beyond a bio that extends past this device, as the next bio might no longer
93  * be valid.
94  * This function is used to determine the 'next' bio in the list, given the sector
95  * of the current stripe+device
96  */
97 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98 {
99         int sectors = bio_sectors(bio);
100         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101                 return bio->bi_next;
102         else
103                 return NULL;
104 }
105
106 /*
107  * We maintain a biased count of active stripes in the bottom 16 bits of
108  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
109  */
110 static inline int raid5_bi_processed_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return (atomic_read(segments) >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         return atomic_sub_return(1, segments) & 0xffff;
120 }
121
122 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
123 {
124         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125         atomic_inc(segments);
126 }
127
128 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129         unsigned int cnt)
130 {
131         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132         int old, new;
133
134         do {
135                 old = atomic_read(segments);
136                 new = (old & 0xffff) | (cnt << 16);
137         } while (atomic_cmpxchg(segments, old, new) != old);
138 }
139
140 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
141 {
142         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143         atomic_set(segments, cnt);
144 }
145
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head *sh)
148 {
149         if (sh->ddf_layout)
150                 /* ddf always start from first device */
151                 return 0;
152         /* md starts just after Q block */
153         if (sh->qd_idx == sh->disks - 1)
154                 return 0;
155         else
156                 return sh->qd_idx + 1;
157 }
158 static inline int raid6_next_disk(int disk, int raid_disks)
159 {
160         disk++;
161         return (disk < raid_disks) ? disk : 0;
162 }
163
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165  * We need to map each disk to a 'slot', where the data disks are slot
166  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167  * is raid_disks-1.  This help does that mapping.
168  */
169 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170                              int *count, int syndrome_disks)
171 {
172         int slot = *count;
173
174         if (sh->ddf_layout)
175                 (*count)++;
176         if (idx == sh->pd_idx)
177                 return syndrome_disks;
178         if (idx == sh->qd_idx)
179                 return syndrome_disks + 1;
180         if (!sh->ddf_layout)
181                 (*count)++;
182         return slot;
183 }
184
185 static void return_io(struct bio *return_bi)
186 {
187         struct bio *bi = return_bi;
188         while (bi) {
189
190                 return_bi = bi->bi_next;
191                 bi->bi_next = NULL;
192                 bi->bi_size = 0;
193                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194                                          bi, 0);
195                 bio_endio(bi, 0);
196                 bi = return_bi;
197         }
198 }
199
200 static void print_raid5_conf (struct r5conf *conf);
201
202 static int stripe_operations_active(struct stripe_head *sh)
203 {
204         return sh->check_state || sh->reconstruct_state ||
205                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207 }
208
209 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210 {
211         struct r5conf *conf = sh->raid_conf;
212         struct r5worker_group *group;
213         int thread_cnt;
214         int i, cpu = sh->cpu;
215
216         if (!cpu_online(cpu)) {
217                 cpu = cpumask_any(cpu_online_mask);
218                 sh->cpu = cpu;
219         }
220
221         if (list_empty(&sh->lru)) {
222                 struct r5worker_group *group;
223                 group = conf->worker_groups + cpu_to_group(cpu);
224                 list_add_tail(&sh->lru, &group->handle_list);
225                 group->stripes_cnt++;
226                 sh->group = group;
227         }
228
229         if (conf->worker_cnt_per_group == 0) {
230                 md_wakeup_thread(conf->mddev->thread);
231                 return;
232         }
233
234         group = conf->worker_groups + cpu_to_group(sh->cpu);
235
236         group->workers[0].working = true;
237         /* at least one worker should run to avoid race */
238         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239
240         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241         /* wakeup more workers */
242         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243                 if (group->workers[i].working == false) {
244                         group->workers[i].working = true;
245                         queue_work_on(sh->cpu, raid5_wq,
246                                       &group->workers[i].work);
247                         thread_cnt--;
248                 }
249         }
250 }
251
252 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
253 {
254         BUG_ON(!list_empty(&sh->lru));
255         BUG_ON(atomic_read(&conf->active_stripes)==0);
256         if (test_bit(STRIPE_HANDLE, &sh->state)) {
257                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
258                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259                         list_add_tail(&sh->lru, &conf->delayed_list);
260                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261                            sh->bm_seq - conf->seq_write > 0)
262                         list_add_tail(&sh->lru, &conf->bitmap_list);
263                 else {
264                         clear_bit(STRIPE_DELAYED, &sh->state);
265                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
266                         if (conf->worker_cnt_per_group == 0) {
267                                 list_add_tail(&sh->lru, &conf->handle_list);
268                         } else {
269                                 raid5_wakeup_stripe_thread(sh);
270                                 return;
271                         }
272                 }
273                 md_wakeup_thread(conf->mddev->thread);
274         } else {
275                 BUG_ON(stripe_operations_active(sh));
276                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277                         if (atomic_dec_return(&conf->preread_active_stripes)
278                             < IO_THRESHOLD)
279                                 md_wakeup_thread(conf->mddev->thread);
280                 atomic_dec(&conf->active_stripes);
281                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282                         list_add_tail(&sh->lru, &conf->inactive_list);
283                         wake_up(&conf->wait_for_stripe);
284                         if (conf->retry_read_aligned)
285                                 md_wakeup_thread(conf->mddev->thread);
286                 }
287         }
288 }
289
290 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291 {
292         if (atomic_dec_and_test(&sh->count))
293                 do_release_stripe(conf, sh);
294 }
295
296 static struct llist_node *llist_reverse_order(struct llist_node *head)
297 {
298         struct llist_node *new_head = NULL;
299
300         while (head) {
301                 struct llist_node *tmp = head;
302                 head = head->next;
303                 tmp->next = new_head;
304                 new_head = tmp;
305         }
306
307         return new_head;
308 }
309
310 /* should hold conf->device_lock already */
311 static int release_stripe_list(struct r5conf *conf)
312 {
313         struct stripe_head *sh;
314         int count = 0;
315         struct llist_node *head;
316
317         head = llist_del_all(&conf->released_stripes);
318         head = llist_reverse_order(head);
319         while (head) {
320                 sh = llist_entry(head, struct stripe_head, release_list);
321                 head = llist_next(head);
322                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
323                 smp_mb();
324                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
325                 /*
326                  * Don't worry the bit is set here, because if the bit is set
327                  * again, the count is always > 1. This is true for
328                  * STRIPE_ON_UNPLUG_LIST bit too.
329                  */
330                 __release_stripe(conf, sh);
331                 count++;
332         }
333
334         return count;
335 }
336
337 static void release_stripe(struct stripe_head *sh)
338 {
339         struct r5conf *conf = sh->raid_conf;
340         unsigned long flags;
341         bool wakeup;
342
343         if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
344                 goto slow_path;
345         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
346         if (wakeup)
347                 md_wakeup_thread(conf->mddev->thread);
348         return;
349 slow_path:
350         local_irq_save(flags);
351         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
352         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
353                 do_release_stripe(conf, sh);
354                 spin_unlock(&conf->device_lock);
355         }
356         local_irq_restore(flags);
357 }
358
359 static inline void remove_hash(struct stripe_head *sh)
360 {
361         pr_debug("remove_hash(), stripe %llu\n",
362                 (unsigned long long)sh->sector);
363
364         hlist_del_init(&sh->hash);
365 }
366
367 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
368 {
369         struct hlist_head *hp = stripe_hash(conf, sh->sector);
370
371         pr_debug("insert_hash(), stripe %llu\n",
372                 (unsigned long long)sh->sector);
373
374         hlist_add_head(&sh->hash, hp);
375 }
376
377
378 /* find an idle stripe, make sure it is unhashed, and return it. */
379 static struct stripe_head *get_free_stripe(struct r5conf *conf)
380 {
381         struct stripe_head *sh = NULL;
382         struct list_head *first;
383
384         if (list_empty(&conf->inactive_list))
385                 goto out;
386         first = conf->inactive_list.next;
387         sh = list_entry(first, struct stripe_head, lru);
388         list_del_init(first);
389         remove_hash(sh);
390         atomic_inc(&conf->active_stripes);
391 out:
392         return sh;
393 }
394
395 static void shrink_buffers(struct stripe_head *sh)
396 {
397         struct page *p;
398         int i;
399         int num = sh->raid_conf->pool_size;
400
401         for (i = 0; i < num ; i++) {
402                 p = sh->dev[i].page;
403                 if (!p)
404                         continue;
405                 sh->dev[i].page = NULL;
406                 put_page(p);
407         }
408 }
409
410 static int grow_buffers(struct stripe_head *sh)
411 {
412         int i;
413         int num = sh->raid_conf->pool_size;
414
415         for (i = 0; i < num; i++) {
416                 struct page *page;
417
418                 if (!(page = alloc_page(GFP_KERNEL))) {
419                         return 1;
420                 }
421                 sh->dev[i].page = page;
422         }
423         return 0;
424 }
425
426 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
427 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
428                             struct stripe_head *sh);
429
430 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
431 {
432         struct r5conf *conf = sh->raid_conf;
433         int i;
434
435         BUG_ON(atomic_read(&sh->count) != 0);
436         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
437         BUG_ON(stripe_operations_active(sh));
438
439         pr_debug("init_stripe called, stripe %llu\n",
440                 (unsigned long long)sh->sector);
441
442         remove_hash(sh);
443
444         sh->generation = conf->generation - previous;
445         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
446         sh->sector = sector;
447         stripe_set_idx(sector, conf, previous, sh);
448         sh->state = 0;
449
450
451         for (i = sh->disks; i--; ) {
452                 struct r5dev *dev = &sh->dev[i];
453
454                 if (dev->toread || dev->read || dev->towrite || dev->written ||
455                     test_bit(R5_LOCKED, &dev->flags)) {
456                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
457                                (unsigned long long)sh->sector, i, dev->toread,
458                                dev->read, dev->towrite, dev->written,
459                                test_bit(R5_LOCKED, &dev->flags));
460                         WARN_ON(1);
461                 }
462                 dev->flags = 0;
463                 raid5_build_block(sh, i, previous);
464         }
465         insert_hash(conf, sh);
466         sh->cpu = smp_processor_id();
467 }
468
469 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
470                                          short generation)
471 {
472         struct stripe_head *sh;
473
474         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
475         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
476                 if (sh->sector == sector && sh->generation == generation)
477                         return sh;
478         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
479         return NULL;
480 }
481
482 /*
483  * Need to check if array has failed when deciding whether to:
484  *  - start an array
485  *  - remove non-faulty devices
486  *  - add a spare
487  *  - allow a reshape
488  * This determination is simple when no reshape is happening.
489  * However if there is a reshape, we need to carefully check
490  * both the before and after sections.
491  * This is because some failed devices may only affect one
492  * of the two sections, and some non-in_sync devices may
493  * be insync in the section most affected by failed devices.
494  */
495 static int calc_degraded(struct r5conf *conf)
496 {
497         int degraded, degraded2;
498         int i;
499
500         rcu_read_lock();
501         degraded = 0;
502         for (i = 0; i < conf->previous_raid_disks; i++) {
503                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
504                 if (rdev && test_bit(Faulty, &rdev->flags))
505                         rdev = rcu_dereference(conf->disks[i].replacement);
506                 if (!rdev || test_bit(Faulty, &rdev->flags))
507                         degraded++;
508                 else if (test_bit(In_sync, &rdev->flags))
509                         ;
510                 else
511                         /* not in-sync or faulty.
512                          * If the reshape increases the number of devices,
513                          * this is being recovered by the reshape, so
514                          * this 'previous' section is not in_sync.
515                          * If the number of devices is being reduced however,
516                          * the device can only be part of the array if
517                          * we are reverting a reshape, so this section will
518                          * be in-sync.
519                          */
520                         if (conf->raid_disks >= conf->previous_raid_disks)
521                                 degraded++;
522         }
523         rcu_read_unlock();
524         if (conf->raid_disks == conf->previous_raid_disks)
525                 return degraded;
526         rcu_read_lock();
527         degraded2 = 0;
528         for (i = 0; i < conf->raid_disks; i++) {
529                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
530                 if (rdev && test_bit(Faulty, &rdev->flags))
531                         rdev = rcu_dereference(conf->disks[i].replacement);
532                 if (!rdev || test_bit(Faulty, &rdev->flags))
533                         degraded2++;
534                 else if (test_bit(In_sync, &rdev->flags))
535                         ;
536                 else
537                         /* not in-sync or faulty.
538                          * If reshape increases the number of devices, this
539                          * section has already been recovered, else it
540                          * almost certainly hasn't.
541                          */
542                         if (conf->raid_disks <= conf->previous_raid_disks)
543                                 degraded2++;
544         }
545         rcu_read_unlock();
546         if (degraded2 > degraded)
547                 return degraded2;
548         return degraded;
549 }
550
551 static int has_failed(struct r5conf *conf)
552 {
553         int degraded;
554
555         if (conf->mddev->reshape_position == MaxSector)
556                 return conf->mddev->degraded > conf->max_degraded;
557
558         degraded = calc_degraded(conf);
559         if (degraded > conf->max_degraded)
560                 return 1;
561         return 0;
562 }
563
564 static struct stripe_head *
565 get_active_stripe(struct r5conf *conf, sector_t sector,
566                   int previous, int noblock, int noquiesce)
567 {
568         struct stripe_head *sh;
569
570         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
571
572         spin_lock_irq(&conf->device_lock);
573
574         do {
575                 wait_event_lock_irq(conf->wait_for_stripe,
576                                     conf->quiesce == 0 || noquiesce,
577                                     conf->device_lock);
578                 sh = __find_stripe(conf, sector, conf->generation - previous);
579                 if (!sh) {
580                         if (!conf->inactive_blocked)
581                                 sh = get_free_stripe(conf);
582                         if (noblock && sh == NULL)
583                                 break;
584                         if (!sh) {
585                                 conf->inactive_blocked = 1;
586                                 wait_event_lock_irq(conf->wait_for_stripe,
587                                                     !list_empty(&conf->inactive_list) &&
588                                                     (atomic_read(&conf->active_stripes)
589                                                      < (conf->max_nr_stripes *3/4)
590                                                      || !conf->inactive_blocked),
591                                                     conf->device_lock);
592                                 conf->inactive_blocked = 0;
593                         } else
594                                 init_stripe(sh, sector, previous);
595                 } else {
596                         if (atomic_read(&sh->count)) {
597                                 BUG_ON(!list_empty(&sh->lru)
598                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
599                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
600                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
601                         } else {
602                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
603                                         atomic_inc(&conf->active_stripes);
604                                 if (list_empty(&sh->lru) &&
605                                     !test_bit(STRIPE_EXPANDING, &sh->state))
606                                         BUG();
607                                 list_del_init(&sh->lru);
608                                 if (sh->group) {
609                                         sh->group->stripes_cnt--;
610                                         sh->group = NULL;
611                                 }
612                         }
613                 }
614         } while (sh == NULL);
615
616         if (sh)
617                 atomic_inc(&sh->count);
618
619         spin_unlock_irq(&conf->device_lock);
620         return sh;
621 }
622
623 /* Determine if 'data_offset' or 'new_data_offset' should be used
624  * in this stripe_head.
625  */
626 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
627 {
628         sector_t progress = conf->reshape_progress;
629         /* Need a memory barrier to make sure we see the value
630          * of conf->generation, or ->data_offset that was set before
631          * reshape_progress was updated.
632          */
633         smp_rmb();
634         if (progress == MaxSector)
635                 return 0;
636         if (sh->generation == conf->generation - 1)
637                 return 0;
638         /* We are in a reshape, and this is a new-generation stripe,
639          * so use new_data_offset.
640          */
641         return 1;
642 }
643
644 static void
645 raid5_end_read_request(struct bio *bi, int error);
646 static void
647 raid5_end_write_request(struct bio *bi, int error);
648
649 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
650 {
651         struct r5conf *conf = sh->raid_conf;
652         int i, disks = sh->disks;
653
654         might_sleep();
655
656         for (i = disks; i--; ) {
657                 int rw;
658                 int replace_only = 0;
659                 struct bio *bi, *rbi;
660                 struct md_rdev *rdev, *rrdev = NULL;
661                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
662                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
663                                 rw = WRITE_FUA;
664                         else
665                                 rw = WRITE;
666                         if (test_bit(R5_Discard, &sh->dev[i].flags))
667                                 rw |= REQ_DISCARD;
668                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
669                         rw = READ;
670                 else if (test_and_clear_bit(R5_WantReplace,
671                                             &sh->dev[i].flags)) {
672                         rw = WRITE;
673                         replace_only = 1;
674                 } else
675                         continue;
676                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
677                         rw |= REQ_SYNC;
678
679                 bi = &sh->dev[i].req;
680                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
681
682                 rcu_read_lock();
683                 rrdev = rcu_dereference(conf->disks[i].replacement);
684                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
685                 rdev = rcu_dereference(conf->disks[i].rdev);
686                 if (!rdev) {
687                         rdev = rrdev;
688                         rrdev = NULL;
689                 }
690                 if (rw & WRITE) {
691                         if (replace_only)
692                                 rdev = NULL;
693                         if (rdev == rrdev)
694                                 /* We raced and saw duplicates */
695                                 rrdev = NULL;
696                 } else {
697                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
698                                 rdev = rrdev;
699                         rrdev = NULL;
700                 }
701
702                 if (rdev && test_bit(Faulty, &rdev->flags))
703                         rdev = NULL;
704                 if (rdev)
705                         atomic_inc(&rdev->nr_pending);
706                 if (rrdev && test_bit(Faulty, &rrdev->flags))
707                         rrdev = NULL;
708                 if (rrdev)
709                         atomic_inc(&rrdev->nr_pending);
710                 rcu_read_unlock();
711
712                 /* We have already checked bad blocks for reads.  Now
713                  * need to check for writes.  We never accept write errors
714                  * on the replacement, so we don't to check rrdev.
715                  */
716                 while ((rw & WRITE) && rdev &&
717                        test_bit(WriteErrorSeen, &rdev->flags)) {
718                         sector_t first_bad;
719                         int bad_sectors;
720                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
721                                               &first_bad, &bad_sectors);
722                         if (!bad)
723                                 break;
724
725                         if (bad < 0) {
726                                 set_bit(BlockedBadBlocks, &rdev->flags);
727                                 if (!conf->mddev->external &&
728                                     conf->mddev->flags) {
729                                         /* It is very unlikely, but we might
730                                          * still need to write out the
731                                          * bad block log - better give it
732                                          * a chance*/
733                                         md_check_recovery(conf->mddev);
734                                 }
735                                 /*
736                                  * Because md_wait_for_blocked_rdev
737                                  * will dec nr_pending, we must
738                                  * increment it first.
739                                  */
740                                 atomic_inc(&rdev->nr_pending);
741                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
742                         } else {
743                                 /* Acknowledged bad block - skip the write */
744                                 rdev_dec_pending(rdev, conf->mddev);
745                                 rdev = NULL;
746                         }
747                 }
748
749                 if (rdev) {
750                         if (s->syncing || s->expanding || s->expanded
751                             || s->replacing)
752                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
753
754                         set_bit(STRIPE_IO_STARTED, &sh->state);
755
756                         bio_reset(bi);
757                         bi->bi_bdev = rdev->bdev;
758                         bi->bi_rw = rw;
759                         bi->bi_end_io = (rw & WRITE)
760                                 ? raid5_end_write_request
761                                 : raid5_end_read_request;
762                         bi->bi_private = sh;
763
764                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
765                                 __func__, (unsigned long long)sh->sector,
766                                 bi->bi_rw, i);
767                         atomic_inc(&sh->count);
768                         if (use_new_offset(conf, sh))
769                                 bi->bi_sector = (sh->sector
770                                                  + rdev->new_data_offset);
771                         else
772                                 bi->bi_sector = (sh->sector
773                                                  + rdev->data_offset);
774                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
775                                 bi->bi_rw |= REQ_FLUSH;
776
777                         bi->bi_vcnt = 1;
778                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
779                         bi->bi_io_vec[0].bv_offset = 0;
780                         bi->bi_size = STRIPE_SIZE;
781                         /*
782                          * If this is discard request, set bi_vcnt 0. We don't
783                          * want to confuse SCSI because SCSI will replace payload
784                          */
785                         if (rw & REQ_DISCARD)
786                                 bi->bi_vcnt = 0;
787                         if (rrdev)
788                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
789
790                         if (conf->mddev->gendisk)
791                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
792                                                       bi, disk_devt(conf->mddev->gendisk),
793                                                       sh->dev[i].sector);
794                         generic_make_request(bi);
795                 }
796                 if (rrdev) {
797                         if (s->syncing || s->expanding || s->expanded
798                             || s->replacing)
799                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
800
801                         set_bit(STRIPE_IO_STARTED, &sh->state);
802
803                         bio_reset(rbi);
804                         rbi->bi_bdev = rrdev->bdev;
805                         rbi->bi_rw = rw;
806                         BUG_ON(!(rw & WRITE));
807                         rbi->bi_end_io = raid5_end_write_request;
808                         rbi->bi_private = sh;
809
810                         pr_debug("%s: for %llu schedule op %ld on "
811                                  "replacement disc %d\n",
812                                 __func__, (unsigned long long)sh->sector,
813                                 rbi->bi_rw, i);
814                         atomic_inc(&sh->count);
815                         if (use_new_offset(conf, sh))
816                                 rbi->bi_sector = (sh->sector
817                                                   + rrdev->new_data_offset);
818                         else
819                                 rbi->bi_sector = (sh->sector
820                                                   + rrdev->data_offset);
821                         rbi->bi_vcnt = 1;
822                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
823                         rbi->bi_io_vec[0].bv_offset = 0;
824                         rbi->bi_size = STRIPE_SIZE;
825                         /*
826                          * If this is discard request, set bi_vcnt 0. We don't
827                          * want to confuse SCSI because SCSI will replace payload
828                          */
829                         if (rw & REQ_DISCARD)
830                                 rbi->bi_vcnt = 0;
831                         if (conf->mddev->gendisk)
832                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
833                                                       rbi, disk_devt(conf->mddev->gendisk),
834                                                       sh->dev[i].sector);
835                         generic_make_request(rbi);
836                 }
837                 if (!rdev && !rrdev) {
838                         if (rw & WRITE)
839                                 set_bit(STRIPE_DEGRADED, &sh->state);
840                         pr_debug("skip op %ld on disc %d for sector %llu\n",
841                                 bi->bi_rw, i, (unsigned long long)sh->sector);
842                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
843                         set_bit(STRIPE_HANDLE, &sh->state);
844                 }
845         }
846 }
847
848 static struct dma_async_tx_descriptor *
849 async_copy_data(int frombio, struct bio *bio, struct page *page,
850         sector_t sector, struct dma_async_tx_descriptor *tx)
851 {
852         struct bio_vec *bvl;
853         struct page *bio_page;
854         int i;
855         int page_offset;
856         struct async_submit_ctl submit;
857         enum async_tx_flags flags = 0;
858
859         if (bio->bi_sector >= sector)
860                 page_offset = (signed)(bio->bi_sector - sector) * 512;
861         else
862                 page_offset = (signed)(sector - bio->bi_sector) * -512;
863
864         if (frombio)
865                 flags |= ASYNC_TX_FENCE;
866         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
867
868         bio_for_each_segment(bvl, bio, i) {
869                 int len = bvl->bv_len;
870                 int clen;
871                 int b_offset = 0;
872
873                 if (page_offset < 0) {
874                         b_offset = -page_offset;
875                         page_offset += b_offset;
876                         len -= b_offset;
877                 }
878
879                 if (len > 0 && page_offset + len > STRIPE_SIZE)
880                         clen = STRIPE_SIZE - page_offset;
881                 else
882                         clen = len;
883
884                 if (clen > 0) {
885                         b_offset += bvl->bv_offset;
886                         bio_page = bvl->bv_page;
887                         if (frombio)
888                                 tx = async_memcpy(page, bio_page, page_offset,
889                                                   b_offset, clen, &submit);
890                         else
891                                 tx = async_memcpy(bio_page, page, b_offset,
892                                                   page_offset, clen, &submit);
893                 }
894                 /* chain the operations */
895                 submit.depend_tx = tx;
896
897                 if (clen < len) /* hit end of page */
898                         break;
899                 page_offset +=  len;
900         }
901
902         return tx;
903 }
904
905 static void ops_complete_biofill(void *stripe_head_ref)
906 {
907         struct stripe_head *sh = stripe_head_ref;
908         struct bio *return_bi = NULL;
909         int i;
910
911         pr_debug("%s: stripe %llu\n", __func__,
912                 (unsigned long long)sh->sector);
913
914         /* clear completed biofills */
915         for (i = sh->disks; i--; ) {
916                 struct r5dev *dev = &sh->dev[i];
917
918                 /* acknowledge completion of a biofill operation */
919                 /* and check if we need to reply to a read request,
920                  * new R5_Wantfill requests are held off until
921                  * !STRIPE_BIOFILL_RUN
922                  */
923                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
924                         struct bio *rbi, *rbi2;
925
926                         BUG_ON(!dev->read);
927                         rbi = dev->read;
928                         dev->read = NULL;
929                         while (rbi && rbi->bi_sector <
930                                 dev->sector + STRIPE_SECTORS) {
931                                 rbi2 = r5_next_bio(rbi, dev->sector);
932                                 if (!raid5_dec_bi_active_stripes(rbi)) {
933                                         rbi->bi_next = return_bi;
934                                         return_bi = rbi;
935                                 }
936                                 rbi = rbi2;
937                         }
938                 }
939         }
940         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
941
942         return_io(return_bi);
943
944         set_bit(STRIPE_HANDLE, &sh->state);
945         release_stripe(sh);
946 }
947
948 static void ops_run_biofill(struct stripe_head *sh)
949 {
950         struct dma_async_tx_descriptor *tx = NULL;
951         struct async_submit_ctl submit;
952         int i;
953
954         pr_debug("%s: stripe %llu\n", __func__,
955                 (unsigned long long)sh->sector);
956
957         for (i = sh->disks; i--; ) {
958                 struct r5dev *dev = &sh->dev[i];
959                 if (test_bit(R5_Wantfill, &dev->flags)) {
960                         struct bio *rbi;
961                         spin_lock_irq(&sh->stripe_lock);
962                         dev->read = rbi = dev->toread;
963                         dev->toread = NULL;
964                         spin_unlock_irq(&sh->stripe_lock);
965                         while (rbi && rbi->bi_sector <
966                                 dev->sector + STRIPE_SECTORS) {
967                                 tx = async_copy_data(0, rbi, dev->page,
968                                         dev->sector, tx);
969                                 rbi = r5_next_bio(rbi, dev->sector);
970                         }
971                 }
972         }
973
974         atomic_inc(&sh->count);
975         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
976         async_trigger_callback(&submit);
977 }
978
979 static void mark_target_uptodate(struct stripe_head *sh, int target)
980 {
981         struct r5dev *tgt;
982
983         if (target < 0)
984                 return;
985
986         tgt = &sh->dev[target];
987         set_bit(R5_UPTODATE, &tgt->flags);
988         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
989         clear_bit(R5_Wantcompute, &tgt->flags);
990 }
991
992 static void ops_complete_compute(void *stripe_head_ref)
993 {
994         struct stripe_head *sh = stripe_head_ref;
995
996         pr_debug("%s: stripe %llu\n", __func__,
997                 (unsigned long long)sh->sector);
998
999         /* mark the computed target(s) as uptodate */
1000         mark_target_uptodate(sh, sh->ops.target);
1001         mark_target_uptodate(sh, sh->ops.target2);
1002
1003         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1004         if (sh->check_state == check_state_compute_run)
1005                 sh->check_state = check_state_compute_result;
1006         set_bit(STRIPE_HANDLE, &sh->state);
1007         release_stripe(sh);
1008 }
1009
1010 /* return a pointer to the address conversion region of the scribble buffer */
1011 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1012                                  struct raid5_percpu *percpu)
1013 {
1014         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1015 }
1016
1017 static struct dma_async_tx_descriptor *
1018 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1019 {
1020         int disks = sh->disks;
1021         struct page **xor_srcs = percpu->scribble;
1022         int target = sh->ops.target;
1023         struct r5dev *tgt = &sh->dev[target];
1024         struct page *xor_dest = tgt->page;
1025         int count = 0;
1026         struct dma_async_tx_descriptor *tx;
1027         struct async_submit_ctl submit;
1028         int i;
1029
1030         pr_debug("%s: stripe %llu block: %d\n",
1031                 __func__, (unsigned long long)sh->sector, target);
1032         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033
1034         for (i = disks; i--; )
1035                 if (i != target)
1036                         xor_srcs[count++] = sh->dev[i].page;
1037
1038         atomic_inc(&sh->count);
1039
1040         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1041                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1042         if (unlikely(count == 1))
1043                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1044         else
1045                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1046
1047         return tx;
1048 }
1049
1050 /* set_syndrome_sources - populate source buffers for gen_syndrome
1051  * @srcs - (struct page *) array of size sh->disks
1052  * @sh - stripe_head to parse
1053  *
1054  * Populates srcs in proper layout order for the stripe and returns the
1055  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1056  * destination buffer is recorded in srcs[count] and the Q destination
1057  * is recorded in srcs[count+1]].
1058  */
1059 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1060 {
1061         int disks = sh->disks;
1062         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1063         int d0_idx = raid6_d0(sh);
1064         int count;
1065         int i;
1066
1067         for (i = 0; i < disks; i++)
1068                 srcs[i] = NULL;
1069
1070         count = 0;
1071         i = d0_idx;
1072         do {
1073                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1074
1075                 srcs[slot] = sh->dev[i].page;
1076                 i = raid6_next_disk(i, disks);
1077         } while (i != d0_idx);
1078
1079         return syndrome_disks;
1080 }
1081
1082 static struct dma_async_tx_descriptor *
1083 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1084 {
1085         int disks = sh->disks;
1086         struct page **blocks = percpu->scribble;
1087         int target;
1088         int qd_idx = sh->qd_idx;
1089         struct dma_async_tx_descriptor *tx;
1090         struct async_submit_ctl submit;
1091         struct r5dev *tgt;
1092         struct page *dest;
1093         int i;
1094         int count;
1095
1096         if (sh->ops.target < 0)
1097                 target = sh->ops.target2;
1098         else if (sh->ops.target2 < 0)
1099                 target = sh->ops.target;
1100         else
1101                 /* we should only have one valid target */
1102                 BUG();
1103         BUG_ON(target < 0);
1104         pr_debug("%s: stripe %llu block: %d\n",
1105                 __func__, (unsigned long long)sh->sector, target);
1106
1107         tgt = &sh->dev[target];
1108         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1109         dest = tgt->page;
1110
1111         atomic_inc(&sh->count);
1112
1113         if (target == qd_idx) {
1114                 count = set_syndrome_sources(blocks, sh);
1115                 blocks[count] = NULL; /* regenerating p is not necessary */
1116                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1117                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1118                                   ops_complete_compute, sh,
1119                                   to_addr_conv(sh, percpu));
1120                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1121         } else {
1122                 /* Compute any data- or p-drive using XOR */
1123                 count = 0;
1124                 for (i = disks; i-- ; ) {
1125                         if (i == target || i == qd_idx)
1126                                 continue;
1127                         blocks[count++] = sh->dev[i].page;
1128                 }
1129
1130                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1131                                   NULL, ops_complete_compute, sh,
1132                                   to_addr_conv(sh, percpu));
1133                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1134         }
1135
1136         return tx;
1137 }
1138
1139 static struct dma_async_tx_descriptor *
1140 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1141 {
1142         int i, count, disks = sh->disks;
1143         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1144         int d0_idx = raid6_d0(sh);
1145         int faila = -1, failb = -1;
1146         int target = sh->ops.target;
1147         int target2 = sh->ops.target2;
1148         struct r5dev *tgt = &sh->dev[target];
1149         struct r5dev *tgt2 = &sh->dev[target2];
1150         struct dma_async_tx_descriptor *tx;
1151         struct page **blocks = percpu->scribble;
1152         struct async_submit_ctl submit;
1153
1154         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1155                  __func__, (unsigned long long)sh->sector, target, target2);
1156         BUG_ON(target < 0 || target2 < 0);
1157         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1158         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1159
1160         /* we need to open-code set_syndrome_sources to handle the
1161          * slot number conversion for 'faila' and 'failb'
1162          */
1163         for (i = 0; i < disks ; i++)
1164                 blocks[i] = NULL;
1165         count = 0;
1166         i = d0_idx;
1167         do {
1168                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1169
1170                 blocks[slot] = sh->dev[i].page;
1171
1172                 if (i == target)
1173                         faila = slot;
1174                 if (i == target2)
1175                         failb = slot;
1176                 i = raid6_next_disk(i, disks);
1177         } while (i != d0_idx);
1178
1179         BUG_ON(faila == failb);
1180         if (failb < faila)
1181                 swap(faila, failb);
1182         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1183                  __func__, (unsigned long long)sh->sector, faila, failb);
1184
1185         atomic_inc(&sh->count);
1186
1187         if (failb == syndrome_disks+1) {
1188                 /* Q disk is one of the missing disks */
1189                 if (faila == syndrome_disks) {
1190                         /* Missing P+Q, just recompute */
1191                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1192                                           ops_complete_compute, sh,
1193                                           to_addr_conv(sh, percpu));
1194                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1195                                                   STRIPE_SIZE, &submit);
1196                 } else {
1197                         struct page *dest;
1198                         int data_target;
1199                         int qd_idx = sh->qd_idx;
1200
1201                         /* Missing D+Q: recompute D from P, then recompute Q */
1202                         if (target == qd_idx)
1203                                 data_target = target2;
1204                         else
1205                                 data_target = target;
1206
1207                         count = 0;
1208                         for (i = disks; i-- ; ) {
1209                                 if (i == data_target || i == qd_idx)
1210                                         continue;
1211                                 blocks[count++] = sh->dev[i].page;
1212                         }
1213                         dest = sh->dev[data_target].page;
1214                         init_async_submit(&submit,
1215                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1216                                           NULL, NULL, NULL,
1217                                           to_addr_conv(sh, percpu));
1218                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1219                                        &submit);
1220
1221                         count = set_syndrome_sources(blocks, sh);
1222                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1223                                           ops_complete_compute, sh,
1224                                           to_addr_conv(sh, percpu));
1225                         return async_gen_syndrome(blocks, 0, count+2,
1226                                                   STRIPE_SIZE, &submit);
1227                 }
1228         } else {
1229                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1230                                   ops_complete_compute, sh,
1231                                   to_addr_conv(sh, percpu));
1232                 if (failb == syndrome_disks) {
1233                         /* We're missing D+P. */
1234                         return async_raid6_datap_recov(syndrome_disks+2,
1235                                                        STRIPE_SIZE, faila,
1236                                                        blocks, &submit);
1237                 } else {
1238                         /* We're missing D+D. */
1239                         return async_raid6_2data_recov(syndrome_disks+2,
1240                                                        STRIPE_SIZE, faila, failb,
1241                                                        blocks, &submit);
1242                 }
1243         }
1244 }
1245
1246
1247 static void ops_complete_prexor(void *stripe_head_ref)
1248 {
1249         struct stripe_head *sh = stripe_head_ref;
1250
1251         pr_debug("%s: stripe %llu\n", __func__,
1252                 (unsigned long long)sh->sector);
1253 }
1254
1255 static struct dma_async_tx_descriptor *
1256 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1257                struct dma_async_tx_descriptor *tx)
1258 {
1259         int disks = sh->disks;
1260         struct page **xor_srcs = percpu->scribble;
1261         int count = 0, pd_idx = sh->pd_idx, i;
1262         struct async_submit_ctl submit;
1263
1264         /* existing parity data subtracted */
1265         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1266
1267         pr_debug("%s: stripe %llu\n", __func__,
1268                 (unsigned long long)sh->sector);
1269
1270         for (i = disks; i--; ) {
1271                 struct r5dev *dev = &sh->dev[i];
1272                 /* Only process blocks that are known to be uptodate */
1273                 if (test_bit(R5_Wantdrain, &dev->flags))
1274                         xor_srcs[count++] = dev->page;
1275         }
1276
1277         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1278                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1279         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1280
1281         return tx;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1286 {
1287         int disks = sh->disks;
1288         int i;
1289
1290         pr_debug("%s: stripe %llu\n", __func__,
1291                 (unsigned long long)sh->sector);
1292
1293         for (i = disks; i--; ) {
1294                 struct r5dev *dev = &sh->dev[i];
1295                 struct bio *chosen;
1296
1297                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1298                         struct bio *wbi;
1299
1300                         spin_lock_irq(&sh->stripe_lock);
1301                         chosen = dev->towrite;
1302                         dev->towrite = NULL;
1303                         BUG_ON(dev->written);
1304                         wbi = dev->written = chosen;
1305                         spin_unlock_irq(&sh->stripe_lock);
1306
1307                         while (wbi && wbi->bi_sector <
1308                                 dev->sector + STRIPE_SECTORS) {
1309                                 if (wbi->bi_rw & REQ_FUA)
1310                                         set_bit(R5_WantFUA, &dev->flags);
1311                                 if (wbi->bi_rw & REQ_SYNC)
1312                                         set_bit(R5_SyncIO, &dev->flags);
1313                                 if (wbi->bi_rw & REQ_DISCARD)
1314                                         set_bit(R5_Discard, &dev->flags);
1315                                 else
1316                                         tx = async_copy_data(1, wbi, dev->page,
1317                                                 dev->sector, tx);
1318                                 wbi = r5_next_bio(wbi, dev->sector);
1319                         }
1320                 }
1321         }
1322
1323         return tx;
1324 }
1325
1326 static void ops_complete_reconstruct(void *stripe_head_ref)
1327 {
1328         struct stripe_head *sh = stripe_head_ref;
1329         int disks = sh->disks;
1330         int pd_idx = sh->pd_idx;
1331         int qd_idx = sh->qd_idx;
1332         int i;
1333         bool fua = false, sync = false, discard = false;
1334
1335         pr_debug("%s: stripe %llu\n", __func__,
1336                 (unsigned long long)sh->sector);
1337
1338         for (i = disks; i--; ) {
1339                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1340                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1341                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1342         }
1343
1344         for (i = disks; i--; ) {
1345                 struct r5dev *dev = &sh->dev[i];
1346
1347                 if (dev->written || i == pd_idx || i == qd_idx) {
1348                         if (!discard)
1349                                 set_bit(R5_UPTODATE, &dev->flags);
1350                         if (fua)
1351                                 set_bit(R5_WantFUA, &dev->flags);
1352                         if (sync)
1353                                 set_bit(R5_SyncIO, &dev->flags);
1354                 }
1355         }
1356
1357         if (sh->reconstruct_state == reconstruct_state_drain_run)
1358                 sh->reconstruct_state = reconstruct_state_drain_result;
1359         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1360                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1361         else {
1362                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1363                 sh->reconstruct_state = reconstruct_state_result;
1364         }
1365
1366         set_bit(STRIPE_HANDLE, &sh->state);
1367         release_stripe(sh);
1368 }
1369
1370 static void
1371 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1372                      struct dma_async_tx_descriptor *tx)
1373 {
1374         int disks = sh->disks;
1375         struct page **xor_srcs = percpu->scribble;
1376         struct async_submit_ctl submit;
1377         int count = 0, pd_idx = sh->pd_idx, i;
1378         struct page *xor_dest;
1379         int prexor = 0;
1380         unsigned long flags;
1381
1382         pr_debug("%s: stripe %llu\n", __func__,
1383                 (unsigned long long)sh->sector);
1384
1385         for (i = 0; i < sh->disks; i++) {
1386                 if (pd_idx == i)
1387                         continue;
1388                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1389                         break;
1390         }
1391         if (i >= sh->disks) {
1392                 atomic_inc(&sh->count);
1393                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1394                 ops_complete_reconstruct(sh);
1395                 return;
1396         }
1397         /* check if prexor is active which means only process blocks
1398          * that are part of a read-modify-write (written)
1399          */
1400         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1401                 prexor = 1;
1402                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1403                 for (i = disks; i--; ) {
1404                         struct r5dev *dev = &sh->dev[i];
1405                         if (dev->written)
1406                                 xor_srcs[count++] = dev->page;
1407                 }
1408         } else {
1409                 xor_dest = sh->dev[pd_idx].page;
1410                 for (i = disks; i--; ) {
1411                         struct r5dev *dev = &sh->dev[i];
1412                         if (i != pd_idx)
1413                                 xor_srcs[count++] = dev->page;
1414                 }
1415         }
1416
1417         /* 1/ if we prexor'd then the dest is reused as a source
1418          * 2/ if we did not prexor then we are redoing the parity
1419          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1420          * for the synchronous xor case
1421          */
1422         flags = ASYNC_TX_ACK |
1423                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1424
1425         atomic_inc(&sh->count);
1426
1427         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1428                           to_addr_conv(sh, percpu));
1429         if (unlikely(count == 1))
1430                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1431         else
1432                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1433 }
1434
1435 static void
1436 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1437                      struct dma_async_tx_descriptor *tx)
1438 {
1439         struct async_submit_ctl submit;
1440         struct page **blocks = percpu->scribble;
1441         int count, i;
1442
1443         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1444
1445         for (i = 0; i < sh->disks; i++) {
1446                 if (sh->pd_idx == i || sh->qd_idx == i)
1447                         continue;
1448                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1449                         break;
1450         }
1451         if (i >= sh->disks) {
1452                 atomic_inc(&sh->count);
1453                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1454                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1455                 ops_complete_reconstruct(sh);
1456                 return;
1457         }
1458
1459         count = set_syndrome_sources(blocks, sh);
1460
1461         atomic_inc(&sh->count);
1462
1463         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1464                           sh, to_addr_conv(sh, percpu));
1465         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1466 }
1467
1468 static void ops_complete_check(void *stripe_head_ref)
1469 {
1470         struct stripe_head *sh = stripe_head_ref;
1471
1472         pr_debug("%s: stripe %llu\n", __func__,
1473                 (unsigned long long)sh->sector);
1474
1475         sh->check_state = check_state_check_result;
1476         set_bit(STRIPE_HANDLE, &sh->state);
1477         release_stripe(sh);
1478 }
1479
1480 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1481 {
1482         int disks = sh->disks;
1483         int pd_idx = sh->pd_idx;
1484         int qd_idx = sh->qd_idx;
1485         struct page *xor_dest;
1486         struct page **xor_srcs = percpu->scribble;
1487         struct dma_async_tx_descriptor *tx;
1488         struct async_submit_ctl submit;
1489         int count;
1490         int i;
1491
1492         pr_debug("%s: stripe %llu\n", __func__,
1493                 (unsigned long long)sh->sector);
1494
1495         count = 0;
1496         xor_dest = sh->dev[pd_idx].page;
1497         xor_srcs[count++] = xor_dest;
1498         for (i = disks; i--; ) {
1499                 if (i == pd_idx || i == qd_idx)
1500                         continue;
1501                 xor_srcs[count++] = sh->dev[i].page;
1502         }
1503
1504         init_async_submit(&submit, 0, NULL, NULL, NULL,
1505                           to_addr_conv(sh, percpu));
1506         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1507                            &sh->ops.zero_sum_result, &submit);
1508
1509         atomic_inc(&sh->count);
1510         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1511         tx = async_trigger_callback(&submit);
1512 }
1513
1514 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1515 {
1516         struct page **srcs = percpu->scribble;
1517         struct async_submit_ctl submit;
1518         int count;
1519
1520         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1521                 (unsigned long long)sh->sector, checkp);
1522
1523         count = set_syndrome_sources(srcs, sh);
1524         if (!checkp)
1525                 srcs[count] = NULL;
1526
1527         atomic_inc(&sh->count);
1528         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1529                           sh, to_addr_conv(sh, percpu));
1530         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1531                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1532 }
1533
1534 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1535 {
1536         int overlap_clear = 0, i, disks = sh->disks;
1537         struct dma_async_tx_descriptor *tx = NULL;
1538         struct r5conf *conf = sh->raid_conf;
1539         int level = conf->level;
1540         struct raid5_percpu *percpu;
1541         unsigned long cpu;
1542
1543         cpu = get_cpu();
1544         percpu = per_cpu_ptr(conf->percpu, cpu);
1545         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1546                 ops_run_biofill(sh);
1547                 overlap_clear++;
1548         }
1549
1550         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1551                 if (level < 6)
1552                         tx = ops_run_compute5(sh, percpu);
1553                 else {
1554                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1555                                 tx = ops_run_compute6_1(sh, percpu);
1556                         else
1557                                 tx = ops_run_compute6_2(sh, percpu);
1558                 }
1559                 /* terminate the chain if reconstruct is not set to be run */
1560                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1561                         async_tx_ack(tx);
1562         }
1563
1564         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1565                 tx = ops_run_prexor(sh, percpu, tx);
1566
1567         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1568                 tx = ops_run_biodrain(sh, tx);
1569                 overlap_clear++;
1570         }
1571
1572         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1573                 if (level < 6)
1574                         ops_run_reconstruct5(sh, percpu, tx);
1575                 else
1576                         ops_run_reconstruct6(sh, percpu, tx);
1577         }
1578
1579         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1580                 if (sh->check_state == check_state_run)
1581                         ops_run_check_p(sh, percpu);
1582                 else if (sh->check_state == check_state_run_q)
1583                         ops_run_check_pq(sh, percpu, 0);
1584                 else if (sh->check_state == check_state_run_pq)
1585                         ops_run_check_pq(sh, percpu, 1);
1586                 else
1587                         BUG();
1588         }
1589
1590         if (overlap_clear)
1591                 for (i = disks; i--; ) {
1592                         struct r5dev *dev = &sh->dev[i];
1593                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1594                                 wake_up(&sh->raid_conf->wait_for_overlap);
1595                 }
1596         put_cpu();
1597 }
1598
1599 static int grow_one_stripe(struct r5conf *conf)
1600 {
1601         struct stripe_head *sh;
1602         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1603         if (!sh)
1604                 return 0;
1605
1606         sh->raid_conf = conf;
1607
1608         spin_lock_init(&sh->stripe_lock);
1609
1610         if (grow_buffers(sh)) {
1611                 shrink_buffers(sh);
1612                 kmem_cache_free(conf->slab_cache, sh);
1613                 return 0;
1614         }
1615         /* we just created an active stripe so... */
1616         atomic_set(&sh->count, 1);
1617         atomic_inc(&conf->active_stripes);
1618         INIT_LIST_HEAD(&sh->lru);
1619         release_stripe(sh);
1620         return 1;
1621 }
1622
1623 static int grow_stripes(struct r5conf *conf, int num)
1624 {
1625         struct kmem_cache *sc;
1626         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1627
1628         if (conf->mddev->gendisk)
1629                 sprintf(conf->cache_name[0],
1630                         "raid%d-%s", conf->level, mdname(conf->mddev));
1631         else
1632                 sprintf(conf->cache_name[0],
1633                         "raid%d-%p", conf->level, conf->mddev);
1634         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1635
1636         conf->active_name = 0;
1637         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1638                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1639                                0, 0, NULL);
1640         if (!sc)
1641                 return 1;
1642         conf->slab_cache = sc;
1643         conf->pool_size = devs;
1644         while (num--)
1645                 if (!grow_one_stripe(conf))
1646                         return 1;
1647         return 0;
1648 }
1649
1650 /**
1651  * scribble_len - return the required size of the scribble region
1652  * @num - total number of disks in the array
1653  *
1654  * The size must be enough to contain:
1655  * 1/ a struct page pointer for each device in the array +2
1656  * 2/ room to convert each entry in (1) to its corresponding dma
1657  *    (dma_map_page()) or page (page_address()) address.
1658  *
1659  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1660  * calculate over all devices (not just the data blocks), using zeros in place
1661  * of the P and Q blocks.
1662  */
1663 static size_t scribble_len(int num)
1664 {
1665         size_t len;
1666
1667         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1668
1669         return len;
1670 }
1671
1672 static int resize_stripes(struct r5conf *conf, int newsize)
1673 {
1674         /* Make all the stripes able to hold 'newsize' devices.
1675          * New slots in each stripe get 'page' set to a new page.
1676          *
1677          * This happens in stages:
1678          * 1/ create a new kmem_cache and allocate the required number of
1679          *    stripe_heads.
1680          * 2/ gather all the old stripe_heads and transfer the pages across
1681          *    to the new stripe_heads.  This will have the side effect of
1682          *    freezing the array as once all stripe_heads have been collected,
1683          *    no IO will be possible.  Old stripe heads are freed once their
1684          *    pages have been transferred over, and the old kmem_cache is
1685          *    freed when all stripes are done.
1686          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1687          *    we simple return a failre status - no need to clean anything up.
1688          * 4/ allocate new pages for the new slots in the new stripe_heads.
1689          *    If this fails, we don't bother trying the shrink the
1690          *    stripe_heads down again, we just leave them as they are.
1691          *    As each stripe_head is processed the new one is released into
1692          *    active service.
1693          *
1694          * Once step2 is started, we cannot afford to wait for a write,
1695          * so we use GFP_NOIO allocations.
1696          */
1697         struct stripe_head *osh, *nsh;
1698         LIST_HEAD(newstripes);
1699         struct disk_info *ndisks;
1700         unsigned long cpu;
1701         int err;
1702         struct kmem_cache *sc;
1703         int i;
1704
1705         if (newsize <= conf->pool_size)
1706                 return 0; /* never bother to shrink */
1707
1708         err = md_allow_write(conf->mddev);
1709         if (err)
1710                 return err;
1711
1712         /* Step 1 */
1713         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1714                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1715                                0, 0, NULL);
1716         if (!sc)
1717                 return -ENOMEM;
1718
1719         for (i = conf->max_nr_stripes; i; i--) {
1720                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1721                 if (!nsh)
1722                         break;
1723
1724                 nsh->raid_conf = conf;
1725                 spin_lock_init(&nsh->stripe_lock);
1726
1727                 list_add(&nsh->lru, &newstripes);
1728         }
1729         if (i) {
1730                 /* didn't get enough, give up */
1731                 while (!list_empty(&newstripes)) {
1732                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1733                         list_del(&nsh->lru);
1734                         kmem_cache_free(sc, nsh);
1735                 }
1736                 kmem_cache_destroy(sc);
1737                 return -ENOMEM;
1738         }
1739         /* Step 2 - Must use GFP_NOIO now.
1740          * OK, we have enough stripes, start collecting inactive
1741          * stripes and copying them over
1742          */
1743         list_for_each_entry(nsh, &newstripes, lru) {
1744                 spin_lock_irq(&conf->device_lock);
1745                 wait_event_lock_irq(conf->wait_for_stripe,
1746                                     !list_empty(&conf->inactive_list),
1747                                     conf->device_lock);
1748                 osh = get_free_stripe(conf);
1749                 spin_unlock_irq(&conf->device_lock);
1750                 atomic_set(&nsh->count, 1);
1751                 for(i=0; i<conf->pool_size; i++)
1752                         nsh->dev[i].page = osh->dev[i].page;
1753                 for( ; i<newsize; i++)
1754                         nsh->dev[i].page = NULL;
1755                 kmem_cache_free(conf->slab_cache, osh);
1756         }
1757         kmem_cache_destroy(conf->slab_cache);
1758
1759         /* Step 3.
1760          * At this point, we are holding all the stripes so the array
1761          * is completely stalled, so now is a good time to resize
1762          * conf->disks and the scribble region
1763          */
1764         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1765         if (ndisks) {
1766                 for (i=0; i<conf->raid_disks; i++)
1767                         ndisks[i] = conf->disks[i];
1768                 kfree(conf->disks);
1769                 conf->disks = ndisks;
1770         } else
1771                 err = -ENOMEM;
1772
1773         get_online_cpus();
1774         conf->scribble_len = scribble_len(newsize);
1775         for_each_present_cpu(cpu) {
1776                 struct raid5_percpu *percpu;
1777                 void *scribble;
1778
1779                 percpu = per_cpu_ptr(conf->percpu, cpu);
1780                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1781
1782                 if (scribble) {
1783                         kfree(percpu->scribble);
1784                         percpu->scribble = scribble;
1785                 } else {
1786                         err = -ENOMEM;
1787                         break;
1788                 }
1789         }
1790         put_online_cpus();
1791
1792         /* Step 4, return new stripes to service */
1793         while(!list_empty(&newstripes)) {
1794                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1795                 list_del_init(&nsh->lru);
1796
1797                 for (i=conf->raid_disks; i < newsize; i++)
1798                         if (nsh->dev[i].page == NULL) {
1799                                 struct page *p = alloc_page(GFP_NOIO);
1800                                 nsh->dev[i].page = p;
1801                                 if (!p)
1802                                         err = -ENOMEM;
1803                         }
1804                 release_stripe(nsh);
1805         }
1806         /* critical section pass, GFP_NOIO no longer needed */
1807
1808         conf->slab_cache = sc;
1809         conf->active_name = 1-conf->active_name;
1810         conf->pool_size = newsize;
1811         return err;
1812 }
1813
1814 static int drop_one_stripe(struct r5conf *conf)
1815 {
1816         struct stripe_head *sh;
1817
1818         spin_lock_irq(&conf->device_lock);
1819         sh = get_free_stripe(conf);
1820         spin_unlock_irq(&conf->device_lock);
1821         if (!sh)
1822                 return 0;
1823         BUG_ON(atomic_read(&sh->count));
1824         shrink_buffers(sh);
1825         kmem_cache_free(conf->slab_cache, sh);
1826         atomic_dec(&conf->active_stripes);
1827         return 1;
1828 }
1829
1830 static void shrink_stripes(struct r5conf *conf)
1831 {
1832         while (drop_one_stripe(conf))
1833                 ;
1834
1835         if (conf->slab_cache)
1836                 kmem_cache_destroy(conf->slab_cache);
1837         conf->slab_cache = NULL;
1838 }
1839
1840 static void raid5_end_read_request(struct bio * bi, int error)
1841 {
1842         struct stripe_head *sh = bi->bi_private;
1843         struct r5conf *conf = sh->raid_conf;
1844         int disks = sh->disks, i;
1845         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1846         char b[BDEVNAME_SIZE];
1847         struct md_rdev *rdev = NULL;
1848         sector_t s;
1849
1850         for (i=0 ; i<disks; i++)
1851                 if (bi == &sh->dev[i].req)
1852                         break;
1853
1854         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1855                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1856                 uptodate);
1857         if (i == disks) {
1858                 BUG();
1859                 return;
1860         }
1861         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1862                 /* If replacement finished while this request was outstanding,
1863                  * 'replacement' might be NULL already.
1864                  * In that case it moved down to 'rdev'.
1865                  * rdev is not removed until all requests are finished.
1866                  */
1867                 rdev = conf->disks[i].replacement;
1868         if (!rdev)
1869                 rdev = conf->disks[i].rdev;
1870
1871         if (use_new_offset(conf, sh))
1872                 s = sh->sector + rdev->new_data_offset;
1873         else
1874                 s = sh->sector + rdev->data_offset;
1875         if (uptodate) {
1876                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1877                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1878                         /* Note that this cannot happen on a
1879                          * replacement device.  We just fail those on
1880                          * any error
1881                          */
1882                         printk_ratelimited(
1883                                 KERN_INFO
1884                                 "md/raid:%s: read error corrected"
1885                                 " (%lu sectors at %llu on %s)\n",
1886                                 mdname(conf->mddev), STRIPE_SECTORS,
1887                                 (unsigned long long)s,
1888                                 bdevname(rdev->bdev, b));
1889                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1890                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1891                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1892                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1893                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1894
1895                 if (atomic_read(&rdev->read_errors))
1896                         atomic_set(&rdev->read_errors, 0);
1897         } else {
1898                 const char *bdn = bdevname(rdev->bdev, b);
1899                 int retry = 0;
1900                 int set_bad = 0;
1901
1902                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1903                 atomic_inc(&rdev->read_errors);
1904                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1905                         printk_ratelimited(
1906                                 KERN_WARNING
1907                                 "md/raid:%s: read error on replacement device "
1908                                 "(sector %llu on %s).\n",
1909                                 mdname(conf->mddev),
1910                                 (unsigned long long)s,
1911                                 bdn);
1912                 else if (conf->mddev->degraded >= conf->max_degraded) {
1913                         set_bad = 1;
1914                         printk_ratelimited(
1915                                 KERN_WARNING
1916                                 "md/raid:%s: read error not correctable "
1917                                 "(sector %llu on %s).\n",
1918                                 mdname(conf->mddev),
1919                                 (unsigned long long)s,
1920                                 bdn);
1921                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1922                         /* Oh, no!!! */
1923                         set_bad = 1;
1924                         printk_ratelimited(
1925                                 KERN_WARNING
1926                                 "md/raid:%s: read error NOT corrected!! "
1927                                 "(sector %llu on %s).\n",
1928                                 mdname(conf->mddev),
1929                                 (unsigned long long)s,
1930                                 bdn);
1931                 } else if (atomic_read(&rdev->read_errors)
1932                          > conf->max_nr_stripes)
1933                         printk(KERN_WARNING
1934                                "md/raid:%s: Too many read errors, failing device %s.\n",
1935                                mdname(conf->mddev), bdn);
1936                 else
1937                         retry = 1;
1938                 if (retry)
1939                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1940                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1941                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1942                         } else
1943                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1944                 else {
1945                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1946                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1947                         if (!(set_bad
1948                               && test_bit(In_sync, &rdev->flags)
1949                               && rdev_set_badblocks(
1950                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1951                                 md_error(conf->mddev, rdev);
1952                 }
1953         }
1954         rdev_dec_pending(rdev, conf->mddev);
1955         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1956         set_bit(STRIPE_HANDLE, &sh->state);
1957         release_stripe(sh);
1958 }
1959
1960 static void raid5_end_write_request(struct bio *bi, int error)
1961 {
1962         struct stripe_head *sh = bi->bi_private;
1963         struct r5conf *conf = sh->raid_conf;
1964         int disks = sh->disks, i;
1965         struct md_rdev *uninitialized_var(rdev);
1966         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1967         sector_t first_bad;
1968         int bad_sectors;
1969         int replacement = 0;
1970
1971         for (i = 0 ; i < disks; i++) {
1972                 if (bi == &sh->dev[i].req) {
1973                         rdev = conf->disks[i].rdev;
1974                         break;
1975                 }
1976                 if (bi == &sh->dev[i].rreq) {
1977                         rdev = conf->disks[i].replacement;
1978                         if (rdev)
1979                                 replacement = 1;
1980                         else
1981                                 /* rdev was removed and 'replacement'
1982                                  * replaced it.  rdev is not removed
1983                                  * until all requests are finished.
1984                                  */
1985                                 rdev = conf->disks[i].rdev;
1986                         break;
1987                 }
1988         }
1989         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1990                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1991                 uptodate);
1992         if (i == disks) {
1993                 BUG();
1994                 return;
1995         }
1996
1997         if (replacement) {
1998                 if (!uptodate)
1999                         md_error(conf->mddev, rdev);
2000                 else if (is_badblock(rdev, sh->sector,
2001                                      STRIPE_SECTORS,
2002                                      &first_bad, &bad_sectors))
2003                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2004         } else {
2005                 if (!uptodate) {
2006                         set_bit(WriteErrorSeen, &rdev->flags);
2007                         set_bit(R5_WriteError, &sh->dev[i].flags);
2008                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009                                 set_bit(MD_RECOVERY_NEEDED,
2010                                         &rdev->mddev->recovery);
2011                 } else if (is_badblock(rdev, sh->sector,
2012                                        STRIPE_SECTORS,
2013                                        &first_bad, &bad_sectors)) {
2014                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2015                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2016                                 /* That was a successful write so make
2017                                  * sure it looks like we already did
2018                                  * a re-write.
2019                                  */
2020                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2021                 }
2022         }
2023         rdev_dec_pending(rdev, conf->mddev);
2024
2025         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2026                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2027         set_bit(STRIPE_HANDLE, &sh->state);
2028         release_stripe(sh);
2029 }
2030
2031 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2032         
2033 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2034 {
2035         struct r5dev *dev = &sh->dev[i];
2036
2037         bio_init(&dev->req);
2038         dev->req.bi_io_vec = &dev->vec;
2039         dev->req.bi_vcnt++;
2040         dev->req.bi_max_vecs++;
2041         dev->req.bi_private = sh;
2042         dev->vec.bv_page = dev->page;
2043
2044         bio_init(&dev->rreq);
2045         dev->rreq.bi_io_vec = &dev->rvec;
2046         dev->rreq.bi_vcnt++;
2047         dev->rreq.bi_max_vecs++;
2048         dev->rreq.bi_private = sh;
2049         dev->rvec.bv_page = dev->page;
2050
2051         dev->flags = 0;
2052         dev->sector = compute_blocknr(sh, i, previous);
2053 }
2054
2055 static void error(struct mddev *mddev, struct md_rdev *rdev)
2056 {
2057         char b[BDEVNAME_SIZE];
2058         struct r5conf *conf = mddev->private;
2059         unsigned long flags;
2060         pr_debug("raid456: error called\n");
2061
2062         spin_lock_irqsave(&conf->device_lock, flags);
2063         clear_bit(In_sync, &rdev->flags);
2064         mddev->degraded = calc_degraded(conf);
2065         spin_unlock_irqrestore(&conf->device_lock, flags);
2066         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2067
2068         set_bit(Blocked, &rdev->flags);
2069         set_bit(Faulty, &rdev->flags);
2070         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2071         printk(KERN_ALERT
2072                "md/raid:%s: Disk failure on %s, disabling device.\n"
2073                "md/raid:%s: Operation continuing on %d devices.\n",
2074                mdname(mddev),
2075                bdevname(rdev->bdev, b),
2076                mdname(mddev),
2077                conf->raid_disks - mddev->degraded);
2078 }
2079
2080 /*
2081  * Input: a 'big' sector number,
2082  * Output: index of the data and parity disk, and the sector # in them.
2083  */
2084 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2085                                      int previous, int *dd_idx,
2086                                      struct stripe_head *sh)
2087 {
2088         sector_t stripe, stripe2;
2089         sector_t chunk_number;
2090         unsigned int chunk_offset;
2091         int pd_idx, qd_idx;
2092         int ddf_layout = 0;
2093         sector_t new_sector;
2094         int algorithm = previous ? conf->prev_algo
2095                                  : conf->algorithm;
2096         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2097                                          : conf->chunk_sectors;
2098         int raid_disks = previous ? conf->previous_raid_disks
2099                                   : conf->raid_disks;
2100         int data_disks = raid_disks - conf->max_degraded;
2101
2102         /* First compute the information on this sector */
2103
2104         /*
2105          * Compute the chunk number and the sector offset inside the chunk
2106          */
2107         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2108         chunk_number = r_sector;
2109
2110         /*
2111          * Compute the stripe number
2112          */
2113         stripe = chunk_number;
2114         *dd_idx = sector_div(stripe, data_disks);
2115         stripe2 = stripe;
2116         /*
2117          * Select the parity disk based on the user selected algorithm.
2118          */
2119         pd_idx = qd_idx = -1;
2120         switch(conf->level) {
2121         case 4:
2122                 pd_idx = data_disks;
2123                 break;
2124         case 5:
2125                 switch (algorithm) {
2126                 case ALGORITHM_LEFT_ASYMMETRIC:
2127                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2128                         if (*dd_idx >= pd_idx)
2129                                 (*dd_idx)++;
2130                         break;
2131                 case ALGORITHM_RIGHT_ASYMMETRIC:
2132                         pd_idx = sector_div(stripe2, raid_disks);
2133                         if (*dd_idx >= pd_idx)
2134                                 (*dd_idx)++;
2135                         break;
2136                 case ALGORITHM_LEFT_SYMMETRIC:
2137                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2138                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2139                         break;
2140                 case ALGORITHM_RIGHT_SYMMETRIC:
2141                         pd_idx = sector_div(stripe2, raid_disks);
2142                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2143                         break;
2144                 case ALGORITHM_PARITY_0:
2145                         pd_idx = 0;
2146                         (*dd_idx)++;
2147                         break;
2148                 case ALGORITHM_PARITY_N:
2149                         pd_idx = data_disks;
2150                         break;
2151                 default:
2152                         BUG();
2153                 }
2154                 break;
2155         case 6:
2156
2157                 switch (algorithm) {
2158                 case ALGORITHM_LEFT_ASYMMETRIC:
2159                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2160                         qd_idx = pd_idx + 1;
2161                         if (pd_idx == raid_disks-1) {
2162                                 (*dd_idx)++;    /* Q D D D P */
2163                                 qd_idx = 0;
2164                         } else if (*dd_idx >= pd_idx)
2165                                 (*dd_idx) += 2; /* D D P Q D */
2166                         break;
2167                 case ALGORITHM_RIGHT_ASYMMETRIC:
2168                         pd_idx = sector_div(stripe2, raid_disks);
2169                         qd_idx = pd_idx + 1;
2170                         if (pd_idx == raid_disks-1) {
2171                                 (*dd_idx)++;    /* Q D D D P */
2172                                 qd_idx = 0;
2173                         } else if (*dd_idx >= pd_idx)
2174                                 (*dd_idx) += 2; /* D D P Q D */
2175                         break;
2176                 case ALGORITHM_LEFT_SYMMETRIC:
2177                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2178                         qd_idx = (pd_idx + 1) % raid_disks;
2179                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2180                         break;
2181                 case ALGORITHM_RIGHT_SYMMETRIC:
2182                         pd_idx = sector_div(stripe2, raid_disks);
2183                         qd_idx = (pd_idx + 1) % raid_disks;
2184                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2185                         break;
2186
2187                 case ALGORITHM_PARITY_0:
2188                         pd_idx = 0;
2189                         qd_idx = 1;
2190                         (*dd_idx) += 2;
2191                         break;
2192                 case ALGORITHM_PARITY_N:
2193                         pd_idx = data_disks;
2194                         qd_idx = data_disks + 1;
2195                         break;
2196
2197                 case ALGORITHM_ROTATING_ZERO_RESTART:
2198                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2199                          * of blocks for computing Q is different.
2200                          */
2201                         pd_idx = sector_div(stripe2, raid_disks);
2202                         qd_idx = pd_idx + 1;
2203                         if (pd_idx == raid_disks-1) {
2204                                 (*dd_idx)++;    /* Q D D D P */
2205                                 qd_idx = 0;
2206                         } else if (*dd_idx >= pd_idx)
2207                                 (*dd_idx) += 2; /* D D P Q D */
2208                         ddf_layout = 1;
2209                         break;
2210
2211                 case ALGORITHM_ROTATING_N_RESTART:
2212                         /* Same a left_asymmetric, by first stripe is
2213                          * D D D P Q  rather than
2214                          * Q D D D P
2215                          */
2216                         stripe2 += 1;
2217                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2218                         qd_idx = pd_idx + 1;
2219                         if (pd_idx == raid_disks-1) {
2220                                 (*dd_idx)++;    /* Q D D D P */
2221                                 qd_idx = 0;
2222                         } else if (*dd_idx >= pd_idx)
2223                                 (*dd_idx) += 2; /* D D P Q D */
2224                         ddf_layout = 1;
2225                         break;
2226
2227                 case ALGORITHM_ROTATING_N_CONTINUE:
2228                         /* Same as left_symmetric but Q is before P */
2229                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2230                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2231                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2232                         ddf_layout = 1;
2233                         break;
2234
2235                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2236                         /* RAID5 left_asymmetric, with Q on last device */
2237                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2238                         if (*dd_idx >= pd_idx)
2239                                 (*dd_idx)++;
2240                         qd_idx = raid_disks - 1;
2241                         break;
2242
2243                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2244                         pd_idx = sector_div(stripe2, raid_disks-1);
2245                         if (*dd_idx >= pd_idx)
2246                                 (*dd_idx)++;
2247                         qd_idx = raid_disks - 1;
2248                         break;
2249
2250                 case ALGORITHM_LEFT_SYMMETRIC_6:
2251                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2252                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2253                         qd_idx = raid_disks - 1;
2254                         break;
2255
2256                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2257                         pd_idx = sector_div(stripe2, raid_disks-1);
2258                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2259                         qd_idx = raid_disks - 1;
2260                         break;
2261
2262                 case ALGORITHM_PARITY_0_6:
2263                         pd_idx = 0;
2264                         (*dd_idx)++;
2265                         qd_idx = raid_disks - 1;
2266                         break;
2267
2268                 default:
2269                         BUG();
2270                 }
2271                 break;
2272         }
2273
2274         if (sh) {
2275                 sh->pd_idx = pd_idx;
2276                 sh->qd_idx = qd_idx;
2277                 sh->ddf_layout = ddf_layout;
2278         }
2279         /*
2280          * Finally, compute the new sector number
2281          */
2282         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2283         return new_sector;
2284 }
2285
2286
2287 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2288 {
2289         struct r5conf *conf = sh->raid_conf;
2290         int raid_disks = sh->disks;
2291         int data_disks = raid_disks - conf->max_degraded;
2292         sector_t new_sector = sh->sector, check;
2293         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2294                                          : conf->chunk_sectors;
2295         int algorithm = previous ? conf->prev_algo
2296                                  : conf->algorithm;
2297         sector_t stripe;
2298         int chunk_offset;
2299         sector_t chunk_number;
2300         int dummy1, dd_idx = i;
2301         sector_t r_sector;
2302         struct stripe_head sh2;
2303
2304
2305         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2306         stripe = new_sector;
2307
2308         if (i == sh->pd_idx)
2309                 return 0;
2310         switch(conf->level) {
2311         case 4: break;
2312         case 5:
2313                 switch (algorithm) {
2314                 case ALGORITHM_LEFT_ASYMMETRIC:
2315                 case ALGORITHM_RIGHT_ASYMMETRIC:
2316                         if (i > sh->pd_idx)
2317                                 i--;
2318                         break;
2319                 case ALGORITHM_LEFT_SYMMETRIC:
2320                 case ALGORITHM_RIGHT_SYMMETRIC:
2321                         if (i < sh->pd_idx)
2322                                 i += raid_disks;
2323                         i -= (sh->pd_idx + 1);
2324                         break;
2325                 case ALGORITHM_PARITY_0:
2326                         i -= 1;
2327                         break;
2328                 case ALGORITHM_PARITY_N:
2329                         break;
2330                 default:
2331                         BUG();
2332                 }
2333                 break;
2334         case 6:
2335                 if (i == sh->qd_idx)
2336                         return 0; /* It is the Q disk */
2337                 switch (algorithm) {
2338                 case ALGORITHM_LEFT_ASYMMETRIC:
2339                 case ALGORITHM_RIGHT_ASYMMETRIC:
2340                 case ALGORITHM_ROTATING_ZERO_RESTART:
2341                 case ALGORITHM_ROTATING_N_RESTART:
2342                         if (sh->pd_idx == raid_disks-1)
2343                                 i--;    /* Q D D D P */
2344                         else if (i > sh->pd_idx)
2345                                 i -= 2; /* D D P Q D */
2346                         break;
2347                 case ALGORITHM_LEFT_SYMMETRIC:
2348                 case ALGORITHM_RIGHT_SYMMETRIC:
2349                         if (sh->pd_idx == raid_disks-1)
2350                                 i--; /* Q D D D P */
2351                         else {
2352                                 /* D D P Q D */
2353                                 if (i < sh->pd_idx)
2354                                         i += raid_disks;
2355                                 i -= (sh->pd_idx + 2);
2356                         }
2357                         break;
2358                 case ALGORITHM_PARITY_0:
2359                         i -= 2;
2360                         break;
2361                 case ALGORITHM_PARITY_N:
2362                         break;
2363                 case ALGORITHM_ROTATING_N_CONTINUE:
2364                         /* Like left_symmetric, but P is before Q */
2365                         if (sh->pd_idx == 0)
2366                                 i--;    /* P D D D Q */
2367                         else {
2368                                 /* D D Q P D */
2369                                 if (i < sh->pd_idx)
2370                                         i += raid_disks;
2371                                 i -= (sh->pd_idx + 1);
2372                         }
2373                         break;
2374                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2375                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376                         if (i > sh->pd_idx)
2377                                 i--;
2378                         break;
2379                 case ALGORITHM_LEFT_SYMMETRIC_6:
2380                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2381                         if (i < sh->pd_idx)
2382                                 i += data_disks + 1;
2383                         i -= (sh->pd_idx + 1);
2384                         break;
2385                 case ALGORITHM_PARITY_0_6:
2386                         i -= 1;
2387                         break;
2388                 default:
2389                         BUG();
2390                 }
2391                 break;
2392         }
2393
2394         chunk_number = stripe * data_disks + i;
2395         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2396
2397         check = raid5_compute_sector(conf, r_sector,
2398                                      previous, &dummy1, &sh2);
2399         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2400                 || sh2.qd_idx != sh->qd_idx) {
2401                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2402                        mdname(conf->mddev));
2403                 return 0;
2404         }
2405         return r_sector;
2406 }
2407
2408
2409 static void
2410 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2411                          int rcw, int expand)
2412 {
2413         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2414         struct r5conf *conf = sh->raid_conf;
2415         int level = conf->level;
2416
2417         if (rcw) {
2418
2419                 for (i = disks; i--; ) {
2420                         struct r5dev *dev = &sh->dev[i];
2421
2422                         if (dev->towrite) {
2423                                 set_bit(R5_LOCKED, &dev->flags);
2424                                 set_bit(R5_Wantdrain, &dev->flags);
2425                                 if (!expand)
2426                                         clear_bit(R5_UPTODATE, &dev->flags);
2427                                 s->locked++;
2428                         }
2429                 }
2430                 /* if we are not expanding this is a proper write request, and
2431                  * there will be bios with new data to be drained into the
2432                  * stripe cache
2433                  */
2434                 if (!expand) {
2435                         if (!s->locked)
2436                                 /* False alarm, nothing to do */
2437                                 return;
2438                         sh->reconstruct_state = reconstruct_state_drain_run;
2439                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2440                 } else
2441                         sh->reconstruct_state = reconstruct_state_run;
2442
2443                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2444
2445                 if (s->locked + conf->max_degraded == disks)
2446                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2447                                 atomic_inc(&conf->pending_full_writes);
2448         } else {
2449                 BUG_ON(level == 6);
2450                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2451                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2452
2453                 for (i = disks; i--; ) {
2454                         struct r5dev *dev = &sh->dev[i];
2455                         if (i == pd_idx)
2456                                 continue;
2457
2458                         if (dev->towrite &&
2459                             (test_bit(R5_UPTODATE, &dev->flags) ||
2460                              test_bit(R5_Wantcompute, &dev->flags))) {
2461                                 set_bit(R5_Wantdrain, &dev->flags);
2462                                 set_bit(R5_LOCKED, &dev->flags);
2463                                 clear_bit(R5_UPTODATE, &dev->flags);
2464                                 s->locked++;
2465                         }
2466                 }
2467                 if (!s->locked)
2468                         /* False alarm - nothing to do */
2469                         return;
2470                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2471                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2472                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2473                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2474         }
2475
2476         /* keep the parity disk(s) locked while asynchronous operations
2477          * are in flight
2478          */
2479         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2480         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2481         s->locked++;
2482
2483         if (level == 6) {
2484                 int qd_idx = sh->qd_idx;
2485                 struct r5dev *dev = &sh->dev[qd_idx];
2486
2487                 set_bit(R5_LOCKED, &dev->flags);
2488                 clear_bit(R5_UPTODATE, &dev->flags);
2489                 s->locked++;
2490         }
2491
2492         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2493                 __func__, (unsigned long long)sh->sector,
2494                 s->locked, s->ops_request);
2495 }
2496
2497 /*
2498  * Each stripe/dev can have one or more bion attached.
2499  * toread/towrite point to the first in a chain.
2500  * The bi_next chain must be in order.
2501  */
2502 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2503 {
2504         struct bio **bip;
2505         struct r5conf *conf = sh->raid_conf;
2506         int firstwrite=0;
2507
2508         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2509                 (unsigned long long)bi->bi_sector,
2510                 (unsigned long long)sh->sector);
2511
2512         /*
2513          * If several bio share a stripe. The bio bi_phys_segments acts as a
2514          * reference count to avoid race. The reference count should already be
2515          * increased before this function is called (for example, in
2516          * make_request()), so other bio sharing this stripe will not free the
2517          * stripe. If a stripe is owned by one stripe, the stripe lock will
2518          * protect it.
2519          */
2520         spin_lock_irq(&sh->stripe_lock);
2521         if (forwrite) {
2522                 bip = &sh->dev[dd_idx].towrite;
2523                 if (*bip == NULL)
2524                         firstwrite = 1;
2525         } else
2526                 bip = &sh->dev[dd_idx].toread;
2527         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2528                 if (bio_end_sector(*bip) > bi->bi_sector)
2529                         goto overlap;
2530                 bip = & (*bip)->bi_next;
2531         }
2532         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2533                 goto overlap;
2534
2535         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2536         if (*bip)
2537                 bi->bi_next = *bip;
2538         *bip = bi;
2539         raid5_inc_bi_active_stripes(bi);
2540
2541         if (forwrite) {
2542                 /* check if page is covered */
2543                 sector_t sector = sh->dev[dd_idx].sector;
2544                 for (bi=sh->dev[dd_idx].towrite;
2545                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2546                              bi && bi->bi_sector <= sector;
2547                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2548                         if (bio_end_sector(bi) >= sector)
2549                                 sector = bio_end_sector(bi);
2550                 }
2551                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2552                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2553         }
2554
2555         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2556                 (unsigned long long)(*bip)->bi_sector,
2557                 (unsigned long long)sh->sector, dd_idx);
2558         spin_unlock_irq(&sh->stripe_lock);
2559
2560         if (conf->mddev->bitmap && firstwrite) {
2561                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2562                                   STRIPE_SECTORS, 0);
2563                 sh->bm_seq = conf->seq_flush+1;
2564                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2565         }
2566         return 1;
2567
2568  overlap:
2569         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2570         spin_unlock_irq(&sh->stripe_lock);
2571         return 0;
2572 }
2573
2574 static void end_reshape(struct r5conf *conf);
2575
2576 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2577                             struct stripe_head *sh)
2578 {
2579         int sectors_per_chunk =
2580                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2581         int dd_idx;
2582         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2583         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2584
2585         raid5_compute_sector(conf,
2586                              stripe * (disks - conf->max_degraded)
2587                              *sectors_per_chunk + chunk_offset,
2588                              previous,
2589                              &dd_idx, sh);
2590 }
2591
2592 static void
2593 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2594                                 struct stripe_head_state *s, int disks,
2595                                 struct bio **return_bi)
2596 {
2597         int i;
2598         for (i = disks; i--; ) {
2599                 struct bio *bi;
2600                 int bitmap_end = 0;
2601
2602                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2603                         struct md_rdev *rdev;
2604                         rcu_read_lock();
2605                         rdev = rcu_dereference(conf->disks[i].rdev);
2606                         if (rdev && test_bit(In_sync, &rdev->flags))
2607                                 atomic_inc(&rdev->nr_pending);
2608                         else
2609                                 rdev = NULL;
2610                         rcu_read_unlock();
2611                         if (rdev) {
2612                                 if (!rdev_set_badblocks(
2613                                             rdev,
2614                                             sh->sector,
2615                                             STRIPE_SECTORS, 0))
2616                                         md_error(conf->mddev, rdev);
2617                                 rdev_dec_pending(rdev, conf->mddev);
2618                         }
2619                 }
2620                 spin_lock_irq(&sh->stripe_lock);
2621                 /* fail all writes first */
2622                 bi = sh->dev[i].towrite;
2623                 sh->dev[i].towrite = NULL;
2624                 spin_unlock_irq(&sh->stripe_lock);
2625                 if (bi)
2626                         bitmap_end = 1;
2627
2628                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2629                         wake_up(&conf->wait_for_overlap);
2630
2631                 while (bi && bi->bi_sector <
2632                         sh->dev[i].sector + STRIPE_SECTORS) {
2633                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2634                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2635                         if (!raid5_dec_bi_active_stripes(bi)) {
2636                                 md_write_end(conf->mddev);
2637                                 bi->bi_next = *return_bi;
2638                                 *return_bi = bi;
2639                         }
2640                         bi = nextbi;
2641                 }
2642                 if (bitmap_end)
2643                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2644                                 STRIPE_SECTORS, 0, 0);
2645                 bitmap_end = 0;
2646                 /* and fail all 'written' */
2647                 bi = sh->dev[i].written;
2648                 sh->dev[i].written = NULL;
2649                 if (bi) bitmap_end = 1;
2650                 while (bi && bi->bi_sector <
2651                        sh->dev[i].sector + STRIPE_SECTORS) {
2652                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2653                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2654                         if (!raid5_dec_bi_active_stripes(bi)) {
2655                                 md_write_end(conf->mddev);
2656                                 bi->bi_next = *return_bi;
2657                                 *return_bi = bi;
2658                         }
2659                         bi = bi2;
2660                 }
2661
2662                 /* fail any reads if this device is non-operational and
2663                  * the data has not reached the cache yet.
2664                  */
2665                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2666                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2667                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2668                         spin_lock_irq(&sh->stripe_lock);
2669                         bi = sh->dev[i].toread;
2670                         sh->dev[i].toread = NULL;
2671                         spin_unlock_irq(&sh->stripe_lock);
2672                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2673                                 wake_up(&conf->wait_for_overlap);
2674                         while (bi && bi->bi_sector <
2675                                sh->dev[i].sector + STRIPE_SECTORS) {
2676                                 struct bio *nextbi =
2677                                         r5_next_bio(bi, sh->dev[i].sector);
2678                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2679                                 if (!raid5_dec_bi_active_stripes(bi)) {
2680                                         bi->bi_next = *return_bi;
2681                                         *return_bi = bi;
2682                                 }
2683                                 bi = nextbi;
2684                         }
2685                 }
2686                 if (bitmap_end)
2687                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2688                                         STRIPE_SECTORS, 0, 0);
2689                 /* If we were in the middle of a write the parity block might
2690                  * still be locked - so just clear all R5_LOCKED flags
2691                  */
2692                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2693         }
2694
2695         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2696                 if (atomic_dec_and_test(&conf->pending_full_writes))
2697                         md_wakeup_thread(conf->mddev->thread);
2698 }
2699
2700 static void
2701 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2702                    struct stripe_head_state *s)
2703 {
2704         int abort = 0;
2705         int i;
2706
2707         clear_bit(STRIPE_SYNCING, &sh->state);
2708         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2709                 wake_up(&conf->wait_for_overlap);
2710         s->syncing = 0;
2711         s->replacing = 0;
2712         /* There is nothing more to do for sync/check/repair.
2713          * Don't even need to abort as that is handled elsewhere
2714          * if needed, and not always wanted e.g. if there is a known
2715          * bad block here.
2716          * For recover/replace we need to record a bad block on all
2717          * non-sync devices, or abort the recovery
2718          */
2719         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2720                 /* During recovery devices cannot be removed, so
2721                  * locking and refcounting of rdevs is not needed
2722                  */
2723                 for (i = 0; i < conf->raid_disks; i++) {
2724                         struct md_rdev *rdev = conf->disks[i].rdev;
2725                         if (rdev
2726                             && !test_bit(Faulty, &rdev->flags)
2727                             && !test_bit(In_sync, &rdev->flags)
2728                             && !rdev_set_badblocks(rdev, sh->sector,
2729                                                    STRIPE_SECTORS, 0))
2730                                 abort = 1;
2731                         rdev = conf->disks[i].replacement;
2732                         if (rdev
2733                             && !test_bit(Faulty, &rdev->flags)
2734                             && !test_bit(In_sync, &rdev->flags)
2735                             && !rdev_set_badblocks(rdev, sh->sector,
2736                                                    STRIPE_SECTORS, 0))
2737                                 abort = 1;
2738                 }
2739                 if (abort)
2740                         conf->recovery_disabled =
2741                                 conf->mddev->recovery_disabled;
2742         }
2743         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2744 }
2745
2746 static int want_replace(struct stripe_head *sh, int disk_idx)
2747 {
2748         struct md_rdev *rdev;
2749         int rv = 0;
2750         /* Doing recovery so rcu locking not required */
2751         rdev = sh->raid_conf->disks[disk_idx].replacement;
2752         if (rdev
2753             && !test_bit(Faulty, &rdev->flags)
2754             && !test_bit(In_sync, &rdev->flags)
2755             && (rdev->recovery_offset <= sh->sector
2756                 || rdev->mddev->recovery_cp <= sh->sector))
2757                 rv = 1;
2758
2759         return rv;
2760 }
2761
2762 /* fetch_block - checks the given member device to see if its data needs
2763  * to be read or computed to satisfy a request.
2764  *
2765  * Returns 1 when no more member devices need to be checked, otherwise returns
2766  * 0 to tell the loop in handle_stripe_fill to continue
2767  */
2768 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2769                        int disk_idx, int disks)
2770 {
2771         struct r5dev *dev = &sh->dev[disk_idx];
2772         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2773                                   &sh->dev[s->failed_num[1]] };
2774
2775         /* is the data in this block needed, and can we get it? */
2776         if (!test_bit(R5_LOCKED, &dev->flags) &&
2777             !test_bit(R5_UPTODATE, &dev->flags) &&
2778             (dev->toread ||
2779              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2780              s->syncing || s->expanding ||
2781              (s->replacing && want_replace(sh, disk_idx)) ||
2782              (s->failed >= 1 && fdev[0]->toread) ||
2783              (s->failed >= 2 && fdev[1]->toread) ||
2784              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2785               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2786              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2787                 /* we would like to get this block, possibly by computing it,
2788                  * otherwise read it if the backing disk is insync
2789                  */
2790                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2791                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2792                 if ((s->uptodate == disks - 1) &&
2793                     (s->failed && (disk_idx == s->failed_num[0] ||
2794                                    disk_idx == s->failed_num[1]))) {
2795                         /* have disk failed, and we're requested to fetch it;
2796                          * do compute it
2797                          */
2798                         pr_debug("Computing stripe %llu block %d\n",
2799                                (unsigned long long)sh->sector, disk_idx);
2800                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2801                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2802                         set_bit(R5_Wantcompute, &dev->flags);
2803                         sh->ops.target = disk_idx;
2804                         sh->ops.target2 = -1; /* no 2nd target */
2805                         s->req_compute = 1;
2806                         /* Careful: from this point on 'uptodate' is in the eye
2807                          * of raid_run_ops which services 'compute' operations
2808                          * before writes. R5_Wantcompute flags a block that will
2809                          * be R5_UPTODATE by the time it is needed for a
2810                          * subsequent operation.
2811                          */
2812                         s->uptodate++;
2813                         return 1;
2814                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2815                         /* Computing 2-failure is *very* expensive; only
2816                          * do it if failed >= 2
2817                          */
2818                         int other;
2819                         for (other = disks; other--; ) {
2820                                 if (other == disk_idx)
2821                                         continue;
2822                                 if (!test_bit(R5_UPTODATE,
2823                                       &sh->dev[other].flags))
2824                                         break;
2825                         }
2826                         BUG_ON(other < 0);
2827                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2828                                (unsigned long long)sh->sector,
2829                                disk_idx, other);
2830                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2831                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2832                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2833                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2834                         sh->ops.target = disk_idx;
2835                         sh->ops.target2 = other;
2836                         s->uptodate += 2;
2837                         s->req_compute = 1;
2838                         return 1;
2839                 } else if (test_bit(R5_Insync, &dev->flags)) {
2840                         set_bit(R5_LOCKED, &dev->flags);
2841                         set_bit(R5_Wantread, &dev->flags);
2842                         s->locked++;
2843                         pr_debug("Reading block %d (sync=%d)\n",
2844                                 disk_idx, s->syncing);
2845                 }
2846         }
2847
2848         return 0;
2849 }
2850
2851 /**
2852  * handle_stripe_fill - read or compute data to satisfy pending requests.
2853  */
2854 static void handle_stripe_fill(struct stripe_head *sh,
2855                                struct stripe_head_state *s,
2856                                int disks)
2857 {
2858         int i;
2859
2860         /* look for blocks to read/compute, skip this if a compute
2861          * is already in flight, or if the stripe contents are in the
2862          * midst of changing due to a write
2863          */
2864         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2865             !sh->reconstruct_state)
2866                 for (i = disks; i--; )
2867                         if (fetch_block(sh, s, i, disks))
2868                                 break;
2869         set_bit(STRIPE_HANDLE, &sh->state);
2870 }
2871
2872
2873 /* handle_stripe_clean_event
2874  * any written block on an uptodate or failed drive can be returned.
2875  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2876  * never LOCKED, so we don't need to test 'failed' directly.
2877  */
2878 static void handle_stripe_clean_event(struct r5conf *conf,
2879         struct stripe_head *sh, int disks, struct bio **return_bi)
2880 {
2881         int i;
2882         struct r5dev *dev;
2883         int discard_pending = 0;
2884
2885         for (i = disks; i--; )
2886                 if (sh->dev[i].written) {
2887                         dev = &sh->dev[i];
2888                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2889                             (test_bit(R5_UPTODATE, &dev->flags) ||
2890                              test_bit(R5_Discard, &dev->flags))) {
2891                                 /* We can return any write requests */
2892                                 struct bio *wbi, *wbi2;
2893                                 pr_debug("Return write for disc %d\n", i);
2894                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2895                                         clear_bit(R5_UPTODATE, &dev->flags);
2896                                 wbi = dev->written;
2897                                 dev->written = NULL;
2898                                 while (wbi && wbi->bi_sector <
2899                                         dev->sector + STRIPE_SECTORS) {
2900                                         wbi2 = r5_next_bio(wbi, dev->sector);
2901                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2902                                                 md_write_end(conf->mddev);
2903                                                 wbi->bi_next = *return_bi;
2904                                                 *return_bi = wbi;
2905                                         }
2906                                         wbi = wbi2;
2907                                 }
2908                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2909                                                 STRIPE_SECTORS,
2910                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2911                                                 0);
2912                         } else if (test_bit(R5_Discard, &dev->flags))
2913                                 discard_pending = 1;
2914                 }
2915         if (!discard_pending &&
2916             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2917                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2918                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2919                 if (sh->qd_idx >= 0) {
2920                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2921                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2922                 }
2923                 /* now that discard is done we can proceed with any sync */
2924                 clear_bit(STRIPE_DISCARD, &sh->state);
2925                 /*
2926                  * SCSI discard will change some bio fields and the stripe has
2927                  * no updated data, so remove it from hash list and the stripe
2928                  * will be reinitialized
2929                  */
2930                 spin_lock_irq(&conf->device_lock);
2931                 remove_hash(sh);
2932                 spin_unlock_irq(&conf->device_lock);
2933                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2934                         set_bit(STRIPE_HANDLE, &sh->state);
2935
2936         }
2937
2938         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2939                 if (atomic_dec_and_test(&conf->pending_full_writes))
2940                         md_wakeup_thread(conf->mddev->thread);
2941 }
2942
2943 static void handle_stripe_dirtying(struct r5conf *conf,
2944                                    struct stripe_head *sh,
2945                                    struct stripe_head_state *s,
2946                                    int disks)
2947 {
2948         int rmw = 0, rcw = 0, i;
2949         sector_t recovery_cp = conf->mddev->recovery_cp;
2950
2951         /* RAID6 requires 'rcw' in current implementation.
2952          * Otherwise, check whether resync is now happening or should start.
2953          * If yes, then the array is dirty (after unclean shutdown or
2954          * initial creation), so parity in some stripes might be inconsistent.
2955          * In this case, we need to always do reconstruct-write, to ensure
2956          * that in case of drive failure or read-error correction, we
2957          * generate correct data from the parity.
2958          */
2959         if (conf->max_degraded == 2 ||
2960             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2961                 /* Calculate the real rcw later - for now make it
2962                  * look like rcw is cheaper
2963                  */
2964                 rcw = 1; rmw = 2;
2965                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2966                          conf->max_degraded, (unsigned long long)recovery_cp,
2967                          (unsigned long long)sh->sector);
2968         } else for (i = disks; i--; ) {
2969                 /* would I have to read this buffer for read_modify_write */
2970                 struct r5dev *dev = &sh->dev[i];
2971                 if ((dev->towrite || i == sh->pd_idx) &&
2972                     !test_bit(R5_LOCKED, &dev->flags) &&
2973                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2974                       test_bit(R5_Wantcompute, &dev->flags))) {
2975                         if (test_bit(R5_Insync, &dev->flags))
2976                                 rmw++;
2977                         else
2978                                 rmw += 2*disks;  /* cannot read it */
2979                 }
2980                 /* Would I have to read this buffer for reconstruct_write */
2981                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2982                     !test_bit(R5_LOCKED, &dev->flags) &&
2983                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2984                     test_bit(R5_Wantcompute, &dev->flags))) {
2985                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2986                         else
2987                                 rcw += 2*disks;
2988                 }
2989         }
2990         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2991                 (unsigned long long)sh->sector, rmw, rcw);
2992         set_bit(STRIPE_HANDLE, &sh->state);
2993         if (rmw < rcw && rmw > 0) {
2994                 /* prefer read-modify-write, but need to get some data */
2995                 if (conf->mddev->queue)
2996                         blk_add_trace_msg(conf->mddev->queue,
2997                                           "raid5 rmw %llu %d",
2998                                           (unsigned long long)sh->sector, rmw);
2999                 for (i = disks; i--; ) {
3000                         struct r5dev *dev = &sh->dev[i];
3001                         if ((dev->towrite || i == sh->pd_idx) &&
3002                             !test_bit(R5_LOCKED, &dev->flags) &&
3003                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3004                             test_bit(R5_Wantcompute, &dev->flags)) &&
3005                             test_bit(R5_Insync, &dev->flags)) {
3006                                 if (
3007                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3008                                         pr_debug("Read_old block "
3009                                                  "%d for r-m-w\n", i);
3010                                         set_bit(R5_LOCKED, &dev->flags);
3011                                         set_bit(R5_Wantread, &dev->flags);
3012                                         s->locked++;
3013                                 } else {
3014                                         set_bit(STRIPE_DELAYED, &sh->state);
3015                                         set_bit(STRIPE_HANDLE, &sh->state);
3016                                 }
3017                         }
3018                 }
3019         }
3020         if (rcw <= rmw && rcw > 0) {
3021                 /* want reconstruct write, but need to get some data */
3022                 int qread =0;
3023                 rcw = 0;
3024                 for (i = disks; i--; ) {
3025                         struct r5dev *dev = &sh->dev[i];
3026                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3027                             i != sh->pd_idx && i != sh->qd_idx &&
3028                             !test_bit(R5_LOCKED, &dev->flags) &&
3029                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3030                               test_bit(R5_Wantcompute, &dev->flags))) {
3031                                 rcw++;
3032                                 if (!test_bit(R5_Insync, &dev->flags))
3033                                         continue; /* it's a failed drive */
3034                                 if (
3035                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3036                                         pr_debug("Read_old block "
3037                                                 "%d for Reconstruct\n", i);
3038                                         set_bit(R5_LOCKED, &dev->flags);
3039                                         set_bit(R5_Wantread, &dev->flags);
3040                                         s->locked++;
3041                                         qread++;
3042                                 } else {
3043                                         set_bit(STRIPE_DELAYED, &sh->state);
3044                                         set_bit(STRIPE_HANDLE, &sh->state);
3045                                 }
3046                         }
3047                 }
3048                 if (rcw && conf->mddev->queue)
3049                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3050                                           (unsigned long long)sh->sector,
3051                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3052         }
3053         /* now if nothing is locked, and if we have enough data,
3054          * we can start a write request
3055          */
3056         /* since handle_stripe can be called at any time we need to handle the
3057          * case where a compute block operation has been submitted and then a
3058          * subsequent call wants to start a write request.  raid_run_ops only
3059          * handles the case where compute block and reconstruct are requested
3060          * simultaneously.  If this is not the case then new writes need to be
3061          * held off until the compute completes.
3062          */
3063         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3064             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3065             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3066                 schedule_reconstruction(sh, s, rcw == 0, 0);
3067 }
3068
3069 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3070                                 struct stripe_head_state *s, int disks)
3071 {
3072         struct r5dev *dev = NULL;
3073
3074         set_bit(STRIPE_HANDLE, &sh->state);
3075
3076         switch (sh->check_state) {
3077         case check_state_idle:
3078                 /* start a new check operation if there are no failures */
3079                 if (s->failed == 0) {
3080                         BUG_ON(s->uptodate != disks);
3081                         sh->check_state = check_state_run;
3082                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3083                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3084                         s->uptodate--;
3085                         break;
3086                 }
3087                 dev = &sh->dev[s->failed_num[0]];
3088                 /* fall through */
3089         case check_state_compute_result:
3090                 sh->check_state = check_state_idle;
3091                 if (!dev)
3092                         dev = &sh->dev[sh->pd_idx];
3093
3094                 /* check that a write has not made the stripe insync */
3095                 if (test_bit(STRIPE_INSYNC, &sh->state))
3096                         break;
3097
3098                 /* either failed parity check, or recovery is happening */
3099                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3100                 BUG_ON(s->uptodate != disks);
3101
3102                 set_bit(R5_LOCKED, &dev->flags);
3103                 s->locked++;
3104                 set_bit(R5_Wantwrite, &dev->flags);
3105
3106                 clear_bit(STRIPE_DEGRADED, &sh->state);
3107                 set_bit(STRIPE_INSYNC, &sh->state);
3108                 break;
3109         case check_state_run:
3110                 break; /* we will be called again upon completion */
3111         case check_state_check_result:
3112                 sh->check_state = check_state_idle;
3113
3114                 /* if a failure occurred during the check operation, leave
3115                  * STRIPE_INSYNC not set and let the stripe be handled again
3116                  */
3117                 if (s->failed)
3118                         break;
3119
3120                 /* handle a successful check operation, if parity is correct
3121                  * we are done.  Otherwise update the mismatch count and repair
3122                  * parity if !MD_RECOVERY_CHECK
3123                  */
3124                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3125                         /* parity is correct (on disc,
3126                          * not in buffer any more)
3127                          */
3128                         set_bit(STRIPE_INSYNC, &sh->state);
3129                 else {
3130                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3131                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3132                                 /* don't try to repair!! */
3133                                 set_bit(STRIPE_INSYNC, &sh->state);
3134                         else {
3135                                 sh->check_state = check_state_compute_run;
3136                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3137                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3138                                 set_bit(R5_Wantcompute,
3139                                         &sh->dev[sh->pd_idx].flags);
3140                                 sh->ops.target = sh->pd_idx;
3141                                 sh->ops.target2 = -1;
3142                                 s->uptodate++;
3143                         }
3144                 }
3145                 break;
3146         case check_state_compute_run:
3147                 break;
3148         default:
3149                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3150                        __func__, sh->check_state,
3151                        (unsigned long long) sh->sector);
3152                 BUG();
3153         }
3154 }
3155
3156
3157 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3158                                   struct stripe_head_state *s,
3159                                   int disks)
3160 {
3161         int pd_idx = sh->pd_idx;
3162         int qd_idx = sh->qd_idx;
3163         struct r5dev *dev;
3164
3165         set_bit(STRIPE_HANDLE, &sh->state);
3166
3167         BUG_ON(s->failed > 2);
3168
3169         /* Want to check and possibly repair P and Q.
3170          * However there could be one 'failed' device, in which
3171          * case we can only check one of them, possibly using the
3172          * other to generate missing data
3173          */
3174
3175         switch (sh->check_state) {
3176         case check_state_idle:
3177                 /* start a new check operation if there are < 2 failures */
3178                 if (s->failed == s->q_failed) {
3179                         /* The only possible failed device holds Q, so it
3180                          * makes sense to check P (If anything else were failed,
3181                          * we would have used P to recreate it).
3182                          */
3183                         sh->check_state = check_state_run;
3184                 }
3185                 if (!s->q_failed && s->failed < 2) {
3186                         /* Q is not failed, and we didn't use it to generate
3187                          * anything, so it makes sense to check it
3188                          */
3189                         if (sh->check_state == check_state_run)
3190                                 sh->check_state = check_state_run_pq;
3191                         else
3192                                 sh->check_state = check_state_run_q;
3193                 }
3194
3195                 /* discard potentially stale zero_sum_result */
3196                 sh->ops.zero_sum_result = 0;
3197
3198                 if (sh->check_state == check_state_run) {
3199                         /* async_xor_zero_sum destroys the contents of P */
3200                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3201                         s->uptodate--;
3202                 }
3203                 if (sh->check_state >= check_state_run &&
3204                     sh->check_state <= check_state_run_pq) {
3205                         /* async_syndrome_zero_sum preserves P and Q, so
3206                          * no need to mark them !uptodate here
3207                          */
3208                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3209                         break;
3210                 }
3211
3212                 /* we have 2-disk failure */
3213                 BUG_ON(s->failed != 2);
3214                 /* fall through */
3215         case check_state_compute_result:
3216                 sh->check_state = check_state_idle;
3217
3218                 /* check that a write has not made the stripe insync */
3219                 if (test_bit(STRIPE_INSYNC, &sh->state))
3220                         break;
3221
3222                 /* now write out any block on a failed drive,
3223                  * or P or Q if they were recomputed
3224                  */
3225                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3226                 if (s->failed == 2) {
3227                         dev = &sh->dev[s->failed_num[1]];
3228                         s->locked++;
3229                         set_bit(R5_LOCKED, &dev->flags);
3230                         set_bit(R5_Wantwrite, &dev->flags);
3231                 }
3232                 if (s->failed >= 1) {
3233                         dev = &sh->dev[s->failed_num[0]];
3234                         s->locked++;
3235                         set_bit(R5_LOCKED, &dev->flags);
3236                         set_bit(R5_Wantwrite, &dev->flags);
3237                 }
3238                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3239                         dev = &sh->dev[pd_idx];
3240                         s->locked++;
3241                         set_bit(R5_LOCKED, &dev->flags);
3242                         set_bit(R5_Wantwrite, &dev->flags);
3243                 }
3244                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3245                         dev = &sh->dev[qd_idx];
3246                         s->locked++;
3247                         set_bit(R5_LOCKED, &dev->flags);
3248                         set_bit(R5_Wantwrite, &dev->flags);
3249                 }
3250                 clear_bit(STRIPE_DEGRADED, &sh->state);
3251
3252                 set_bit(STRIPE_INSYNC, &sh->state);
3253                 break;
3254         case check_state_run:
3255         case check_state_run_q:
3256         case check_state_run_pq:
3257                 break; /* we will be called again upon completion */
3258         case check_state_check_result:
3259                 sh->check_state = check_state_idle;
3260
3261                 /* handle a successful check operation, if parity is correct
3262                  * we are done.  Otherwise update the mismatch count and repair
3263                  * parity if !MD_RECOVERY_CHECK
3264                  */
3265                 if (sh->ops.zero_sum_result == 0) {
3266                         /* both parities are correct */
3267                         if (!s->failed)
3268                                 set_bit(STRIPE_INSYNC, &sh->state);
3269                         else {
3270                                 /* in contrast to the raid5 case we can validate
3271                                  * parity, but still have a failure to write
3272                                  * back
3273                                  */
3274                                 sh->check_state = check_state_compute_result;
3275                                 /* Returning at this point means that we may go
3276                                  * off and bring p and/or q uptodate again so
3277                                  * we make sure to check zero_sum_result again
3278                                  * to verify if p or q need writeback
3279                                  */
3280                         }
3281                 } else {
3282                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3283                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3284                                 /* don't try to repair!! */
3285                                 set_bit(STRIPE_INSYNC, &sh->state);
3286                         else {
3287                                 int *target = &sh->ops.target;
3288
3289                                 sh->ops.target = -1;
3290                                 sh->ops.target2 = -1;
3291                                 sh->check_state = check_state_compute_run;
3292                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3293                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3294                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3295                                         set_bit(R5_Wantcompute,
3296                                                 &sh->dev[pd_idx].flags);
3297                                         *target = pd_idx;
3298                                         target = &sh->ops.target2;
3299                                         s->uptodate++;
3300                                 }
3301                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3302                                         set_bit(R5_Wantcompute,
3303                                                 &sh->dev[qd_idx].flags);
3304                                         *target = qd_idx;
3305                                         s->uptodate++;
3306                                 }
3307                         }
3308                 }
3309                 break;
3310         case check_state_compute_run:
3311                 break;
3312         default:
3313                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3314                        __func__, sh->check_state,
3315                        (unsigned long long) sh->sector);
3316                 BUG();
3317         }
3318 }
3319
3320 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3321 {
3322         int i;
3323
3324         /* We have read all the blocks in this stripe and now we need to
3325          * copy some of them into a target stripe for expand.
3326          */
3327         struct dma_async_tx_descriptor *tx = NULL;
3328         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3329         for (i = 0; i < sh->disks; i++)
3330                 if (i != sh->pd_idx && i != sh->qd_idx) {
3331                         int dd_idx, j;
3332                         struct stripe_head *sh2;
3333                         struct async_submit_ctl submit;
3334
3335                         sector_t bn = compute_blocknr(sh, i, 1);
3336                         sector_t s = raid5_compute_sector(conf, bn, 0,
3337                                                           &dd_idx, NULL);
3338                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3339                         if (sh2 == NULL)
3340                                 /* so far only the early blocks of this stripe
3341                                  * have been requested.  When later blocks
3342                                  * get requested, we will try again
3343                                  */
3344                                 continue;
3345                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3346                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3347                                 /* must have already done this block */
3348                                 release_stripe(sh2);
3349                                 continue;
3350                         }
3351
3352                         /* place all the copies on one channel */
3353                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3354                         tx = async_memcpy(sh2->dev[dd_idx].page,
3355                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3356                                           &submit);
3357
3358                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3359                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3360                         for (j = 0; j < conf->raid_disks; j++)
3361                                 if (j != sh2->pd_idx &&
3362                                     j != sh2->qd_idx &&
3363                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3364                                         break;
3365                         if (j == conf->raid_disks) {
3366                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3367                                 set_bit(STRIPE_HANDLE, &sh2->state);
3368                         }
3369                         release_stripe(sh2);
3370
3371                 }
3372         /* done submitting copies, wait for them to complete */
3373         async_tx_quiesce(&tx);
3374 }
3375
3376 /*
3377  * handle_stripe - do things to a stripe.
3378  *
3379  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3380  * state of various bits to see what needs to be done.
3381  * Possible results:
3382  *    return some read requests which now have data
3383  *    return some write requests which are safely on storage
3384  *    schedule a read on some buffers
3385  *    schedule a write of some buffers
3386  *    return confirmation of parity correctness
3387  *
3388  */
3389
3390 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3391 {
3392         struct r5conf *conf = sh->raid_conf;
3393         int disks = sh->disks;
3394         struct r5dev *dev;
3395         int i;
3396         int do_recovery = 0;
3397
3398         memset(s, 0, sizeof(*s));
3399
3400         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3401         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3402         s->failed_num[0] = -1;
3403         s->failed_num[1] = -1;
3404
3405         /* Now to look around and see what can be done */
3406         rcu_read_lock();
3407         for (i=disks; i--; ) {
3408                 struct md_rdev *rdev;
3409                 sector_t first_bad;
3410                 int bad_sectors;
3411                 int is_bad = 0;
3412
3413                 dev = &sh->dev[i];
3414
3415                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3416                          i, dev->flags,
3417                          dev->toread, dev->towrite, dev->written);
3418                 /* maybe we can reply to a read
3419                  *
3420                  * new wantfill requests are only permitted while
3421                  * ops_complete_biofill is guaranteed to be inactive
3422                  */
3423                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3424                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3425                         set_bit(R5_Wantfill, &dev->flags);
3426
3427                 /* now count some things */
3428                 if (test_bit(R5_LOCKED, &dev->flags))
3429                         s->locked++;
3430                 if (test_bit(R5_UPTODATE, &dev->flags))
3431                         s->uptodate++;
3432                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3433                         s->compute++;
3434                         BUG_ON(s->compute > 2);
3435                 }
3436
3437                 if (test_bit(R5_Wantfill, &dev->flags))
3438                         s->to_fill++;
3439                 else if (dev->toread)
3440                         s->to_read++;
3441                 if (dev->towrite) {
3442                         s->to_write++;
3443                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3444                                 s->non_overwrite++;
3445                 }
3446                 if (dev->written)
3447                         s->written++;
3448                 /* Prefer to use the replacement for reads, but only
3449                  * if it is recovered enough and has no bad blocks.
3450                  */
3451                 rdev = rcu_dereference(conf->disks[i].replacement);
3452                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3453                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3454                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3455                                  &first_bad, &bad_sectors))
3456                         set_bit(R5_ReadRepl, &dev->flags);
3457                 else {
3458                         if (rdev)
3459                                 set_bit(R5_NeedReplace, &dev->flags);
3460                         rdev = rcu_dereference(conf->disks[i].rdev);
3461                         clear_bit(R5_ReadRepl, &dev->flags);
3462                 }
3463                 if (rdev && test_bit(Faulty, &rdev->flags))
3464                         rdev = NULL;
3465                 if (rdev) {
3466                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3467                                              &first_bad, &bad_sectors);
3468                         if (s->blocked_rdev == NULL
3469                             && (test_bit(Blocked, &rdev->flags)
3470                                 || is_bad < 0)) {
3471                                 if (is_bad < 0)
3472                                         set_bit(BlockedBadBlocks,
3473                                                 &rdev->flags);
3474                                 s->blocked_rdev = rdev;
3475                                 atomic_inc(&rdev->nr_pending);
3476                         }
3477                 }
3478                 clear_bit(R5_Insync, &dev->flags);
3479                 if (!rdev)
3480                         /* Not in-sync */;
3481                 else if (is_bad) {
3482                         /* also not in-sync */
3483                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3484                             test_bit(R5_UPTODATE, &dev->flags)) {
3485                                 /* treat as in-sync, but with a read error
3486                                  * which we can now try to correct
3487                                  */
3488                                 set_bit(R5_Insync, &dev->flags);
3489                                 set_bit(R5_ReadError, &dev->flags);
3490                         }
3491                 } else if (test_bit(In_sync, &rdev->flags))
3492                         set_bit(R5_Insync, &dev->flags);
3493                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3494                         /* in sync if before recovery_offset */
3495                         set_bit(R5_Insync, &dev->flags);
3496                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3497                          test_bit(R5_Expanded, &dev->flags))
3498                         /* If we've reshaped into here, we assume it is Insync.
3499                          * We will shortly update recovery_offset to make
3500                          * it official.
3501                          */
3502                         set_bit(R5_Insync, &dev->flags);
3503
3504                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3505                         /* This flag does not apply to '.replacement'
3506                          * only to .rdev, so make sure to check that*/
3507                         struct md_rdev *rdev2 = rcu_dereference(
3508                                 conf->disks[i].rdev);
3509                         if (rdev2 == rdev)
3510                                 clear_bit(R5_Insync, &dev->flags);
3511                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3512                                 s->handle_bad_blocks = 1;
3513                                 atomic_inc(&rdev2->nr_pending);
3514                         } else
3515                                 clear_bit(R5_WriteError, &dev->flags);
3516                 }
3517                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3518                         /* This flag does not apply to '.replacement'
3519                          * only to .rdev, so make sure to check that*/
3520                         struct md_rdev *rdev2 = rcu_dereference(
3521                                 conf->disks[i].rdev);
3522                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3523                                 s->handle_bad_blocks = 1;
3524                                 atomic_inc(&rdev2->nr_pending);
3525                         } else
3526                                 clear_bit(R5_MadeGood, &dev->flags);
3527                 }
3528                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3529                         struct md_rdev *rdev2 = rcu_dereference(
3530                                 conf->disks[i].replacement);
3531                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3532                                 s->handle_bad_blocks = 1;
3533                                 atomic_inc(&rdev2->nr_pending);
3534                         } else
3535                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3536                 }
3537                 if (!test_bit(R5_Insync, &dev->flags)) {
3538                         /* The ReadError flag will just be confusing now */
3539                         clear_bit(R5_ReadError, &dev->flags);
3540                         clear_bit(R5_ReWrite, &dev->flags);
3541                 }
3542                 if (test_bit(R5_ReadError, &dev->flags))
3543                         clear_bit(R5_Insync, &dev->flags);
3544                 if (!test_bit(R5_Insync, &dev->flags)) {
3545                         if (s->failed < 2)
3546                                 s->failed_num[s->failed] = i;
3547                         s->failed++;
3548                         if (rdev && !test_bit(Faulty, &rdev->flags))
3549                                 do_recovery = 1;
3550                 }
3551         }
3552         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3553                 /* If there is a failed device being replaced,
3554                  *     we must be recovering.
3555                  * else if we are after recovery_cp, we must be syncing
3556                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3557                  * else we can only be replacing
3558                  * sync and recovery both need to read all devices, and so
3559                  * use the same flag.
3560                  */
3561                 if (do_recovery ||
3562                     sh->sector >= conf->mddev->recovery_cp ||
3563                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3564                         s->syncing = 1;
3565                 else
3566                         s->replacing = 1;
3567         }
3568         rcu_read_unlock();
3569 }
3570
3571 static void handle_stripe(struct stripe_head *sh)
3572 {
3573         struct stripe_head_state s;
3574         struct r5conf *conf = sh->raid_conf;
3575         int i;
3576         int prexor;
3577         int disks = sh->disks;
3578         struct r5dev *pdev, *qdev;
3579
3580         clear_bit(STRIPE_HANDLE, &sh->state);
3581         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3582                 /* already being handled, ensure it gets handled
3583                  * again when current action finishes */
3584                 set_bit(STRIPE_HANDLE, &sh->state);
3585                 return;
3586         }
3587
3588         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3589                 spin_lock(&sh->stripe_lock);
3590                 /* Cannot process 'sync' concurrently with 'discard' */
3591                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3592                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3593                         set_bit(STRIPE_SYNCING, &sh->state);
3594                         clear_bit(STRIPE_INSYNC, &sh->state);
3595                         clear_bit(STRIPE_REPLACED, &sh->state);
3596                 }
3597                 spin_unlock(&sh->stripe_lock);
3598         }
3599         clear_bit(STRIPE_DELAYED, &sh->state);
3600
3601         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3602                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3603                (unsigned long long)sh->sector, sh->state,
3604                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3605                sh->check_state, sh->reconstruct_state);
3606
3607         analyse_stripe(sh, &s);
3608
3609         if (s.handle_bad_blocks) {
3610                 set_bit(STRIPE_HANDLE, &sh->state);
3611                 goto finish;
3612         }
3613
3614         if (unlikely(s.blocked_rdev)) {
3615                 if (s.syncing || s.expanding || s.expanded ||
3616                     s.replacing || s.to_write || s.written) {
3617                         set_bit(STRIPE_HANDLE, &sh->state);
3618                         goto finish;
3619                 }
3620                 /* There is nothing for the blocked_rdev to block */
3621                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3622                 s.blocked_rdev = NULL;
3623         }
3624
3625         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3626                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3627                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3628         }
3629
3630         pr_debug("locked=%d uptodate=%d to_read=%d"
3631                " to_write=%d failed=%d failed_num=%d,%d\n",
3632                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3633                s.failed_num[0], s.failed_num[1]);
3634         /* check if the array has lost more than max_degraded devices and,
3635          * if so, some requests might need to be failed.
3636          */
3637         if (s.failed > conf->max_degraded) {
3638                 sh->check_state = 0;
3639                 sh->reconstruct_state = 0;
3640                 if (s.to_read+s.to_write+s.written)
3641                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3642                 if (s.syncing + s.replacing)
3643                         handle_failed_sync(conf, sh, &s);
3644         }
3645
3646         /* Now we check to see if any write operations have recently
3647          * completed
3648          */
3649         prexor = 0;
3650         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3651                 prexor = 1;
3652         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3653             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3654                 sh->reconstruct_state = reconstruct_state_idle;
3655
3656                 /* All the 'written' buffers and the parity block are ready to
3657                  * be written back to disk
3658                  */
3659                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3660                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3661                 BUG_ON(sh->qd_idx >= 0 &&
3662                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3663                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3664                 for (i = disks; i--; ) {
3665                         struct r5dev *dev = &sh->dev[i];
3666                         if (test_bit(R5_LOCKED, &dev->flags) &&
3667                                 (i == sh->pd_idx || i == sh->qd_idx ||
3668                                  dev->written)) {
3669                                 pr_debug("Writing block %d\n", i);
3670                                 set_bit(R5_Wantwrite, &dev->flags);
3671                                 if (prexor)
3672                                         continue;
3673                                 if (!test_bit(R5_Insync, &dev->flags) ||
3674                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3675                                      s.failed == 0))
3676                                         set_bit(STRIPE_INSYNC, &sh->state);
3677                         }
3678                 }
3679                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3680                         s.dec_preread_active = 1;
3681         }
3682
3683         /*
3684          * might be able to return some write requests if the parity blocks
3685          * are safe, or on a failed drive
3686          */
3687         pdev = &sh->dev[sh->pd_idx];
3688         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3689                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3690         qdev = &sh->dev[sh->qd_idx];
3691         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3692                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3693                 || conf->level < 6;
3694
3695         if (s.written &&
3696             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3697                              && !test_bit(R5_LOCKED, &pdev->flags)
3698                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3699                                  test_bit(R5_Discard, &pdev->flags))))) &&
3700             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3701                              && !test_bit(R5_LOCKED, &qdev->flags)
3702                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3703                                  test_bit(R5_Discard, &qdev->flags))))))
3704                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3705
3706         /* Now we might consider reading some blocks, either to check/generate
3707          * parity, or to satisfy requests
3708          * or to load a block that is being partially written.
3709          */
3710         if (s.to_read || s.non_overwrite
3711             || (conf->level == 6 && s.to_write && s.failed)
3712             || (s.syncing && (s.uptodate + s.compute < disks))
3713             || s.replacing
3714             || s.expanding)
3715                 handle_stripe_fill(sh, &s, disks);
3716
3717         /* Now to consider new write requests and what else, if anything
3718          * should be read.  We do not handle new writes when:
3719          * 1/ A 'write' operation (copy+xor) is already in flight.
3720          * 2/ A 'check' operation is in flight, as it may clobber the parity
3721          *    block.
3722          */
3723         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3724                 handle_stripe_dirtying(conf, sh, &s, disks);
3725
3726         /* maybe we need to check and possibly fix the parity for this stripe
3727          * Any reads will already have been scheduled, so we just see if enough
3728          * data is available.  The parity check is held off while parity
3729          * dependent operations are in flight.
3730          */
3731         if (sh->check_state ||
3732             (s.syncing && s.locked == 0 &&
3733              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3734              !test_bit(STRIPE_INSYNC, &sh->state))) {
3735                 if (conf->level == 6)
3736                         handle_parity_checks6(conf, sh, &s, disks);
3737                 else
3738                         handle_parity_checks5(conf, sh, &s, disks);
3739         }
3740
3741         if ((s.replacing || s.syncing) && s.locked == 0
3742             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3743             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3744                 /* Write out to replacement devices where possible */
3745                 for (i = 0; i < conf->raid_disks; i++)
3746                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3747                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3748                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3749                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3750                                 s.locked++;
3751                         }
3752                 if (s.replacing)
3753                         set_bit(STRIPE_INSYNC, &sh->state);
3754                 set_bit(STRIPE_REPLACED, &sh->state);
3755         }
3756         if ((s.syncing || s.replacing) && s.locked == 0 &&
3757             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3758             test_bit(STRIPE_INSYNC, &sh->state)) {
3759                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3760                 clear_bit(STRIPE_SYNCING, &sh->state);
3761                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3762                         wake_up(&conf->wait_for_overlap);
3763         }
3764
3765         /* If the failed drives are just a ReadError, then we might need
3766          * to progress the repair/check process
3767          */
3768         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3769                 for (i = 0; i < s.failed; i++) {
3770                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3771                         if (test_bit(R5_ReadError, &dev->flags)
3772                             && !test_bit(R5_LOCKED, &dev->flags)
3773                             && test_bit(R5_UPTODATE, &dev->flags)
3774                                 ) {
3775                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3776                                         set_bit(R5_Wantwrite, &dev->flags);
3777                                         set_bit(R5_ReWrite, &dev->flags);
3778                                         set_bit(R5_LOCKED, &dev->flags);
3779                                         s.locked++;
3780                                 } else {
3781                                         /* let's read it back */
3782                                         set_bit(R5_Wantread, &dev->flags);
3783                                         set_bit(R5_LOCKED, &dev->flags);
3784                                         s.locked++;
3785                                 }
3786                         }
3787                 }
3788
3789
3790         /* Finish reconstruct operations initiated by the expansion process */
3791         if (sh->reconstruct_state == reconstruct_state_result) {
3792                 struct stripe_head *sh_src
3793                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3794                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3795                         /* sh cannot be written until sh_src has been read.
3796                          * so arrange for sh to be delayed a little
3797                          */
3798                         set_bit(STRIPE_DELAYED, &sh->state);
3799                         set_bit(STRIPE_HANDLE, &sh->state);
3800                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3801                                               &sh_src->state))
3802                                 atomic_inc(&conf->preread_active_stripes);
3803                         release_stripe(sh_src);
3804                         goto finish;
3805                 }
3806                 if (sh_src)
3807                         release_stripe(sh_src);
3808
3809                 sh->reconstruct_state = reconstruct_state_idle;
3810                 clear_bit(STRIPE_EXPANDING, &sh->state);
3811                 for (i = conf->raid_disks; i--; ) {
3812                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3813                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3814                         s.locked++;
3815                 }
3816         }
3817
3818         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3819             !sh->reconstruct_state) {
3820                 /* Need to write out all blocks after computing parity */
3821                 sh->disks = conf->raid_disks;
3822                 stripe_set_idx(sh->sector, conf, 0, sh);
3823                 schedule_reconstruction(sh, &s, 1, 1);
3824         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3825                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3826                 atomic_dec(&conf->reshape_stripes);
3827                 wake_up(&conf->wait_for_overlap);
3828                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3829         }
3830
3831         if (s.expanding && s.locked == 0 &&
3832             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3833                 handle_stripe_expansion(conf, sh);
3834
3835 finish:
3836         /* wait for this device to become unblocked */
3837         if (unlikely(s.blocked_rdev)) {
3838                 if (conf->mddev->external)
3839                         md_wait_for_blocked_rdev(s.blocked_rdev,
3840                                                  conf->mddev);
3841                 else
3842                         /* Internal metadata will immediately
3843                          * be written by raid5d, so we don't
3844                          * need to wait here.
3845                          */
3846                         rdev_dec_pending(s.blocked_rdev,
3847                                          conf->mddev);
3848         }
3849
3850         if (s.handle_bad_blocks)
3851                 for (i = disks; i--; ) {
3852                         struct md_rdev *rdev;
3853                         struct r5dev *dev = &sh->dev[i];
3854                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3855                                 /* We own a safe reference to the rdev */
3856                                 rdev = conf->disks[i].rdev;
3857                                 if (!rdev_set_badblocks(rdev, sh->sector,
3858                                                         STRIPE_SECTORS, 0))
3859                                         md_error(conf->mddev, rdev);
3860                                 rdev_dec_pending(rdev, conf->mddev);
3861                         }
3862                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3863                                 rdev = conf->disks[i].rdev;
3864                                 rdev_clear_badblocks(rdev, sh->sector,
3865                                                      STRIPE_SECTORS, 0);
3866                                 rdev_dec_pending(rdev, conf->mddev);
3867                         }
3868                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3869                                 rdev = conf->disks[i].replacement;
3870                                 if (!rdev)
3871                                         /* rdev have been moved down */
3872                                         rdev = conf->disks[i].rdev;
3873                                 rdev_clear_badblocks(rdev, sh->sector,
3874                                                      STRIPE_SECTORS, 0);
3875                                 rdev_dec_pending(rdev, conf->mddev);
3876                         }
3877                 }
3878
3879         if (s.ops_request)
3880                 raid_run_ops(sh, s.ops_request);
3881
3882         ops_run_io(sh, &s);
3883
3884         if (s.dec_preread_active) {
3885                 /* We delay this until after ops_run_io so that if make_request
3886                  * is waiting on a flush, it won't continue until the writes
3887                  * have actually been submitted.
3888                  */
3889                 atomic_dec(&conf->preread_active_stripes);
3890                 if (atomic_read(&conf->preread_active_stripes) <
3891                     IO_THRESHOLD)
3892                         md_wakeup_thread(conf->mddev->thread);
3893         }
3894
3895         return_io(s.return_bi);
3896
3897         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3898 }
3899
3900 static void raid5_activate_delayed(struct r5conf *conf)
3901 {
3902         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3903                 while (!list_empty(&conf->delayed_list)) {
3904                         struct list_head *l = conf->delayed_list.next;
3905                         struct stripe_head *sh;
3906                         sh = list_entry(l, struct stripe_head, lru);
3907                         list_del_init(l);
3908                         clear_bit(STRIPE_DELAYED, &sh->state);
3909                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3910                                 atomic_inc(&conf->preread_active_stripes);
3911                         list_add_tail(&sh->lru, &conf->hold_list);
3912                         raid5_wakeup_stripe_thread(sh);
3913                 }
3914         }
3915 }
3916
3917 static void activate_bit_delay(struct r5conf *conf)
3918 {
3919         /* device_lock is held */
3920         struct list_head head;
3921         list_add(&head, &conf->bitmap_list);
3922         list_del_init(&conf->bitmap_list);
3923         while (!list_empty(&head)) {
3924                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3925                 list_del_init(&sh->lru);
3926                 atomic_inc(&sh->count);
3927                 __release_stripe(conf, sh);
3928         }
3929 }
3930
3931 int md_raid5_congested(struct mddev *mddev, int bits)
3932 {
3933         struct r5conf *conf = mddev->private;
3934
3935         /* No difference between reads and writes.  Just check
3936          * how busy the stripe_cache is
3937          */
3938
3939         if (conf->inactive_blocked)
3940                 return 1;
3941         if (conf->quiesce)
3942                 return 1;
3943         if (list_empty_careful(&conf->inactive_list))
3944                 return 1;
3945
3946         return 0;
3947 }
3948 EXPORT_SYMBOL_GPL(md_raid5_congested);
3949
3950 static int raid5_congested(void *data, int bits)
3951 {
3952         struct mddev *mddev = data;
3953
3954         return mddev_congested(mddev, bits) ||
3955                 md_raid5_congested(mddev, bits);
3956 }
3957
3958 /* We want read requests to align with chunks where possible,
3959  * but write requests don't need to.
3960  */
3961 static int raid5_mergeable_bvec(struct request_queue *q,
3962                                 struct bvec_merge_data *bvm,
3963                                 struct bio_vec *biovec)
3964 {
3965         struct mddev *mddev = q->queuedata;
3966         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3967         int max;
3968         unsigned int chunk_sectors = mddev->chunk_sectors;
3969         unsigned int bio_sectors = bvm->bi_size >> 9;
3970
3971         if ((bvm->bi_rw & 1) == WRITE)
3972                 return biovec->bv_len; /* always allow writes to be mergeable */
3973
3974         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3975                 chunk_sectors = mddev->new_chunk_sectors;
3976         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3977         if (max < 0) max = 0;
3978         if (max <= biovec->bv_len && bio_sectors == 0)
3979                 return biovec->bv_len;
3980         else
3981                 return max;
3982 }
3983
3984
3985 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3986 {
3987         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3988         unsigned int chunk_sectors = mddev->chunk_sectors;
3989         unsigned int bio_sectors = bio_sectors(bio);
3990
3991         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3992                 chunk_sectors = mddev->new_chunk_sectors;
3993         return  chunk_sectors >=
3994                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3995 }
3996
3997 /*
3998  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3999  *  later sampled by raid5d.
4000  */
4001 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4002 {
4003         unsigned long flags;
4004
4005         spin_lock_irqsave(&conf->device_lock, flags);
4006
4007         bi->bi_next = conf->retry_read_aligned_list;
4008         conf->retry_read_aligned_list = bi;
4009
4010         spin_unlock_irqrestore(&conf->device_lock, flags);
4011         md_wakeup_thread(conf->mddev->thread);
4012 }
4013
4014
4015 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4016 {
4017         struct bio *bi;
4018
4019         bi = conf->retry_read_aligned;
4020         if (bi) {
4021                 conf->retry_read_aligned = NULL;
4022                 return bi;
4023         }
4024         bi = conf->retry_read_aligned_list;
4025         if(bi) {
4026                 conf->retry_read_aligned_list = bi->bi_next;
4027                 bi->bi_next = NULL;
4028                 /*
4029                  * this sets the active strip count to 1 and the processed
4030                  * strip count to zero (upper 8 bits)
4031                  */
4032                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4033         }
4034
4035         return bi;
4036 }
4037
4038
4039 /*
4040  *  The "raid5_align_endio" should check if the read succeeded and if it
4041  *  did, call bio_endio on the original bio (having bio_put the new bio
4042  *  first).
4043  *  If the read failed..
4044  */
4045 static void raid5_align_endio(struct bio *bi, int error)
4046 {
4047         struct bio* raid_bi  = bi->bi_private;
4048         struct mddev *mddev;
4049         struct r5conf *conf;
4050         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4051         struct md_rdev *rdev;
4052
4053         bio_put(bi);
4054
4055         rdev = (void*)raid_bi->bi_next;
4056         raid_bi->bi_next = NULL;
4057         mddev = rdev->mddev;
4058         conf = mddev->private;
4059
4060         rdev_dec_pending(rdev, conf->mddev);
4061
4062         if (!error && uptodate) {
4063                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4064                                          raid_bi, 0);
4065                 bio_endio(raid_bi, 0);
4066                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4067                         wake_up(&conf->wait_for_stripe);
4068                 return;
4069         }
4070
4071
4072         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4073
4074         add_bio_to_retry(raid_bi, conf);
4075 }
4076
4077 static int bio_fits_rdev(struct bio *bi)
4078 {
4079         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4080
4081         if (bio_sectors(bi) > queue_max_sectors(q))
4082                 return 0;
4083         blk_recount_segments(q, bi);
4084         if (bi->bi_phys_segments > queue_max_segments(q))
4085                 return 0;
4086
4087         if (q->merge_bvec_fn)
4088                 /* it's too hard to apply the merge_bvec_fn at this stage,
4089                  * just just give up
4090                  */
4091                 return 0;
4092
4093         return 1;
4094 }
4095
4096
4097 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4098 {
4099         struct r5conf *conf = mddev->private;
4100         int dd_idx;
4101         struct bio* align_bi;
4102         struct md_rdev *rdev;
4103         sector_t end_sector;
4104
4105         if (!in_chunk_boundary(mddev, raid_bio)) {
4106                 pr_debug("chunk_aligned_read : non aligned\n");
4107                 return 0;
4108         }
4109         /*
4110          * use bio_clone_mddev to make a copy of the bio
4111          */
4112         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4113         if (!align_bi)
4114                 return 0;
4115         /*
4116          *   set bi_end_io to a new function, and set bi_private to the
4117          *     original bio.
4118          */
4119         align_bi->bi_end_io  = raid5_align_endio;
4120         align_bi->bi_private = raid_bio;
4121         /*
4122          *      compute position
4123          */
4124         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4125                                                     0,
4126                                                     &dd_idx, NULL);
4127
4128         end_sector = bio_end_sector(align_bi);
4129         rcu_read_lock();
4130         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4131         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4132             rdev->recovery_offset < end_sector) {
4133                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4134                 if (rdev &&
4135                     (test_bit(Faulty, &rdev->flags) ||
4136                     !(test_bit(In_sync, &rdev->flags) ||
4137                       rdev->recovery_offset >= end_sector)))
4138                         rdev = NULL;
4139         }
4140         if (rdev) {
4141                 sector_t first_bad;
4142                 int bad_sectors;
4143
4144                 atomic_inc(&rdev->nr_pending);
4145                 rcu_read_unlock();
4146                 raid_bio->bi_next = (void*)rdev;
4147                 align_bi->bi_bdev =  rdev->bdev;
4148                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4149
4150                 if (!bio_fits_rdev(align_bi) ||
4151                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4152                                 &first_bad, &bad_sectors)) {
4153                         /* too big in some way, or has a known bad block */
4154                         bio_put(align_bi);
4155                         rdev_dec_pending(rdev, mddev);
4156                         return 0;
4157                 }
4158
4159                 /* No reshape active, so we can trust rdev->data_offset */
4160                 align_bi->bi_sector += rdev->data_offset;
4161
4162                 spin_lock_irq(&conf->device_lock);
4163                 wait_event_lock_irq(conf->wait_for_stripe,
4164                                     conf->quiesce == 0,
4165                                     conf->device_lock);
4166                 atomic_inc(&conf->active_aligned_reads);
4167                 spin_unlock_irq(&conf->device_lock);
4168
4169                 if (mddev->gendisk)
4170                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4171                                               align_bi, disk_devt(mddev->gendisk),
4172                                               raid_bio->bi_sector);
4173                 generic_make_request(align_bi);
4174                 return 1;
4175         } else {
4176                 rcu_read_unlock();
4177                 bio_put(align_bi);
4178                 return 0;
4179         }
4180 }
4181
4182 /* __get_priority_stripe - get the next stripe to process
4183  *
4184  * Full stripe writes are allowed to pass preread active stripes up until
4185  * the bypass_threshold is exceeded.  In general the bypass_count
4186  * increments when the handle_list is handled before the hold_list; however, it
4187  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4188  * stripe with in flight i/o.  The bypass_count will be reset when the
4189  * head of the hold_list has changed, i.e. the head was promoted to the
4190  * handle_list.
4191  */
4192 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4193 {
4194         struct stripe_head *sh = NULL, *tmp;
4195         struct list_head *handle_list = NULL;
4196         struct r5worker_group *wg = NULL;
4197
4198         if (conf->worker_cnt_per_group == 0) {
4199                 handle_list = &conf->handle_list;
4200         } else if (group != ANY_GROUP) {
4201                 handle_list = &conf->worker_groups[group].handle_list;
4202                 wg = &conf->worker_groups[group];
4203         } else {
4204                 int i;
4205                 for (i = 0; i < conf->group_cnt; i++) {
4206                         handle_list = &conf->worker_groups[i].handle_list;
4207                         wg = &conf->worker_groups[i];
4208                         if (!list_empty(handle_list))
4209                                 break;
4210                 }
4211         }
4212
4213         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4214                   __func__,
4215                   list_empty(handle_list) ? "empty" : "busy",
4216                   list_empty(&conf->hold_list) ? "empty" : "busy",
4217                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4218
4219         if (!list_empty(handle_list)) {
4220                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4221
4222                 if (list_empty(&conf->hold_list))
4223                         conf->bypass_count = 0;
4224                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4225                         if (conf->hold_list.next == conf->last_hold)
4226                                 conf->bypass_count++;
4227                         else {
4228                                 conf->last_hold = conf->hold_list.next;
4229                                 conf->bypass_count -= conf->bypass_threshold;
4230                                 if (conf->bypass_count < 0)
4231                                         conf->bypass_count = 0;
4232                         }
4233                 }
4234         } else if (!list_empty(&conf->hold_list) &&
4235                    ((conf->bypass_threshold &&
4236                      conf->bypass_count > conf->bypass_threshold) ||
4237                     atomic_read(&conf->pending_full_writes) == 0)) {
4238
4239                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4240                         if (conf->worker_cnt_per_group == 0 ||
4241                             group == ANY_GROUP ||
4242                             !cpu_online(tmp->cpu) ||
4243                             cpu_to_group(tmp->cpu) == group) {
4244                                 sh = tmp;
4245                                 break;
4246                         }
4247                 }
4248
4249                 if (sh) {
4250                         conf->bypass_count -= conf->bypass_threshold;
4251                         if (conf->bypass_count < 0)
4252                                 conf->bypass_count = 0;
4253                 }
4254                 wg = NULL;
4255         }
4256
4257         if (!sh)
4258                 return NULL;
4259
4260         if (wg) {
4261                 wg->stripes_cnt--;
4262                 sh->group = NULL;
4263         }
4264         list_del_init(&sh->lru);
4265         atomic_inc(&sh->count);
4266         BUG_ON(atomic_read(&sh->count) != 1);
4267         return sh;
4268 }
4269
4270 struct raid5_plug_cb {
4271         struct blk_plug_cb      cb;
4272         struct list_head        list;
4273 };
4274
4275 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4276 {
4277         struct raid5_plug_cb *cb = container_of(
4278                 blk_cb, struct raid5_plug_cb, cb);
4279         struct stripe_head *sh;
4280         struct mddev *mddev = cb->cb.data;
4281         struct r5conf *conf = mddev->private;
4282         int cnt = 0;
4283
4284         if (cb->list.next && !list_empty(&cb->list)) {
4285                 spin_lock_irq(&conf->device_lock);
4286                 while (!list_empty(&cb->list)) {
4287                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4288                         list_del_init(&sh->lru);
4289                         /*
4290                          * avoid race release_stripe_plug() sees
4291                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4292                          * is still in our list
4293                          */
4294                         smp_mb__before_clear_bit();
4295                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4296                         /*
4297                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4298                          * case, the count is always > 1 here
4299                          */
4300                         __release_stripe(conf, sh);
4301                         cnt++;
4302                 }
4303                 spin_unlock_irq(&conf->device_lock);
4304         }
4305         if (mddev->queue)
4306                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4307         kfree(cb);
4308 }
4309
4310 static void release_stripe_plug(struct mddev *mddev,
4311                                 struct stripe_head *sh)
4312 {
4313         struct blk_plug_cb *blk_cb = blk_check_plugged(
4314                 raid5_unplug, mddev,
4315                 sizeof(struct raid5_plug_cb));
4316         struct raid5_plug_cb *cb;
4317
4318         if (!blk_cb) {
4319                 release_stripe(sh);
4320                 return;
4321         }
4322
4323         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4324
4325         if (cb->list.next == NULL)
4326                 INIT_LIST_HEAD(&cb->list);
4327
4328         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4329                 list_add_tail(&sh->lru, &cb->list);
4330         else
4331                 release_stripe(sh);
4332 }
4333
4334 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4335 {
4336         struct r5conf *conf = mddev->private;
4337         sector_t logical_sector, last_sector;
4338         struct stripe_head *sh;
4339         int remaining;
4340         int stripe_sectors;
4341
4342         if (mddev->reshape_position != MaxSector)
4343                 /* Skip discard while reshape is happening */
4344                 return;
4345
4346         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4347         last_sector = bi->bi_sector + (bi->bi_size>>9);
4348
4349         bi->bi_next = NULL;
4350         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4351
4352         stripe_sectors = conf->chunk_sectors *
4353                 (conf->raid_disks - conf->max_degraded);
4354         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4355                                                stripe_sectors);
4356         sector_div(last_sector, stripe_sectors);
4357
4358         logical_sector *= conf->chunk_sectors;
4359         last_sector *= conf->chunk_sectors;
4360
4361         for (; logical_sector < last_sector;
4362              logical_sector += STRIPE_SECTORS) {
4363                 DEFINE_WAIT(w);
4364                 int d;
4365         again:
4366                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4367                 prepare_to_wait(&conf->wait_for_overlap, &w,
4368                                 TASK_UNINTERRUPTIBLE);
4369                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4370                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4371                         release_stripe(sh);
4372                         schedule();
4373                         goto again;
4374                 }
4375                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4376                 spin_lock_irq(&sh->stripe_lock);
4377                 for (d = 0; d < conf->raid_disks; d++) {
4378                         if (d == sh->pd_idx || d == sh->qd_idx)
4379                                 continue;
4380                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4381                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4382                                 spin_unlock_irq(&sh->stripe_lock);
4383                                 release_stripe(sh);
4384                                 schedule();
4385                                 goto again;
4386                         }
4387                 }
4388                 set_bit(STRIPE_DISCARD, &sh->state);
4389                 finish_wait(&conf->wait_for_overlap, &w);
4390                 for (d = 0; d < conf->raid_disks; d++) {
4391                         if (d == sh->pd_idx || d == sh->qd_idx)
4392                                 continue;
4393                         sh->dev[d].towrite = bi;
4394                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4395                         raid5_inc_bi_active_stripes(bi);
4396                 }
4397                 spin_unlock_irq(&sh->stripe_lock);
4398                 if (conf->mddev->bitmap) {
4399                         for (d = 0;
4400                              d < conf->raid_disks - conf->max_degraded;
4401                              d++)
4402                                 bitmap_startwrite(mddev->bitmap,
4403                                                   sh->sector,
4404                                                   STRIPE_SECTORS,
4405                                                   0);
4406                         sh->bm_seq = conf->seq_flush + 1;
4407                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4408                 }
4409
4410                 set_bit(STRIPE_HANDLE, &sh->state);
4411                 clear_bit(STRIPE_DELAYED, &sh->state);
4412                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4413                         atomic_inc(&conf->preread_active_stripes);
4414                 release_stripe_plug(mddev, sh);
4415         }
4416
4417         remaining = raid5_dec_bi_active_stripes(bi);
4418         if (remaining == 0) {
4419                 md_write_end(mddev);
4420                 bio_endio(bi, 0);
4421         }
4422 }
4423
4424 static void make_request(struct mddev *mddev, struct bio * bi)
4425 {
4426         struct r5conf *conf = mddev->private;
4427         int dd_idx;
4428         sector_t new_sector;
4429         sector_t logical_sector, last_sector;
4430         struct stripe_head *sh;
4431         const int rw = bio_data_dir(bi);
4432         int remaining;
4433
4434         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4435                 md_flush_request(mddev, bi);
4436                 return;
4437         }
4438
4439         md_write_start(mddev, bi);
4440
4441         if (rw == READ &&
4442              mddev->reshape_position == MaxSector &&
4443              chunk_aligned_read(mddev,bi))
4444                 return;
4445
4446         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4447                 make_discard_request(mddev, bi);
4448                 return;
4449         }
4450
4451         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4452         last_sector = bio_end_sector(bi);
4453         bi->bi_next = NULL;
4454         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4455
4456         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4457                 DEFINE_WAIT(w);
4458                 int previous;
4459                 int seq;
4460
4461         retry:
4462                 seq = read_seqcount_begin(&conf->gen_lock);
4463                 previous = 0;
4464                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4465                 if (unlikely(conf->reshape_progress != MaxSector)) {
4466                         /* spinlock is needed as reshape_progress may be
4467                          * 64bit on a 32bit platform, and so it might be
4468                          * possible to see a half-updated value
4469                          * Of course reshape_progress could change after
4470                          * the lock is dropped, so once we get a reference
4471                          * to the stripe that we think it is, we will have
4472                          * to check again.
4473                          */
4474                         spin_lock_irq(&conf->device_lock);
4475                         if (mddev->reshape_backwards
4476                             ? logical_sector < conf->reshape_progress
4477                             : logical_sector >= conf->reshape_progress) {
4478                                 previous = 1;
4479                         } else {
4480                                 if (mddev->reshape_backwards
4481                                     ? logical_sector < conf->reshape_safe
4482                                     : logical_sector >= conf->reshape_safe) {
4483                                         spin_unlock_irq(&conf->device_lock);
4484                                         schedule();
4485                                         goto retry;
4486                                 }
4487                         }
4488                         spin_unlock_irq(&conf->device_lock);
4489                 }
4490
4491                 new_sector = raid5_compute_sector(conf, logical_sector,
4492                                                   previous,
4493                                                   &dd_idx, NULL);
4494                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4495                         (unsigned long long)new_sector,
4496                         (unsigned long long)logical_sector);
4497
4498                 sh = get_active_stripe(conf, new_sector, previous,
4499                                        (bi->bi_rw&RWA_MASK), 0);
4500                 if (sh) {
4501                         if (unlikely(previous)) {
4502                                 /* expansion might have moved on while waiting for a
4503                                  * stripe, so we must do the range check again.
4504                                  * Expansion could still move past after this
4505                                  * test, but as we are holding a reference to
4506                                  * 'sh', we know that if that happens,
4507                                  *  STRIPE_EXPANDING will get set and the expansion
4508                                  * won't proceed until we finish with the stripe.
4509                                  */
4510                                 int must_retry = 0;
4511                                 spin_lock_irq(&conf->device_lock);
4512                                 if (mddev->reshape_backwards
4513                                     ? logical_sector >= conf->reshape_progress
4514                                     : logical_sector < conf->reshape_progress)
4515                                         /* mismatch, need to try again */
4516                                         must_retry = 1;
4517                                 spin_unlock_irq(&conf->device_lock);
4518                                 if (must_retry) {
4519                                         release_stripe(sh);
4520                                         schedule();
4521                                         goto retry;
4522                                 }
4523                         }
4524                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4525                                 /* Might have got the wrong stripe_head
4526                                  * by accident
4527                                  */
4528                                 release_stripe(sh);
4529                                 goto retry;
4530                         }
4531
4532                         if (rw == WRITE &&
4533                             logical_sector >= mddev->suspend_lo &&
4534                             logical_sector < mddev->suspend_hi) {
4535                                 release_stripe(sh);
4536                                 /* As the suspend_* range is controlled by
4537                                  * userspace, we want an interruptible
4538                                  * wait.
4539                                  */
4540                                 flush_signals(current);
4541                                 prepare_to_wait(&conf->wait_for_overlap,
4542                                                 &w, TASK_INTERRUPTIBLE);
4543                                 if (logical_sector >= mddev->suspend_lo &&
4544                                     logical_sector < mddev->suspend_hi)
4545                                         schedule();
4546                                 goto retry;
4547                         }
4548
4549                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4550                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4551                                 /* Stripe is busy expanding or
4552                                  * add failed due to overlap.  Flush everything
4553                                  * and wait a while
4554                                  */
4555                                 md_wakeup_thread(mddev->thread);
4556                                 release_stripe(sh);
4557                                 schedule();
4558                                 goto retry;
4559                         }
4560                         finish_wait(&conf->wait_for_overlap, &w);
4561                         set_bit(STRIPE_HANDLE, &sh->state);
4562                         clear_bit(STRIPE_DELAYED, &sh->state);
4563                         if ((bi->bi_rw & REQ_SYNC) &&
4564                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4565                                 atomic_inc(&conf->preread_active_stripes);
4566                         release_stripe_plug(mddev, sh);
4567                 } else {
4568                         /* cannot get stripe for read-ahead, just give-up */
4569                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4570                         finish_wait(&conf->wait_for_overlap, &w);
4571                         break;
4572                 }
4573         }
4574
4575         remaining = raid5_dec_bi_active_stripes(bi);
4576         if (remaining == 0) {
4577
4578                 if ( rw == WRITE )
4579                         md_write_end(mddev);
4580
4581                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4582                                          bi, 0);
4583                 bio_endio(bi, 0);
4584         }
4585 }
4586
4587 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4588
4589 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4590 {
4591         /* reshaping is quite different to recovery/resync so it is
4592          * handled quite separately ... here.
4593          *
4594          * On each call to sync_request, we gather one chunk worth of
4595          * destination stripes and flag them as expanding.
4596          * Then we find all the source stripes and request reads.
4597          * As the reads complete, handle_stripe will copy the data
4598          * into the destination stripe and release that stripe.
4599          */
4600         struct r5conf *conf = mddev->private;
4601         struct stripe_head *sh;
4602         sector_t first_sector, last_sector;
4603         int raid_disks = conf->previous_raid_disks;
4604         int data_disks = raid_disks - conf->max_degraded;
4605         int new_data_disks = conf->raid_disks - conf->max_degraded;
4606         int i;
4607         int dd_idx;
4608         sector_t writepos, readpos, safepos;
4609         sector_t stripe_addr;
4610         int reshape_sectors;
4611         struct list_head stripes;
4612
4613         if (sector_nr == 0) {
4614                 /* If restarting in the middle, skip the initial sectors */
4615                 if (mddev->reshape_backwards &&
4616                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4617                         sector_nr = raid5_size(mddev, 0, 0)
4618                                 - conf->reshape_progress;
4619                 } else if (!mddev->reshape_backwards &&
4620                            conf->reshape_progress > 0)
4621                         sector_nr = conf->reshape_progress;
4622                 sector_div(sector_nr, new_data_disks);
4623                 if (sector_nr) {
4624                         mddev->curr_resync_completed = sector_nr;
4625                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4626                         *skipped = 1;
4627                         return sector_nr;
4628                 }
4629         }
4630
4631         /* We need to process a full chunk at a time.
4632          * If old and new chunk sizes differ, we need to process the
4633          * largest of these
4634          */
4635         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4636                 reshape_sectors = mddev->new_chunk_sectors;
4637         else
4638                 reshape_sectors = mddev->chunk_sectors;
4639
4640         /* We update the metadata at least every 10 seconds, or when
4641          * the data about to be copied would over-write the source of
4642          * the data at the front of the range.  i.e. one new_stripe
4643          * along from reshape_progress new_maps to after where
4644          * reshape_safe old_maps to
4645          */
4646         writepos = conf->reshape_progress;
4647         sector_div(writepos, new_data_disks);
4648         readpos = conf->reshape_progress;
4649         sector_div(readpos, data_disks);
4650         safepos = conf->reshape_safe;
4651         sector_div(safepos, data_disks);
4652         if (mddev->reshape_backwards) {
4653                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4654                 readpos += reshape_sectors;
4655                 safepos += reshape_sectors;
4656         } else {
4657                 writepos += reshape_sectors;
4658                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4659                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4660         }
4661
4662         /* Having calculated the 'writepos' possibly use it
4663          * to set 'stripe_addr' which is where we will write to.
4664          */
4665         if (mddev->reshape_backwards) {
4666                 BUG_ON(conf->reshape_progress == 0);
4667                 stripe_addr = writepos;
4668                 BUG_ON((mddev->dev_sectors &
4669                         ~((sector_t)reshape_sectors - 1))
4670                        - reshape_sectors - stripe_addr
4671                        != sector_nr);
4672         } else {
4673                 BUG_ON(writepos != sector_nr + reshape_sectors);
4674                 stripe_addr = sector_nr;
4675         }
4676
4677         /* 'writepos' is the most advanced device address we might write.
4678          * 'readpos' is the least advanced device address we might read.
4679          * 'safepos' is the least address recorded in the metadata as having
4680          *     been reshaped.
4681          * If there is a min_offset_diff, these are adjusted either by
4682          * increasing the safepos/readpos if diff is negative, or
4683          * increasing writepos if diff is positive.
4684          * If 'readpos' is then behind 'writepos', there is no way that we can
4685          * ensure safety in the face of a crash - that must be done by userspace
4686          * making a backup of the data.  So in that case there is no particular
4687          * rush to update metadata.
4688          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4689          * update the metadata to advance 'safepos' to match 'readpos' so that
4690          * we can be safe in the event of a crash.
4691          * So we insist on updating metadata if safepos is behind writepos and
4692          * readpos is beyond writepos.
4693          * In any case, update the metadata every 10 seconds.
4694          * Maybe that number should be configurable, but I'm not sure it is
4695          * worth it.... maybe it could be a multiple of safemode_delay???
4696          */
4697         if (conf->min_offset_diff < 0) {
4698                 safepos += -conf->min_offset_diff;
4699                 readpos += -conf->min_offset_diff;
4700         } else
4701                 writepos += conf->min_offset_diff;
4702
4703         if ((mddev->reshape_backwards
4704              ? (safepos > writepos && readpos < writepos)
4705              : (safepos < writepos && readpos > writepos)) ||
4706             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4707                 /* Cannot proceed until we've updated the superblock... */
4708                 wait_event(conf->wait_for_overlap,
4709                            atomic_read(&conf->reshape_stripes)==0);
4710                 mddev->reshape_position = conf->reshape_progress;
4711                 mddev->curr_resync_completed = sector_nr;
4712                 conf->reshape_checkpoint = jiffies;
4713                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4714                 md_wakeup_thread(mddev->thread);
4715                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4716                            kthread_should_stop());
4717                 spin_lock_irq(&conf->device_lock);
4718                 conf->reshape_safe = mddev->reshape_position;
4719                 spin_unlock_irq(&conf->device_lock);
4720                 wake_up(&conf->wait_for_overlap);
4721                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4722         }
4723
4724         INIT_LIST_HEAD(&stripes);
4725         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4726                 int j;
4727                 int skipped_disk = 0;
4728                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4729                 set_bit(STRIPE_EXPANDING, &sh->state);
4730                 atomic_inc(&conf->reshape_stripes);
4731                 /* If any of this stripe is beyond the end of the old
4732                  * array, then we need to zero those blocks
4733                  */
4734                 for (j=sh->disks; j--;) {
4735                         sector_t s;
4736                         if (j == sh->pd_idx)
4737                                 continue;
4738                         if (conf->level == 6 &&
4739                             j == sh->qd_idx)
4740                                 continue;
4741                         s = compute_blocknr(sh, j, 0);
4742                         if (s < raid5_size(mddev, 0, 0)) {
4743                                 skipped_disk = 1;
4744                                 continue;
4745                         }
4746                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4747                         set_bit(R5_Expanded, &sh->dev[j].flags);
4748                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4749                 }
4750                 if (!skipped_disk) {
4751                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4752                         set_bit(STRIPE_HANDLE, &sh->state);
4753                 }
4754                 list_add(&sh->lru, &stripes);
4755         }
4756         spin_lock_irq(&conf->device_lock);
4757         if (mddev->reshape_backwards)
4758                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4759         else
4760                 conf->reshape_progress += reshape_sectors * new_data_disks;
4761         spin_unlock_irq(&conf->device_lock);
4762         /* Ok, those stripe are ready. We can start scheduling
4763          * reads on the source stripes.
4764          * The source stripes are determined by mapping the first and last
4765          * block on the destination stripes.
4766          */
4767         first_sector =
4768                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4769                                      1, &dd_idx, NULL);
4770         last_sector =
4771                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4772                                             * new_data_disks - 1),
4773                                      1, &dd_idx, NULL);
4774         if (last_sector >= mddev->dev_sectors)
4775                 last_sector = mddev->dev_sectors - 1;
4776         while (first_sector <= last_sector) {
4777                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4778                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4779                 set_bit(STRIPE_HANDLE, &sh->state);
4780                 release_stripe(sh);
4781                 first_sector += STRIPE_SECTORS;
4782         }
4783         /* Now that the sources are clearly marked, we can release
4784          * the destination stripes
4785          */
4786         while (!list_empty(&stripes)) {
4787                 sh = list_entry(stripes.next, struct stripe_head, lru);
4788                 list_del_init(&sh->lru);
4789                 release_stripe(sh);
4790         }
4791         /* If this takes us to the resync_max point where we have to pause,
4792          * then we need to write out the superblock.
4793          */
4794         sector_nr += reshape_sectors;
4795         if ((sector_nr - mddev->curr_resync_completed) * 2
4796             >= mddev->resync_max - mddev->curr_resync_completed) {
4797                 /* Cannot proceed until we've updated the superblock... */
4798                 wait_event(conf->wait_for_overlap,
4799                            atomic_read(&conf->reshape_stripes) == 0);
4800                 mddev->reshape_position = conf->reshape_progress;
4801                 mddev->curr_resync_completed = sector_nr;
4802                 conf->reshape_checkpoint = jiffies;
4803                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4804                 md_wakeup_thread(mddev->thread);
4805                 wait_event(mddev->sb_wait,
4806                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4807                            || kthread_should_stop());
4808                 spin_lock_irq(&conf->device_lock);
4809                 conf->reshape_safe = mddev->reshape_position;
4810                 spin_unlock_irq(&conf->device_lock);
4811                 wake_up(&conf->wait_for_overlap);
4812                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4813         }
4814         return reshape_sectors;
4815 }
4816
4817 /* FIXME go_faster isn't used */
4818 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4819 {
4820         struct r5conf *conf = mddev->private;
4821         struct stripe_head *sh;
4822         sector_t max_sector = mddev->dev_sectors;
4823         sector_t sync_blocks;
4824         int still_degraded = 0;
4825         int i;
4826
4827         if (sector_nr >= max_sector) {
4828                 /* just being told to finish up .. nothing much to do */
4829
4830                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4831                         end_reshape(conf);
4832                         return 0;
4833                 }
4834
4835                 if (mddev->curr_resync < max_sector) /* aborted */
4836                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4837                                         &sync_blocks, 1);
4838                 else /* completed sync */
4839                         conf->fullsync = 0;
4840                 bitmap_close_sync(mddev->bitmap);
4841
4842                 return 0;
4843         }
4844
4845         /* Allow raid5_quiesce to complete */
4846         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4847
4848         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4849                 return reshape_request(mddev, sector_nr, skipped);
4850
4851         /* No need to check resync_max as we never do more than one
4852          * stripe, and as resync_max will always be on a chunk boundary,
4853          * if the check in md_do_sync didn't fire, there is no chance
4854          * of overstepping resync_max here
4855          */
4856
4857         /* if there is too many failed drives and we are trying
4858          * to resync, then assert that we are finished, because there is
4859          * nothing we can do.
4860          */
4861         if (mddev->degraded >= conf->max_degraded &&
4862             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4863                 sector_t rv = mddev->dev_sectors - sector_nr;
4864                 *skipped = 1;
4865                 return rv;
4866         }
4867         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4868             !conf->fullsync &&
4869             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4870             sync_blocks >= STRIPE_SECTORS) {
4871                 /* we can skip this block, and probably more */
4872                 sync_blocks /= STRIPE_SECTORS;
4873                 *skipped = 1;
4874                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4875         }
4876
4877         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4878
4879         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4880         if (sh == NULL) {
4881                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4882                 /* make sure we don't swamp the stripe cache if someone else
4883                  * is trying to get access
4884                  */
4885                 schedule_timeout_uninterruptible(1);
4886         }
4887         /* Need to check if array will still be degraded after recovery/resync
4888          * We don't need to check the 'failed' flag as when that gets set,
4889          * recovery aborts.
4890          */
4891         for (i = 0; i < conf->raid_disks; i++)
4892                 if (conf->disks[i].rdev == NULL)
4893                         still_degraded = 1;
4894
4895         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4896
4897         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4898
4899         handle_stripe(sh);
4900         release_stripe(sh);
4901
4902         return STRIPE_SECTORS;
4903 }
4904
4905 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4906 {
4907         /* We may not be able to submit a whole bio at once as there
4908          * may not be enough stripe_heads available.
4909          * We cannot pre-allocate enough stripe_heads as we may need
4910          * more than exist in the cache (if we allow ever large chunks).
4911          * So we do one stripe head at a time and record in
4912          * ->bi_hw_segments how many have been done.
4913          *
4914          * We *know* that this entire raid_bio is in one chunk, so
4915          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4916          */
4917         struct stripe_head *sh;
4918         int dd_idx;
4919         sector_t sector, logical_sector, last_sector;
4920         int scnt = 0;
4921         int remaining;
4922         int handled = 0;
4923
4924         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4925         sector = raid5_compute_sector(conf, logical_sector,
4926                                       0, &dd_idx, NULL);
4927         last_sector = bio_end_sector(raid_bio);
4928
4929         for (; logical_sector < last_sector;
4930              logical_sector += STRIPE_SECTORS,
4931                      sector += STRIPE_SECTORS,
4932                      scnt++) {
4933
4934                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4935                         /* already done this stripe */
4936                         continue;
4937
4938                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4939
4940                 if (!sh) {
4941                         /* failed to get a stripe - must wait */
4942                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4943                         conf->retry_read_aligned = raid_bio;
4944                         return handled;
4945                 }
4946
4947                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4948                         release_stripe(sh);
4949                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4950                         conf->retry_read_aligned = raid_bio;
4951                         return handled;
4952                 }
4953
4954                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4955                 handle_stripe(sh);
4956                 release_stripe(sh);
4957                 handled++;
4958         }
4959         remaining = raid5_dec_bi_active_stripes(raid_bio);
4960         if (remaining == 0) {
4961                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4962                                          raid_bio, 0);
4963                 bio_endio(raid_bio, 0);
4964         }
4965         if (atomic_dec_and_test(&conf->active_aligned_reads))
4966                 wake_up(&conf->wait_for_stripe);
4967         return handled;
4968 }
4969
4970 static int handle_active_stripes(struct r5conf *conf, int group,
4971                                  struct r5worker *worker)
4972 {
4973         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4974         int i, batch_size = 0;
4975
4976         while (batch_size < MAX_STRIPE_BATCH &&
4977                         (sh = __get_priority_stripe(conf, group)) != NULL)
4978                 batch[batch_size++] = sh;
4979
4980         if (batch_size == 0)
4981                 return batch_size;
4982         spin_unlock_irq(&conf->device_lock);
4983
4984         for (i = 0; i < batch_size; i++)
4985                 handle_stripe(batch[i]);
4986
4987         cond_resched();
4988
4989         spin_lock_irq(&conf->device_lock);
4990         for (i = 0; i < batch_size; i++)
4991                 __release_stripe(conf, batch[i]);
4992         return batch_size;
4993 }
4994
4995 static void raid5_do_work(struct work_struct *work)
4996 {
4997         struct r5worker *worker = container_of(work, struct r5worker, work);
4998         struct r5worker_group *group = worker->group;
4999         struct r5conf *conf = group->conf;
5000         int group_id = group - conf->worker_groups;
5001         int handled;
5002         struct blk_plug plug;
5003
5004         pr_debug("+++ raid5worker active\n");
5005
5006         blk_start_plug(&plug);
5007         handled = 0;
5008         spin_lock_irq(&conf->device_lock);
5009         while (1) {
5010                 int batch_size, released;
5011
5012                 released = release_stripe_list(conf);
5013
5014                 batch_size = handle_active_stripes(conf, group_id, worker);
5015                 worker->working = false;
5016                 if (!batch_size && !released)
5017                         break;
5018                 handled += batch_size;
5019         }
5020         pr_debug("%d stripes handled\n", handled);
5021
5022         spin_unlock_irq(&conf->device_lock);
5023         blk_finish_plug(&plug);
5024
5025         pr_debug("--- raid5worker inactive\n");
5026 }
5027
5028 /*
5029  * This is our raid5 kernel thread.
5030  *
5031  * We scan the hash table for stripes which can be handled now.
5032  * During the scan, completed stripes are saved for us by the interrupt
5033  * handler, so that they will not have to wait for our next wakeup.
5034  */
5035 static void raid5d(struct md_thread *thread)
5036 {
5037         struct mddev *mddev = thread->mddev;
5038         struct r5conf *conf = mddev->private;
5039         int handled;
5040         struct blk_plug plug;
5041
5042         pr_debug("+++ raid5d active\n");
5043
5044         md_check_recovery(mddev);
5045
5046         blk_start_plug(&plug);
5047         handled = 0;
5048         spin_lock_irq(&conf->device_lock);
5049         while (1) {
5050                 struct bio *bio;
5051                 int batch_size, released;
5052
5053                 released = release_stripe_list(conf);
5054
5055                 if (
5056                     !list_empty(&conf->bitmap_list)) {
5057                         /* Now is a good time to flush some bitmap updates */
5058                         conf->seq_flush++;
5059                         spin_unlock_irq(&conf->device_lock);
5060                         bitmap_unplug(mddev->bitmap);
5061                         spin_lock_irq(&conf->device_lock);
5062                         conf->seq_write = conf->seq_flush;
5063                         activate_bit_delay(conf);
5064                 }
5065                 raid5_activate_delayed(conf);
5066
5067                 while ((bio = remove_bio_from_retry(conf))) {
5068                         int ok;
5069                         spin_unlock_irq(&conf->device_lock);
5070                         ok = retry_aligned_read(conf, bio);
5071                         spin_lock_irq(&conf->device_lock);
5072                         if (!ok)
5073                                 break;
5074                         handled++;
5075                 }
5076
5077                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
5078                 if (!batch_size && !released)
5079                         break;
5080                 handled += batch_size;
5081
5082                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5083                         spin_unlock_irq(&conf->device_lock);
5084                         md_check_recovery(mddev);
5085                         spin_lock_irq(&conf->device_lock);
5086                 }
5087         }
5088         pr_debug("%d stripes handled\n", handled);
5089
5090         spin_unlock_irq(&conf->device_lock);
5091
5092         async_tx_issue_pending_all();
5093         blk_finish_plug(&plug);
5094
5095         pr_debug("--- raid5d inactive\n");
5096 }
5097
5098 static ssize_t
5099 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5100 {
5101         struct r5conf *conf = mddev->private;
5102         if (conf)
5103                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5104         else
5105                 return 0;
5106 }
5107
5108 int
5109 raid5_set_cache_size(struct mddev *mddev, int size)
5110 {
5111         struct r5conf *conf = mddev->private;
5112         int err;
5113
5114         if (size <= 16 || size > 32768)
5115                 return -EINVAL;
5116         while (size < conf->max_nr_stripes) {
5117                 if (drop_one_stripe(conf))
5118                         conf->max_nr_stripes--;
5119                 else
5120                         break;
5121         }
5122         err = md_allow_write(mddev);
5123         if (err)
5124                 return err;
5125         while (size > conf->max_nr_stripes) {
5126                 if (grow_one_stripe(conf))
5127                         conf->max_nr_stripes++;
5128                 else break;
5129         }
5130         return 0;
5131 }
5132 EXPORT_SYMBOL(raid5_set_cache_size);
5133
5134 static ssize_t
5135 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5136 {
5137         struct r5conf *conf = mddev->private;
5138         unsigned long new;
5139         int err;
5140
5141         if (len >= PAGE_SIZE)
5142                 return -EINVAL;
5143         if (!conf)
5144                 return -ENODEV;
5145
5146         if (kstrtoul(page, 10, &new))
5147                 return -EINVAL;
5148         err = raid5_set_cache_size(mddev, new);
5149         if (err)
5150                 return err;
5151         return len;
5152 }
5153
5154 static struct md_sysfs_entry
5155 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5156                                 raid5_show_stripe_cache_size,
5157                                 raid5_store_stripe_cache_size);
5158
5159 static ssize_t
5160 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5161 {
5162         struct r5conf *conf = mddev->private;
5163         if (conf)
5164                 return sprintf(page, "%d\n", conf->bypass_threshold);
5165         else
5166                 return 0;
5167 }
5168
5169 static ssize_t
5170 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5171 {
5172         struct r5conf *conf = mddev->private;
5173         unsigned long new;
5174         if (len >= PAGE_SIZE)
5175                 return -EINVAL;
5176         if (!conf)
5177                 return -ENODEV;
5178
5179         if (kstrtoul(page, 10, &new))
5180                 return -EINVAL;
5181         if (new > conf->max_nr_stripes)
5182                 return -EINVAL;
5183         conf->bypass_threshold = new;
5184         return len;
5185 }
5186
5187 static struct md_sysfs_entry
5188 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5189                                         S_IRUGO | S_IWUSR,
5190                                         raid5_show_preread_threshold,
5191                                         raid5_store_preread_threshold);
5192
5193 static ssize_t
5194 stripe_cache_active_show(struct mddev *mddev, char *page)
5195 {
5196         struct r5conf *conf = mddev->private;
5197         if (conf)
5198                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5199         else
5200                 return 0;
5201 }
5202
5203 static struct md_sysfs_entry
5204 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5205
5206 static ssize_t
5207 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5208 {
5209         struct r5conf *conf = mddev->private;
5210         if (conf)
5211                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5212         else
5213                 return 0;
5214 }
5215
5216 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5217 static ssize_t
5218 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5219 {
5220         struct r5conf *conf = mddev->private;
5221         unsigned long new;
5222         int err;
5223         struct r5worker_group *old_groups;
5224         int old_group_cnt;
5225
5226         if (len >= PAGE_SIZE)
5227                 return -EINVAL;
5228         if (!conf)
5229                 return -ENODEV;
5230
5231         if (kstrtoul(page, 10, &new))
5232                 return -EINVAL;
5233
5234         if (new == conf->worker_cnt_per_group)
5235                 return len;
5236
5237         mddev_suspend(mddev);
5238
5239         old_groups = conf->worker_groups;
5240         old_group_cnt = conf->worker_cnt_per_group;
5241
5242         conf->worker_groups = NULL;
5243         err = alloc_thread_groups(conf, new);
5244         if (err) {
5245                 conf->worker_groups = old_groups;
5246                 conf->worker_cnt_per_group = old_group_cnt;
5247         } else {
5248                 if (old_groups)
5249                         kfree(old_groups[0].workers);
5250                 kfree(old_groups);
5251         }
5252
5253         mddev_resume(mddev);
5254
5255         if (err)
5256                 return err;
5257         return len;
5258 }
5259
5260 static struct md_sysfs_entry
5261 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5262                                 raid5_show_group_thread_cnt,
5263                                 raid5_store_group_thread_cnt);
5264
5265 static struct attribute *raid5_attrs[] =  {
5266         &raid5_stripecache_size.attr,
5267         &raid5_stripecache_active.attr,
5268         &raid5_preread_bypass_threshold.attr,
5269         &raid5_group_thread_cnt.attr,
5270         NULL,
5271 };
5272 static struct attribute_group raid5_attrs_group = {
5273         .name = NULL,
5274         .attrs = raid5_attrs,
5275 };
5276
5277 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5278 {
5279         int i, j;
5280         ssize_t size;
5281         struct r5worker *workers;
5282
5283         conf->worker_cnt_per_group = cnt;
5284         if (cnt == 0) {
5285                 conf->worker_groups = NULL;
5286                 return 0;
5287         }
5288         conf->group_cnt = num_possible_nodes();
5289         size = sizeof(struct r5worker) * cnt;
5290         workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5291         conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5292                                 conf->group_cnt, GFP_NOIO);
5293         if (!conf->worker_groups || !workers) {
5294                 kfree(workers);
5295                 kfree(conf->worker_groups);
5296                 conf->worker_groups = NULL;
5297                 return -ENOMEM;
5298         }
5299
5300         for (i = 0; i < conf->group_cnt; i++) {
5301                 struct r5worker_group *group;
5302
5303                 group = &conf->worker_groups[i];
5304                 INIT_LIST_HEAD(&group->handle_list);
5305                 group->conf = conf;
5306                 group->workers = workers + i * cnt;
5307
5308                 for (j = 0; j < cnt; j++) {
5309                         group->workers[j].group = group;
5310                         INIT_WORK(&group->workers[j].work, raid5_do_work);
5311                 }
5312         }
5313
5314         return 0;
5315 }
5316
5317 static void free_thread_groups(struct r5conf *conf)
5318 {
5319         if (conf->worker_groups)
5320                 kfree(conf->worker_groups[0].workers);
5321         kfree(conf->worker_groups);
5322         conf->worker_groups = NULL;
5323 }
5324
5325 static sector_t
5326 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5327 {
5328         struct r5conf *conf = mddev->private;
5329
5330         if (!sectors)
5331                 sectors = mddev->dev_sectors;
5332         if (!raid_disks)
5333                 /* size is defined by the smallest of previous and new size */
5334                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5335
5336         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5337         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5338         return sectors * (raid_disks - conf->max_degraded);
5339 }
5340
5341 static void raid5_free_percpu(struct r5conf *conf)
5342 {
5343         struct raid5_percpu *percpu;
5344         unsigned long cpu;
5345
5346         if (!conf->percpu)
5347                 return;
5348
5349         get_online_cpus();
5350         for_each_possible_cpu(cpu) {
5351                 percpu = per_cpu_ptr(conf->percpu, cpu);
5352                 safe_put_page(percpu->spare_page);
5353                 kfree(percpu->scribble);
5354         }
5355 #ifdef CONFIG_HOTPLUG_CPU
5356         unregister_cpu_notifier(&conf->cpu_notify);
5357 #endif
5358         put_online_cpus();
5359
5360         free_percpu(conf->percpu);
5361 }
5362
5363 static void free_conf(struct r5conf *conf)
5364 {
5365         free_thread_groups(conf);
5366         shrink_stripes(conf);
5367         raid5_free_percpu(conf);
5368         kfree(conf->disks);
5369         kfree(conf->stripe_hashtbl);
5370         kfree(conf);
5371 }
5372
5373 #ifdef CONFIG_HOTPLUG_CPU
5374 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5375                               void *hcpu)
5376 {
5377         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5378         long cpu = (long)hcpu;
5379         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5380
5381         switch (action) {
5382         case CPU_UP_PREPARE:
5383         case CPU_UP_PREPARE_FROZEN:
5384                 if (conf->level == 6 && !percpu->spare_page)
5385                         percpu->spare_page = alloc_page(GFP_KERNEL);
5386                 if (!percpu->scribble)
5387                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5388
5389                 if (!percpu->scribble ||
5390                     (conf->level == 6 && !percpu->spare_page)) {
5391                         safe_put_page(percpu->spare_page);
5392                         kfree(percpu->scribble);
5393                         pr_err("%s: failed memory allocation for cpu%ld\n",
5394                                __func__, cpu);
5395                         return notifier_from_errno(-ENOMEM);
5396                 }
5397                 break;
5398         case CPU_DEAD:
5399         case CPU_DEAD_FROZEN:
5400                 safe_put_page(percpu->spare_page);
5401                 kfree(percpu->scribble);
5402                 percpu->spare_page = NULL;
5403                 percpu->scribble = NULL;
5404                 break;
5405         default:
5406                 break;
5407         }
5408         return NOTIFY_OK;
5409 }
5410 #endif
5411
5412 static int raid5_alloc_percpu(struct r5conf *conf)
5413 {
5414         unsigned long cpu;
5415         struct page *spare_page;
5416         struct raid5_percpu __percpu *allcpus;
5417         void *scribble;
5418         int err;
5419
5420         allcpus = alloc_percpu(struct raid5_percpu);
5421         if (!allcpus)
5422                 return -ENOMEM;
5423         conf->percpu = allcpus;
5424
5425         get_online_cpus();
5426         err = 0;
5427         for_each_present_cpu(cpu) {
5428                 if (conf->level == 6) {
5429                         spare_page = alloc_page(GFP_KERNEL);
5430                         if (!spare_page) {
5431                                 err = -ENOMEM;
5432                                 break;
5433                         }
5434                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5435                 }
5436                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5437                 if (!scribble) {
5438                         err = -ENOMEM;
5439                         break;
5440                 }
5441                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5442         }
5443 #ifdef CONFIG_HOTPLUG_CPU
5444         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5445         conf->cpu_notify.priority = 0;
5446         if (err == 0)
5447                 err = register_cpu_notifier(&conf->cpu_notify);
5448 #endif
5449         put_online_cpus();
5450
5451         return err;
5452 }
5453
5454 static struct r5conf *setup_conf(struct mddev *mddev)
5455 {
5456         struct r5conf *conf;
5457         int raid_disk, memory, max_disks;
5458         struct md_rdev *rdev;
5459         struct disk_info *disk;
5460         char pers_name[6];
5461
5462         if (mddev->new_level != 5
5463             && mddev->new_level != 4
5464             && mddev->new_level != 6) {
5465                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5466                        mdname(mddev), mddev->new_level);
5467                 return ERR_PTR(-EIO);
5468         }
5469         if ((mddev->new_level == 5
5470              && !algorithm_valid_raid5(mddev->new_layout)) ||
5471             (mddev->new_level == 6
5472              && !algorithm_valid_raid6(mddev->new_layout))) {
5473                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5474                        mdname(mddev), mddev->new_layout);
5475                 return ERR_PTR(-EIO);
5476         }
5477         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5478                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5479                        mdname(mddev), mddev->raid_disks);
5480                 return ERR_PTR(-EINVAL);
5481         }
5482
5483         if (!mddev->new_chunk_sectors ||
5484             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5485             !is_power_of_2(mddev->new_chunk_sectors)) {
5486                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5487                        mdname(mddev), mddev->new_chunk_sectors << 9);
5488                 return ERR_PTR(-EINVAL);
5489         }
5490
5491         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5492         if (conf == NULL)
5493                 goto abort;
5494         /* Don't enable multi-threading by default*/
5495         if (alloc_thread_groups(conf, 0))
5496                 goto abort;
5497         spin_lock_init(&conf->device_lock);
5498         seqcount_init(&conf->gen_lock);
5499         init_waitqueue_head(&conf->wait_for_stripe);
5500         init_waitqueue_head(&conf->wait_for_overlap);
5501         INIT_LIST_HEAD(&conf->handle_list);
5502         INIT_LIST_HEAD(&conf->hold_list);
5503         INIT_LIST_HEAD(&conf->delayed_list);
5504         INIT_LIST_HEAD(&conf->bitmap_list);
5505         INIT_LIST_HEAD(&conf->inactive_list);
5506         init_llist_head(&conf->released_stripes);
5507         atomic_set(&conf->active_stripes, 0);
5508         atomic_set(&conf->preread_active_stripes, 0);
5509         atomic_set(&conf->active_aligned_reads, 0);
5510         conf->bypass_threshold = BYPASS_THRESHOLD;
5511         conf->recovery_disabled = mddev->recovery_disabled - 1;
5512
5513         conf->raid_disks = mddev->raid_disks;
5514         if (mddev->reshape_position == MaxSector)
5515                 conf->previous_raid_disks = mddev->raid_disks;
5516         else
5517                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5518         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5519         conf->scribble_len = scribble_len(max_disks);
5520
5521         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5522                               GFP_KERNEL);
5523         if (!conf->disks)
5524                 goto abort;
5525
5526         conf->mddev = mddev;
5527
5528         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5529                 goto abort;
5530
5531         conf->level = mddev->new_level;
5532         if (raid5_alloc_percpu(conf) != 0)
5533                 goto abort;
5534
5535         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5536
5537         rdev_for_each(rdev, mddev) {
5538                 raid_disk = rdev->raid_disk;
5539                 if (raid_disk >= max_disks
5540                     || raid_disk < 0)
5541                         continue;
5542                 disk = conf->disks + raid_disk;
5543
5544                 if (test_bit(Replacement, &rdev->flags)) {
5545                         if (disk->replacement)
5546                                 goto abort;
5547                         disk->replacement = rdev;
5548                 } else {
5549                         if (disk->rdev)
5550                                 goto abort;
5551                         disk->rdev = rdev;
5552                 }
5553
5554                 if (test_bit(In_sync, &rdev->flags)) {
5555                         char b[BDEVNAME_SIZE];
5556                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5557                                " disk %d\n",
5558                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5559                 } else if (rdev->saved_raid_disk != raid_disk)
5560                         /* Cannot rely on bitmap to complete recovery */
5561                         conf->fullsync = 1;
5562         }
5563
5564         conf->chunk_sectors = mddev->new_chunk_sectors;
5565         conf->level = mddev->new_level;
5566         if (conf->level == 6)
5567                 conf->max_degraded = 2;
5568         else
5569                 conf->max_degraded = 1;
5570         conf->algorithm = mddev->new_layout;
5571         conf->max_nr_stripes = NR_STRIPES;
5572         conf->reshape_progress = mddev->reshape_position;
5573         if (conf->reshape_progress != MaxSector) {
5574                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5575                 conf->prev_algo = mddev->layout;
5576         }
5577
5578         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5579                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5580         if (grow_stripes(conf, conf->max_nr_stripes)) {
5581                 printk(KERN_ERR
5582                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5583                        mdname(mddev), memory);
5584                 goto abort;
5585         } else
5586                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5587                        mdname(mddev), memory);
5588
5589         sprintf(pers_name, "raid%d", mddev->new_level);
5590         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5591         if (!conf->thread) {
5592                 printk(KERN_ERR
5593                        "md/raid:%s: couldn't allocate thread.\n",
5594                        mdname(mddev));
5595                 goto abort;
5596         }
5597
5598         return conf;
5599
5600  abort:
5601         if (conf) {
5602                 free_conf(conf);
5603                 return ERR_PTR(-EIO);
5604         } else
5605                 return ERR_PTR(-ENOMEM);
5606 }
5607
5608
5609 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5610 {
5611         switch (algo) {
5612         case ALGORITHM_PARITY_0:
5613                 if (raid_disk < max_degraded)
5614                         return 1;
5615                 break;
5616         case ALGORITHM_PARITY_N:
5617                 if (raid_disk >= raid_disks - max_degraded)
5618                         return 1;
5619                 break;
5620         case ALGORITHM_PARITY_0_6:
5621                 if (raid_disk == 0 || 
5622                     raid_disk == raid_disks - 1)
5623                         return 1;
5624                 break;
5625         case ALGORITHM_LEFT_ASYMMETRIC_6:
5626         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5627         case ALGORITHM_LEFT_SYMMETRIC_6:
5628         case ALGORITHM_RIGHT_SYMMETRIC_6:
5629                 if (raid_disk == raid_disks - 1)
5630                         return 1;
5631         }
5632         return 0;
5633 }
5634
5635 static int run(struct mddev *mddev)
5636 {
5637         struct r5conf *conf;
5638         int working_disks = 0;
5639         int dirty_parity_disks = 0;
5640         struct md_rdev *rdev;
5641         sector_t reshape_offset = 0;
5642         int i;
5643         long long min_offset_diff = 0;
5644         int first = 1;
5645
5646         if (mddev->recovery_cp != MaxSector)
5647                 printk(KERN_NOTICE "md/raid:%s: not clean"
5648                        " -- starting background reconstruction\n",
5649                        mdname(mddev));
5650
5651         rdev_for_each(rdev, mddev) {
5652                 long long diff;
5653                 if (rdev->raid_disk < 0)
5654                         continue;
5655                 diff = (rdev->new_data_offset - rdev->data_offset);
5656                 if (first) {
5657                         min_offset_diff = diff;
5658                         first = 0;
5659                 } else if (mddev->reshape_backwards &&
5660                          diff < min_offset_diff)
5661                         min_offset_diff = diff;
5662                 else if (!mddev->reshape_backwards &&
5663                          diff > min_offset_diff)
5664                         min_offset_diff = diff;
5665         }
5666
5667         if (mddev->reshape_position != MaxSector) {
5668                 /* Check that we can continue the reshape.
5669                  * Difficulties arise if the stripe we would write to
5670                  * next is at or after the stripe we would read from next.
5671                  * For a reshape that changes the number of devices, this
5672                  * is only possible for a very short time, and mdadm makes
5673                  * sure that time appears to have past before assembling
5674                  * the array.  So we fail if that time hasn't passed.
5675                  * For a reshape that keeps the number of devices the same
5676                  * mdadm must be monitoring the reshape can keeping the
5677                  * critical areas read-only and backed up.  It will start
5678                  * the array in read-only mode, so we check for that.
5679                  */
5680                 sector_t here_new, here_old;
5681                 int old_disks;
5682                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5683
5684                 if (mddev->new_level != mddev->level) {
5685                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5686                                "required - aborting.\n",
5687                                mdname(mddev));
5688                         return -EINVAL;
5689                 }
5690                 old_disks = mddev->raid_disks - mddev->delta_disks;
5691                 /* reshape_position must be on a new-stripe boundary, and one
5692                  * further up in new geometry must map after here in old
5693                  * geometry.
5694                  */
5695                 here_new = mddev->reshape_position;
5696                 if (sector_div(here_new, mddev->new_chunk_sectors *
5697                                (mddev->raid_disks - max_degraded))) {
5698                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5699                                "on a stripe boundary\n", mdname(mddev));
5700                         return -EINVAL;
5701                 }
5702                 reshape_offset = here_new * mddev->new_chunk_sectors;
5703                 /* here_new is the stripe we will write to */
5704                 here_old = mddev->reshape_position;
5705                 sector_div(here_old, mddev->chunk_sectors *
5706                            (old_disks-max_degraded));
5707                 /* here_old is the first stripe that we might need to read
5708                  * from */
5709                 if (mddev->delta_disks == 0) {
5710                         if ((here_new * mddev->new_chunk_sectors !=
5711                              here_old * mddev->chunk_sectors)) {
5712                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5713                                        " confused - aborting\n", mdname(mddev));
5714                                 return -EINVAL;
5715                         }
5716                         /* We cannot be sure it is safe to start an in-place
5717                          * reshape.  It is only safe if user-space is monitoring
5718                          * and taking constant backups.
5719                          * mdadm always starts a situation like this in
5720                          * readonly mode so it can take control before
5721                          * allowing any writes.  So just check for that.
5722                          */
5723                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5724                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5725                                 /* not really in-place - so OK */;
5726                         else if (mddev->ro == 0) {
5727                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5728                                        "must be started in read-only mode "
5729                                        "- aborting\n",
5730                                        mdname(mddev));
5731                                 return -EINVAL;
5732                         }
5733                 } else if (mddev->reshape_backwards
5734                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5735                        here_old * mddev->chunk_sectors)
5736                     : (here_new * mddev->new_chunk_sectors >=
5737                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5738                         /* Reading from the same stripe as writing to - bad */
5739                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5740                                "auto-recovery - aborting.\n",
5741                                mdname(mddev));
5742                         return -EINVAL;
5743                 }
5744                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5745                        mdname(mddev));
5746                 /* OK, we should be able to continue; */
5747         } else {
5748                 BUG_ON(mddev->level != mddev->new_level);
5749                 BUG_ON(mddev->layout != mddev->new_layout);
5750                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5751                 BUG_ON(mddev->delta_disks != 0);
5752         }
5753
5754         if (mddev->private == NULL)
5755                 conf = setup_conf(mddev);
5756         else
5757                 conf = mddev->private;
5758
5759         if (IS_ERR(conf))
5760                 return PTR_ERR(conf);
5761
5762         conf->min_offset_diff = min_offset_diff;
5763         mddev->thread = conf->thread;
5764         conf->thread = NULL;
5765         mddev->private = conf;
5766
5767         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5768              i++) {
5769                 rdev = conf->disks[i].rdev;
5770                 if (!rdev && conf->disks[i].replacement) {
5771                         /* The replacement is all we have yet */
5772                         rdev = conf->disks[i].replacement;
5773                         conf->disks[i].replacement = NULL;
5774                         clear_bit(Replacement, &rdev->flags);
5775                         conf->disks[i].rdev = rdev;
5776                 }
5777                 if (!rdev)
5778                         continue;
5779                 if (conf->disks[i].replacement &&
5780                     conf->reshape_progress != MaxSector) {
5781                         /* replacements and reshape simply do not mix. */
5782                         printk(KERN_ERR "md: cannot handle concurrent "
5783                                "replacement and reshape.\n");
5784                         goto abort;
5785                 }
5786                 if (test_bit(In_sync, &rdev->flags)) {
5787                         working_disks++;
5788                         continue;
5789                 }
5790                 /* This disc is not fully in-sync.  However if it
5791                  * just stored parity (beyond the recovery_offset),
5792                  * when we don't need to be concerned about the
5793                  * array being dirty.
5794                  * When reshape goes 'backwards', we never have
5795                  * partially completed devices, so we only need
5796                  * to worry about reshape going forwards.
5797                  */
5798                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5799                 if (mddev->major_version == 0 &&
5800                     mddev->minor_version > 90)
5801                         rdev->recovery_offset = reshape_offset;
5802
5803                 if (rdev->recovery_offset < reshape_offset) {
5804                         /* We need to check old and new layout */
5805                         if (!only_parity(rdev->raid_disk,
5806                                          conf->algorithm,
5807                                          conf->raid_disks,
5808                                          conf->max_degraded))
5809                                 continue;
5810                 }
5811                 if (!only_parity(rdev->raid_disk,
5812                                  conf->prev_algo,
5813                                  conf->previous_raid_disks,
5814                                  conf->max_degraded))
5815                         continue;
5816                 dirty_parity_disks++;
5817         }
5818
5819         /*
5820          * 0 for a fully functional array, 1 or 2 for a degraded array.
5821          */
5822         mddev->degraded = calc_degraded(conf);
5823
5824         if (has_failed(conf)) {
5825                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5826                         " (%d/%d failed)\n",
5827                         mdname(mddev), mddev->degraded, conf->raid_disks);
5828                 goto abort;
5829         }
5830
5831         /* device size must be a multiple of chunk size */
5832         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5833         mddev->resync_max_sectors = mddev->dev_sectors;
5834
5835         if (mddev->degraded > dirty_parity_disks &&
5836             mddev->recovery_cp != MaxSector) {
5837                 if (mddev->ok_start_degraded)
5838                         printk(KERN_WARNING
5839                                "md/raid:%s: starting dirty degraded array"
5840                                " - data corruption possible.\n",
5841                                mdname(mddev));
5842                 else {
5843                         printk(KERN_ERR
5844                                "md/raid:%s: cannot start dirty degraded array.\n",
5845                                mdname(mddev));
5846                         goto abort;
5847                 }
5848         }
5849
5850         if (mddev->degraded == 0)
5851                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5852                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5853                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5854                        mddev->new_layout);
5855         else
5856                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5857                        " out of %d devices, algorithm %d\n",
5858                        mdname(mddev), conf->level,
5859                        mddev->raid_disks - mddev->degraded,
5860                        mddev->raid_disks, mddev->new_layout);
5861
5862         print_raid5_conf(conf);
5863
5864         if (conf->reshape_progress != MaxSector) {
5865                 conf->reshape_safe = conf->reshape_progress;
5866                 atomic_set(&conf->reshape_stripes, 0);
5867                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5868                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5869                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5870                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5871                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5872                                                         "reshape");
5873         }
5874
5875
5876         /* Ok, everything is just fine now */
5877         if (mddev->to_remove == &raid5_attrs_group)
5878                 mddev->to_remove = NULL;
5879         else if (mddev->kobj.sd &&
5880             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5881                 printk(KERN_WARNING
5882                        "raid5: failed to create sysfs attributes for %s\n",
5883                        mdname(mddev));
5884         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5885
5886         if (mddev->queue) {
5887                 int chunk_size;
5888                 bool discard_supported = true;
5889                 /* read-ahead size must cover two whole stripes, which
5890                  * is 2 * (datadisks) * chunksize where 'n' is the
5891                  * number of raid devices
5892                  */
5893                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5894                 int stripe = data_disks *
5895                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5896                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5897                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5898
5899                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5900
5901                 mddev->queue->backing_dev_info.congested_data = mddev;
5902                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5903
5904                 chunk_size = mddev->chunk_sectors << 9;
5905                 blk_queue_io_min(mddev->queue, chunk_size);
5906                 blk_queue_io_opt(mddev->queue, chunk_size *
5907                                  (conf->raid_disks - conf->max_degraded));
5908                 /*
5909                  * We can only discard a whole stripe. It doesn't make sense to
5910                  * discard data disk but write parity disk
5911                  */
5912                 stripe = stripe * PAGE_SIZE;
5913                 /* Round up to power of 2, as discard handling
5914                  * currently assumes that */
5915                 while ((stripe-1) & stripe)
5916                         stripe = (stripe | (stripe-1)) + 1;
5917                 mddev->queue->limits.discard_alignment = stripe;
5918                 mddev->queue->limits.discard_granularity = stripe;
5919                 /*
5920                  * unaligned part of discard request will be ignored, so can't
5921                  * guarantee discard_zerors_data
5922                  */
5923                 mddev->queue->limits.discard_zeroes_data = 0;
5924
5925                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5926
5927                 rdev_for_each(rdev, mddev) {
5928                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5929                                           rdev->data_offset << 9);
5930                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5931                                           rdev->new_data_offset << 9);
5932                         /*
5933                          * discard_zeroes_data is required, otherwise data
5934                          * could be lost. Consider a scenario: discard a stripe
5935                          * (the stripe could be inconsistent if
5936                          * discard_zeroes_data is 0); write one disk of the
5937                          * stripe (the stripe could be inconsistent again
5938                          * depending on which disks are used to calculate
5939                          * parity); the disk is broken; The stripe data of this
5940                          * disk is lost.
5941                          */
5942                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5943                             !bdev_get_queue(rdev->bdev)->
5944                                                 limits.discard_zeroes_data)
5945                                 discard_supported = false;
5946                 }
5947
5948                 if (discard_supported &&
5949                    mddev->queue->limits.max_discard_sectors >= stripe &&
5950                    mddev->queue->limits.discard_granularity >= stripe)
5951                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5952                                                 mddev->queue);
5953                 else
5954                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5955                                                 mddev->queue);
5956         }
5957
5958         return 0;
5959 abort:
5960         md_unregister_thread(&mddev->thread);
5961         print_raid5_conf(conf);
5962         free_conf(conf);
5963         mddev->private = NULL;
5964         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5965         return -EIO;
5966 }
5967
5968 static int stop(struct mddev *mddev)
5969 {
5970         struct r5conf *conf = mddev->private;
5971
5972         md_unregister_thread(&mddev->thread);
5973         if (mddev->queue)
5974                 mddev->queue->backing_dev_info.congested_fn = NULL;
5975         free_conf(conf);
5976         mddev->private = NULL;
5977         mddev->to_remove = &raid5_attrs_group;
5978         return 0;
5979 }
5980
5981 static void status(struct seq_file *seq, struct mddev *mddev)
5982 {
5983         struct r5conf *conf = mddev->private;
5984         int i;
5985
5986         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5987                 mddev->chunk_sectors / 2, mddev->layout);
5988         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5989         for (i = 0; i < conf->raid_disks; i++)
5990                 seq_printf (seq, "%s",
5991                                conf->disks[i].rdev &&
5992                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5993         seq_printf (seq, "]");
5994 }
5995
5996 static void print_raid5_conf (struct r5conf *conf)
5997 {
5998         int i;
5999         struct disk_info *tmp;
6000
6001         printk(KERN_DEBUG "RAID conf printout:\n");
6002         if (!conf) {
6003                 printk("(conf==NULL)\n");
6004                 return;
6005         }
6006         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6007                conf->raid_disks,
6008                conf->raid_disks - conf->mddev->degraded);
6009
6010         for (i = 0; i < conf->raid_disks; i++) {
6011                 char b[BDEVNAME_SIZE];
6012                 tmp = conf->disks + i;
6013                 if (tmp->rdev)
6014                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6015                                i, !test_bit(Faulty, &tmp->rdev->flags),
6016                                bdevname(tmp->rdev->bdev, b));
6017         }
6018 }
6019
6020 static int raid5_spare_active(struct mddev *mddev)
6021 {
6022         int i;
6023         struct r5conf *conf = mddev->private;
6024         struct disk_info *tmp;
6025         int count = 0;
6026         unsigned long flags;
6027
6028         for (i = 0; i < conf->raid_disks; i++) {
6029                 tmp = conf->disks + i;
6030                 if (tmp->replacement
6031                     && tmp->replacement->recovery_offset == MaxSector
6032                     && !test_bit(Faulty, &tmp->replacement->flags)
6033                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6034                         /* Replacement has just become active. */
6035                         if (!tmp->rdev
6036                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6037                                 count++;
6038                         if (tmp->rdev) {
6039                                 /* Replaced device not technically faulty,
6040                                  * but we need to be sure it gets removed
6041                                  * and never re-added.
6042                                  */
6043                                 set_bit(Faulty, &tmp->rdev->flags);
6044                                 sysfs_notify_dirent_safe(
6045                                         tmp->rdev->sysfs_state);
6046                         }
6047                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6048                 } else if (tmp->rdev
6049                     && tmp->rdev->recovery_offset == MaxSector
6050                     && !test_bit(Faulty, &tmp->rdev->flags)
6051                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6052                         count++;
6053                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6054                 }
6055         }
6056         spin_lock_irqsave(&conf->device_lock, flags);
6057         mddev->degraded = calc_degraded(conf);
6058         spin_unlock_irqrestore(&conf->device_lock, flags);
6059         print_raid5_conf(conf);
6060         return count;
6061 }
6062
6063 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6064 {
6065         struct r5conf *conf = mddev->private;
6066         int err = 0;
6067         int number = rdev->raid_disk;
6068         struct md_rdev **rdevp;
6069         struct disk_info *p = conf->disks + number;
6070
6071         print_raid5_conf(conf);
6072         if (rdev == p->rdev)
6073                 rdevp = &p->rdev;
6074         else if (rdev == p->replacement)
6075                 rdevp = &p->replacement;
6076         else
6077                 return 0;
6078
6079         if (number >= conf->raid_disks &&
6080             conf->reshape_progress == MaxSector)
6081                 clear_bit(In_sync, &rdev->flags);
6082
6083         if (test_bit(In_sync, &rdev->flags) ||
6084             atomic_read(&rdev->nr_pending)) {
6085                 err = -EBUSY;
6086                 goto abort;
6087         }
6088         /* Only remove non-faulty devices if recovery
6089          * isn't possible.
6090          */
6091         if (!test_bit(Faulty, &rdev->flags) &&
6092             mddev->recovery_disabled != conf->recovery_disabled &&
6093             !has_failed(conf) &&
6094             (!p->replacement || p->replacement == rdev) &&
6095             number < conf->raid_disks) {
6096                 err = -EBUSY;
6097                 goto abort;
6098         }
6099         *rdevp = NULL;
6100         synchronize_rcu();
6101         if (atomic_read(&rdev->nr_pending)) {
6102                 /* lost the race, try later */
6103                 err = -EBUSY;
6104                 *rdevp = rdev;
6105         } else if (p->replacement) {
6106                 /* We must have just cleared 'rdev' */
6107                 p->rdev = p->replacement;
6108                 clear_bit(Replacement, &p->replacement->flags);
6109                 smp_mb(); /* Make sure other CPUs may see both as identical
6110                            * but will never see neither - if they are careful
6111                            */
6112                 p->replacement = NULL;
6113                 clear_bit(WantReplacement, &rdev->flags);
6114         } else
6115                 /* We might have just removed the Replacement as faulty-
6116                  * clear the bit just in case
6117                  */
6118                 clear_bit(WantReplacement, &rdev->flags);
6119 abort:
6120
6121         print_raid5_conf(conf);
6122         return err;
6123 }
6124
6125 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6126 {
6127         struct r5conf *conf = mddev->private;
6128         int err = -EEXIST;
6129         int disk;
6130         struct disk_info *p;
6131         int first = 0;
6132         int last = conf->raid_disks - 1;
6133
6134         if (mddev->recovery_disabled == conf->recovery_disabled)
6135                 return -EBUSY;
6136
6137         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6138                 /* no point adding a device */
6139                 return -EINVAL;
6140
6141         if (rdev->raid_disk >= 0)
6142                 first = last = rdev->raid_disk;
6143
6144         /*
6145          * find the disk ... but prefer rdev->saved_raid_disk
6146          * if possible.
6147          */
6148         if (rdev->saved_raid_disk >= 0 &&
6149             rdev->saved_raid_disk >= first &&
6150             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6151                 first = rdev->saved_raid_disk;
6152
6153         for (disk = first; disk <= last; disk++) {
6154                 p = conf->disks + disk;
6155                 if (p->rdev == NULL) {
6156                         clear_bit(In_sync, &rdev->flags);
6157                         rdev->raid_disk = disk;
6158                         err = 0;
6159                         if (rdev->saved_raid_disk != disk)
6160                                 conf->fullsync = 1;
6161                         rcu_assign_pointer(p->rdev, rdev);
6162                         goto out;
6163                 }
6164         }
6165         for (disk = first; disk <= last; disk++) {
6166                 p = conf->disks + disk;
6167                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6168                     p->replacement == NULL) {
6169                         clear_bit(In_sync, &rdev->flags);
6170                         set_bit(Replacement, &rdev->flags);
6171                         rdev->raid_disk = disk;
6172                         err = 0;
6173                         conf->fullsync = 1;
6174                         rcu_assign_pointer(p->replacement, rdev);
6175                         break;
6176                 }
6177         }
6178 out:
6179         print_raid5_conf(conf);
6180         return err;
6181 }
6182
6183 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6184 {
6185         /* no resync is happening, and there is enough space
6186          * on all devices, so we can resize.
6187          * We need to make sure resync covers any new space.
6188          * If the array is shrinking we should possibly wait until
6189          * any io in the removed space completes, but it hardly seems
6190          * worth it.
6191          */
6192         sector_t newsize;
6193         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6194         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6195         if (mddev->external_size &&
6196             mddev->array_sectors > newsize)
6197                 return -EINVAL;
6198         if (mddev->bitmap) {
6199                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6200                 if (ret)
6201                         return ret;
6202         }
6203         md_set_array_sectors(mddev, newsize);
6204         set_capacity(mddev->gendisk, mddev->array_sectors);
6205         revalidate_disk(mddev->gendisk);
6206         if (sectors > mddev->dev_sectors &&
6207             mddev->recovery_cp > mddev->dev_sectors) {
6208                 mddev->recovery_cp = mddev->dev_sectors;
6209                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6210         }
6211         mddev->dev_sectors = sectors;
6212         mddev->resync_max_sectors = sectors;
6213         return 0;
6214 }
6215
6216 static int check_stripe_cache(struct mddev *mddev)
6217 {
6218         /* Can only proceed if there are plenty of stripe_heads.
6219          * We need a minimum of one full stripe,, and for sensible progress
6220          * it is best to have about 4 times that.
6221          * If we require 4 times, then the default 256 4K stripe_heads will
6222          * allow for chunk sizes up to 256K, which is probably OK.
6223          * If the chunk size is greater, user-space should request more
6224          * stripe_heads first.
6225          */
6226         struct r5conf *conf = mddev->private;
6227         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6228             > conf->max_nr_stripes ||
6229             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6230             > conf->max_nr_stripes) {
6231                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6232                        mdname(mddev),
6233                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6234                         / STRIPE_SIZE)*4);
6235                 return 0;
6236         }
6237         return 1;
6238 }
6239
6240 static int check_reshape(struct mddev *mddev)
6241 {
6242         struct r5conf *conf = mddev->private;
6243
6244         if (mddev->delta_disks == 0 &&
6245             mddev->new_layout == mddev->layout &&
6246             mddev->new_chunk_sectors == mddev->chunk_sectors)
6247                 return 0; /* nothing to do */
6248         if (has_failed(conf))
6249                 return -EINVAL;
6250         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6251                 /* We might be able to shrink, but the devices must
6252                  * be made bigger first.
6253                  * For raid6, 4 is the minimum size.
6254                  * Otherwise 2 is the minimum
6255                  */
6256                 int min = 2;
6257                 if (mddev->level == 6)
6258                         min = 4;
6259                 if (mddev->raid_disks + mddev->delta_disks < min)
6260                         return -EINVAL;
6261         }
6262
6263         if (!check_stripe_cache(mddev))
6264                 return -ENOSPC;
6265
6266         return resize_stripes(conf, (conf->previous_raid_disks
6267                                      + mddev->delta_disks));
6268 }
6269
6270 static int raid5_start_reshape(struct mddev *mddev)
6271 {
6272         struct r5conf *conf = mddev->private;
6273         struct md_rdev *rdev;
6274         int spares = 0;
6275         unsigned long flags;
6276
6277         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6278                 return -EBUSY;
6279
6280         if (!check_stripe_cache(mddev))
6281                 return -ENOSPC;
6282
6283         if (has_failed(conf))
6284                 return -EINVAL;
6285
6286         rdev_for_each(rdev, mddev) {
6287                 if (!test_bit(In_sync, &rdev->flags)
6288                     && !test_bit(Faulty, &rdev->flags))
6289                         spares++;
6290         }
6291
6292         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6293                 /* Not enough devices even to make a degraded array
6294                  * of that size
6295                  */
6296                 return -EINVAL;
6297
6298         /* Refuse to reduce size of the array.  Any reductions in
6299          * array size must be through explicit setting of array_size
6300          * attribute.
6301          */
6302         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6303             < mddev->array_sectors) {
6304                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6305                        "before number of disks\n", mdname(mddev));
6306                 return -EINVAL;
6307         }
6308
6309         atomic_set(&conf->reshape_stripes, 0);
6310         spin_lock_irq(&conf->device_lock);
6311         write_seqcount_begin(&conf->gen_lock);
6312         conf->previous_raid_disks = conf->raid_disks;
6313         conf->raid_disks += mddev->delta_disks;
6314         conf->prev_chunk_sectors = conf->chunk_sectors;
6315         conf->chunk_sectors = mddev->new_chunk_sectors;
6316         conf->prev_algo = conf->algorithm;
6317         conf->algorithm = mddev->new_layout;
6318         conf->generation++;
6319         /* Code that selects data_offset needs to see the generation update
6320          * if reshape_progress has been set - so a memory barrier needed.
6321          */
6322         smp_mb();
6323         if (mddev->reshape_backwards)
6324                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6325         else
6326                 conf->reshape_progress = 0;
6327         conf->reshape_safe = conf->reshape_progress;
6328         write_seqcount_end(&conf->gen_lock);
6329         spin_unlock_irq(&conf->device_lock);
6330
6331         /* Now make sure any requests that proceeded on the assumption
6332          * the reshape wasn't running - like Discard or Read - have
6333          * completed.
6334          */
6335         mddev_suspend(mddev);
6336         mddev_resume(mddev);
6337
6338         /* Add some new drives, as many as will fit.
6339          * We know there are enough to make the newly sized array work.
6340          * Don't add devices if we are reducing the number of
6341          * devices in the array.  This is because it is not possible
6342          * to correctly record the "partially reconstructed" state of
6343          * such devices during the reshape and confusion could result.
6344          */
6345         if (mddev->delta_disks >= 0) {
6346                 rdev_for_each(rdev, mddev)
6347                         if (rdev->raid_disk < 0 &&
6348                             !test_bit(Faulty, &rdev->flags)) {
6349                                 if (raid5_add_disk(mddev, rdev) == 0) {
6350                                         if (rdev->raid_disk
6351                                             >= conf->previous_raid_disks)
6352                                                 set_bit(In_sync, &rdev->flags);
6353                                         else
6354                                                 rdev->recovery_offset = 0;
6355
6356                                         if (sysfs_link_rdev(mddev, rdev))
6357                                                 /* Failure here is OK */;
6358                                 }
6359                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6360                                    && !test_bit(Faulty, &rdev->flags)) {
6361                                 /* This is a spare that was manually added */
6362                                 set_bit(In_sync, &rdev->flags);
6363                         }
6364
6365                 /* When a reshape changes the number of devices,
6366                  * ->degraded is measured against the larger of the
6367                  * pre and post number of devices.
6368                  */
6369                 spin_lock_irqsave(&conf->device_lock, flags);
6370                 mddev->degraded = calc_degraded(conf);
6371                 spin_unlock_irqrestore(&conf->device_lock, flags);
6372         }
6373         mddev->raid_disks = conf->raid_disks;
6374         mddev->reshape_position = conf->reshape_progress;
6375         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6376
6377         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6378         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6379         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6380         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6381         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6382                                                 "reshape");
6383         if (!mddev->sync_thread) {
6384                 mddev->recovery = 0;
6385                 spin_lock_irq(&conf->device_lock);
6386                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6387                 rdev_for_each(rdev, mddev)
6388                         rdev->new_data_offset = rdev->data_offset;
6389                 smp_wmb();
6390                 conf->reshape_progress = MaxSector;
6391                 mddev->reshape_position = MaxSector;
6392                 spin_unlock_irq(&conf->device_lock);
6393                 return -EAGAIN;
6394         }
6395         conf->reshape_checkpoint = jiffies;
6396         md_wakeup_thread(mddev->sync_thread);
6397         md_new_event(mddev);
6398         return 0;
6399 }
6400
6401 /* This is called from the reshape thread and should make any
6402  * changes needed in 'conf'
6403  */
6404 static void end_reshape(struct r5conf *conf)
6405 {
6406
6407         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6408                 struct md_rdev *rdev;
6409
6410                 spin_lock_irq(&conf->device_lock);
6411                 conf->previous_raid_disks = conf->raid_disks;
6412                 rdev_for_each(rdev, conf->mddev)
6413                         rdev->data_offset = rdev->new_data_offset;
6414                 smp_wmb();
6415                 conf->reshape_progress = MaxSector;
6416                 spin_unlock_irq(&conf->device_lock);
6417                 wake_up(&conf->wait_for_overlap);
6418
6419                 /* read-ahead size must cover two whole stripes, which is
6420                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6421                  */
6422                 if (conf->mddev->queue) {
6423                         int data_disks = conf->raid_disks - conf->max_degraded;
6424                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6425                                                    / PAGE_SIZE);
6426                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6427                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6428                 }
6429         }
6430 }
6431
6432 /* This is called from the raid5d thread with mddev_lock held.
6433  * It makes config changes to the device.
6434  */
6435 static void raid5_finish_reshape(struct mddev *mddev)
6436 {
6437         struct r5conf *conf = mddev->private;
6438
6439         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6440
6441                 if (mddev->delta_disks > 0) {
6442                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6443                         set_capacity(mddev->gendisk, mddev->array_sectors);
6444                         revalidate_disk(mddev->gendisk);
6445                 } else {
6446                         int d;
6447                         spin_lock_irq(&conf->device_lock);
6448                         mddev->degraded = calc_degraded(conf);
6449                         spin_unlock_irq(&conf->device_lock);
6450                         for (d = conf->raid_disks ;
6451                              d < conf->raid_disks - mddev->delta_disks;
6452                              d++) {
6453                                 struct md_rdev *rdev = conf->disks[d].rdev;
6454                                 if (rdev)
6455                                         clear_bit(In_sync, &rdev->flags);
6456                                 rdev = conf->disks[d].replacement;
6457                                 if (rdev)
6458                                         clear_bit(In_sync, &rdev->flags);
6459                         }
6460                 }
6461                 mddev->layout = conf->algorithm;
6462                 mddev->chunk_sectors = conf->chunk_sectors;
6463                 mddev->reshape_position = MaxSector;
6464                 mddev->delta_disks = 0;
6465                 mddev->reshape_backwards = 0;
6466         }
6467 }
6468
6469 static void raid5_quiesce(struct mddev *mddev, int state)
6470 {
6471         struct r5conf *conf = mddev->private;
6472
6473         switch(state) {
6474         case 2: /* resume for a suspend */
6475                 wake_up(&conf->wait_for_overlap);
6476                 break;
6477
6478         case 1: /* stop all writes */
6479                 spin_lock_irq(&conf->device_lock);
6480                 /* '2' tells resync/reshape to pause so that all
6481                  * active stripes can drain
6482                  */
6483                 conf->quiesce = 2;
6484                 wait_event_lock_irq(conf->wait_for_stripe,
6485                                     atomic_read(&conf->active_stripes) == 0 &&
6486                                     atomic_read(&conf->active_aligned_reads) == 0,
6487                                     conf->device_lock);
6488                 conf->quiesce = 1;
6489                 spin_unlock_irq(&conf->device_lock);
6490                 /* allow reshape to continue */
6491                 wake_up(&conf->wait_for_overlap);
6492                 break;
6493
6494         case 0: /* re-enable writes */
6495                 spin_lock_irq(&conf->device_lock);
6496                 conf->quiesce = 0;
6497                 wake_up(&conf->wait_for_stripe);
6498                 wake_up(&conf->wait_for_overlap);
6499                 spin_unlock_irq(&conf->device_lock);
6500                 break;
6501         }
6502 }
6503
6504
6505 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6506 {
6507         struct r0conf *raid0_conf = mddev->private;
6508         sector_t sectors;
6509
6510         /* for raid0 takeover only one zone is supported */
6511         if (raid0_conf->nr_strip_zones > 1) {
6512                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6513                        mdname(mddev));
6514                 return ERR_PTR(-EINVAL);
6515         }
6516
6517         sectors = raid0_conf->strip_zone[0].zone_end;
6518         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6519         mddev->dev_sectors = sectors;
6520         mddev->new_level = level;
6521         mddev->new_layout = ALGORITHM_PARITY_N;
6522         mddev->new_chunk_sectors = mddev->chunk_sectors;
6523         mddev->raid_disks += 1;
6524         mddev->delta_disks = 1;
6525         /* make sure it will be not marked as dirty */
6526         mddev->recovery_cp = MaxSector;
6527
6528         return setup_conf(mddev);
6529 }
6530
6531
6532 static void *raid5_takeover_raid1(struct mddev *mddev)
6533 {
6534         int chunksect;
6535
6536         if (mddev->raid_disks != 2 ||
6537             mddev->degraded > 1)
6538                 return ERR_PTR(-EINVAL);
6539
6540         /* Should check if there are write-behind devices? */
6541
6542         chunksect = 64*2; /* 64K by default */
6543
6544         /* The array must be an exact multiple of chunksize */
6545         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6546                 chunksect >>= 1;
6547
6548         if ((chunksect<<9) < STRIPE_SIZE)
6549                 /* array size does not allow a suitable chunk size */
6550                 return ERR_PTR(-EINVAL);
6551
6552         mddev->new_level = 5;
6553         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6554         mddev->new_chunk_sectors = chunksect;
6555
6556         return setup_conf(mddev);
6557 }
6558
6559 static void *raid5_takeover_raid6(struct mddev *mddev)
6560 {
6561         int new_layout;
6562
6563         switch (mddev->layout) {
6564         case ALGORITHM_LEFT_ASYMMETRIC_6:
6565                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6566                 break;
6567         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6568                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6569                 break;
6570         case ALGORITHM_LEFT_SYMMETRIC_6:
6571                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6572                 break;
6573         case ALGORITHM_RIGHT_SYMMETRIC_6:
6574                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6575                 break;
6576         case ALGORITHM_PARITY_0_6:
6577                 new_layout = ALGORITHM_PARITY_0;
6578                 break;
6579         case ALGORITHM_PARITY_N:
6580                 new_layout = ALGORITHM_PARITY_N;
6581                 break;
6582         default:
6583                 return ERR_PTR(-EINVAL);
6584         }
6585         mddev->new_level = 5;
6586         mddev->new_layout = new_layout;
6587         mddev->delta_disks = -1;
6588         mddev->raid_disks -= 1;
6589         return setup_conf(mddev);
6590 }
6591
6592
6593 static int raid5_check_reshape(struct mddev *mddev)
6594 {
6595         /* For a 2-drive array, the layout and chunk size can be changed
6596          * immediately as not restriping is needed.
6597          * For larger arrays we record the new value - after validation
6598          * to be used by a reshape pass.
6599          */
6600         struct r5conf *conf = mddev->private;
6601         int new_chunk = mddev->new_chunk_sectors;
6602
6603         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6604                 return -EINVAL;
6605         if (new_chunk > 0) {
6606                 if (!is_power_of_2(new_chunk))
6607                         return -EINVAL;
6608                 if (new_chunk < (PAGE_SIZE>>9))
6609                         return -EINVAL;
6610                 if (mddev->array_sectors & (new_chunk-1))
6611                         /* not factor of array size */
6612                         return -EINVAL;
6613         }
6614
6615         /* They look valid */
6616
6617         if (mddev->raid_disks == 2) {
6618                 /* can make the change immediately */
6619                 if (mddev->new_layout >= 0) {
6620                         conf->algorithm = mddev->new_layout;
6621                         mddev->layout = mddev->new_layout;
6622                 }
6623                 if (new_chunk > 0) {
6624                         conf->chunk_sectors = new_chunk ;
6625                         mddev->chunk_sectors = new_chunk;
6626                 }
6627                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6628                 md_wakeup_thread(mddev->thread);
6629         }
6630         return check_reshape(mddev);
6631 }
6632
6633 static int raid6_check_reshape(struct mddev *mddev)
6634 {
6635         int new_chunk = mddev->new_chunk_sectors;
6636
6637         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6638                 return -EINVAL;
6639         if (new_chunk > 0) {
6640                 if (!is_power_of_2(new_chunk))
6641                         return -EINVAL;
6642                 if (new_chunk < (PAGE_SIZE >> 9))
6643                         return -EINVAL;
6644                 if (mddev->array_sectors & (new_chunk-1))
6645                         /* not factor of array size */
6646                         return -EINVAL;
6647         }
6648
6649         /* They look valid */
6650         return check_reshape(mddev);
6651 }
6652
6653 static void *raid5_takeover(struct mddev *mddev)
6654 {
6655         /* raid5 can take over:
6656          *  raid0 - if there is only one strip zone - make it a raid4 layout
6657          *  raid1 - if there are two drives.  We need to know the chunk size
6658          *  raid4 - trivial - just use a raid4 layout.
6659          *  raid6 - Providing it is a *_6 layout
6660          */
6661         if (mddev->level == 0)
6662                 return raid45_takeover_raid0(mddev, 5);
6663         if (mddev->level == 1)
6664                 return raid5_takeover_raid1(mddev);
6665         if (mddev->level == 4) {
6666                 mddev->new_layout = ALGORITHM_PARITY_N;
6667                 mddev->new_level = 5;
6668                 return setup_conf(mddev);
6669         }
6670         if (mddev->level == 6)
6671                 return raid5_takeover_raid6(mddev);
6672
6673         return ERR_PTR(-EINVAL);
6674 }
6675
6676 static void *raid4_takeover(struct mddev *mddev)
6677 {
6678         /* raid4 can take over:
6679          *  raid0 - if there is only one strip zone
6680          *  raid5 - if layout is right
6681          */
6682         if (mddev->level == 0)
6683                 return raid45_takeover_raid0(mddev, 4);
6684         if (mddev->level == 5 &&
6685             mddev->layout == ALGORITHM_PARITY_N) {
6686                 mddev->new_layout = 0;
6687                 mddev->new_level = 4;
6688                 return setup_conf(mddev);
6689         }
6690         return ERR_PTR(-EINVAL);
6691 }
6692
6693 static struct md_personality raid5_personality;
6694
6695 static void *raid6_takeover(struct mddev *mddev)
6696 {
6697         /* Currently can only take over a raid5.  We map the
6698          * personality to an equivalent raid6 personality
6699          * with the Q block at the end.
6700          */
6701         int new_layout;
6702
6703         if (mddev->pers != &raid5_personality)
6704                 return ERR_PTR(-EINVAL);
6705         if (mddev->degraded > 1)
6706                 return ERR_PTR(-EINVAL);
6707         if (mddev->raid_disks > 253)
6708                 return ERR_PTR(-EINVAL);
6709         if (mddev->raid_disks < 3)
6710                 return ERR_PTR(-EINVAL);
6711
6712         switch (mddev->layout) {
6713         case ALGORITHM_LEFT_ASYMMETRIC:
6714                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6715                 break;
6716         case ALGORITHM_RIGHT_ASYMMETRIC:
6717                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6718                 break;
6719         case ALGORITHM_LEFT_SYMMETRIC:
6720                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6721                 break;
6722         case ALGORITHM_RIGHT_SYMMETRIC:
6723                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6724                 break;
6725         case ALGORITHM_PARITY_0:
6726                 new_layout = ALGORITHM_PARITY_0_6;
6727                 break;
6728         case ALGORITHM_PARITY_N:
6729                 new_layout = ALGORITHM_PARITY_N;
6730                 break;
6731         default:
6732                 return ERR_PTR(-EINVAL);
6733         }
6734         mddev->new_level = 6;
6735         mddev->new_layout = new_layout;
6736         mddev->delta_disks = 1;
6737         mddev->raid_disks += 1;
6738         return setup_conf(mddev);
6739 }
6740
6741
6742 static struct md_personality raid6_personality =
6743 {
6744         .name           = "raid6",
6745         .level          = 6,
6746         .owner          = THIS_MODULE,
6747         .make_request   = make_request,
6748         .run            = run,
6749         .stop           = stop,
6750         .status         = status,
6751         .error_handler  = error,
6752         .hot_add_disk   = raid5_add_disk,
6753         .hot_remove_disk= raid5_remove_disk,
6754         .spare_active   = raid5_spare_active,
6755         .sync_request   = sync_request,
6756         .resize         = raid5_resize,
6757         .size           = raid5_size,
6758         .check_reshape  = raid6_check_reshape,
6759         .start_reshape  = raid5_start_reshape,
6760         .finish_reshape = raid5_finish_reshape,
6761         .quiesce        = raid5_quiesce,
6762         .takeover       = raid6_takeover,
6763 };
6764 static struct md_personality raid5_personality =
6765 {
6766         .name           = "raid5",
6767         .level          = 5,
6768         .owner          = THIS_MODULE,
6769         .make_request   = make_request,
6770         .run            = run,
6771         .stop           = stop,
6772         .status         = status,
6773         .error_handler  = error,
6774         .hot_add_disk   = raid5_add_disk,
6775         .hot_remove_disk= raid5_remove_disk,
6776         .spare_active   = raid5_spare_active,
6777         .sync_request   = sync_request,
6778         .resize         = raid5_resize,
6779         .size           = raid5_size,
6780         .check_reshape  = raid5_check_reshape,
6781         .start_reshape  = raid5_start_reshape,
6782         .finish_reshape = raid5_finish_reshape,
6783         .quiesce        = raid5_quiesce,
6784         .takeover       = raid5_takeover,
6785 };
6786
6787 static struct md_personality raid4_personality =
6788 {
6789         .name           = "raid4",
6790         .level          = 4,
6791         .owner          = THIS_MODULE,
6792         .make_request   = make_request,
6793         .run            = run,
6794         .stop           = stop,
6795         .status         = status,
6796         .error_handler  = error,
6797         .hot_add_disk   = raid5_add_disk,
6798         .hot_remove_disk= raid5_remove_disk,
6799         .spare_active   = raid5_spare_active,
6800         .sync_request   = sync_request,
6801         .resize         = raid5_resize,
6802         .size           = raid5_size,
6803         .check_reshape  = raid5_check_reshape,
6804         .start_reshape  = raid5_start_reshape,
6805         .finish_reshape = raid5_finish_reshape,
6806         .quiesce        = raid5_quiesce,
6807         .takeover       = raid4_takeover,
6808 };
6809
6810 static int __init raid5_init(void)
6811 {
6812         raid5_wq = alloc_workqueue("raid5wq",
6813                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6814         if (!raid5_wq)
6815                 return -ENOMEM;
6816         register_md_personality(&raid6_personality);
6817         register_md_personality(&raid5_personality);
6818         register_md_personality(&raid4_personality);
6819         return 0;
6820 }
6821
6822 static void raid5_exit(void)
6823 {
6824         unregister_md_personality(&raid6_personality);
6825         unregister_md_personality(&raid5_personality);
6826         unregister_md_personality(&raid4_personality);
6827         destroy_workqueue(raid5_wq);
6828 }
6829
6830 module_init(raid5_init);
6831 module_exit(raid5_exit);
6832 MODULE_LICENSE("GPL");
6833 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6834 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6835 MODULE_ALIAS("md-raid5");
6836 MODULE_ALIAS("md-raid4");
6837 MODULE_ALIAS("md-level-5");
6838 MODULE_ALIAS("md-level-4");
6839 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6840 MODULE_ALIAS("md-raid6");
6841 MODULE_ALIAS("md-level-6");
6842
6843 /* This used to be two separate modules, they were: */
6844 MODULE_ALIAS("raid5");
6845 MODULE_ALIAS("raid6");