]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md: introduce link/unlink_rdev() helpers
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61  * Stripe cache
62  */
63
64 #define NR_STRIPES              256
65 #define STRIPE_SIZE             PAGE_SIZE
66 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD            1
69 #define BYPASS_THRESHOLD        1
70 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK               (NR_HASH - 1)
72
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76  * order without overlap.  There may be several bio's per stripe+device, and
77  * a bio could span several devices.
78  * When walking this list for a particular stripe+device, we must never proceed
79  * beyond a bio that extends past this device, as the next bio might no longer
80  * be valid.
81  * This macro is used to determine the 'next' bio in the list, given the sector
82  * of the current stripe+device
83  */
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 /*
86  * The following can be used to debug the driver
87  */
88 #define RAID5_PARANOIA  1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
94
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state))
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204                                    sh->bm_seq - conf->seq_write > 0)
205                                 list_add_tail(&sh->lru, &conf->bitmap_list);
206                         else {
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214                                 atomic_dec(&conf->preread_active_stripes);
215                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         }
218                         atomic_dec(&conf->active_stripes);
219                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220                                 list_add_tail(&sh->lru, &conf->inactive_list);
221                                 wake_up(&conf->wait_for_stripe);
222                                 if (conf->retry_read_aligned)
223                                         md_wakeup_thread(conf->mddev->thread);
224                         }
225                 }
226         }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231         raid5_conf_t *conf = sh->raid_conf;
232         unsigned long flags;
233
234         spin_lock_irqsave(&conf->device_lock, flags);
235         __release_stripe(conf, sh);
236         spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241         pr_debug("remove_hash(), stripe %llu\n",
242                 (unsigned long long)sh->sector);
243
244         hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248 {
249         struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251         pr_debug("insert_hash(), stripe %llu\n",
252                 (unsigned long long)sh->sector);
253
254         CHECK_DEVLOCK();
255         hlist_add_head(&sh->hash, hp);
256 }
257
258
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261 {
262         struct stripe_head *sh = NULL;
263         struct list_head *first;
264
265         CHECK_DEVLOCK();
266         if (list_empty(&conf->inactive_list))
267                 goto out;
268         first = conf->inactive_list.next;
269         sh = list_entry(first, struct stripe_head, lru);
270         list_del_init(first);
271         remove_hash(sh);
272         atomic_inc(&conf->active_stripes);
273 out:
274         return sh;
275 }
276
277 static void shrink_buffers(struct stripe_head *sh)
278 {
279         struct page *p;
280         int i;
281         int num = sh->raid_conf->pool_size;
282
283         for (i = 0; i < num ; i++) {
284                 p = sh->dev[i].page;
285                 if (!p)
286                         continue;
287                 sh->dev[i].page = NULL;
288                 put_page(p);
289         }
290 }
291
292 static int grow_buffers(struct stripe_head *sh)
293 {
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         BUG();
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 /*
367  * Need to check if array has failed when deciding whether to:
368  *  - start an array
369  *  - remove non-faulty devices
370  *  - add a spare
371  *  - allow a reshape
372  * This determination is simple when no reshape is happening.
373  * However if there is a reshape, we need to carefully check
374  * both the before and after sections.
375  * This is because some failed devices may only affect one
376  * of the two sections, and some non-in_sync devices may
377  * be insync in the section most affected by failed devices.
378  */
379 static int has_failed(raid5_conf_t *conf)
380 {
381         int degraded;
382         int i;
383         if (conf->mddev->reshape_position == MaxSector)
384                 return conf->mddev->degraded > conf->max_degraded;
385
386         rcu_read_lock();
387         degraded = 0;
388         for (i = 0; i < conf->previous_raid_disks; i++) {
389                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390                 if (!rdev || test_bit(Faulty, &rdev->flags))
391                         degraded++;
392                 else if (test_bit(In_sync, &rdev->flags))
393                         ;
394                 else
395                         /* not in-sync or faulty.
396                          * If the reshape increases the number of devices,
397                          * this is being recovered by the reshape, so
398                          * this 'previous' section is not in_sync.
399                          * If the number of devices is being reduced however,
400                          * the device can only be part of the array if
401                          * we are reverting a reshape, so this section will
402                          * be in-sync.
403                          */
404                         if (conf->raid_disks >= conf->previous_raid_disks)
405                                 degraded++;
406         }
407         rcu_read_unlock();
408         if (degraded > conf->max_degraded)
409                 return 1;
410         rcu_read_lock();
411         degraded = 0;
412         for (i = 0; i < conf->raid_disks; i++) {
413                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414                 if (!rdev || test_bit(Faulty, &rdev->flags))
415                         degraded++;
416                 else if (test_bit(In_sync, &rdev->flags))
417                         ;
418                 else
419                         /* not in-sync or faulty.
420                          * If reshape increases the number of devices, this
421                          * section has already been recovered, else it
422                          * almost certainly hasn't.
423                          */
424                         if (conf->raid_disks <= conf->previous_raid_disks)
425                                 degraded++;
426         }
427         rcu_read_unlock();
428         if (degraded > conf->max_degraded)
429                 return 1;
430         return 0;
431 }
432
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435                   int previous, int noblock, int noquiesce)
436 {
437         struct stripe_head *sh;
438
439         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441         spin_lock_irq(&conf->device_lock);
442
443         do {
444                 wait_event_lock_irq(conf->wait_for_stripe,
445                                     conf->quiesce == 0 || noquiesce,
446                                     conf->device_lock, /* nothing */);
447                 sh = __find_stripe(conf, sector, conf->generation - previous);
448                 if (!sh) {
449                         if (!conf->inactive_blocked)
450                                 sh = get_free_stripe(conf);
451                         if (noblock && sh == NULL)
452                                 break;
453                         if (!sh) {
454                                 conf->inactive_blocked = 1;
455                                 wait_event_lock_irq(conf->wait_for_stripe,
456                                                     !list_empty(&conf->inactive_list) &&
457                                                     (atomic_read(&conf->active_stripes)
458                                                      < (conf->max_nr_stripes *3/4)
459                                                      || !conf->inactive_blocked),
460                                                     conf->device_lock,
461                                                     );
462                                 conf->inactive_blocked = 0;
463                         } else
464                                 init_stripe(sh, sector, previous);
465                 } else {
466                         if (atomic_read(&sh->count)) {
467                                 BUG_ON(!list_empty(&sh->lru)
468                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
469                         } else {
470                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
471                                         atomic_inc(&conf->active_stripes);
472                                 if (list_empty(&sh->lru) &&
473                                     !test_bit(STRIPE_EXPANDING, &sh->state))
474                                         BUG();
475                                 list_del_init(&sh->lru);
476                         }
477                 }
478         } while (sh == NULL);
479
480         if (sh)
481                 atomic_inc(&sh->count);
482
483         spin_unlock_irq(&conf->device_lock);
484         return sh;
485 }
486
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
491
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 {
494         raid5_conf_t *conf = sh->raid_conf;
495         int i, disks = sh->disks;
496
497         might_sleep();
498
499         for (i = disks; i--; ) {
500                 int rw;
501                 struct bio *bi;
502                 mdk_rdev_t *rdev;
503                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505                                 rw = WRITE_FUA;
506                         else
507                                 rw = WRITE;
508                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509                         rw = READ;
510                 else
511                         continue;
512
513                 bi = &sh->dev[i].req;
514
515                 bi->bi_rw = rw;
516                 if (rw & WRITE)
517                         bi->bi_end_io = raid5_end_write_request;
518                 else
519                         bi->bi_end_io = raid5_end_read_request;
520
521                 rcu_read_lock();
522                 rdev = rcu_dereference(conf->disks[i].rdev);
523                 if (rdev && test_bit(Faulty, &rdev->flags))
524                         rdev = NULL;
525                 if (rdev)
526                         atomic_inc(&rdev->nr_pending);
527                 rcu_read_unlock();
528
529                 if (rdev) {
530                         if (s->syncing || s->expanding || s->expanded)
531                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
532
533                         set_bit(STRIPE_IO_STARTED, &sh->state);
534
535                         bi->bi_bdev = rdev->bdev;
536                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537                                 __func__, (unsigned long long)sh->sector,
538                                 bi->bi_rw, i);
539                         atomic_inc(&sh->count);
540                         bi->bi_sector = sh->sector + rdev->data_offset;
541                         bi->bi_flags = 1 << BIO_UPTODATE;
542                         bi->bi_vcnt = 1;
543                         bi->bi_max_vecs = 1;
544                         bi->bi_idx = 0;
545                         bi->bi_io_vec = &sh->dev[i].vec;
546                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547                         bi->bi_io_vec[0].bv_offset = 0;
548                         bi->bi_size = STRIPE_SIZE;
549                         bi->bi_next = NULL;
550                         if ((rw & WRITE) &&
551                             test_bit(R5_ReWrite, &sh->dev[i].flags))
552                                 atomic_add(STRIPE_SECTORS,
553                                         &rdev->corrected_errors);
554                         generic_make_request(bi);
555                 } else {
556                         if (rw & WRITE)
557                                 set_bit(STRIPE_DEGRADED, &sh->state);
558                         pr_debug("skip op %ld on disc %d for sector %llu\n",
559                                 bi->bi_rw, i, (unsigned long long)sh->sector);
560                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
561                         set_bit(STRIPE_HANDLE, &sh->state);
562                 }
563         }
564 }
565
566 static struct dma_async_tx_descriptor *
567 async_copy_data(int frombio, struct bio *bio, struct page *page,
568         sector_t sector, struct dma_async_tx_descriptor *tx)
569 {
570         struct bio_vec *bvl;
571         struct page *bio_page;
572         int i;
573         int page_offset;
574         struct async_submit_ctl submit;
575         enum async_tx_flags flags = 0;
576
577         if (bio->bi_sector >= sector)
578                 page_offset = (signed)(bio->bi_sector - sector) * 512;
579         else
580                 page_offset = (signed)(sector - bio->bi_sector) * -512;
581
582         if (frombio)
583                 flags |= ASYNC_TX_FENCE;
584         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
585
586         bio_for_each_segment(bvl, bio, i) {
587                 int len = bvl->bv_len;
588                 int clen;
589                 int b_offset = 0;
590
591                 if (page_offset < 0) {
592                         b_offset = -page_offset;
593                         page_offset += b_offset;
594                         len -= b_offset;
595                 }
596
597                 if (len > 0 && page_offset + len > STRIPE_SIZE)
598                         clen = STRIPE_SIZE - page_offset;
599                 else
600                         clen = len;
601
602                 if (clen > 0) {
603                         b_offset += bvl->bv_offset;
604                         bio_page = bvl->bv_page;
605                         if (frombio)
606                                 tx = async_memcpy(page, bio_page, page_offset,
607                                                   b_offset, clen, &submit);
608                         else
609                                 tx = async_memcpy(bio_page, page, b_offset,
610                                                   page_offset, clen, &submit);
611                 }
612                 /* chain the operations */
613                 submit.depend_tx = tx;
614
615                 if (clen < len) /* hit end of page */
616                         break;
617                 page_offset +=  len;
618         }
619
620         return tx;
621 }
622
623 static void ops_complete_biofill(void *stripe_head_ref)
624 {
625         struct stripe_head *sh = stripe_head_ref;
626         struct bio *return_bi = NULL;
627         raid5_conf_t *conf = sh->raid_conf;
628         int i;
629
630         pr_debug("%s: stripe %llu\n", __func__,
631                 (unsigned long long)sh->sector);
632
633         /* clear completed biofills */
634         spin_lock_irq(&conf->device_lock);
635         for (i = sh->disks; i--; ) {
636                 struct r5dev *dev = &sh->dev[i];
637
638                 /* acknowledge completion of a biofill operation */
639                 /* and check if we need to reply to a read request,
640                  * new R5_Wantfill requests are held off until
641                  * !STRIPE_BIOFILL_RUN
642                  */
643                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
644                         struct bio *rbi, *rbi2;
645
646                         BUG_ON(!dev->read);
647                         rbi = dev->read;
648                         dev->read = NULL;
649                         while (rbi && rbi->bi_sector <
650                                 dev->sector + STRIPE_SECTORS) {
651                                 rbi2 = r5_next_bio(rbi, dev->sector);
652                                 if (!raid5_dec_bi_phys_segments(rbi)) {
653                                         rbi->bi_next = return_bi;
654                                         return_bi = rbi;
655                                 }
656                                 rbi = rbi2;
657                         }
658                 }
659         }
660         spin_unlock_irq(&conf->device_lock);
661         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
662
663         return_io(return_bi);
664
665         set_bit(STRIPE_HANDLE, &sh->state);
666         release_stripe(sh);
667 }
668
669 static void ops_run_biofill(struct stripe_head *sh)
670 {
671         struct dma_async_tx_descriptor *tx = NULL;
672         raid5_conf_t *conf = sh->raid_conf;
673         struct async_submit_ctl submit;
674         int i;
675
676         pr_debug("%s: stripe %llu\n", __func__,
677                 (unsigned long long)sh->sector);
678
679         for (i = sh->disks; i--; ) {
680                 struct r5dev *dev = &sh->dev[i];
681                 if (test_bit(R5_Wantfill, &dev->flags)) {
682                         struct bio *rbi;
683                         spin_lock_irq(&conf->device_lock);
684                         dev->read = rbi = dev->toread;
685                         dev->toread = NULL;
686                         spin_unlock_irq(&conf->device_lock);
687                         while (rbi && rbi->bi_sector <
688                                 dev->sector + STRIPE_SECTORS) {
689                                 tx = async_copy_data(0, rbi, dev->page,
690                                         dev->sector, tx);
691                                 rbi = r5_next_bio(rbi, dev->sector);
692                         }
693                 }
694         }
695
696         atomic_inc(&sh->count);
697         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
698         async_trigger_callback(&submit);
699 }
700
701 static void mark_target_uptodate(struct stripe_head *sh, int target)
702 {
703         struct r5dev *tgt;
704
705         if (target < 0)
706                 return;
707
708         tgt = &sh->dev[target];
709         set_bit(R5_UPTODATE, &tgt->flags);
710         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
711         clear_bit(R5_Wantcompute, &tgt->flags);
712 }
713
714 static void ops_complete_compute(void *stripe_head_ref)
715 {
716         struct stripe_head *sh = stripe_head_ref;
717
718         pr_debug("%s: stripe %llu\n", __func__,
719                 (unsigned long long)sh->sector);
720
721         /* mark the computed target(s) as uptodate */
722         mark_target_uptodate(sh, sh->ops.target);
723         mark_target_uptodate(sh, sh->ops.target2);
724
725         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
726         if (sh->check_state == check_state_compute_run)
727                 sh->check_state = check_state_compute_result;
728         set_bit(STRIPE_HANDLE, &sh->state);
729         release_stripe(sh);
730 }
731
732 /* return a pointer to the address conversion region of the scribble buffer */
733 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
734                                  struct raid5_percpu *percpu)
735 {
736         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
737 }
738
739 static struct dma_async_tx_descriptor *
740 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
741 {
742         int disks = sh->disks;
743         struct page **xor_srcs = percpu->scribble;
744         int target = sh->ops.target;
745         struct r5dev *tgt = &sh->dev[target];
746         struct page *xor_dest = tgt->page;
747         int count = 0;
748         struct dma_async_tx_descriptor *tx;
749         struct async_submit_ctl submit;
750         int i;
751
752         pr_debug("%s: stripe %llu block: %d\n",
753                 __func__, (unsigned long long)sh->sector, target);
754         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
755
756         for (i = disks; i--; )
757                 if (i != target)
758                         xor_srcs[count++] = sh->dev[i].page;
759
760         atomic_inc(&sh->count);
761
762         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
763                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
764         if (unlikely(count == 1))
765                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
766         else
767                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
768
769         return tx;
770 }
771
772 /* set_syndrome_sources - populate source buffers for gen_syndrome
773  * @srcs - (struct page *) array of size sh->disks
774  * @sh - stripe_head to parse
775  *
776  * Populates srcs in proper layout order for the stripe and returns the
777  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
778  * destination buffer is recorded in srcs[count] and the Q destination
779  * is recorded in srcs[count+1]].
780  */
781 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
782 {
783         int disks = sh->disks;
784         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
785         int d0_idx = raid6_d0(sh);
786         int count;
787         int i;
788
789         for (i = 0; i < disks; i++)
790                 srcs[i] = NULL;
791
792         count = 0;
793         i = d0_idx;
794         do {
795                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
796
797                 srcs[slot] = sh->dev[i].page;
798                 i = raid6_next_disk(i, disks);
799         } while (i != d0_idx);
800
801         return syndrome_disks;
802 }
803
804 static struct dma_async_tx_descriptor *
805 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
806 {
807         int disks = sh->disks;
808         struct page **blocks = percpu->scribble;
809         int target;
810         int qd_idx = sh->qd_idx;
811         struct dma_async_tx_descriptor *tx;
812         struct async_submit_ctl submit;
813         struct r5dev *tgt;
814         struct page *dest;
815         int i;
816         int count;
817
818         if (sh->ops.target < 0)
819                 target = sh->ops.target2;
820         else if (sh->ops.target2 < 0)
821                 target = sh->ops.target;
822         else
823                 /* we should only have one valid target */
824                 BUG();
825         BUG_ON(target < 0);
826         pr_debug("%s: stripe %llu block: %d\n",
827                 __func__, (unsigned long long)sh->sector, target);
828
829         tgt = &sh->dev[target];
830         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
831         dest = tgt->page;
832
833         atomic_inc(&sh->count);
834
835         if (target == qd_idx) {
836                 count = set_syndrome_sources(blocks, sh);
837                 blocks[count] = NULL; /* regenerating p is not necessary */
838                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
839                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
840                                   ops_complete_compute, sh,
841                                   to_addr_conv(sh, percpu));
842                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
843         } else {
844                 /* Compute any data- or p-drive using XOR */
845                 count = 0;
846                 for (i = disks; i-- ; ) {
847                         if (i == target || i == qd_idx)
848                                 continue;
849                         blocks[count++] = sh->dev[i].page;
850                 }
851
852                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
853                                   NULL, ops_complete_compute, sh,
854                                   to_addr_conv(sh, percpu));
855                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
856         }
857
858         return tx;
859 }
860
861 static struct dma_async_tx_descriptor *
862 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
863 {
864         int i, count, disks = sh->disks;
865         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
866         int d0_idx = raid6_d0(sh);
867         int faila = -1, failb = -1;
868         int target = sh->ops.target;
869         int target2 = sh->ops.target2;
870         struct r5dev *tgt = &sh->dev[target];
871         struct r5dev *tgt2 = &sh->dev[target2];
872         struct dma_async_tx_descriptor *tx;
873         struct page **blocks = percpu->scribble;
874         struct async_submit_ctl submit;
875
876         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
877                  __func__, (unsigned long long)sh->sector, target, target2);
878         BUG_ON(target < 0 || target2 < 0);
879         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
881
882         /* we need to open-code set_syndrome_sources to handle the
883          * slot number conversion for 'faila' and 'failb'
884          */
885         for (i = 0; i < disks ; i++)
886                 blocks[i] = NULL;
887         count = 0;
888         i = d0_idx;
889         do {
890                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
891
892                 blocks[slot] = sh->dev[i].page;
893
894                 if (i == target)
895                         faila = slot;
896                 if (i == target2)
897                         failb = slot;
898                 i = raid6_next_disk(i, disks);
899         } while (i != d0_idx);
900
901         BUG_ON(faila == failb);
902         if (failb < faila)
903                 swap(faila, failb);
904         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
905                  __func__, (unsigned long long)sh->sector, faila, failb);
906
907         atomic_inc(&sh->count);
908
909         if (failb == syndrome_disks+1) {
910                 /* Q disk is one of the missing disks */
911                 if (faila == syndrome_disks) {
912                         /* Missing P+Q, just recompute */
913                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
914                                           ops_complete_compute, sh,
915                                           to_addr_conv(sh, percpu));
916                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
917                                                   STRIPE_SIZE, &submit);
918                 } else {
919                         struct page *dest;
920                         int data_target;
921                         int qd_idx = sh->qd_idx;
922
923                         /* Missing D+Q: recompute D from P, then recompute Q */
924                         if (target == qd_idx)
925                                 data_target = target2;
926                         else
927                                 data_target = target;
928
929                         count = 0;
930                         for (i = disks; i-- ; ) {
931                                 if (i == data_target || i == qd_idx)
932                                         continue;
933                                 blocks[count++] = sh->dev[i].page;
934                         }
935                         dest = sh->dev[data_target].page;
936                         init_async_submit(&submit,
937                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938                                           NULL, NULL, NULL,
939                                           to_addr_conv(sh, percpu));
940                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
941                                        &submit);
942
943                         count = set_syndrome_sources(blocks, sh);
944                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
945                                           ops_complete_compute, sh,
946                                           to_addr_conv(sh, percpu));
947                         return async_gen_syndrome(blocks, 0, count+2,
948                                                   STRIPE_SIZE, &submit);
949                 }
950         } else {
951                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
952                                   ops_complete_compute, sh,
953                                   to_addr_conv(sh, percpu));
954                 if (failb == syndrome_disks) {
955                         /* We're missing D+P. */
956                         return async_raid6_datap_recov(syndrome_disks+2,
957                                                        STRIPE_SIZE, faila,
958                                                        blocks, &submit);
959                 } else {
960                         /* We're missing D+D. */
961                         return async_raid6_2data_recov(syndrome_disks+2,
962                                                        STRIPE_SIZE, faila, failb,
963                                                        blocks, &submit);
964                 }
965         }
966 }
967
968
969 static void ops_complete_prexor(void *stripe_head_ref)
970 {
971         struct stripe_head *sh = stripe_head_ref;
972
973         pr_debug("%s: stripe %llu\n", __func__,
974                 (unsigned long long)sh->sector);
975 }
976
977 static struct dma_async_tx_descriptor *
978 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
979                struct dma_async_tx_descriptor *tx)
980 {
981         int disks = sh->disks;
982         struct page **xor_srcs = percpu->scribble;
983         int count = 0, pd_idx = sh->pd_idx, i;
984         struct async_submit_ctl submit;
985
986         /* existing parity data subtracted */
987         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
988
989         pr_debug("%s: stripe %llu\n", __func__,
990                 (unsigned long long)sh->sector);
991
992         for (i = disks; i--; ) {
993                 struct r5dev *dev = &sh->dev[i];
994                 /* Only process blocks that are known to be uptodate */
995                 if (test_bit(R5_Wantdrain, &dev->flags))
996                         xor_srcs[count++] = dev->page;
997         }
998
999         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1000                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1001         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1002
1003         return tx;
1004 }
1005
1006 static struct dma_async_tx_descriptor *
1007 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1008 {
1009         int disks = sh->disks;
1010         int i;
1011
1012         pr_debug("%s: stripe %llu\n", __func__,
1013                 (unsigned long long)sh->sector);
1014
1015         for (i = disks; i--; ) {
1016                 struct r5dev *dev = &sh->dev[i];
1017                 struct bio *chosen;
1018
1019                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1020                         struct bio *wbi;
1021
1022                         spin_lock_irq(&sh->raid_conf->device_lock);
1023                         chosen = dev->towrite;
1024                         dev->towrite = NULL;
1025                         BUG_ON(dev->written);
1026                         wbi = dev->written = chosen;
1027                         spin_unlock_irq(&sh->raid_conf->device_lock);
1028
1029                         while (wbi && wbi->bi_sector <
1030                                 dev->sector + STRIPE_SECTORS) {
1031                                 if (wbi->bi_rw & REQ_FUA)
1032                                         set_bit(R5_WantFUA, &dev->flags);
1033                                 tx = async_copy_data(1, wbi, dev->page,
1034                                         dev->sector, tx);
1035                                 wbi = r5_next_bio(wbi, dev->sector);
1036                         }
1037                 }
1038         }
1039
1040         return tx;
1041 }
1042
1043 static void ops_complete_reconstruct(void *stripe_head_ref)
1044 {
1045         struct stripe_head *sh = stripe_head_ref;
1046         int disks = sh->disks;
1047         int pd_idx = sh->pd_idx;
1048         int qd_idx = sh->qd_idx;
1049         int i;
1050         bool fua = false;
1051
1052         pr_debug("%s: stripe %llu\n", __func__,
1053                 (unsigned long long)sh->sector);
1054
1055         for (i = disks; i--; )
1056                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1057
1058         for (i = disks; i--; ) {
1059                 struct r5dev *dev = &sh->dev[i];
1060
1061                 if (dev->written || i == pd_idx || i == qd_idx) {
1062                         set_bit(R5_UPTODATE, &dev->flags);
1063                         if (fua)
1064                                 set_bit(R5_WantFUA, &dev->flags);
1065                 }
1066         }
1067
1068         if (sh->reconstruct_state == reconstruct_state_drain_run)
1069                 sh->reconstruct_state = reconstruct_state_drain_result;
1070         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1071                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1072         else {
1073                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1074                 sh->reconstruct_state = reconstruct_state_result;
1075         }
1076
1077         set_bit(STRIPE_HANDLE, &sh->state);
1078         release_stripe(sh);
1079 }
1080
1081 static void
1082 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1083                      struct dma_async_tx_descriptor *tx)
1084 {
1085         int disks = sh->disks;
1086         struct page **xor_srcs = percpu->scribble;
1087         struct async_submit_ctl submit;
1088         int count = 0, pd_idx = sh->pd_idx, i;
1089         struct page *xor_dest;
1090         int prexor = 0;
1091         unsigned long flags;
1092
1093         pr_debug("%s: stripe %llu\n", __func__,
1094                 (unsigned long long)sh->sector);
1095
1096         /* check if prexor is active which means only process blocks
1097          * that are part of a read-modify-write (written)
1098          */
1099         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1100                 prexor = 1;
1101                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1102                 for (i = disks; i--; ) {
1103                         struct r5dev *dev = &sh->dev[i];
1104                         if (dev->written)
1105                                 xor_srcs[count++] = dev->page;
1106                 }
1107         } else {
1108                 xor_dest = sh->dev[pd_idx].page;
1109                 for (i = disks; i--; ) {
1110                         struct r5dev *dev = &sh->dev[i];
1111                         if (i != pd_idx)
1112                                 xor_srcs[count++] = dev->page;
1113                 }
1114         }
1115
1116         /* 1/ if we prexor'd then the dest is reused as a source
1117          * 2/ if we did not prexor then we are redoing the parity
1118          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1119          * for the synchronous xor case
1120          */
1121         flags = ASYNC_TX_ACK |
1122                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1123
1124         atomic_inc(&sh->count);
1125
1126         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1127                           to_addr_conv(sh, percpu));
1128         if (unlikely(count == 1))
1129                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130         else
1131                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132 }
1133
1134 static void
1135 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1136                      struct dma_async_tx_descriptor *tx)
1137 {
1138         struct async_submit_ctl submit;
1139         struct page **blocks = percpu->scribble;
1140         int count;
1141
1142         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1143
1144         count = set_syndrome_sources(blocks, sh);
1145
1146         atomic_inc(&sh->count);
1147
1148         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1149                           sh, to_addr_conv(sh, percpu));
1150         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1151 }
1152
1153 static void ops_complete_check(void *stripe_head_ref)
1154 {
1155         struct stripe_head *sh = stripe_head_ref;
1156
1157         pr_debug("%s: stripe %llu\n", __func__,
1158                 (unsigned long long)sh->sector);
1159
1160         sh->check_state = check_state_check_result;
1161         set_bit(STRIPE_HANDLE, &sh->state);
1162         release_stripe(sh);
1163 }
1164
1165 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1166 {
1167         int disks = sh->disks;
1168         int pd_idx = sh->pd_idx;
1169         int qd_idx = sh->qd_idx;
1170         struct page *xor_dest;
1171         struct page **xor_srcs = percpu->scribble;
1172         struct dma_async_tx_descriptor *tx;
1173         struct async_submit_ctl submit;
1174         int count;
1175         int i;
1176
1177         pr_debug("%s: stripe %llu\n", __func__,
1178                 (unsigned long long)sh->sector);
1179
1180         count = 0;
1181         xor_dest = sh->dev[pd_idx].page;
1182         xor_srcs[count++] = xor_dest;
1183         for (i = disks; i--; ) {
1184                 if (i == pd_idx || i == qd_idx)
1185                         continue;
1186                 xor_srcs[count++] = sh->dev[i].page;
1187         }
1188
1189         init_async_submit(&submit, 0, NULL, NULL, NULL,
1190                           to_addr_conv(sh, percpu));
1191         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1192                            &sh->ops.zero_sum_result, &submit);
1193
1194         atomic_inc(&sh->count);
1195         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1196         tx = async_trigger_callback(&submit);
1197 }
1198
1199 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1200 {
1201         struct page **srcs = percpu->scribble;
1202         struct async_submit_ctl submit;
1203         int count;
1204
1205         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1206                 (unsigned long long)sh->sector, checkp);
1207
1208         count = set_syndrome_sources(srcs, sh);
1209         if (!checkp)
1210                 srcs[count] = NULL;
1211
1212         atomic_inc(&sh->count);
1213         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1214                           sh, to_addr_conv(sh, percpu));
1215         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1216                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1217 }
1218
1219 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1220 {
1221         int overlap_clear = 0, i, disks = sh->disks;
1222         struct dma_async_tx_descriptor *tx = NULL;
1223         raid5_conf_t *conf = sh->raid_conf;
1224         int level = conf->level;
1225         struct raid5_percpu *percpu;
1226         unsigned long cpu;
1227
1228         cpu = get_cpu();
1229         percpu = per_cpu_ptr(conf->percpu, cpu);
1230         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1231                 ops_run_biofill(sh);
1232                 overlap_clear++;
1233         }
1234
1235         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1236                 if (level < 6)
1237                         tx = ops_run_compute5(sh, percpu);
1238                 else {
1239                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1240                                 tx = ops_run_compute6_1(sh, percpu);
1241                         else
1242                                 tx = ops_run_compute6_2(sh, percpu);
1243                 }
1244                 /* terminate the chain if reconstruct is not set to be run */
1245                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1246                         async_tx_ack(tx);
1247         }
1248
1249         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1250                 tx = ops_run_prexor(sh, percpu, tx);
1251
1252         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1253                 tx = ops_run_biodrain(sh, tx);
1254                 overlap_clear++;
1255         }
1256
1257         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1258                 if (level < 6)
1259                         ops_run_reconstruct5(sh, percpu, tx);
1260                 else
1261                         ops_run_reconstruct6(sh, percpu, tx);
1262         }
1263
1264         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1265                 if (sh->check_state == check_state_run)
1266                         ops_run_check_p(sh, percpu);
1267                 else if (sh->check_state == check_state_run_q)
1268                         ops_run_check_pq(sh, percpu, 0);
1269                 else if (sh->check_state == check_state_run_pq)
1270                         ops_run_check_pq(sh, percpu, 1);
1271                 else
1272                         BUG();
1273         }
1274
1275         if (overlap_clear)
1276                 for (i = disks; i--; ) {
1277                         struct r5dev *dev = &sh->dev[i];
1278                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1279                                 wake_up(&sh->raid_conf->wait_for_overlap);
1280                 }
1281         put_cpu();
1282 }
1283
1284 #ifdef CONFIG_MULTICORE_RAID456
1285 static void async_run_ops(void *param, async_cookie_t cookie)
1286 {
1287         struct stripe_head *sh = param;
1288         unsigned long ops_request = sh->ops.request;
1289
1290         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1291         wake_up(&sh->ops.wait_for_ops);
1292
1293         __raid_run_ops(sh, ops_request);
1294         release_stripe(sh);
1295 }
1296
1297 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1298 {
1299         /* since handle_stripe can be called outside of raid5d context
1300          * we need to ensure sh->ops.request is de-staged before another
1301          * request arrives
1302          */
1303         wait_event(sh->ops.wait_for_ops,
1304                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1305         sh->ops.request = ops_request;
1306
1307         atomic_inc(&sh->count);
1308         async_schedule(async_run_ops, sh);
1309 }
1310 #else
1311 #define raid_run_ops __raid_run_ops
1312 #endif
1313
1314 static int grow_one_stripe(raid5_conf_t *conf)
1315 {
1316         struct stripe_head *sh;
1317         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1318         if (!sh)
1319                 return 0;
1320
1321         sh->raid_conf = conf;
1322         #ifdef CONFIG_MULTICORE_RAID456
1323         init_waitqueue_head(&sh->ops.wait_for_ops);
1324         #endif
1325
1326         if (grow_buffers(sh)) {
1327                 shrink_buffers(sh);
1328                 kmem_cache_free(conf->slab_cache, sh);
1329                 return 0;
1330         }
1331         /* we just created an active stripe so... */
1332         atomic_set(&sh->count, 1);
1333         atomic_inc(&conf->active_stripes);
1334         INIT_LIST_HEAD(&sh->lru);
1335         release_stripe(sh);
1336         return 1;
1337 }
1338
1339 static int grow_stripes(raid5_conf_t *conf, int num)
1340 {
1341         struct kmem_cache *sc;
1342         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1343
1344         if (conf->mddev->gendisk)
1345                 sprintf(conf->cache_name[0],
1346                         "raid%d-%s", conf->level, mdname(conf->mddev));
1347         else
1348                 sprintf(conf->cache_name[0],
1349                         "raid%d-%p", conf->level, conf->mddev);
1350         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1351
1352         conf->active_name = 0;
1353         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1354                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1355                                0, 0, NULL);
1356         if (!sc)
1357                 return 1;
1358         conf->slab_cache = sc;
1359         conf->pool_size = devs;
1360         while (num--)
1361                 if (!grow_one_stripe(conf))
1362                         return 1;
1363         return 0;
1364 }
1365
1366 /**
1367  * scribble_len - return the required size of the scribble region
1368  * @num - total number of disks in the array
1369  *
1370  * The size must be enough to contain:
1371  * 1/ a struct page pointer for each device in the array +2
1372  * 2/ room to convert each entry in (1) to its corresponding dma
1373  *    (dma_map_page()) or page (page_address()) address.
1374  *
1375  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1376  * calculate over all devices (not just the data blocks), using zeros in place
1377  * of the P and Q blocks.
1378  */
1379 static size_t scribble_len(int num)
1380 {
1381         size_t len;
1382
1383         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1384
1385         return len;
1386 }
1387
1388 static int resize_stripes(raid5_conf_t *conf, int newsize)
1389 {
1390         /* Make all the stripes able to hold 'newsize' devices.
1391          * New slots in each stripe get 'page' set to a new page.
1392          *
1393          * This happens in stages:
1394          * 1/ create a new kmem_cache and allocate the required number of
1395          *    stripe_heads.
1396          * 2/ gather all the old stripe_heads and tranfer the pages across
1397          *    to the new stripe_heads.  This will have the side effect of
1398          *    freezing the array as once all stripe_heads have been collected,
1399          *    no IO will be possible.  Old stripe heads are freed once their
1400          *    pages have been transferred over, and the old kmem_cache is
1401          *    freed when all stripes are done.
1402          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1403          *    we simple return a failre status - no need to clean anything up.
1404          * 4/ allocate new pages for the new slots in the new stripe_heads.
1405          *    If this fails, we don't bother trying the shrink the
1406          *    stripe_heads down again, we just leave them as they are.
1407          *    As each stripe_head is processed the new one is released into
1408          *    active service.
1409          *
1410          * Once step2 is started, we cannot afford to wait for a write,
1411          * so we use GFP_NOIO allocations.
1412          */
1413         struct stripe_head *osh, *nsh;
1414         LIST_HEAD(newstripes);
1415         struct disk_info *ndisks;
1416         unsigned long cpu;
1417         int err;
1418         struct kmem_cache *sc;
1419         int i;
1420
1421         if (newsize <= conf->pool_size)
1422                 return 0; /* never bother to shrink */
1423
1424         err = md_allow_write(conf->mddev);
1425         if (err)
1426                 return err;
1427
1428         /* Step 1 */
1429         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1430                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1431                                0, 0, NULL);
1432         if (!sc)
1433                 return -ENOMEM;
1434
1435         for (i = conf->max_nr_stripes; i; i--) {
1436                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1437                 if (!nsh)
1438                         break;
1439
1440                 nsh->raid_conf = conf;
1441                 #ifdef CONFIG_MULTICORE_RAID456
1442                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1443                 #endif
1444
1445                 list_add(&nsh->lru, &newstripes);
1446         }
1447         if (i) {
1448                 /* didn't get enough, give up */
1449                 while (!list_empty(&newstripes)) {
1450                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1451                         list_del(&nsh->lru);
1452                         kmem_cache_free(sc, nsh);
1453                 }
1454                 kmem_cache_destroy(sc);
1455                 return -ENOMEM;
1456         }
1457         /* Step 2 - Must use GFP_NOIO now.
1458          * OK, we have enough stripes, start collecting inactive
1459          * stripes and copying them over
1460          */
1461         list_for_each_entry(nsh, &newstripes, lru) {
1462                 spin_lock_irq(&conf->device_lock);
1463                 wait_event_lock_irq(conf->wait_for_stripe,
1464                                     !list_empty(&conf->inactive_list),
1465                                     conf->device_lock,
1466                                     );
1467                 osh = get_free_stripe(conf);
1468                 spin_unlock_irq(&conf->device_lock);
1469                 atomic_set(&nsh->count, 1);
1470                 for(i=0; i<conf->pool_size; i++)
1471                         nsh->dev[i].page = osh->dev[i].page;
1472                 for( ; i<newsize; i++)
1473                         nsh->dev[i].page = NULL;
1474                 kmem_cache_free(conf->slab_cache, osh);
1475         }
1476         kmem_cache_destroy(conf->slab_cache);
1477
1478         /* Step 3.
1479          * At this point, we are holding all the stripes so the array
1480          * is completely stalled, so now is a good time to resize
1481          * conf->disks and the scribble region
1482          */
1483         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1484         if (ndisks) {
1485                 for (i=0; i<conf->raid_disks; i++)
1486                         ndisks[i] = conf->disks[i];
1487                 kfree(conf->disks);
1488                 conf->disks = ndisks;
1489         } else
1490                 err = -ENOMEM;
1491
1492         get_online_cpus();
1493         conf->scribble_len = scribble_len(newsize);
1494         for_each_present_cpu(cpu) {
1495                 struct raid5_percpu *percpu;
1496                 void *scribble;
1497
1498                 percpu = per_cpu_ptr(conf->percpu, cpu);
1499                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1500
1501                 if (scribble) {
1502                         kfree(percpu->scribble);
1503                         percpu->scribble = scribble;
1504                 } else {
1505                         err = -ENOMEM;
1506                         break;
1507                 }
1508         }
1509         put_online_cpus();
1510
1511         /* Step 4, return new stripes to service */
1512         while(!list_empty(&newstripes)) {
1513                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1514                 list_del_init(&nsh->lru);
1515
1516                 for (i=conf->raid_disks; i < newsize; i++)
1517                         if (nsh->dev[i].page == NULL) {
1518                                 struct page *p = alloc_page(GFP_NOIO);
1519                                 nsh->dev[i].page = p;
1520                                 if (!p)
1521                                         err = -ENOMEM;
1522                         }
1523                 release_stripe(nsh);
1524         }
1525         /* critical section pass, GFP_NOIO no longer needed */
1526
1527         conf->slab_cache = sc;
1528         conf->active_name = 1-conf->active_name;
1529         conf->pool_size = newsize;
1530         return err;
1531 }
1532
1533 static int drop_one_stripe(raid5_conf_t *conf)
1534 {
1535         struct stripe_head *sh;
1536
1537         spin_lock_irq(&conf->device_lock);
1538         sh = get_free_stripe(conf);
1539         spin_unlock_irq(&conf->device_lock);
1540         if (!sh)
1541                 return 0;
1542         BUG_ON(atomic_read(&sh->count));
1543         shrink_buffers(sh);
1544         kmem_cache_free(conf->slab_cache, sh);
1545         atomic_dec(&conf->active_stripes);
1546         return 1;
1547 }
1548
1549 static void shrink_stripes(raid5_conf_t *conf)
1550 {
1551         while (drop_one_stripe(conf))
1552                 ;
1553
1554         if (conf->slab_cache)
1555                 kmem_cache_destroy(conf->slab_cache);
1556         conf->slab_cache = NULL;
1557 }
1558
1559 static void raid5_end_read_request(struct bio * bi, int error)
1560 {
1561         struct stripe_head *sh = bi->bi_private;
1562         raid5_conf_t *conf = sh->raid_conf;
1563         int disks = sh->disks, i;
1564         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1565         char b[BDEVNAME_SIZE];
1566         mdk_rdev_t *rdev;
1567
1568
1569         for (i=0 ; i<disks; i++)
1570                 if (bi == &sh->dev[i].req)
1571                         break;
1572
1573         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1574                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1575                 uptodate);
1576         if (i == disks) {
1577                 BUG();
1578                 return;
1579         }
1580
1581         if (uptodate) {
1582                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1583                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1584                         rdev = conf->disks[i].rdev;
1585                         printk_ratelimited(
1586                                 KERN_INFO
1587                                 "md/raid:%s: read error corrected"
1588                                 " (%lu sectors at %llu on %s)\n",
1589                                 mdname(conf->mddev), STRIPE_SECTORS,
1590                                 (unsigned long long)(sh->sector
1591                                                      + rdev->data_offset),
1592                                 bdevname(rdev->bdev, b));
1593                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1594                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1595                 }
1596                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1597                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1598         } else {
1599                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1600                 int retry = 0;
1601                 rdev = conf->disks[i].rdev;
1602
1603                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1604                 atomic_inc(&rdev->read_errors);
1605                 if (conf->mddev->degraded >= conf->max_degraded)
1606                         printk_ratelimited(
1607                                 KERN_WARNING
1608                                 "md/raid:%s: read error not correctable "
1609                                 "(sector %llu on %s).\n",
1610                                 mdname(conf->mddev),
1611                                 (unsigned long long)(sh->sector
1612                                                      + rdev->data_offset),
1613                                 bdn);
1614                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1615                         /* Oh, no!!! */
1616                         printk_ratelimited(
1617                                 KERN_WARNING
1618                                 "md/raid:%s: read error NOT corrected!! "
1619                                 "(sector %llu on %s).\n",
1620                                 mdname(conf->mddev),
1621                                 (unsigned long long)(sh->sector
1622                                                      + rdev->data_offset),
1623                                 bdn);
1624                 else if (atomic_read(&rdev->read_errors)
1625                          > conf->max_nr_stripes)
1626                         printk(KERN_WARNING
1627                                "md/raid:%s: Too many read errors, failing device %s.\n",
1628                                mdname(conf->mddev), bdn);
1629                 else
1630                         retry = 1;
1631                 if (retry)
1632                         set_bit(R5_ReadError, &sh->dev[i].flags);
1633                 else {
1634                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1635                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1636                         md_error(conf->mddev, rdev);
1637                 }
1638         }
1639         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1640         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1641         set_bit(STRIPE_HANDLE, &sh->state);
1642         release_stripe(sh);
1643 }
1644
1645 static void raid5_end_write_request(struct bio *bi, int error)
1646 {
1647         struct stripe_head *sh = bi->bi_private;
1648         raid5_conf_t *conf = sh->raid_conf;
1649         int disks = sh->disks, i;
1650         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1651
1652         for (i=0 ; i<disks; i++)
1653                 if (bi == &sh->dev[i].req)
1654                         break;
1655
1656         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1657                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1658                 uptodate);
1659         if (i == disks) {
1660                 BUG();
1661                 return;
1662         }
1663
1664         if (!uptodate)
1665                 md_error(conf->mddev, conf->disks[i].rdev);
1666
1667         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1668         
1669         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1670         set_bit(STRIPE_HANDLE, &sh->state);
1671         release_stripe(sh);
1672 }
1673
1674
1675 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1676         
1677 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1678 {
1679         struct r5dev *dev = &sh->dev[i];
1680
1681         bio_init(&dev->req);
1682         dev->req.bi_io_vec = &dev->vec;
1683         dev->req.bi_vcnt++;
1684         dev->req.bi_max_vecs++;
1685         dev->vec.bv_page = dev->page;
1686         dev->vec.bv_len = STRIPE_SIZE;
1687         dev->vec.bv_offset = 0;
1688
1689         dev->req.bi_sector = sh->sector;
1690         dev->req.bi_private = sh;
1691
1692         dev->flags = 0;
1693         dev->sector = compute_blocknr(sh, i, previous);
1694 }
1695
1696 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1697 {
1698         char b[BDEVNAME_SIZE];
1699         raid5_conf_t *conf = mddev->private;
1700         pr_debug("raid456: error called\n");
1701
1702         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1703                 unsigned long flags;
1704                 spin_lock_irqsave(&conf->device_lock, flags);
1705                 mddev->degraded++;
1706                 spin_unlock_irqrestore(&conf->device_lock, flags);
1707                 /*
1708                  * if recovery was running, make sure it aborts.
1709                  */
1710                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1711         }
1712         set_bit(Faulty, &rdev->flags);
1713         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1714         printk(KERN_ALERT
1715                "md/raid:%s: Disk failure on %s, disabling device.\n"
1716                "md/raid:%s: Operation continuing on %d devices.\n",
1717                mdname(mddev),
1718                bdevname(rdev->bdev, b),
1719                mdname(mddev),
1720                conf->raid_disks - mddev->degraded);
1721 }
1722
1723 /*
1724  * Input: a 'big' sector number,
1725  * Output: index of the data and parity disk, and the sector # in them.
1726  */
1727 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1728                                      int previous, int *dd_idx,
1729                                      struct stripe_head *sh)
1730 {
1731         sector_t stripe, stripe2;
1732         sector_t chunk_number;
1733         unsigned int chunk_offset;
1734         int pd_idx, qd_idx;
1735         int ddf_layout = 0;
1736         sector_t new_sector;
1737         int algorithm = previous ? conf->prev_algo
1738                                  : conf->algorithm;
1739         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1740                                          : conf->chunk_sectors;
1741         int raid_disks = previous ? conf->previous_raid_disks
1742                                   : conf->raid_disks;
1743         int data_disks = raid_disks - conf->max_degraded;
1744
1745         /* First compute the information on this sector */
1746
1747         /*
1748          * Compute the chunk number and the sector offset inside the chunk
1749          */
1750         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1751         chunk_number = r_sector;
1752
1753         /*
1754          * Compute the stripe number
1755          */
1756         stripe = chunk_number;
1757         *dd_idx = sector_div(stripe, data_disks);
1758         stripe2 = stripe;
1759         /*
1760          * Select the parity disk based on the user selected algorithm.
1761          */
1762         pd_idx = qd_idx = -1;
1763         switch(conf->level) {
1764         case 4:
1765                 pd_idx = data_disks;
1766                 break;
1767         case 5:
1768                 switch (algorithm) {
1769                 case ALGORITHM_LEFT_ASYMMETRIC:
1770                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1771                         if (*dd_idx >= pd_idx)
1772                                 (*dd_idx)++;
1773                         break;
1774                 case ALGORITHM_RIGHT_ASYMMETRIC:
1775                         pd_idx = sector_div(stripe2, raid_disks);
1776                         if (*dd_idx >= pd_idx)
1777                                 (*dd_idx)++;
1778                         break;
1779                 case ALGORITHM_LEFT_SYMMETRIC:
1780                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1782                         break;
1783                 case ALGORITHM_RIGHT_SYMMETRIC:
1784                         pd_idx = sector_div(stripe2, raid_disks);
1785                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1786                         break;
1787                 case ALGORITHM_PARITY_0:
1788                         pd_idx = 0;
1789                         (*dd_idx)++;
1790                         break;
1791                 case ALGORITHM_PARITY_N:
1792                         pd_idx = data_disks;
1793                         break;
1794                 default:
1795                         BUG();
1796                 }
1797                 break;
1798         case 6:
1799
1800                 switch (algorithm) {
1801                 case ALGORITHM_LEFT_ASYMMETRIC:
1802                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1803                         qd_idx = pd_idx + 1;
1804                         if (pd_idx == raid_disks-1) {
1805                                 (*dd_idx)++;    /* Q D D D P */
1806                                 qd_idx = 0;
1807                         } else if (*dd_idx >= pd_idx)
1808                                 (*dd_idx) += 2; /* D D P Q D */
1809                         break;
1810                 case ALGORITHM_RIGHT_ASYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         qd_idx = pd_idx + 1;
1813                         if (pd_idx == raid_disks-1) {
1814                                 (*dd_idx)++;    /* Q D D D P */
1815                                 qd_idx = 0;
1816                         } else if (*dd_idx >= pd_idx)
1817                                 (*dd_idx) += 2; /* D D P Q D */
1818                         break;
1819                 case ALGORITHM_LEFT_SYMMETRIC:
1820                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1821                         qd_idx = (pd_idx + 1) % raid_disks;
1822                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823                         break;
1824                 case ALGORITHM_RIGHT_SYMMETRIC:
1825                         pd_idx = sector_div(stripe2, raid_disks);
1826                         qd_idx = (pd_idx + 1) % raid_disks;
1827                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828                         break;
1829
1830                 case ALGORITHM_PARITY_0:
1831                         pd_idx = 0;
1832                         qd_idx = 1;
1833                         (*dd_idx) += 2;
1834                         break;
1835                 case ALGORITHM_PARITY_N:
1836                         pd_idx = data_disks;
1837                         qd_idx = data_disks + 1;
1838                         break;
1839
1840                 case ALGORITHM_ROTATING_ZERO_RESTART:
1841                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1842                          * of blocks for computing Q is different.
1843                          */
1844                         pd_idx = sector_div(stripe2, raid_disks);
1845                         qd_idx = pd_idx + 1;
1846                         if (pd_idx == raid_disks-1) {
1847                                 (*dd_idx)++;    /* Q D D D P */
1848                                 qd_idx = 0;
1849                         } else if (*dd_idx >= pd_idx)
1850                                 (*dd_idx) += 2; /* D D P Q D */
1851                         ddf_layout = 1;
1852                         break;
1853
1854                 case ALGORITHM_ROTATING_N_RESTART:
1855                         /* Same a left_asymmetric, by first stripe is
1856                          * D D D P Q  rather than
1857                          * Q D D D P
1858                          */
1859                         stripe2 += 1;
1860                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1861                         qd_idx = pd_idx + 1;
1862                         if (pd_idx == raid_disks-1) {
1863                                 (*dd_idx)++;    /* Q D D D P */
1864                                 qd_idx = 0;
1865                         } else if (*dd_idx >= pd_idx)
1866                                 (*dd_idx) += 2; /* D D P Q D */
1867                         ddf_layout = 1;
1868                         break;
1869
1870                 case ALGORITHM_ROTATING_N_CONTINUE:
1871                         /* Same as left_symmetric but Q is before P */
1872                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1873                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1874                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1875                         ddf_layout = 1;
1876                         break;
1877
1878                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1879                         /* RAID5 left_asymmetric, with Q on last device */
1880                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1881                         if (*dd_idx >= pd_idx)
1882                                 (*dd_idx)++;
1883                         qd_idx = raid_disks - 1;
1884                         break;
1885
1886                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1887                         pd_idx = sector_div(stripe2, raid_disks-1);
1888                         if (*dd_idx >= pd_idx)
1889                                 (*dd_idx)++;
1890                         qd_idx = raid_disks - 1;
1891                         break;
1892
1893                 case ALGORITHM_LEFT_SYMMETRIC_6:
1894                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1895                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1896                         qd_idx = raid_disks - 1;
1897                         break;
1898
1899                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1900                         pd_idx = sector_div(stripe2, raid_disks-1);
1901                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1902                         qd_idx = raid_disks - 1;
1903                         break;
1904
1905                 case ALGORITHM_PARITY_0_6:
1906                         pd_idx = 0;
1907                         (*dd_idx)++;
1908                         qd_idx = raid_disks - 1;
1909                         break;
1910
1911                 default:
1912                         BUG();
1913                 }
1914                 break;
1915         }
1916
1917         if (sh) {
1918                 sh->pd_idx = pd_idx;
1919                 sh->qd_idx = qd_idx;
1920                 sh->ddf_layout = ddf_layout;
1921         }
1922         /*
1923          * Finally, compute the new sector number
1924          */
1925         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1926         return new_sector;
1927 }
1928
1929
1930 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1931 {
1932         raid5_conf_t *conf = sh->raid_conf;
1933         int raid_disks = sh->disks;
1934         int data_disks = raid_disks - conf->max_degraded;
1935         sector_t new_sector = sh->sector, check;
1936         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1937                                          : conf->chunk_sectors;
1938         int algorithm = previous ? conf->prev_algo
1939                                  : conf->algorithm;
1940         sector_t stripe;
1941         int chunk_offset;
1942         sector_t chunk_number;
1943         int dummy1, dd_idx = i;
1944         sector_t r_sector;
1945         struct stripe_head sh2;
1946
1947
1948         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1949         stripe = new_sector;
1950
1951         if (i == sh->pd_idx)
1952                 return 0;
1953         switch(conf->level) {
1954         case 4: break;
1955         case 5:
1956                 switch (algorithm) {
1957                 case ALGORITHM_LEFT_ASYMMETRIC:
1958                 case ALGORITHM_RIGHT_ASYMMETRIC:
1959                         if (i > sh->pd_idx)
1960                                 i--;
1961                         break;
1962                 case ALGORITHM_LEFT_SYMMETRIC:
1963                 case ALGORITHM_RIGHT_SYMMETRIC:
1964                         if (i < sh->pd_idx)
1965                                 i += raid_disks;
1966                         i -= (sh->pd_idx + 1);
1967                         break;
1968                 case ALGORITHM_PARITY_0:
1969                         i -= 1;
1970                         break;
1971                 case ALGORITHM_PARITY_N:
1972                         break;
1973                 default:
1974                         BUG();
1975                 }
1976                 break;
1977         case 6:
1978                 if (i == sh->qd_idx)
1979                         return 0; /* It is the Q disk */
1980                 switch (algorithm) {
1981                 case ALGORITHM_LEFT_ASYMMETRIC:
1982                 case ALGORITHM_RIGHT_ASYMMETRIC:
1983                 case ALGORITHM_ROTATING_ZERO_RESTART:
1984                 case ALGORITHM_ROTATING_N_RESTART:
1985                         if (sh->pd_idx == raid_disks-1)
1986                                 i--;    /* Q D D D P */
1987                         else if (i > sh->pd_idx)
1988                                 i -= 2; /* D D P Q D */
1989                         break;
1990                 case ALGORITHM_LEFT_SYMMETRIC:
1991                 case ALGORITHM_RIGHT_SYMMETRIC:
1992                         if (sh->pd_idx == raid_disks-1)
1993                                 i--; /* Q D D D P */
1994                         else {
1995                                 /* D D P Q D */
1996                                 if (i < sh->pd_idx)
1997                                         i += raid_disks;
1998                                 i -= (sh->pd_idx + 2);
1999                         }
2000                         break;
2001                 case ALGORITHM_PARITY_0:
2002                         i -= 2;
2003                         break;
2004                 case ALGORITHM_PARITY_N:
2005                         break;
2006                 case ALGORITHM_ROTATING_N_CONTINUE:
2007                         /* Like left_symmetric, but P is before Q */
2008                         if (sh->pd_idx == 0)
2009                                 i--;    /* P D D D Q */
2010                         else {
2011                                 /* D D Q P D */
2012                                 if (i < sh->pd_idx)
2013                                         i += raid_disks;
2014                                 i -= (sh->pd_idx + 1);
2015                         }
2016                         break;
2017                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2018                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2019                         if (i > sh->pd_idx)
2020                                 i--;
2021                         break;
2022                 case ALGORITHM_LEFT_SYMMETRIC_6:
2023                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2024                         if (i < sh->pd_idx)
2025                                 i += data_disks + 1;
2026                         i -= (sh->pd_idx + 1);
2027                         break;
2028                 case ALGORITHM_PARITY_0_6:
2029                         i -= 1;
2030                         break;
2031                 default:
2032                         BUG();
2033                 }
2034                 break;
2035         }
2036
2037         chunk_number = stripe * data_disks + i;
2038         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2039
2040         check = raid5_compute_sector(conf, r_sector,
2041                                      previous, &dummy1, &sh2);
2042         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2043                 || sh2.qd_idx != sh->qd_idx) {
2044                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2045                        mdname(conf->mddev));
2046                 return 0;
2047         }
2048         return r_sector;
2049 }
2050
2051
2052 static void
2053 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2054                          int rcw, int expand)
2055 {
2056         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2057         raid5_conf_t *conf = sh->raid_conf;
2058         int level = conf->level;
2059
2060         if (rcw) {
2061                 /* if we are not expanding this is a proper write request, and
2062                  * there will be bios with new data to be drained into the
2063                  * stripe cache
2064                  */
2065                 if (!expand) {
2066                         sh->reconstruct_state = reconstruct_state_drain_run;
2067                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2068                 } else
2069                         sh->reconstruct_state = reconstruct_state_run;
2070
2071                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2072
2073                 for (i = disks; i--; ) {
2074                         struct r5dev *dev = &sh->dev[i];
2075
2076                         if (dev->towrite) {
2077                                 set_bit(R5_LOCKED, &dev->flags);
2078                                 set_bit(R5_Wantdrain, &dev->flags);
2079                                 if (!expand)
2080                                         clear_bit(R5_UPTODATE, &dev->flags);
2081                                 s->locked++;
2082                         }
2083                 }
2084                 if (s->locked + conf->max_degraded == disks)
2085                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2086                                 atomic_inc(&conf->pending_full_writes);
2087         } else {
2088                 BUG_ON(level == 6);
2089                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2090                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2091
2092                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2093                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2094                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2096
2097                 for (i = disks; i--; ) {
2098                         struct r5dev *dev = &sh->dev[i];
2099                         if (i == pd_idx)
2100                                 continue;
2101
2102                         if (dev->towrite &&
2103                             (test_bit(R5_UPTODATE, &dev->flags) ||
2104                              test_bit(R5_Wantcompute, &dev->flags))) {
2105                                 set_bit(R5_Wantdrain, &dev->flags);
2106                                 set_bit(R5_LOCKED, &dev->flags);
2107                                 clear_bit(R5_UPTODATE, &dev->flags);
2108                                 s->locked++;
2109                         }
2110                 }
2111         }
2112
2113         /* keep the parity disk(s) locked while asynchronous operations
2114          * are in flight
2115          */
2116         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2117         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2118         s->locked++;
2119
2120         if (level == 6) {
2121                 int qd_idx = sh->qd_idx;
2122                 struct r5dev *dev = &sh->dev[qd_idx];
2123
2124                 set_bit(R5_LOCKED, &dev->flags);
2125                 clear_bit(R5_UPTODATE, &dev->flags);
2126                 s->locked++;
2127         }
2128
2129         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2130                 __func__, (unsigned long long)sh->sector,
2131                 s->locked, s->ops_request);
2132 }
2133
2134 /*
2135  * Each stripe/dev can have one or more bion attached.
2136  * toread/towrite point to the first in a chain.
2137  * The bi_next chain must be in order.
2138  */
2139 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2140 {
2141         struct bio **bip;
2142         raid5_conf_t *conf = sh->raid_conf;
2143         int firstwrite=0;
2144
2145         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2146                 (unsigned long long)bi->bi_sector,
2147                 (unsigned long long)sh->sector);
2148
2149
2150         spin_lock_irq(&conf->device_lock);
2151         if (forwrite) {
2152                 bip = &sh->dev[dd_idx].towrite;
2153                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2154                         firstwrite = 1;
2155         } else
2156                 bip = &sh->dev[dd_idx].toread;
2157         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2158                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2159                         goto overlap;
2160                 bip = & (*bip)->bi_next;
2161         }
2162         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2163                 goto overlap;
2164
2165         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2166         if (*bip)
2167                 bi->bi_next = *bip;
2168         *bip = bi;
2169         bi->bi_phys_segments++;
2170
2171         if (forwrite) {
2172                 /* check if page is covered */
2173                 sector_t sector = sh->dev[dd_idx].sector;
2174                 for (bi=sh->dev[dd_idx].towrite;
2175                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2176                              bi && bi->bi_sector <= sector;
2177                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2178                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2179                                 sector = bi->bi_sector + (bi->bi_size>>9);
2180                 }
2181                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2182                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2183         }
2184         spin_unlock_irq(&conf->device_lock);
2185
2186         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2187                 (unsigned long long)(*bip)->bi_sector,
2188                 (unsigned long long)sh->sector, dd_idx);
2189
2190         if (conf->mddev->bitmap && firstwrite) {
2191                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2192                                   STRIPE_SECTORS, 0);
2193                 sh->bm_seq = conf->seq_flush+1;
2194                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2195         }
2196         return 1;
2197
2198  overlap:
2199         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2200         spin_unlock_irq(&conf->device_lock);
2201         return 0;
2202 }
2203
2204 static void end_reshape(raid5_conf_t *conf);
2205
2206 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2207                             struct stripe_head *sh)
2208 {
2209         int sectors_per_chunk =
2210                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2211         int dd_idx;
2212         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2213         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2214
2215         raid5_compute_sector(conf,
2216                              stripe * (disks - conf->max_degraded)
2217                              *sectors_per_chunk + chunk_offset,
2218                              previous,
2219                              &dd_idx, sh);
2220 }
2221
2222 static void
2223 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2224                                 struct stripe_head_state *s, int disks,
2225                                 struct bio **return_bi)
2226 {
2227         int i;
2228         for (i = disks; i--; ) {
2229                 struct bio *bi;
2230                 int bitmap_end = 0;
2231
2232                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2233                         mdk_rdev_t *rdev;
2234                         rcu_read_lock();
2235                         rdev = rcu_dereference(conf->disks[i].rdev);
2236                         if (rdev && test_bit(In_sync, &rdev->flags))
2237                                 /* multiple read failures in one stripe */
2238                                 md_error(conf->mddev, rdev);
2239                         rcu_read_unlock();
2240                 }
2241                 spin_lock_irq(&conf->device_lock);
2242                 /* fail all writes first */
2243                 bi = sh->dev[i].towrite;
2244                 sh->dev[i].towrite = NULL;
2245                 if (bi) {
2246                         s->to_write--;
2247                         bitmap_end = 1;
2248                 }
2249
2250                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2251                         wake_up(&conf->wait_for_overlap);
2252
2253                 while (bi && bi->bi_sector <
2254                         sh->dev[i].sector + STRIPE_SECTORS) {
2255                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2256                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2257                         if (!raid5_dec_bi_phys_segments(bi)) {
2258                                 md_write_end(conf->mddev);
2259                                 bi->bi_next = *return_bi;
2260                                 *return_bi = bi;
2261                         }
2262                         bi = nextbi;
2263                 }
2264                 /* and fail all 'written' */
2265                 bi = sh->dev[i].written;
2266                 sh->dev[i].written = NULL;
2267                 if (bi) bitmap_end = 1;
2268                 while (bi && bi->bi_sector <
2269                        sh->dev[i].sector + STRIPE_SECTORS) {
2270                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2271                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2272                         if (!raid5_dec_bi_phys_segments(bi)) {
2273                                 md_write_end(conf->mddev);
2274                                 bi->bi_next = *return_bi;
2275                                 *return_bi = bi;
2276                         }
2277                         bi = bi2;
2278                 }
2279
2280                 /* fail any reads if this device is non-operational and
2281                  * the data has not reached the cache yet.
2282                  */
2283                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2284                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2285                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2286                         bi = sh->dev[i].toread;
2287                         sh->dev[i].toread = NULL;
2288                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2289                                 wake_up(&conf->wait_for_overlap);
2290                         if (bi) s->to_read--;
2291                         while (bi && bi->bi_sector <
2292                                sh->dev[i].sector + STRIPE_SECTORS) {
2293                                 struct bio *nextbi =
2294                                         r5_next_bio(bi, sh->dev[i].sector);
2295                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2296                                 if (!raid5_dec_bi_phys_segments(bi)) {
2297                                         bi->bi_next = *return_bi;
2298                                         *return_bi = bi;
2299                                 }
2300                                 bi = nextbi;
2301                         }
2302                 }
2303                 spin_unlock_irq(&conf->device_lock);
2304                 if (bitmap_end)
2305                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2306                                         STRIPE_SECTORS, 0, 0);
2307         }
2308
2309         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2310                 if (atomic_dec_and_test(&conf->pending_full_writes))
2311                         md_wakeup_thread(conf->mddev->thread);
2312 }
2313
2314 /* fetch_block - checks the given member device to see if its data needs
2315  * to be read or computed to satisfy a request.
2316  *
2317  * Returns 1 when no more member devices need to be checked, otherwise returns
2318  * 0 to tell the loop in handle_stripe_fill to continue
2319  */
2320 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2321                        int disk_idx, int disks)
2322 {
2323         struct r5dev *dev = &sh->dev[disk_idx];
2324         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2325                                   &sh->dev[s->failed_num[1]] };
2326
2327         /* is the data in this block needed, and can we get it? */
2328         if (!test_bit(R5_LOCKED, &dev->flags) &&
2329             !test_bit(R5_UPTODATE, &dev->flags) &&
2330             (dev->toread ||
2331              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2332              s->syncing || s->expanding ||
2333              (s->failed >= 1 && fdev[0]->toread) ||
2334              (s->failed >= 2 && fdev[1]->toread) ||
2335              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2336               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2337              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2338                 /* we would like to get this block, possibly by computing it,
2339                  * otherwise read it if the backing disk is insync
2340                  */
2341                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2342                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2343                 if ((s->uptodate == disks - 1) &&
2344                     (s->failed && (disk_idx == s->failed_num[0] ||
2345                                    disk_idx == s->failed_num[1]))) {
2346                         /* have disk failed, and we're requested to fetch it;
2347                          * do compute it
2348                          */
2349                         pr_debug("Computing stripe %llu block %d\n",
2350                                (unsigned long long)sh->sector, disk_idx);
2351                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2352                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2353                         set_bit(R5_Wantcompute, &dev->flags);
2354                         sh->ops.target = disk_idx;
2355                         sh->ops.target2 = -1; /* no 2nd target */
2356                         s->req_compute = 1;
2357                         /* Careful: from this point on 'uptodate' is in the eye
2358                          * of raid_run_ops which services 'compute' operations
2359                          * before writes. R5_Wantcompute flags a block that will
2360                          * be R5_UPTODATE by the time it is needed for a
2361                          * subsequent operation.
2362                          */
2363                         s->uptodate++;
2364                         return 1;
2365                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2366                         /* Computing 2-failure is *very* expensive; only
2367                          * do it if failed >= 2
2368                          */
2369                         int other;
2370                         for (other = disks; other--; ) {
2371                                 if (other == disk_idx)
2372                                         continue;
2373                                 if (!test_bit(R5_UPTODATE,
2374                                       &sh->dev[other].flags))
2375                                         break;
2376                         }
2377                         BUG_ON(other < 0);
2378                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2379                                (unsigned long long)sh->sector,
2380                                disk_idx, other);
2381                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2382                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2383                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2384                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2385                         sh->ops.target = disk_idx;
2386                         sh->ops.target2 = other;
2387                         s->uptodate += 2;
2388                         s->req_compute = 1;
2389                         return 1;
2390                 } else if (test_bit(R5_Insync, &dev->flags)) {
2391                         set_bit(R5_LOCKED, &dev->flags);
2392                         set_bit(R5_Wantread, &dev->flags);
2393                         s->locked++;
2394                         pr_debug("Reading block %d (sync=%d)\n",
2395                                 disk_idx, s->syncing);
2396                 }
2397         }
2398
2399         return 0;
2400 }
2401
2402 /**
2403  * handle_stripe_fill - read or compute data to satisfy pending requests.
2404  */
2405 static void handle_stripe_fill(struct stripe_head *sh,
2406                                struct stripe_head_state *s,
2407                                int disks)
2408 {
2409         int i;
2410
2411         /* look for blocks to read/compute, skip this if a compute
2412          * is already in flight, or if the stripe contents are in the
2413          * midst of changing due to a write
2414          */
2415         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2416             !sh->reconstruct_state)
2417                 for (i = disks; i--; )
2418                         if (fetch_block(sh, s, i, disks))
2419                                 break;
2420         set_bit(STRIPE_HANDLE, &sh->state);
2421 }
2422
2423
2424 /* handle_stripe_clean_event
2425  * any written block on an uptodate or failed drive can be returned.
2426  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2427  * never LOCKED, so we don't need to test 'failed' directly.
2428  */
2429 static void handle_stripe_clean_event(raid5_conf_t *conf,
2430         struct stripe_head *sh, int disks, struct bio **return_bi)
2431 {
2432         int i;
2433         struct r5dev *dev;
2434
2435         for (i = disks; i--; )
2436                 if (sh->dev[i].written) {
2437                         dev = &sh->dev[i];
2438                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2439                                 test_bit(R5_UPTODATE, &dev->flags)) {
2440                                 /* We can return any write requests */
2441                                 struct bio *wbi, *wbi2;
2442                                 int bitmap_end = 0;
2443                                 pr_debug("Return write for disc %d\n", i);
2444                                 spin_lock_irq(&conf->device_lock);
2445                                 wbi = dev->written;
2446                                 dev->written = NULL;
2447                                 while (wbi && wbi->bi_sector <
2448                                         dev->sector + STRIPE_SECTORS) {
2449                                         wbi2 = r5_next_bio(wbi, dev->sector);
2450                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2451                                                 md_write_end(conf->mddev);
2452                                                 wbi->bi_next = *return_bi;
2453                                                 *return_bi = wbi;
2454                                         }
2455                                         wbi = wbi2;
2456                                 }
2457                                 if (dev->towrite == NULL)
2458                                         bitmap_end = 1;
2459                                 spin_unlock_irq(&conf->device_lock);
2460                                 if (bitmap_end)
2461                                         bitmap_endwrite(conf->mddev->bitmap,
2462                                                         sh->sector,
2463                                                         STRIPE_SECTORS,
2464                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2465                                                         0);
2466                         }
2467                 }
2468
2469         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2470                 if (atomic_dec_and_test(&conf->pending_full_writes))
2471                         md_wakeup_thread(conf->mddev->thread);
2472 }
2473
2474 static void handle_stripe_dirtying(raid5_conf_t *conf,
2475                                    struct stripe_head *sh,
2476                                    struct stripe_head_state *s,
2477                                    int disks)
2478 {
2479         int rmw = 0, rcw = 0, i;
2480         if (conf->max_degraded == 2) {
2481                 /* RAID6 requires 'rcw' in current implementation
2482                  * Calculate the real rcw later - for now fake it
2483                  * look like rcw is cheaper
2484                  */
2485                 rcw = 1; rmw = 2;
2486         } else for (i = disks; i--; ) {
2487                 /* would I have to read this buffer for read_modify_write */
2488                 struct r5dev *dev = &sh->dev[i];
2489                 if ((dev->towrite || i == sh->pd_idx) &&
2490                     !test_bit(R5_LOCKED, &dev->flags) &&
2491                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2492                       test_bit(R5_Wantcompute, &dev->flags))) {
2493                         if (test_bit(R5_Insync, &dev->flags))
2494                                 rmw++;
2495                         else
2496                                 rmw += 2*disks;  /* cannot read it */
2497                 }
2498                 /* Would I have to read this buffer for reconstruct_write */
2499                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2500                     !test_bit(R5_LOCKED, &dev->flags) &&
2501                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2502                     test_bit(R5_Wantcompute, &dev->flags))) {
2503                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2504                         else
2505                                 rcw += 2*disks;
2506                 }
2507         }
2508         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2509                 (unsigned long long)sh->sector, rmw, rcw);
2510         set_bit(STRIPE_HANDLE, &sh->state);
2511         if (rmw < rcw && rmw > 0)
2512                 /* prefer read-modify-write, but need to get some data */
2513                 for (i = disks; i--; ) {
2514                         struct r5dev *dev = &sh->dev[i];
2515                         if ((dev->towrite || i == sh->pd_idx) &&
2516                             !test_bit(R5_LOCKED, &dev->flags) &&
2517                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2518                             test_bit(R5_Wantcompute, &dev->flags)) &&
2519                             test_bit(R5_Insync, &dev->flags)) {
2520                                 if (
2521                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2522                                         pr_debug("Read_old block "
2523                                                 "%d for r-m-w\n", i);
2524                                         set_bit(R5_LOCKED, &dev->flags);
2525                                         set_bit(R5_Wantread, &dev->flags);
2526                                         s->locked++;
2527                                 } else {
2528                                         set_bit(STRIPE_DELAYED, &sh->state);
2529                                         set_bit(STRIPE_HANDLE, &sh->state);
2530                                 }
2531                         }
2532                 }
2533         if (rcw <= rmw && rcw > 0) {
2534                 /* want reconstruct write, but need to get some data */
2535                 rcw = 0;
2536                 for (i = disks; i--; ) {
2537                         struct r5dev *dev = &sh->dev[i];
2538                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2539                             i != sh->pd_idx && i != sh->qd_idx &&
2540                             !test_bit(R5_LOCKED, &dev->flags) &&
2541                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2542                               test_bit(R5_Wantcompute, &dev->flags))) {
2543                                 rcw++;
2544                                 if (!test_bit(R5_Insync, &dev->flags))
2545                                         continue; /* it's a failed drive */
2546                                 if (
2547                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2548                                         pr_debug("Read_old block "
2549                                                 "%d for Reconstruct\n", i);
2550                                         set_bit(R5_LOCKED, &dev->flags);
2551                                         set_bit(R5_Wantread, &dev->flags);
2552                                         s->locked++;
2553                                 } else {
2554                                         set_bit(STRIPE_DELAYED, &sh->state);
2555                                         set_bit(STRIPE_HANDLE, &sh->state);
2556                                 }
2557                         }
2558                 }
2559         }
2560         /* now if nothing is locked, and if we have enough data,
2561          * we can start a write request
2562          */
2563         /* since handle_stripe can be called at any time we need to handle the
2564          * case where a compute block operation has been submitted and then a
2565          * subsequent call wants to start a write request.  raid_run_ops only
2566          * handles the case where compute block and reconstruct are requested
2567          * simultaneously.  If this is not the case then new writes need to be
2568          * held off until the compute completes.
2569          */
2570         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2571             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2572             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2573                 schedule_reconstruction(sh, s, rcw == 0, 0);
2574 }
2575
2576 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2577                                 struct stripe_head_state *s, int disks)
2578 {
2579         struct r5dev *dev = NULL;
2580
2581         set_bit(STRIPE_HANDLE, &sh->state);
2582
2583         switch (sh->check_state) {
2584         case check_state_idle:
2585                 /* start a new check operation if there are no failures */
2586                 if (s->failed == 0) {
2587                         BUG_ON(s->uptodate != disks);
2588                         sh->check_state = check_state_run;
2589                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2590                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2591                         s->uptodate--;
2592                         break;
2593                 }
2594                 dev = &sh->dev[s->failed_num[0]];
2595                 /* fall through */
2596         case check_state_compute_result:
2597                 sh->check_state = check_state_idle;
2598                 if (!dev)
2599                         dev = &sh->dev[sh->pd_idx];
2600
2601                 /* check that a write has not made the stripe insync */
2602                 if (test_bit(STRIPE_INSYNC, &sh->state))
2603                         break;
2604
2605                 /* either failed parity check, or recovery is happening */
2606                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2607                 BUG_ON(s->uptodate != disks);
2608
2609                 set_bit(R5_LOCKED, &dev->flags);
2610                 s->locked++;
2611                 set_bit(R5_Wantwrite, &dev->flags);
2612
2613                 clear_bit(STRIPE_DEGRADED, &sh->state);
2614                 set_bit(STRIPE_INSYNC, &sh->state);
2615                 break;
2616         case check_state_run:
2617                 break; /* we will be called again upon completion */
2618         case check_state_check_result:
2619                 sh->check_state = check_state_idle;
2620
2621                 /* if a failure occurred during the check operation, leave
2622                  * STRIPE_INSYNC not set and let the stripe be handled again
2623                  */
2624                 if (s->failed)
2625                         break;
2626
2627                 /* handle a successful check operation, if parity is correct
2628                  * we are done.  Otherwise update the mismatch count and repair
2629                  * parity if !MD_RECOVERY_CHECK
2630                  */
2631                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2632                         /* parity is correct (on disc,
2633                          * not in buffer any more)
2634                          */
2635                         set_bit(STRIPE_INSYNC, &sh->state);
2636                 else {
2637                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2638                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2639                                 /* don't try to repair!! */
2640                                 set_bit(STRIPE_INSYNC, &sh->state);
2641                         else {
2642                                 sh->check_state = check_state_compute_run;
2643                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2644                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2645                                 set_bit(R5_Wantcompute,
2646                                         &sh->dev[sh->pd_idx].flags);
2647                                 sh->ops.target = sh->pd_idx;
2648                                 sh->ops.target2 = -1;
2649                                 s->uptodate++;
2650                         }
2651                 }
2652                 break;
2653         case check_state_compute_run:
2654                 break;
2655         default:
2656                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2657                        __func__, sh->check_state,
2658                        (unsigned long long) sh->sector);
2659                 BUG();
2660         }
2661 }
2662
2663
2664 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2665                                   struct stripe_head_state *s,
2666                                   int disks)
2667 {
2668         int pd_idx = sh->pd_idx;
2669         int qd_idx = sh->qd_idx;
2670         struct r5dev *dev;
2671
2672         set_bit(STRIPE_HANDLE, &sh->state);
2673
2674         BUG_ON(s->failed > 2);
2675
2676         /* Want to check and possibly repair P and Q.
2677          * However there could be one 'failed' device, in which
2678          * case we can only check one of them, possibly using the
2679          * other to generate missing data
2680          */
2681
2682         switch (sh->check_state) {
2683         case check_state_idle:
2684                 /* start a new check operation if there are < 2 failures */
2685                 if (s->failed == s->q_failed) {
2686                         /* The only possible failed device holds Q, so it
2687                          * makes sense to check P (If anything else were failed,
2688                          * we would have used P to recreate it).
2689                          */
2690                         sh->check_state = check_state_run;
2691                 }
2692                 if (!s->q_failed && s->failed < 2) {
2693                         /* Q is not failed, and we didn't use it to generate
2694                          * anything, so it makes sense to check it
2695                          */
2696                         if (sh->check_state == check_state_run)
2697                                 sh->check_state = check_state_run_pq;
2698                         else
2699                                 sh->check_state = check_state_run_q;
2700                 }
2701
2702                 /* discard potentially stale zero_sum_result */
2703                 sh->ops.zero_sum_result = 0;
2704
2705                 if (sh->check_state == check_state_run) {
2706                         /* async_xor_zero_sum destroys the contents of P */
2707                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2708                         s->uptodate--;
2709                 }
2710                 if (sh->check_state >= check_state_run &&
2711                     sh->check_state <= check_state_run_pq) {
2712                         /* async_syndrome_zero_sum preserves P and Q, so
2713                          * no need to mark them !uptodate here
2714                          */
2715                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2716                         break;
2717                 }
2718
2719                 /* we have 2-disk failure */
2720                 BUG_ON(s->failed != 2);
2721                 /* fall through */
2722         case check_state_compute_result:
2723                 sh->check_state = check_state_idle;
2724
2725                 /* check that a write has not made the stripe insync */
2726                 if (test_bit(STRIPE_INSYNC, &sh->state))
2727                         break;
2728
2729                 /* now write out any block on a failed drive,
2730                  * or P or Q if they were recomputed
2731                  */
2732                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2733                 if (s->failed == 2) {
2734                         dev = &sh->dev[s->failed_num[1]];
2735                         s->locked++;
2736                         set_bit(R5_LOCKED, &dev->flags);
2737                         set_bit(R5_Wantwrite, &dev->flags);
2738                 }
2739                 if (s->failed >= 1) {
2740                         dev = &sh->dev[s->failed_num[0]];
2741                         s->locked++;
2742                         set_bit(R5_LOCKED, &dev->flags);
2743                         set_bit(R5_Wantwrite, &dev->flags);
2744                 }
2745                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2746                         dev = &sh->dev[pd_idx];
2747                         s->locked++;
2748                         set_bit(R5_LOCKED, &dev->flags);
2749                         set_bit(R5_Wantwrite, &dev->flags);
2750                 }
2751                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2752                         dev = &sh->dev[qd_idx];
2753                         s->locked++;
2754                         set_bit(R5_LOCKED, &dev->flags);
2755                         set_bit(R5_Wantwrite, &dev->flags);
2756                 }
2757                 clear_bit(STRIPE_DEGRADED, &sh->state);
2758
2759                 set_bit(STRIPE_INSYNC, &sh->state);
2760                 break;
2761         case check_state_run:
2762         case check_state_run_q:
2763         case check_state_run_pq:
2764                 break; /* we will be called again upon completion */
2765         case check_state_check_result:
2766                 sh->check_state = check_state_idle;
2767
2768                 /* handle a successful check operation, if parity is correct
2769                  * we are done.  Otherwise update the mismatch count and repair
2770                  * parity if !MD_RECOVERY_CHECK
2771                  */
2772                 if (sh->ops.zero_sum_result == 0) {
2773                         /* both parities are correct */
2774                         if (!s->failed)
2775                                 set_bit(STRIPE_INSYNC, &sh->state);
2776                         else {
2777                                 /* in contrast to the raid5 case we can validate
2778                                  * parity, but still have a failure to write
2779                                  * back
2780                                  */
2781                                 sh->check_state = check_state_compute_result;
2782                                 /* Returning at this point means that we may go
2783                                  * off and bring p and/or q uptodate again so
2784                                  * we make sure to check zero_sum_result again
2785                                  * to verify if p or q need writeback
2786                                  */
2787                         }
2788                 } else {
2789                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2790                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2791                                 /* don't try to repair!! */
2792                                 set_bit(STRIPE_INSYNC, &sh->state);
2793                         else {
2794                                 int *target = &sh->ops.target;
2795
2796                                 sh->ops.target = -1;
2797                                 sh->ops.target2 = -1;
2798                                 sh->check_state = check_state_compute_run;
2799                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2800                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2801                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2802                                         set_bit(R5_Wantcompute,
2803                                                 &sh->dev[pd_idx].flags);
2804                                         *target = pd_idx;
2805                                         target = &sh->ops.target2;
2806                                         s->uptodate++;
2807                                 }
2808                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2809                                         set_bit(R5_Wantcompute,
2810                                                 &sh->dev[qd_idx].flags);
2811                                         *target = qd_idx;
2812                                         s->uptodate++;
2813                                 }
2814                         }
2815                 }
2816                 break;
2817         case check_state_compute_run:
2818                 break;
2819         default:
2820                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2821                        __func__, sh->check_state,
2822                        (unsigned long long) sh->sector);
2823                 BUG();
2824         }
2825 }
2826
2827 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2828 {
2829         int i;
2830
2831         /* We have read all the blocks in this stripe and now we need to
2832          * copy some of them into a target stripe for expand.
2833          */
2834         struct dma_async_tx_descriptor *tx = NULL;
2835         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2836         for (i = 0; i < sh->disks; i++)
2837                 if (i != sh->pd_idx && i != sh->qd_idx) {
2838                         int dd_idx, j;
2839                         struct stripe_head *sh2;
2840                         struct async_submit_ctl submit;
2841
2842                         sector_t bn = compute_blocknr(sh, i, 1);
2843                         sector_t s = raid5_compute_sector(conf, bn, 0,
2844                                                           &dd_idx, NULL);
2845                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2846                         if (sh2 == NULL)
2847                                 /* so far only the early blocks of this stripe
2848                                  * have been requested.  When later blocks
2849                                  * get requested, we will try again
2850                                  */
2851                                 continue;
2852                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2853                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2854                                 /* must have already done this block */
2855                                 release_stripe(sh2);
2856                                 continue;
2857                         }
2858
2859                         /* place all the copies on one channel */
2860                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2861                         tx = async_memcpy(sh2->dev[dd_idx].page,
2862                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2863                                           &submit);
2864
2865                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2866                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2867                         for (j = 0; j < conf->raid_disks; j++)
2868                                 if (j != sh2->pd_idx &&
2869                                     j != sh2->qd_idx &&
2870                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2871                                         break;
2872                         if (j == conf->raid_disks) {
2873                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2874                                 set_bit(STRIPE_HANDLE, &sh2->state);
2875                         }
2876                         release_stripe(sh2);
2877
2878                 }
2879         /* done submitting copies, wait for them to complete */
2880         if (tx) {
2881                 async_tx_ack(tx);
2882                 dma_wait_for_async_tx(tx);
2883         }
2884 }
2885
2886
2887 /*
2888  * handle_stripe - do things to a stripe.
2889  *
2890  * We lock the stripe and then examine the state of various bits
2891  * to see what needs to be done.
2892  * Possible results:
2893  *    return some read request which now have data
2894  *    return some write requests which are safely on disc
2895  *    schedule a read on some buffers
2896  *    schedule a write of some buffers
2897  *    return confirmation of parity correctness
2898  *
2899  * buffers are taken off read_list or write_list, and bh_cache buffers
2900  * get BH_Lock set before the stripe lock is released.
2901  *
2902  */
2903
2904 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2905 {
2906         raid5_conf_t *conf = sh->raid_conf;
2907         int disks = sh->disks;
2908         struct r5dev *dev;
2909         int i;
2910
2911         memset(s, 0, sizeof(*s));
2912
2913         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2914         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2915         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2916         s->failed_num[0] = -1;
2917         s->failed_num[1] = -1;
2918
2919         /* Now to look around and see what can be done */
2920         rcu_read_lock();
2921         spin_lock_irq(&conf->device_lock);
2922         for (i=disks; i--; ) {
2923                 mdk_rdev_t *rdev;
2924
2925                 dev = &sh->dev[i];
2926
2927                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2928                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2929                 /* maybe we can reply to a read
2930                  *
2931                  * new wantfill requests are only permitted while
2932                  * ops_complete_biofill is guaranteed to be inactive
2933                  */
2934                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2935                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2936                         set_bit(R5_Wantfill, &dev->flags);
2937
2938                 /* now count some things */
2939                 if (test_bit(R5_LOCKED, &dev->flags))
2940                         s->locked++;
2941                 if (test_bit(R5_UPTODATE, &dev->flags))
2942                         s->uptodate++;
2943                 if (test_bit(R5_Wantcompute, &dev->flags)) {
2944                         s->compute++;
2945                         BUG_ON(s->compute > 2);
2946                 }
2947
2948                 if (test_bit(R5_Wantfill, &dev->flags))
2949                         s->to_fill++;
2950                 else if (dev->toread)
2951                         s->to_read++;
2952                 if (dev->towrite) {
2953                         s->to_write++;
2954                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2955                                 s->non_overwrite++;
2956                 }
2957                 if (dev->written)
2958                         s->written++;
2959                 rdev = rcu_dereference(conf->disks[i].rdev);
2960                 if (s->blocked_rdev == NULL &&
2961                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2962                         s->blocked_rdev = rdev;
2963                         atomic_inc(&rdev->nr_pending);
2964                 }
2965                 clear_bit(R5_Insync, &dev->flags);
2966                 if (!rdev)
2967                         /* Not in-sync */;
2968                 else if (test_bit(In_sync, &rdev->flags))
2969                         set_bit(R5_Insync, &dev->flags);
2970                 else {
2971                         /* in sync if before recovery_offset */
2972                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2973                                 set_bit(R5_Insync, &dev->flags);
2974                 }
2975                 if (!test_bit(R5_Insync, &dev->flags)) {
2976                         /* The ReadError flag will just be confusing now */
2977                         clear_bit(R5_ReadError, &dev->flags);
2978                         clear_bit(R5_ReWrite, &dev->flags);
2979                 }
2980                 if (test_bit(R5_ReadError, &dev->flags))
2981                         clear_bit(R5_Insync, &dev->flags);
2982                 if (!test_bit(R5_Insync, &dev->flags)) {
2983                         if (s->failed < 2)
2984                                 s->failed_num[s->failed] = i;
2985                         s->failed++;
2986                 }
2987         }
2988         spin_unlock_irq(&conf->device_lock);
2989         rcu_read_unlock();
2990 }
2991
2992 static void handle_stripe(struct stripe_head *sh)
2993 {
2994         struct stripe_head_state s;
2995         raid5_conf_t *conf = sh->raid_conf;
2996         int i;
2997         int prexor;
2998         int disks = sh->disks;
2999         struct r5dev *pdev, *qdev;
3000
3001         clear_bit(STRIPE_HANDLE, &sh->state);
3002         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3003                 /* already being handled, ensure it gets handled
3004                  * again when current action finishes */
3005                 set_bit(STRIPE_HANDLE, &sh->state);
3006                 return;
3007         }
3008
3009         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3010                 set_bit(STRIPE_SYNCING, &sh->state);
3011                 clear_bit(STRIPE_INSYNC, &sh->state);
3012         }
3013         clear_bit(STRIPE_DELAYED, &sh->state);
3014
3015         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3016                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3017                (unsigned long long)sh->sector, sh->state,
3018                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3019                sh->check_state, sh->reconstruct_state);
3020
3021         analyse_stripe(sh, &s);
3022
3023         if (unlikely(s.blocked_rdev)) {
3024                 if (s.syncing || s.expanding || s.expanded ||
3025                     s.to_write || s.written) {
3026                         set_bit(STRIPE_HANDLE, &sh->state);
3027                         goto finish;
3028                 }
3029                 /* There is nothing for the blocked_rdev to block */
3030                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3031                 s.blocked_rdev = NULL;
3032         }
3033
3034         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3035                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3036                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3037         }
3038
3039         pr_debug("locked=%d uptodate=%d to_read=%d"
3040                " to_write=%d failed=%d failed_num=%d,%d\n",
3041                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3042                s.failed_num[0], s.failed_num[1]);
3043         /* check if the array has lost more than max_degraded devices and,
3044          * if so, some requests might need to be failed.
3045          */
3046         if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3047                 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3048         if (s.failed > conf->max_degraded && s.syncing) {
3049                 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
3050                 clear_bit(STRIPE_SYNCING, &sh->state);
3051                 s.syncing = 0;
3052         }
3053
3054         /*
3055          * might be able to return some write requests if the parity blocks
3056          * are safe, or on a failed drive
3057          */
3058         pdev = &sh->dev[sh->pd_idx];
3059         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3060                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3061         qdev = &sh->dev[sh->qd_idx];
3062         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3063                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3064                 || conf->level < 6;
3065
3066         if (s.written &&
3067             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3068                              && !test_bit(R5_LOCKED, &pdev->flags)
3069                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3070             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3071                              && !test_bit(R5_LOCKED, &qdev->flags)
3072                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3073                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3074
3075         /* Now we might consider reading some blocks, either to check/generate
3076          * parity, or to satisfy requests
3077          * or to load a block that is being partially written.
3078          */
3079         if (s.to_read || s.non_overwrite
3080             || (conf->level == 6 && s.to_write && s.failed)
3081             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3082                 handle_stripe_fill(sh, &s, disks);
3083
3084         /* Now we check to see if any write operations have recently
3085          * completed
3086          */
3087         prexor = 0;
3088         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3089                 prexor = 1;
3090         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3091             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3092                 sh->reconstruct_state = reconstruct_state_idle;
3093
3094                 /* All the 'written' buffers and the parity block are ready to
3095                  * be written back to disk
3096                  */
3097                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3098                 BUG_ON(sh->qd_idx >= 0 &&
3099                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3100                 for (i = disks; i--; ) {
3101                         struct r5dev *dev = &sh->dev[i];
3102                         if (test_bit(R5_LOCKED, &dev->flags) &&
3103                                 (i == sh->pd_idx || i == sh->qd_idx ||
3104                                  dev->written)) {
3105                                 pr_debug("Writing block %d\n", i);
3106                                 set_bit(R5_Wantwrite, &dev->flags);
3107                                 if (prexor)
3108                                         continue;
3109                                 if (!test_bit(R5_Insync, &dev->flags) ||
3110                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3111                                      s.failed == 0))
3112                                         set_bit(STRIPE_INSYNC, &sh->state);
3113                         }
3114                 }
3115                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3116                         s.dec_preread_active = 1;
3117         }
3118
3119         /* Now to consider new write requests and what else, if anything
3120          * should be read.  We do not handle new writes when:
3121          * 1/ A 'write' operation (copy+xor) is already in flight.
3122          * 2/ A 'check' operation is in flight, as it may clobber the parity
3123          *    block.
3124          */
3125         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3126                 handle_stripe_dirtying(conf, sh, &s, disks);
3127
3128         /* maybe we need to check and possibly fix the parity for this stripe
3129          * Any reads will already have been scheduled, so we just see if enough
3130          * data is available.  The parity check is held off while parity
3131          * dependent operations are in flight.
3132          */
3133         if (sh->check_state ||
3134             (s.syncing && s.locked == 0 &&
3135              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3136              !test_bit(STRIPE_INSYNC, &sh->state))) {
3137                 if (conf->level == 6)
3138                         handle_parity_checks6(conf, sh, &s, disks);
3139                 else
3140                         handle_parity_checks5(conf, sh, &s, disks);
3141         }
3142
3143         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3144                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3145                 clear_bit(STRIPE_SYNCING, &sh->state);
3146         }
3147
3148         /* If the failed drives are just a ReadError, then we might need
3149          * to progress the repair/check process
3150          */
3151         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3152                 for (i = 0; i < s.failed; i++) {
3153                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3154                         if (test_bit(R5_ReadError, &dev->flags)
3155                             && !test_bit(R5_LOCKED, &dev->flags)
3156                             && test_bit(R5_UPTODATE, &dev->flags)
3157                                 ) {
3158                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3159                                         set_bit(R5_Wantwrite, &dev->flags);
3160                                         set_bit(R5_ReWrite, &dev->flags);
3161                                         set_bit(R5_LOCKED, &dev->flags);
3162                                         s.locked++;
3163                                 } else {
3164                                         /* let's read it back */
3165                                         set_bit(R5_Wantread, &dev->flags);
3166                                         set_bit(R5_LOCKED, &dev->flags);
3167                                         s.locked++;
3168                                 }
3169                         }
3170                 }
3171
3172
3173         /* Finish reconstruct operations initiated by the expansion process */
3174         if (sh->reconstruct_state == reconstruct_state_result) {
3175                 struct stripe_head *sh_src
3176                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3177                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3178                         /* sh cannot be written until sh_src has been read.
3179                          * so arrange for sh to be delayed a little
3180                          */
3181                         set_bit(STRIPE_DELAYED, &sh->state);
3182                         set_bit(STRIPE_HANDLE, &sh->state);
3183                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3184                                               &sh_src->state))
3185                                 atomic_inc(&conf->preread_active_stripes);
3186                         release_stripe(sh_src);
3187                         goto finish;
3188                 }
3189                 if (sh_src)
3190                         release_stripe(sh_src);
3191
3192                 sh->reconstruct_state = reconstruct_state_idle;
3193                 clear_bit(STRIPE_EXPANDING, &sh->state);
3194                 for (i = conf->raid_disks; i--; ) {
3195                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3196                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3197                         s.locked++;
3198                 }
3199         }
3200
3201         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3202             !sh->reconstruct_state) {
3203                 /* Need to write out all blocks after computing parity */
3204                 sh->disks = conf->raid_disks;
3205                 stripe_set_idx(sh->sector, conf, 0, sh);
3206                 schedule_reconstruction(sh, &s, 1, 1);
3207         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3208                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3209                 atomic_dec(&conf->reshape_stripes);
3210                 wake_up(&conf->wait_for_overlap);
3211                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3212         }
3213
3214         if (s.expanding && s.locked == 0 &&
3215             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3216                 handle_stripe_expansion(conf, sh);
3217
3218 finish:
3219         /* wait for this device to become unblocked */
3220         if (unlikely(s.blocked_rdev))
3221                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3222
3223         if (s.ops_request)
3224                 raid_run_ops(sh, s.ops_request);
3225
3226         ops_run_io(sh, &s);
3227
3228
3229         if (s.dec_preread_active) {
3230                 /* We delay this until after ops_run_io so that if make_request
3231                  * is waiting on a flush, it won't continue until the writes
3232                  * have actually been submitted.
3233                  */
3234                 atomic_dec(&conf->preread_active_stripes);
3235                 if (atomic_read(&conf->preread_active_stripes) <
3236                     IO_THRESHOLD)
3237                         md_wakeup_thread(conf->mddev->thread);
3238         }
3239
3240         return_io(s.return_bi);
3241
3242         clear_bit(STRIPE_ACTIVE, &sh->state);
3243 }
3244
3245 static void raid5_activate_delayed(raid5_conf_t *conf)
3246 {
3247         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3248                 while (!list_empty(&conf->delayed_list)) {
3249                         struct list_head *l = conf->delayed_list.next;
3250                         struct stripe_head *sh;
3251                         sh = list_entry(l, struct stripe_head, lru);
3252                         list_del_init(l);
3253                         clear_bit(STRIPE_DELAYED, &sh->state);
3254                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3255                                 atomic_inc(&conf->preread_active_stripes);
3256                         list_add_tail(&sh->lru, &conf->hold_list);
3257                 }
3258         }
3259 }
3260
3261 static void activate_bit_delay(raid5_conf_t *conf)
3262 {
3263         /* device_lock is held */
3264         struct list_head head;
3265         list_add(&head, &conf->bitmap_list);
3266         list_del_init(&conf->bitmap_list);
3267         while (!list_empty(&head)) {
3268                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3269                 list_del_init(&sh->lru);
3270                 atomic_inc(&sh->count);
3271                 __release_stripe(conf, sh);
3272         }
3273 }
3274
3275 int md_raid5_congested(mddev_t *mddev, int bits)
3276 {
3277         raid5_conf_t *conf = mddev->private;
3278
3279         /* No difference between reads and writes.  Just check
3280          * how busy the stripe_cache is
3281          */
3282
3283         if (conf->inactive_blocked)
3284                 return 1;
3285         if (conf->quiesce)
3286                 return 1;
3287         if (list_empty_careful(&conf->inactive_list))
3288                 return 1;
3289
3290         return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(md_raid5_congested);
3293
3294 static int raid5_congested(void *data, int bits)
3295 {
3296         mddev_t *mddev = data;
3297
3298         return mddev_congested(mddev, bits) ||
3299                 md_raid5_congested(mddev, bits);
3300 }
3301
3302 /* We want read requests to align with chunks where possible,
3303  * but write requests don't need to.
3304  */
3305 static int raid5_mergeable_bvec(struct request_queue *q,
3306                                 struct bvec_merge_data *bvm,
3307                                 struct bio_vec *biovec)
3308 {
3309         mddev_t *mddev = q->queuedata;
3310         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3311         int max;
3312         unsigned int chunk_sectors = mddev->chunk_sectors;
3313         unsigned int bio_sectors = bvm->bi_size >> 9;
3314
3315         if ((bvm->bi_rw & 1) == WRITE)
3316                 return biovec->bv_len; /* always allow writes to be mergeable */
3317
3318         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3319                 chunk_sectors = mddev->new_chunk_sectors;
3320         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3321         if (max < 0) max = 0;
3322         if (max <= biovec->bv_len && bio_sectors == 0)
3323                 return biovec->bv_len;
3324         else
3325                 return max;
3326 }
3327
3328
3329 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3330 {
3331         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3332         unsigned int chunk_sectors = mddev->chunk_sectors;
3333         unsigned int bio_sectors = bio->bi_size >> 9;
3334
3335         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3336                 chunk_sectors = mddev->new_chunk_sectors;
3337         return  chunk_sectors >=
3338                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3339 }
3340
3341 /*
3342  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3343  *  later sampled by raid5d.
3344  */
3345 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3346 {
3347         unsigned long flags;
3348
3349         spin_lock_irqsave(&conf->device_lock, flags);
3350
3351         bi->bi_next = conf->retry_read_aligned_list;
3352         conf->retry_read_aligned_list = bi;
3353
3354         spin_unlock_irqrestore(&conf->device_lock, flags);
3355         md_wakeup_thread(conf->mddev->thread);
3356 }
3357
3358
3359 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3360 {
3361         struct bio *bi;
3362
3363         bi = conf->retry_read_aligned;
3364         if (bi) {
3365                 conf->retry_read_aligned = NULL;
3366                 return bi;
3367         }
3368         bi = conf->retry_read_aligned_list;
3369         if(bi) {
3370                 conf->retry_read_aligned_list = bi->bi_next;
3371                 bi->bi_next = NULL;
3372                 /*
3373                  * this sets the active strip count to 1 and the processed
3374                  * strip count to zero (upper 8 bits)
3375                  */
3376                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3377         }
3378
3379         return bi;
3380 }
3381
3382
3383 /*
3384  *  The "raid5_align_endio" should check if the read succeeded and if it
3385  *  did, call bio_endio on the original bio (having bio_put the new bio
3386  *  first).
3387  *  If the read failed..
3388  */
3389 static void raid5_align_endio(struct bio *bi, int error)
3390 {
3391         struct bio* raid_bi  = bi->bi_private;
3392         mddev_t *mddev;
3393         raid5_conf_t *conf;
3394         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3395         mdk_rdev_t *rdev;
3396
3397         bio_put(bi);
3398
3399         rdev = (void*)raid_bi->bi_next;
3400         raid_bi->bi_next = NULL;
3401         mddev = rdev->mddev;
3402         conf = mddev->private;
3403
3404         rdev_dec_pending(rdev, conf->mddev);
3405
3406         if (!error && uptodate) {
3407                 bio_endio(raid_bi, 0);
3408                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3409                         wake_up(&conf->wait_for_stripe);
3410                 return;
3411         }
3412
3413
3414         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3415
3416         add_bio_to_retry(raid_bi, conf);
3417 }
3418
3419 static int bio_fits_rdev(struct bio *bi)
3420 {
3421         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3422
3423         if ((bi->bi_size>>9) > queue_max_sectors(q))
3424                 return 0;
3425         blk_recount_segments(q, bi);
3426         if (bi->bi_phys_segments > queue_max_segments(q))
3427                 return 0;
3428
3429         if (q->merge_bvec_fn)
3430                 /* it's too hard to apply the merge_bvec_fn at this stage,
3431                  * just just give up
3432                  */
3433                 return 0;
3434
3435         return 1;
3436 }
3437
3438
3439 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3440 {
3441         raid5_conf_t *conf = mddev->private;
3442         int dd_idx;
3443         struct bio* align_bi;
3444         mdk_rdev_t *rdev;
3445
3446         if (!in_chunk_boundary(mddev, raid_bio)) {
3447                 pr_debug("chunk_aligned_read : non aligned\n");
3448                 return 0;
3449         }
3450         /*
3451          * use bio_clone_mddev to make a copy of the bio
3452          */
3453         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3454         if (!align_bi)
3455                 return 0;
3456         /*
3457          *   set bi_end_io to a new function, and set bi_private to the
3458          *     original bio.
3459          */
3460         align_bi->bi_end_io  = raid5_align_endio;
3461         align_bi->bi_private = raid_bio;
3462         /*
3463          *      compute position
3464          */
3465         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3466                                                     0,
3467                                                     &dd_idx, NULL);
3468
3469         rcu_read_lock();
3470         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3471         if (rdev && test_bit(In_sync, &rdev->flags)) {
3472                 atomic_inc(&rdev->nr_pending);
3473                 rcu_read_unlock();
3474                 raid_bio->bi_next = (void*)rdev;
3475                 align_bi->bi_bdev =  rdev->bdev;
3476                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3477                 align_bi->bi_sector += rdev->data_offset;
3478
3479                 if (!bio_fits_rdev(align_bi)) {
3480                         /* too big in some way */
3481                         bio_put(align_bi);
3482                         rdev_dec_pending(rdev, mddev);
3483                         return 0;
3484                 }
3485
3486                 spin_lock_irq(&conf->device_lock);
3487                 wait_event_lock_irq(conf->wait_for_stripe,
3488                                     conf->quiesce == 0,
3489                                     conf->device_lock, /* nothing */);
3490                 atomic_inc(&conf->active_aligned_reads);
3491                 spin_unlock_irq(&conf->device_lock);
3492
3493                 generic_make_request(align_bi);
3494                 return 1;
3495         } else {
3496                 rcu_read_unlock();
3497                 bio_put(align_bi);
3498                 return 0;
3499         }
3500 }
3501
3502 /* __get_priority_stripe - get the next stripe to process
3503  *
3504  * Full stripe writes are allowed to pass preread active stripes up until
3505  * the bypass_threshold is exceeded.  In general the bypass_count
3506  * increments when the handle_list is handled before the hold_list; however, it
3507  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3508  * stripe with in flight i/o.  The bypass_count will be reset when the
3509  * head of the hold_list has changed, i.e. the head was promoted to the
3510  * handle_list.
3511  */
3512 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3513 {
3514         struct stripe_head *sh;
3515
3516         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3517                   __func__,
3518                   list_empty(&conf->handle_list) ? "empty" : "busy",
3519                   list_empty(&conf->hold_list) ? "empty" : "busy",
3520                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3521
3522         if (!list_empty(&conf->handle_list)) {
3523                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3524
3525                 if (list_empty(&conf->hold_list))
3526                         conf->bypass_count = 0;
3527                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3528                         if (conf->hold_list.next == conf->last_hold)
3529                                 conf->bypass_count++;
3530                         else {
3531                                 conf->last_hold = conf->hold_list.next;
3532                                 conf->bypass_count -= conf->bypass_threshold;
3533                                 if (conf->bypass_count < 0)
3534                                         conf->bypass_count = 0;
3535                         }
3536                 }
3537         } else if (!list_empty(&conf->hold_list) &&
3538                    ((conf->bypass_threshold &&
3539                      conf->bypass_count > conf->bypass_threshold) ||
3540                     atomic_read(&conf->pending_full_writes) == 0)) {
3541                 sh = list_entry(conf->hold_list.next,
3542                                 typeof(*sh), lru);
3543                 conf->bypass_count -= conf->bypass_threshold;
3544                 if (conf->bypass_count < 0)
3545                         conf->bypass_count = 0;
3546         } else
3547                 return NULL;
3548
3549         list_del_init(&sh->lru);
3550         atomic_inc(&sh->count);
3551         BUG_ON(atomic_read(&sh->count) != 1);
3552         return sh;
3553 }
3554
3555 static int make_request(mddev_t *mddev, struct bio * bi)
3556 {
3557         raid5_conf_t *conf = mddev->private;
3558         int dd_idx;
3559         sector_t new_sector;
3560         sector_t logical_sector, last_sector;
3561         struct stripe_head *sh;
3562         const int rw = bio_data_dir(bi);
3563         int remaining;
3564         int plugged;
3565
3566         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3567                 md_flush_request(mddev, bi);
3568                 return 0;
3569         }
3570
3571         md_write_start(mddev, bi);
3572
3573         if (rw == READ &&
3574              mddev->reshape_position == MaxSector &&
3575              chunk_aligned_read(mddev,bi))
3576                 return 0;
3577
3578         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3579         last_sector = bi->bi_sector + (bi->bi_size>>9);
3580         bi->bi_next = NULL;
3581         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3582
3583         plugged = mddev_check_plugged(mddev);
3584         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3585                 DEFINE_WAIT(w);
3586                 int disks, data_disks;
3587                 int previous;
3588
3589         retry:
3590                 previous = 0;
3591                 disks = conf->raid_disks;
3592                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3593                 if (unlikely(conf->reshape_progress != MaxSector)) {
3594                         /* spinlock is needed as reshape_progress may be
3595                          * 64bit on a 32bit platform, and so it might be
3596                          * possible to see a half-updated value
3597                          * Of course reshape_progress could change after
3598                          * the lock is dropped, so once we get a reference
3599                          * to the stripe that we think it is, we will have
3600                          * to check again.
3601                          */
3602                         spin_lock_irq(&conf->device_lock);
3603                         if (mddev->delta_disks < 0
3604                             ? logical_sector < conf->reshape_progress
3605                             : logical_sector >= conf->reshape_progress) {
3606                                 disks = conf->previous_raid_disks;
3607                                 previous = 1;
3608                         } else {
3609                                 if (mddev->delta_disks < 0
3610                                     ? logical_sector < conf->reshape_safe
3611                                     : logical_sector >= conf->reshape_safe) {
3612                                         spin_unlock_irq(&conf->device_lock);
3613                                         schedule();
3614                                         goto retry;
3615                                 }
3616                         }
3617                         spin_unlock_irq(&conf->device_lock);
3618                 }
3619                 data_disks = disks - conf->max_degraded;
3620
3621                 new_sector = raid5_compute_sector(conf, logical_sector,
3622                                                   previous,
3623                                                   &dd_idx, NULL);
3624                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3625                         (unsigned long long)new_sector, 
3626                         (unsigned long long)logical_sector);
3627
3628                 sh = get_active_stripe(conf, new_sector, previous,
3629                                        (bi->bi_rw&RWA_MASK), 0);
3630                 if (sh) {
3631                         if (unlikely(previous)) {
3632                                 /* expansion might have moved on while waiting for a
3633                                  * stripe, so we must do the range check again.
3634                                  * Expansion could still move past after this
3635                                  * test, but as we are holding a reference to
3636                                  * 'sh', we know that if that happens,
3637                                  *  STRIPE_EXPANDING will get set and the expansion
3638                                  * won't proceed until we finish with the stripe.
3639                                  */
3640                                 int must_retry = 0;
3641                                 spin_lock_irq(&conf->device_lock);
3642                                 if (mddev->delta_disks < 0
3643                                     ? logical_sector >= conf->reshape_progress
3644                                     : logical_sector < conf->reshape_progress)
3645                                         /* mismatch, need to try again */
3646                                         must_retry = 1;
3647                                 spin_unlock_irq(&conf->device_lock);
3648                                 if (must_retry) {
3649                                         release_stripe(sh);
3650                                         schedule();
3651                                         goto retry;
3652                                 }
3653                         }
3654
3655                         if (rw == WRITE &&
3656                             logical_sector >= mddev->suspend_lo &&
3657                             logical_sector < mddev->suspend_hi) {
3658                                 release_stripe(sh);
3659                                 /* As the suspend_* range is controlled by
3660                                  * userspace, we want an interruptible
3661                                  * wait.
3662                                  */
3663                                 flush_signals(current);
3664                                 prepare_to_wait(&conf->wait_for_overlap,
3665                                                 &w, TASK_INTERRUPTIBLE);
3666                                 if (logical_sector >= mddev->suspend_lo &&
3667                                     logical_sector < mddev->suspend_hi)
3668                                         schedule();
3669                                 goto retry;
3670                         }
3671
3672                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3673                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3674                                 /* Stripe is busy expanding or
3675                                  * add failed due to overlap.  Flush everything
3676                                  * and wait a while
3677                                  */
3678                                 md_wakeup_thread(mddev->thread);
3679                                 release_stripe(sh);
3680                                 schedule();
3681                                 goto retry;
3682                         }
3683                         finish_wait(&conf->wait_for_overlap, &w);
3684                         set_bit(STRIPE_HANDLE, &sh->state);
3685                         clear_bit(STRIPE_DELAYED, &sh->state);
3686                         if ((bi->bi_rw & REQ_SYNC) &&
3687                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3688                                 atomic_inc(&conf->preread_active_stripes);
3689                         release_stripe(sh);
3690                 } else {
3691                         /* cannot get stripe for read-ahead, just give-up */
3692                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3693                         finish_wait(&conf->wait_for_overlap, &w);
3694                         break;
3695                 }
3696                         
3697         }
3698         if (!plugged)
3699                 md_wakeup_thread(mddev->thread);
3700
3701         spin_lock_irq(&conf->device_lock);
3702         remaining = raid5_dec_bi_phys_segments(bi);
3703         spin_unlock_irq(&conf->device_lock);
3704         if (remaining == 0) {
3705
3706                 if ( rw == WRITE )
3707                         md_write_end(mddev);
3708
3709                 bio_endio(bi, 0);
3710         }
3711
3712         return 0;
3713 }
3714
3715 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3716
3717 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3718 {
3719         /* reshaping is quite different to recovery/resync so it is
3720          * handled quite separately ... here.
3721          *
3722          * On each call to sync_request, we gather one chunk worth of
3723          * destination stripes and flag them as expanding.
3724          * Then we find all the source stripes and request reads.
3725          * As the reads complete, handle_stripe will copy the data
3726          * into the destination stripe and release that stripe.
3727          */
3728         raid5_conf_t *conf = mddev->private;
3729         struct stripe_head *sh;
3730         sector_t first_sector, last_sector;
3731         int raid_disks = conf->previous_raid_disks;
3732         int data_disks = raid_disks - conf->max_degraded;
3733         int new_data_disks = conf->raid_disks - conf->max_degraded;
3734         int i;
3735         int dd_idx;
3736         sector_t writepos, readpos, safepos;
3737         sector_t stripe_addr;
3738         int reshape_sectors;
3739         struct list_head stripes;
3740
3741         if (sector_nr == 0) {
3742                 /* If restarting in the middle, skip the initial sectors */
3743                 if (mddev->delta_disks < 0 &&
3744                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3745                         sector_nr = raid5_size(mddev, 0, 0)
3746                                 - conf->reshape_progress;
3747                 } else if (mddev->delta_disks >= 0 &&
3748                            conf->reshape_progress > 0)
3749                         sector_nr = conf->reshape_progress;
3750                 sector_div(sector_nr, new_data_disks);
3751                 if (sector_nr) {
3752                         mddev->curr_resync_completed = sector_nr;
3753                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3754                         *skipped = 1;
3755                         return sector_nr;
3756                 }
3757         }
3758
3759         /* We need to process a full chunk at a time.
3760          * If old and new chunk sizes differ, we need to process the
3761          * largest of these
3762          */
3763         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3764                 reshape_sectors = mddev->new_chunk_sectors;
3765         else
3766                 reshape_sectors = mddev->chunk_sectors;
3767
3768         /* we update the metadata when there is more than 3Meg
3769          * in the block range (that is rather arbitrary, should
3770          * probably be time based) or when the data about to be
3771          * copied would over-write the source of the data at
3772          * the front of the range.
3773          * i.e. one new_stripe along from reshape_progress new_maps
3774          * to after where reshape_safe old_maps to
3775          */
3776         writepos = conf->reshape_progress;
3777         sector_div(writepos, new_data_disks);
3778         readpos = conf->reshape_progress;
3779         sector_div(readpos, data_disks);
3780         safepos = conf->reshape_safe;
3781         sector_div(safepos, data_disks);
3782         if (mddev->delta_disks < 0) {
3783                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3784                 readpos += reshape_sectors;
3785                 safepos += reshape_sectors;
3786         } else {
3787                 writepos += reshape_sectors;
3788                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3789                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3790         }
3791
3792         /* 'writepos' is the most advanced device address we might write.
3793          * 'readpos' is the least advanced device address we might read.
3794          * 'safepos' is the least address recorded in the metadata as having
3795          *     been reshaped.
3796          * If 'readpos' is behind 'writepos', then there is no way that we can
3797          * ensure safety in the face of a crash - that must be done by userspace
3798          * making a backup of the data.  So in that case there is no particular
3799          * rush to update metadata.
3800          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3801          * update the metadata to advance 'safepos' to match 'readpos' so that
3802          * we can be safe in the event of a crash.
3803          * So we insist on updating metadata if safepos is behind writepos and
3804          * readpos is beyond writepos.
3805          * In any case, update the metadata every 10 seconds.
3806          * Maybe that number should be configurable, but I'm not sure it is
3807          * worth it.... maybe it could be a multiple of safemode_delay???
3808          */
3809         if ((mddev->delta_disks < 0
3810              ? (safepos > writepos && readpos < writepos)
3811              : (safepos < writepos && readpos > writepos)) ||
3812             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3813                 /* Cannot proceed until we've updated the superblock... */
3814                 wait_event(conf->wait_for_overlap,
3815                            atomic_read(&conf->reshape_stripes)==0);
3816                 mddev->reshape_position = conf->reshape_progress;
3817                 mddev->curr_resync_completed = sector_nr;
3818                 conf->reshape_checkpoint = jiffies;
3819                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3820                 md_wakeup_thread(mddev->thread);
3821                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3822                            kthread_should_stop());
3823                 spin_lock_irq(&conf->device_lock);
3824                 conf->reshape_safe = mddev->reshape_position;
3825                 spin_unlock_irq(&conf->device_lock);
3826                 wake_up(&conf->wait_for_overlap);
3827                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3828         }
3829
3830         if (mddev->delta_disks < 0) {
3831                 BUG_ON(conf->reshape_progress == 0);
3832                 stripe_addr = writepos;
3833                 BUG_ON((mddev->dev_sectors &
3834                         ~((sector_t)reshape_sectors - 1))
3835                        - reshape_sectors - stripe_addr
3836                        != sector_nr);
3837         } else {
3838                 BUG_ON(writepos != sector_nr + reshape_sectors);
3839                 stripe_addr = sector_nr;
3840         }
3841         INIT_LIST_HEAD(&stripes);
3842         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3843                 int j;
3844                 int skipped_disk = 0;
3845                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3846                 set_bit(STRIPE_EXPANDING, &sh->state);
3847                 atomic_inc(&conf->reshape_stripes);
3848                 /* If any of this stripe is beyond the end of the old
3849                  * array, then we need to zero those blocks
3850                  */
3851                 for (j=sh->disks; j--;) {
3852                         sector_t s;
3853                         if (j == sh->pd_idx)
3854                                 continue;
3855                         if (conf->level == 6 &&
3856                             j == sh->qd_idx)
3857                                 continue;
3858                         s = compute_blocknr(sh, j, 0);
3859                         if (s < raid5_size(mddev, 0, 0)) {
3860                                 skipped_disk = 1;
3861                                 continue;
3862                         }
3863                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3864                         set_bit(R5_Expanded, &sh->dev[j].flags);
3865                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3866                 }
3867                 if (!skipped_disk) {
3868                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3869                         set_bit(STRIPE_HANDLE, &sh->state);
3870                 }
3871                 list_add(&sh->lru, &stripes);
3872         }
3873         spin_lock_irq(&conf->device_lock);
3874         if (mddev->delta_disks < 0)
3875                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3876         else
3877                 conf->reshape_progress += reshape_sectors * new_data_disks;
3878         spin_unlock_irq(&conf->device_lock);
3879         /* Ok, those stripe are ready. We can start scheduling
3880          * reads on the source stripes.
3881          * The source stripes are determined by mapping the first and last
3882          * block on the destination stripes.
3883          */
3884         first_sector =
3885                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3886                                      1, &dd_idx, NULL);
3887         last_sector =
3888                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3889                                             * new_data_disks - 1),
3890                                      1, &dd_idx, NULL);
3891         if (last_sector >= mddev->dev_sectors)
3892                 last_sector = mddev->dev_sectors - 1;
3893         while (first_sector <= last_sector) {
3894                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3895                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3896                 set_bit(STRIPE_HANDLE, &sh->state);
3897                 release_stripe(sh);
3898                 first_sector += STRIPE_SECTORS;
3899         }
3900         /* Now that the sources are clearly marked, we can release
3901          * the destination stripes
3902          */
3903         while (!list_empty(&stripes)) {
3904                 sh = list_entry(stripes.next, struct stripe_head, lru);
3905                 list_del_init(&sh->lru);
3906                 release_stripe(sh);
3907         }
3908         /* If this takes us to the resync_max point where we have to pause,
3909          * then we need to write out the superblock.
3910          */
3911         sector_nr += reshape_sectors;
3912         if ((sector_nr - mddev->curr_resync_completed) * 2
3913             >= mddev->resync_max - mddev->curr_resync_completed) {
3914                 /* Cannot proceed until we've updated the superblock... */
3915                 wait_event(conf->wait_for_overlap,
3916                            atomic_read(&conf->reshape_stripes) == 0);
3917                 mddev->reshape_position = conf->reshape_progress;
3918                 mddev->curr_resync_completed = sector_nr;
3919                 conf->reshape_checkpoint = jiffies;
3920                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3921                 md_wakeup_thread(mddev->thread);
3922                 wait_event(mddev->sb_wait,
3923                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3924                            || kthread_should_stop());
3925                 spin_lock_irq(&conf->device_lock);
3926                 conf->reshape_safe = mddev->reshape_position;
3927                 spin_unlock_irq(&conf->device_lock);
3928                 wake_up(&conf->wait_for_overlap);
3929                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3930         }
3931         return reshape_sectors;
3932 }
3933
3934 /* FIXME go_faster isn't used */
3935 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3936 {
3937         raid5_conf_t *conf = mddev->private;
3938         struct stripe_head *sh;
3939         sector_t max_sector = mddev->dev_sectors;
3940         sector_t sync_blocks;
3941         int still_degraded = 0;
3942         int i;
3943
3944         if (sector_nr >= max_sector) {
3945                 /* just being told to finish up .. nothing much to do */
3946
3947                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3948                         end_reshape(conf);
3949                         return 0;
3950                 }
3951
3952                 if (mddev->curr_resync < max_sector) /* aborted */
3953                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3954                                         &sync_blocks, 1);
3955                 else /* completed sync */
3956                         conf->fullsync = 0;
3957                 bitmap_close_sync(mddev->bitmap);
3958
3959                 return 0;
3960         }
3961
3962         /* Allow raid5_quiesce to complete */
3963         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
3964
3965         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3966                 return reshape_request(mddev, sector_nr, skipped);
3967
3968         /* No need to check resync_max as we never do more than one
3969          * stripe, and as resync_max will always be on a chunk boundary,
3970          * if the check in md_do_sync didn't fire, there is no chance
3971          * of overstepping resync_max here
3972          */
3973
3974         /* if there is too many failed drives and we are trying
3975          * to resync, then assert that we are finished, because there is
3976          * nothing we can do.
3977          */
3978         if (mddev->degraded >= conf->max_degraded &&
3979             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3980                 sector_t rv = mddev->dev_sectors - sector_nr;
3981                 *skipped = 1;
3982                 return rv;
3983         }
3984         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3985             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3986             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3987                 /* we can skip this block, and probably more */
3988                 sync_blocks /= STRIPE_SECTORS;
3989                 *skipped = 1;
3990                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3991         }
3992
3993
3994         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3995
3996         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
3997         if (sh == NULL) {
3998                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
3999                 /* make sure we don't swamp the stripe cache if someone else
4000                  * is trying to get access
4001                  */
4002                 schedule_timeout_uninterruptible(1);
4003         }
4004         /* Need to check if array will still be degraded after recovery/resync
4005          * We don't need to check the 'failed' flag as when that gets set,
4006          * recovery aborts.
4007          */
4008         for (i = 0; i < conf->raid_disks; i++)
4009                 if (conf->disks[i].rdev == NULL)
4010                         still_degraded = 1;
4011
4012         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4013
4014         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4015
4016         handle_stripe(sh);
4017         release_stripe(sh);
4018
4019         return STRIPE_SECTORS;
4020 }
4021
4022 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4023 {
4024         /* We may not be able to submit a whole bio at once as there
4025          * may not be enough stripe_heads available.
4026          * We cannot pre-allocate enough stripe_heads as we may need
4027          * more than exist in the cache (if we allow ever large chunks).
4028          * So we do one stripe head at a time and record in
4029          * ->bi_hw_segments how many have been done.
4030          *
4031          * We *know* that this entire raid_bio is in one chunk, so
4032          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4033          */
4034         struct stripe_head *sh;
4035         int dd_idx;
4036         sector_t sector, logical_sector, last_sector;
4037         int scnt = 0;
4038         int remaining;
4039         int handled = 0;
4040
4041         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4042         sector = raid5_compute_sector(conf, logical_sector,
4043                                       0, &dd_idx, NULL);
4044         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4045
4046         for (; logical_sector < last_sector;
4047              logical_sector += STRIPE_SECTORS,
4048                      sector += STRIPE_SECTORS,
4049                      scnt++) {
4050
4051                 if (scnt < raid5_bi_hw_segments(raid_bio))
4052                         /* already done this stripe */
4053                         continue;
4054
4055                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4056
4057                 if (!sh) {
4058                         /* failed to get a stripe - must wait */
4059                         raid5_set_bi_hw_segments(raid_bio, scnt);
4060                         conf->retry_read_aligned = raid_bio;
4061                         return handled;
4062                 }
4063
4064                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4065                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4066                         release_stripe(sh);
4067                         raid5_set_bi_hw_segments(raid_bio, scnt);
4068                         conf->retry_read_aligned = raid_bio;
4069                         return handled;
4070                 }
4071
4072                 handle_stripe(sh);
4073                 release_stripe(sh);
4074                 handled++;
4075         }
4076         spin_lock_irq(&conf->device_lock);
4077         remaining = raid5_dec_bi_phys_segments(raid_bio);
4078         spin_unlock_irq(&conf->device_lock);
4079         if (remaining == 0)
4080                 bio_endio(raid_bio, 0);
4081         if (atomic_dec_and_test(&conf->active_aligned_reads))
4082                 wake_up(&conf->wait_for_stripe);
4083         return handled;
4084 }
4085
4086
4087 /*
4088  * This is our raid5 kernel thread.
4089  *
4090  * We scan the hash table for stripes which can be handled now.
4091  * During the scan, completed stripes are saved for us by the interrupt
4092  * handler, so that they will not have to wait for our next wakeup.
4093  */
4094 static void raid5d(mddev_t *mddev)
4095 {
4096         struct stripe_head *sh;
4097         raid5_conf_t *conf = mddev->private;
4098         int handled;
4099         struct blk_plug plug;
4100
4101         pr_debug("+++ raid5d active\n");
4102
4103         md_check_recovery(mddev);
4104
4105         blk_start_plug(&plug);
4106         handled = 0;
4107         spin_lock_irq(&conf->device_lock);
4108         while (1) {
4109                 struct bio *bio;
4110
4111                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4112                     !list_empty(&conf->bitmap_list)) {
4113                         /* Now is a good time to flush some bitmap updates */
4114                         conf->seq_flush++;
4115                         spin_unlock_irq(&conf->device_lock);
4116                         bitmap_unplug(mddev->bitmap);
4117                         spin_lock_irq(&conf->device_lock);
4118                         conf->seq_write = conf->seq_flush;
4119                         activate_bit_delay(conf);
4120                 }
4121                 if (atomic_read(&mddev->plug_cnt) == 0)
4122                         raid5_activate_delayed(conf);
4123
4124                 while ((bio = remove_bio_from_retry(conf))) {
4125                         int ok;
4126                         spin_unlock_irq(&conf->device_lock);
4127                         ok = retry_aligned_read(conf, bio);
4128                         spin_lock_irq(&conf->device_lock);
4129                         if (!ok)
4130                                 break;
4131                         handled++;
4132                 }
4133
4134                 sh = __get_priority_stripe(conf);
4135
4136                 if (!sh)
4137                         break;
4138                 spin_unlock_irq(&conf->device_lock);
4139                 
4140                 handled++;
4141                 handle_stripe(sh);
4142                 release_stripe(sh);
4143                 cond_resched();
4144
4145                 spin_lock_irq(&conf->device_lock);
4146         }
4147         pr_debug("%d stripes handled\n", handled);
4148
4149         spin_unlock_irq(&conf->device_lock);
4150
4151         async_tx_issue_pending_all();
4152         blk_finish_plug(&plug);
4153
4154         pr_debug("--- raid5d inactive\n");
4155 }
4156
4157 static ssize_t
4158 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4159 {
4160         raid5_conf_t *conf = mddev->private;
4161         if (conf)
4162                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4163         else
4164                 return 0;
4165 }
4166
4167 int
4168 raid5_set_cache_size(mddev_t *mddev, int size)
4169 {
4170         raid5_conf_t *conf = mddev->private;
4171         int err;
4172
4173         if (size <= 16 || size > 32768)
4174                 return -EINVAL;
4175         while (size < conf->max_nr_stripes) {
4176                 if (drop_one_stripe(conf))
4177                         conf->max_nr_stripes--;
4178                 else
4179                         break;
4180         }
4181         err = md_allow_write(mddev);
4182         if (err)
4183                 return err;
4184         while (size > conf->max_nr_stripes) {
4185                 if (grow_one_stripe(conf))
4186                         conf->max_nr_stripes++;
4187                 else break;
4188         }
4189         return 0;
4190 }
4191 EXPORT_SYMBOL(raid5_set_cache_size);
4192
4193 static ssize_t
4194 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4195 {
4196         raid5_conf_t *conf = mddev->private;
4197         unsigned long new;
4198         int err;
4199
4200         if (len >= PAGE_SIZE)
4201                 return -EINVAL;
4202         if (!conf)
4203                 return -ENODEV;
4204
4205         if (strict_strtoul(page, 10, &new))
4206                 return -EINVAL;
4207         err = raid5_set_cache_size(mddev, new);
4208         if (err)
4209                 return err;
4210         return len;
4211 }
4212
4213 static struct md_sysfs_entry
4214 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4215                                 raid5_show_stripe_cache_size,
4216                                 raid5_store_stripe_cache_size);
4217
4218 static ssize_t
4219 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4220 {
4221         raid5_conf_t *conf = mddev->private;
4222         if (conf)
4223                 return sprintf(page, "%d\n", conf->bypass_threshold);
4224         else
4225                 return 0;
4226 }
4227
4228 static ssize_t
4229 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4230 {
4231         raid5_conf_t *conf = mddev->private;
4232         unsigned long new;
4233         if (len >= PAGE_SIZE)
4234                 return -EINVAL;
4235         if (!conf)
4236                 return -ENODEV;
4237
4238         if (strict_strtoul(page, 10, &new))
4239                 return -EINVAL;
4240         if (new > conf->max_nr_stripes)
4241                 return -EINVAL;
4242         conf->bypass_threshold = new;
4243         return len;
4244 }
4245
4246 static struct md_sysfs_entry
4247 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4248                                         S_IRUGO | S_IWUSR,
4249                                         raid5_show_preread_threshold,
4250                                         raid5_store_preread_threshold);
4251
4252 static ssize_t
4253 stripe_cache_active_show(mddev_t *mddev, char *page)
4254 {
4255         raid5_conf_t *conf = mddev->private;
4256         if (conf)
4257                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4258         else
4259                 return 0;
4260 }
4261
4262 static struct md_sysfs_entry
4263 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4264
4265 static struct attribute *raid5_attrs[] =  {
4266         &raid5_stripecache_size.attr,
4267         &raid5_stripecache_active.attr,
4268         &raid5_preread_bypass_threshold.attr,
4269         NULL,
4270 };
4271 static struct attribute_group raid5_attrs_group = {
4272         .name = NULL,
4273         .attrs = raid5_attrs,
4274 };
4275
4276 static sector_t
4277 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4278 {
4279         raid5_conf_t *conf = mddev->private;
4280
4281         if (!sectors)
4282                 sectors = mddev->dev_sectors;
4283         if (!raid_disks)
4284                 /* size is defined by the smallest of previous and new size */
4285                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4286
4287         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4288         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4289         return sectors * (raid_disks - conf->max_degraded);
4290 }
4291
4292 static void raid5_free_percpu(raid5_conf_t *conf)
4293 {
4294         struct raid5_percpu *percpu;
4295         unsigned long cpu;
4296
4297         if (!conf->percpu)
4298                 return;
4299
4300         get_online_cpus();
4301         for_each_possible_cpu(cpu) {
4302                 percpu = per_cpu_ptr(conf->percpu, cpu);
4303                 safe_put_page(percpu->spare_page);
4304                 kfree(percpu->scribble);
4305         }
4306 #ifdef CONFIG_HOTPLUG_CPU
4307         unregister_cpu_notifier(&conf->cpu_notify);
4308 #endif
4309         put_online_cpus();
4310
4311         free_percpu(conf->percpu);
4312 }
4313
4314 static void free_conf(raid5_conf_t *conf)
4315 {
4316         shrink_stripes(conf);
4317         raid5_free_percpu(conf);
4318         kfree(conf->disks);
4319         kfree(conf->stripe_hashtbl);
4320         kfree(conf);
4321 }
4322
4323 #ifdef CONFIG_HOTPLUG_CPU
4324 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4325                               void *hcpu)
4326 {
4327         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4328         long cpu = (long)hcpu;
4329         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4330
4331         switch (action) {
4332         case CPU_UP_PREPARE:
4333         case CPU_UP_PREPARE_FROZEN:
4334                 if (conf->level == 6 && !percpu->spare_page)
4335                         percpu->spare_page = alloc_page(GFP_KERNEL);
4336                 if (!percpu->scribble)
4337                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4338
4339                 if (!percpu->scribble ||
4340                     (conf->level == 6 && !percpu->spare_page)) {
4341                         safe_put_page(percpu->spare_page);
4342                         kfree(percpu->scribble);
4343                         pr_err("%s: failed memory allocation for cpu%ld\n",
4344                                __func__, cpu);
4345                         return notifier_from_errno(-ENOMEM);
4346                 }
4347                 break;
4348         case CPU_DEAD:
4349         case CPU_DEAD_FROZEN:
4350                 safe_put_page(percpu->spare_page);
4351                 kfree(percpu->scribble);
4352                 percpu->spare_page = NULL;
4353                 percpu->scribble = NULL;
4354                 break;
4355         default:
4356                 break;
4357         }
4358         return NOTIFY_OK;
4359 }
4360 #endif
4361
4362 static int raid5_alloc_percpu(raid5_conf_t *conf)
4363 {
4364         unsigned long cpu;
4365         struct page *spare_page;
4366         struct raid5_percpu __percpu *allcpus;
4367         void *scribble;
4368         int err;
4369
4370         allcpus = alloc_percpu(struct raid5_percpu);
4371         if (!allcpus)
4372                 return -ENOMEM;
4373         conf->percpu = allcpus;
4374
4375         get_online_cpus();
4376         err = 0;
4377         for_each_present_cpu(cpu) {
4378                 if (conf->level == 6) {
4379                         spare_page = alloc_page(GFP_KERNEL);
4380                         if (!spare_page) {
4381                                 err = -ENOMEM;
4382                                 break;
4383                         }
4384                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4385                 }
4386                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4387                 if (!scribble) {
4388                         err = -ENOMEM;
4389                         break;
4390                 }
4391                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4392         }
4393 #ifdef CONFIG_HOTPLUG_CPU
4394         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4395         conf->cpu_notify.priority = 0;
4396         if (err == 0)
4397                 err = register_cpu_notifier(&conf->cpu_notify);
4398 #endif
4399         put_online_cpus();
4400
4401         return err;
4402 }
4403
4404 static raid5_conf_t *setup_conf(mddev_t *mddev)
4405 {
4406         raid5_conf_t *conf;
4407         int raid_disk, memory, max_disks;
4408         mdk_rdev_t *rdev;
4409         struct disk_info *disk;
4410
4411         if (mddev->new_level != 5
4412             && mddev->new_level != 4
4413             && mddev->new_level != 6) {
4414                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4415                        mdname(mddev), mddev->new_level);
4416                 return ERR_PTR(-EIO);
4417         }
4418         if ((mddev->new_level == 5
4419              && !algorithm_valid_raid5(mddev->new_layout)) ||
4420             (mddev->new_level == 6
4421              && !algorithm_valid_raid6(mddev->new_layout))) {
4422                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4423                        mdname(mddev), mddev->new_layout);
4424                 return ERR_PTR(-EIO);
4425         }
4426         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4427                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4428                        mdname(mddev), mddev->raid_disks);
4429                 return ERR_PTR(-EINVAL);
4430         }
4431
4432         if (!mddev->new_chunk_sectors ||
4433             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4434             !is_power_of_2(mddev->new_chunk_sectors)) {
4435                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4436                        mdname(mddev), mddev->new_chunk_sectors << 9);
4437                 return ERR_PTR(-EINVAL);
4438         }
4439
4440         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4441         if (conf == NULL)
4442                 goto abort;
4443         spin_lock_init(&conf->device_lock);
4444         init_waitqueue_head(&conf->wait_for_stripe);
4445         init_waitqueue_head(&conf->wait_for_overlap);
4446         INIT_LIST_HEAD(&conf->handle_list);
4447         INIT_LIST_HEAD(&conf->hold_list);
4448         INIT_LIST_HEAD(&conf->delayed_list);
4449         INIT_LIST_HEAD(&conf->bitmap_list);
4450         INIT_LIST_HEAD(&conf->inactive_list);
4451         atomic_set(&conf->active_stripes, 0);
4452         atomic_set(&conf->preread_active_stripes, 0);
4453         atomic_set(&conf->active_aligned_reads, 0);
4454         conf->bypass_threshold = BYPASS_THRESHOLD;
4455
4456         conf->raid_disks = mddev->raid_disks;
4457         if (mddev->reshape_position == MaxSector)
4458                 conf->previous_raid_disks = mddev->raid_disks;
4459         else
4460                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4461         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4462         conf->scribble_len = scribble_len(max_disks);
4463
4464         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4465                               GFP_KERNEL);
4466         if (!conf->disks)
4467                 goto abort;
4468
4469         conf->mddev = mddev;
4470
4471         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4472                 goto abort;
4473
4474         conf->level = mddev->new_level;
4475         if (raid5_alloc_percpu(conf) != 0)
4476                 goto abort;
4477
4478         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4479
4480         list_for_each_entry(rdev, &mddev->disks, same_set) {
4481                 raid_disk = rdev->raid_disk;
4482                 if (raid_disk >= max_disks
4483                     || raid_disk < 0)
4484                         continue;
4485                 disk = conf->disks + raid_disk;
4486
4487                 disk->rdev = rdev;
4488
4489                 if (test_bit(In_sync, &rdev->flags)) {
4490                         char b[BDEVNAME_SIZE];
4491                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4492                                " disk %d\n",
4493                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4494                 } else if (rdev->saved_raid_disk != raid_disk)
4495                         /* Cannot rely on bitmap to complete recovery */
4496                         conf->fullsync = 1;
4497         }
4498
4499         conf->chunk_sectors = mddev->new_chunk_sectors;
4500         conf->level = mddev->new_level;
4501         if (conf->level == 6)
4502                 conf->max_degraded = 2;
4503         else
4504                 conf->max_degraded = 1;
4505         conf->algorithm = mddev->new_layout;
4506         conf->max_nr_stripes = NR_STRIPES;
4507         conf->reshape_progress = mddev->reshape_position;
4508         if (conf->reshape_progress != MaxSector) {
4509                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4510                 conf->prev_algo = mddev->layout;
4511         }
4512
4513         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4514                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4515         if (grow_stripes(conf, conf->max_nr_stripes)) {
4516                 printk(KERN_ERR
4517                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4518                        mdname(mddev), memory);
4519                 goto abort;
4520         } else
4521                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4522                        mdname(mddev), memory);
4523
4524         conf->thread = md_register_thread(raid5d, mddev, NULL);
4525         if (!conf->thread) {
4526                 printk(KERN_ERR
4527                        "md/raid:%s: couldn't allocate thread.\n",
4528                        mdname(mddev));
4529                 goto abort;
4530         }
4531
4532         return conf;
4533
4534  abort:
4535         if (conf) {
4536                 free_conf(conf);
4537                 return ERR_PTR(-EIO);
4538         } else
4539                 return ERR_PTR(-ENOMEM);
4540 }
4541
4542
4543 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4544 {
4545         switch (algo) {
4546         case ALGORITHM_PARITY_0:
4547                 if (raid_disk < max_degraded)
4548                         return 1;
4549                 break;
4550         case ALGORITHM_PARITY_N:
4551                 if (raid_disk >= raid_disks - max_degraded)
4552                         return 1;
4553                 break;
4554         case ALGORITHM_PARITY_0_6:
4555                 if (raid_disk == 0 || 
4556                     raid_disk == raid_disks - 1)
4557                         return 1;
4558                 break;
4559         case ALGORITHM_LEFT_ASYMMETRIC_6:
4560         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4561         case ALGORITHM_LEFT_SYMMETRIC_6:
4562         case ALGORITHM_RIGHT_SYMMETRIC_6:
4563                 if (raid_disk == raid_disks - 1)
4564                         return 1;
4565         }
4566         return 0;
4567 }
4568
4569 static int run(mddev_t *mddev)
4570 {
4571         raid5_conf_t *conf;
4572         int working_disks = 0;
4573         int dirty_parity_disks = 0;
4574         mdk_rdev_t *rdev;
4575         sector_t reshape_offset = 0;
4576
4577         if (mddev->recovery_cp != MaxSector)
4578                 printk(KERN_NOTICE "md/raid:%s: not clean"
4579                        " -- starting background reconstruction\n",
4580                        mdname(mddev));
4581         if (mddev->reshape_position != MaxSector) {
4582                 /* Check that we can continue the reshape.
4583                  * Currently only disks can change, it must
4584                  * increase, and we must be past the point where
4585                  * a stripe over-writes itself
4586                  */
4587                 sector_t here_new, here_old;
4588                 int old_disks;
4589                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4590
4591                 if (mddev->new_level != mddev->level) {
4592                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4593                                "required - aborting.\n",
4594                                mdname(mddev));
4595                         return -EINVAL;
4596                 }
4597                 old_disks = mddev->raid_disks - mddev->delta_disks;
4598                 /* reshape_position must be on a new-stripe boundary, and one
4599                  * further up in new geometry must map after here in old
4600                  * geometry.
4601                  */
4602                 here_new = mddev->reshape_position;
4603                 if (sector_div(here_new, mddev->new_chunk_sectors *
4604                                (mddev->raid_disks - max_degraded))) {
4605                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4606                                "on a stripe boundary\n", mdname(mddev));
4607                         return -EINVAL;
4608                 }
4609                 reshape_offset = here_new * mddev->new_chunk_sectors;
4610                 /* here_new is the stripe we will write to */
4611                 here_old = mddev->reshape_position;
4612                 sector_div(here_old, mddev->chunk_sectors *
4613                            (old_disks-max_degraded));
4614                 /* here_old is the first stripe that we might need to read
4615                  * from */
4616                 if (mddev->delta_disks == 0) {
4617                         /* We cannot be sure it is safe to start an in-place
4618                          * reshape.  It is only safe if user-space if monitoring
4619                          * and taking constant backups.
4620                          * mdadm always starts a situation like this in
4621                          * readonly mode so it can take control before
4622                          * allowing any writes.  So just check for that.
4623                          */
4624                         if ((here_new * mddev->new_chunk_sectors != 
4625                              here_old * mddev->chunk_sectors) ||
4626                             mddev->ro == 0) {
4627                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4628                                        " in read-only mode - aborting\n",
4629                                        mdname(mddev));
4630                                 return -EINVAL;
4631                         }
4632                 } else if (mddev->delta_disks < 0
4633                     ? (here_new * mddev->new_chunk_sectors <=
4634                        here_old * mddev->chunk_sectors)
4635                     : (here_new * mddev->new_chunk_sectors >=
4636                        here_old * mddev->chunk_sectors)) {
4637                         /* Reading from the same stripe as writing to - bad */
4638                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4639                                "auto-recovery - aborting.\n",
4640                                mdname(mddev));
4641                         return -EINVAL;
4642                 }
4643                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4644                        mdname(mddev));
4645                 /* OK, we should be able to continue; */
4646         } else {
4647                 BUG_ON(mddev->level != mddev->new_level);
4648                 BUG_ON(mddev->layout != mddev->new_layout);
4649                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4650                 BUG_ON(mddev->delta_disks != 0);
4651         }
4652
4653         if (mddev->private == NULL)
4654                 conf = setup_conf(mddev);
4655         else
4656                 conf = mddev->private;
4657
4658         if (IS_ERR(conf))
4659                 return PTR_ERR(conf);
4660
4661         mddev->thread = conf->thread;
4662         conf->thread = NULL;
4663         mddev->private = conf;
4664
4665         /*
4666          * 0 for a fully functional array, 1 or 2 for a degraded array.
4667          */
4668         list_for_each_entry(rdev, &mddev->disks, same_set) {
4669                 if (rdev->raid_disk < 0)
4670                         continue;
4671                 if (test_bit(In_sync, &rdev->flags)) {
4672                         working_disks++;
4673                         continue;
4674                 }
4675                 /* This disc is not fully in-sync.  However if it
4676                  * just stored parity (beyond the recovery_offset),
4677                  * when we don't need to be concerned about the
4678                  * array being dirty.
4679                  * When reshape goes 'backwards', we never have
4680                  * partially completed devices, so we only need
4681                  * to worry about reshape going forwards.
4682                  */
4683                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4684                 if (mddev->major_version == 0 &&
4685                     mddev->minor_version > 90)
4686                         rdev->recovery_offset = reshape_offset;
4687                         
4688                 if (rdev->recovery_offset < reshape_offset) {
4689                         /* We need to check old and new layout */
4690                         if (!only_parity(rdev->raid_disk,
4691                                          conf->algorithm,
4692                                          conf->raid_disks,
4693                                          conf->max_degraded))
4694                                 continue;
4695                 }
4696                 if (!only_parity(rdev->raid_disk,
4697                                  conf->prev_algo,
4698                                  conf->previous_raid_disks,
4699                                  conf->max_degraded))
4700                         continue;
4701                 dirty_parity_disks++;
4702         }
4703
4704         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4705                            - working_disks);
4706
4707         if (has_failed(conf)) {
4708                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4709                         " (%d/%d failed)\n",
4710                         mdname(mddev), mddev->degraded, conf->raid_disks);
4711                 goto abort;
4712         }
4713
4714         /* device size must be a multiple of chunk size */
4715         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4716         mddev->resync_max_sectors = mddev->dev_sectors;
4717
4718         if (mddev->degraded > dirty_parity_disks &&
4719             mddev->recovery_cp != MaxSector) {
4720                 if (mddev->ok_start_degraded)
4721                         printk(KERN_WARNING
4722                                "md/raid:%s: starting dirty degraded array"
4723                                " - data corruption possible.\n",
4724                                mdname(mddev));
4725                 else {
4726                         printk(KERN_ERR
4727                                "md/raid:%s: cannot start dirty degraded array.\n",
4728                                mdname(mddev));
4729                         goto abort;
4730                 }
4731         }
4732
4733         if (mddev->degraded == 0)
4734                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4735                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4736                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4737                        mddev->new_layout);
4738         else
4739                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4740                        " out of %d devices, algorithm %d\n",
4741                        mdname(mddev), conf->level,
4742                        mddev->raid_disks - mddev->degraded,
4743                        mddev->raid_disks, mddev->new_layout);
4744
4745         print_raid5_conf(conf);
4746
4747         if (conf->reshape_progress != MaxSector) {
4748                 conf->reshape_safe = conf->reshape_progress;
4749                 atomic_set(&conf->reshape_stripes, 0);
4750                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4751                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4752                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4753                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4754                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4755                                                         "reshape");
4756         }
4757
4758
4759         /* Ok, everything is just fine now */
4760         if (mddev->to_remove == &raid5_attrs_group)
4761                 mddev->to_remove = NULL;
4762         else if (mddev->kobj.sd &&
4763             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4764                 printk(KERN_WARNING
4765                        "raid5: failed to create sysfs attributes for %s\n",
4766                        mdname(mddev));
4767         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4768
4769         if (mddev->queue) {
4770                 int chunk_size;
4771                 /* read-ahead size must cover two whole stripes, which
4772                  * is 2 * (datadisks) * chunksize where 'n' is the
4773                  * number of raid devices
4774                  */
4775                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4776                 int stripe = data_disks *
4777                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4778                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4779                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4780
4781                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4782
4783                 mddev->queue->backing_dev_info.congested_data = mddev;
4784                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4785
4786                 chunk_size = mddev->chunk_sectors << 9;
4787                 blk_queue_io_min(mddev->queue, chunk_size);
4788                 blk_queue_io_opt(mddev->queue, chunk_size *
4789                                  (conf->raid_disks - conf->max_degraded));
4790
4791                 list_for_each_entry(rdev, &mddev->disks, same_set)
4792                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4793                                           rdev->data_offset << 9);
4794         }
4795
4796         return 0;
4797 abort:
4798         md_unregister_thread(mddev->thread);
4799         mddev->thread = NULL;
4800         if (conf) {
4801                 print_raid5_conf(conf);
4802                 free_conf(conf);
4803         }
4804         mddev->private = NULL;
4805         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4806         return -EIO;
4807 }
4808
4809 static int stop(mddev_t *mddev)
4810 {
4811         raid5_conf_t *conf = mddev->private;
4812
4813         md_unregister_thread(mddev->thread);
4814         mddev->thread = NULL;
4815         if (mddev->queue)
4816                 mddev->queue->backing_dev_info.congested_fn = NULL;
4817         free_conf(conf);
4818         mddev->private = NULL;
4819         mddev->to_remove = &raid5_attrs_group;
4820         return 0;
4821 }
4822
4823 #ifdef DEBUG
4824 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4825 {
4826         int i;
4827
4828         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4829                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4830         seq_printf(seq, "sh %llu,  count %d.\n",
4831                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4832         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4833         for (i = 0; i < sh->disks; i++) {
4834                 seq_printf(seq, "(cache%d: %p %ld) ",
4835                            i, sh->dev[i].page, sh->dev[i].flags);
4836         }
4837         seq_printf(seq, "\n");
4838 }
4839
4840 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4841 {
4842         struct stripe_head *sh;
4843         struct hlist_node *hn;
4844         int i;
4845
4846         spin_lock_irq(&conf->device_lock);
4847         for (i = 0; i < NR_HASH; i++) {
4848                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4849                         if (sh->raid_conf != conf)
4850                                 continue;
4851                         print_sh(seq, sh);
4852                 }
4853         }
4854         spin_unlock_irq(&conf->device_lock);
4855 }
4856 #endif
4857
4858 static void status(struct seq_file *seq, mddev_t *mddev)
4859 {
4860         raid5_conf_t *conf = mddev->private;
4861         int i;
4862
4863         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4864                 mddev->chunk_sectors / 2, mddev->layout);
4865         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4866         for (i = 0; i < conf->raid_disks; i++)
4867                 seq_printf (seq, "%s",
4868                                conf->disks[i].rdev &&
4869                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4870         seq_printf (seq, "]");
4871 #ifdef DEBUG
4872         seq_printf (seq, "\n");
4873         printall(seq, conf);
4874 #endif
4875 }
4876
4877 static void print_raid5_conf (raid5_conf_t *conf)
4878 {
4879         int i;
4880         struct disk_info *tmp;
4881
4882         printk(KERN_DEBUG "RAID conf printout:\n");
4883         if (!conf) {
4884                 printk("(conf==NULL)\n");
4885                 return;
4886         }
4887         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4888                conf->raid_disks,
4889                conf->raid_disks - conf->mddev->degraded);
4890
4891         for (i = 0; i < conf->raid_disks; i++) {
4892                 char b[BDEVNAME_SIZE];
4893                 tmp = conf->disks + i;
4894                 if (tmp->rdev)
4895                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4896                                i, !test_bit(Faulty, &tmp->rdev->flags),
4897                                bdevname(tmp->rdev->bdev, b));
4898         }
4899 }
4900
4901 static int raid5_spare_active(mddev_t *mddev)
4902 {
4903         int i;
4904         raid5_conf_t *conf = mddev->private;
4905         struct disk_info *tmp;
4906         int count = 0;
4907         unsigned long flags;
4908
4909         for (i = 0; i < conf->raid_disks; i++) {
4910                 tmp = conf->disks + i;
4911                 if (tmp->rdev
4912                     && tmp->rdev->recovery_offset == MaxSector
4913                     && !test_bit(Faulty, &tmp->rdev->flags)
4914                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4915                         count++;
4916                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
4917                 }
4918         }
4919         spin_lock_irqsave(&conf->device_lock, flags);
4920         mddev->degraded -= count;
4921         spin_unlock_irqrestore(&conf->device_lock, flags);
4922         print_raid5_conf(conf);
4923         return count;
4924 }
4925
4926 static int raid5_remove_disk(mddev_t *mddev, int number)
4927 {
4928         raid5_conf_t *conf = mddev->private;
4929         int err = 0;
4930         mdk_rdev_t *rdev;
4931         struct disk_info *p = conf->disks + number;
4932
4933         print_raid5_conf(conf);
4934         rdev = p->rdev;
4935         if (rdev) {
4936                 if (number >= conf->raid_disks &&
4937                     conf->reshape_progress == MaxSector)
4938                         clear_bit(In_sync, &rdev->flags);
4939
4940                 if (test_bit(In_sync, &rdev->flags) ||
4941                     atomic_read(&rdev->nr_pending)) {
4942                         err = -EBUSY;
4943                         goto abort;
4944                 }
4945                 /* Only remove non-faulty devices if recovery
4946                  * isn't possible.
4947                  */
4948                 if (!test_bit(Faulty, &rdev->flags) &&
4949                     !has_failed(conf) &&
4950                     number < conf->raid_disks) {
4951                         err = -EBUSY;
4952                         goto abort;
4953                 }
4954                 p->rdev = NULL;
4955                 synchronize_rcu();
4956                 if (atomic_read(&rdev->nr_pending)) {
4957                         /* lost the race, try later */
4958                         err = -EBUSY;
4959                         p->rdev = rdev;
4960                 }
4961         }
4962 abort:
4963
4964         print_raid5_conf(conf);
4965         return err;
4966 }
4967
4968 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4969 {
4970         raid5_conf_t *conf = mddev->private;
4971         int err = -EEXIST;
4972         int disk;
4973         struct disk_info *p;
4974         int first = 0;
4975         int last = conf->raid_disks - 1;
4976
4977         if (has_failed(conf))
4978                 /* no point adding a device */
4979                 return -EINVAL;
4980
4981         if (rdev->raid_disk >= 0)
4982                 first = last = rdev->raid_disk;
4983
4984         /*
4985          * find the disk ... but prefer rdev->saved_raid_disk
4986          * if possible.
4987          */
4988         if (rdev->saved_raid_disk >= 0 &&
4989             rdev->saved_raid_disk >= first &&
4990             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4991                 disk = rdev->saved_raid_disk;
4992         else
4993                 disk = first;
4994         for ( ; disk <= last ; disk++)
4995                 if ((p=conf->disks + disk)->rdev == NULL) {
4996                         clear_bit(In_sync, &rdev->flags);
4997                         rdev->raid_disk = disk;
4998                         err = 0;
4999                         if (rdev->saved_raid_disk != disk)
5000                                 conf->fullsync = 1;
5001                         rcu_assign_pointer(p->rdev, rdev);
5002                         break;
5003                 }
5004         print_raid5_conf(conf);
5005         return err;
5006 }
5007
5008 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5009 {
5010         /* no resync is happening, and there is enough space
5011          * on all devices, so we can resize.
5012          * We need to make sure resync covers any new space.
5013          * If the array is shrinking we should possibly wait until
5014          * any io in the removed space completes, but it hardly seems
5015          * worth it.
5016          */
5017         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5018         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5019                                                mddev->raid_disks));
5020         if (mddev->array_sectors >
5021             raid5_size(mddev, sectors, mddev->raid_disks))
5022                 return -EINVAL;
5023         set_capacity(mddev->gendisk, mddev->array_sectors);
5024         revalidate_disk(mddev->gendisk);
5025         if (sectors > mddev->dev_sectors &&
5026             mddev->recovery_cp > mddev->dev_sectors) {
5027                 mddev->recovery_cp = mddev->dev_sectors;
5028                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5029         }
5030         mddev->dev_sectors = sectors;
5031         mddev->resync_max_sectors = sectors;
5032         return 0;
5033 }
5034
5035 static int check_stripe_cache(mddev_t *mddev)
5036 {
5037         /* Can only proceed if there are plenty of stripe_heads.
5038          * We need a minimum of one full stripe,, and for sensible progress
5039          * it is best to have about 4 times that.
5040          * If we require 4 times, then the default 256 4K stripe_heads will
5041          * allow for chunk sizes up to 256K, which is probably OK.
5042          * If the chunk size is greater, user-space should request more
5043          * stripe_heads first.
5044          */
5045         raid5_conf_t *conf = mddev->private;
5046         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5047             > conf->max_nr_stripes ||
5048             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5049             > conf->max_nr_stripes) {
5050                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5051                        mdname(mddev),
5052                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5053                         / STRIPE_SIZE)*4);
5054                 return 0;
5055         }
5056         return 1;
5057 }
5058
5059 static int check_reshape(mddev_t *mddev)
5060 {
5061         raid5_conf_t *conf = mddev->private;
5062
5063         if (mddev->delta_disks == 0 &&
5064             mddev->new_layout == mddev->layout &&
5065             mddev->new_chunk_sectors == mddev->chunk_sectors)
5066                 return 0; /* nothing to do */
5067         if (mddev->bitmap)
5068                 /* Cannot grow a bitmap yet */
5069                 return -EBUSY;
5070         if (has_failed(conf))
5071                 return -EINVAL;
5072         if (mddev->delta_disks < 0) {
5073                 /* We might be able to shrink, but the devices must
5074                  * be made bigger first.
5075                  * For raid6, 4 is the minimum size.
5076                  * Otherwise 2 is the minimum
5077                  */
5078                 int min = 2;
5079                 if (mddev->level == 6)
5080                         min = 4;
5081                 if (mddev->raid_disks + mddev->delta_disks < min)
5082                         return -EINVAL;
5083         }
5084
5085         if (!check_stripe_cache(mddev))
5086                 return -ENOSPC;
5087
5088         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5089 }
5090
5091 static int raid5_start_reshape(mddev_t *mddev)
5092 {
5093         raid5_conf_t *conf = mddev->private;
5094         mdk_rdev_t *rdev;
5095         int spares = 0;
5096         unsigned long flags;
5097
5098         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5099                 return -EBUSY;
5100
5101         if (!check_stripe_cache(mddev))
5102                 return -ENOSPC;
5103
5104         list_for_each_entry(rdev, &mddev->disks, same_set)
5105                 if (!test_bit(In_sync, &rdev->flags)
5106                     && !test_bit(Faulty, &rdev->flags))
5107                         spares++;
5108
5109         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5110                 /* Not enough devices even to make a degraded array
5111                  * of that size
5112                  */
5113                 return -EINVAL;
5114
5115         /* Refuse to reduce size of the array.  Any reductions in
5116          * array size must be through explicit setting of array_size
5117          * attribute.
5118          */
5119         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5120             < mddev->array_sectors) {
5121                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5122                        "before number of disks\n", mdname(mddev));
5123                 return -EINVAL;
5124         }
5125
5126         atomic_set(&conf->reshape_stripes, 0);
5127         spin_lock_irq(&conf->device_lock);
5128         conf->previous_raid_disks = conf->raid_disks;
5129         conf->raid_disks += mddev->delta_disks;
5130         conf->prev_chunk_sectors = conf->chunk_sectors;
5131         conf->chunk_sectors = mddev->new_chunk_sectors;
5132         conf->prev_algo = conf->algorithm;
5133         conf->algorithm = mddev->new_layout;
5134         if (mddev->delta_disks < 0)
5135                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5136         else
5137                 conf->reshape_progress = 0;
5138         conf->reshape_safe = conf->reshape_progress;
5139         conf->generation++;
5140         spin_unlock_irq(&conf->device_lock);
5141
5142         /* Add some new drives, as many as will fit.
5143          * We know there are enough to make the newly sized array work.
5144          * Don't add devices if we are reducing the number of
5145          * devices in the array.  This is because it is not possible
5146          * to correctly record the "partially reconstructed" state of
5147          * such devices during the reshape and confusion could result.
5148          */
5149         if (mddev->delta_disks >= 0) {
5150                 int added_devices = 0;
5151                 list_for_each_entry(rdev, &mddev->disks, same_set)
5152                         if (rdev->raid_disk < 0 &&
5153                             !test_bit(Faulty, &rdev->flags)) {
5154                                 if (raid5_add_disk(mddev, rdev) == 0) {
5155                                         if (rdev->raid_disk
5156                                             >= conf->previous_raid_disks) {
5157                                                 set_bit(In_sync, &rdev->flags);
5158                                                 added_devices++;
5159                                         } else
5160                                                 rdev->recovery_offset = 0;
5161
5162                                         if (sysfs_link_rdev(mddev, rdev))
5163                                                 /* Failure here is OK */;
5164                                 }
5165                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5166                                    && !test_bit(Faulty, &rdev->flags)) {
5167                                 /* This is a spare that was manually added */
5168                                 set_bit(In_sync, &rdev->flags);
5169                                 added_devices++;
5170                         }
5171
5172                 /* When a reshape changes the number of devices,
5173                  * ->degraded is measured against the larger of the
5174                  * pre and post number of devices.
5175                  */
5176                 spin_lock_irqsave(&conf->device_lock, flags);
5177                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5178                         - added_devices;
5179                 spin_unlock_irqrestore(&conf->device_lock, flags);
5180         }
5181         mddev->raid_disks = conf->raid_disks;
5182         mddev->reshape_position = conf->reshape_progress;
5183         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5184
5185         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5186         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5187         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5188         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5189         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5190                                                 "reshape");
5191         if (!mddev->sync_thread) {
5192                 mddev->recovery = 0;
5193                 spin_lock_irq(&conf->device_lock);
5194                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5195                 conf->reshape_progress = MaxSector;
5196                 spin_unlock_irq(&conf->device_lock);
5197                 return -EAGAIN;
5198         }
5199         conf->reshape_checkpoint = jiffies;
5200         md_wakeup_thread(mddev->sync_thread);
5201         md_new_event(mddev);
5202         return 0;
5203 }
5204
5205 /* This is called from the reshape thread and should make any
5206  * changes needed in 'conf'
5207  */
5208 static void end_reshape(raid5_conf_t *conf)
5209 {
5210
5211         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5212
5213                 spin_lock_irq(&conf->device_lock);
5214                 conf->previous_raid_disks = conf->raid_disks;
5215                 conf->reshape_progress = MaxSector;
5216                 spin_unlock_irq(&conf->device_lock);
5217                 wake_up(&conf->wait_for_overlap);
5218
5219                 /* read-ahead size must cover two whole stripes, which is
5220                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5221                  */
5222                 if (conf->mddev->queue) {
5223                         int data_disks = conf->raid_disks - conf->max_degraded;
5224                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5225                                                    / PAGE_SIZE);
5226                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5227                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5228                 }
5229         }
5230 }
5231
5232 /* This is called from the raid5d thread with mddev_lock held.
5233  * It makes config changes to the device.
5234  */
5235 static void raid5_finish_reshape(mddev_t *mddev)
5236 {
5237         raid5_conf_t *conf = mddev->private;
5238
5239         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5240
5241                 if (mddev->delta_disks > 0) {
5242                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5243                         set_capacity(mddev->gendisk, mddev->array_sectors);
5244                         revalidate_disk(mddev->gendisk);
5245                 } else {
5246                         int d;
5247                         mddev->degraded = conf->raid_disks;
5248                         for (d = 0; d < conf->raid_disks ; d++)
5249                                 if (conf->disks[d].rdev &&
5250                                     test_bit(In_sync,
5251                                              &conf->disks[d].rdev->flags))
5252                                         mddev->degraded--;
5253                         for (d = conf->raid_disks ;
5254                              d < conf->raid_disks - mddev->delta_disks;
5255                              d++) {
5256                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5257                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5258                                         sysfs_unlink_rdev(mddev, rdev);
5259                                         rdev->raid_disk = -1;
5260                                 }
5261                         }
5262                 }
5263                 mddev->layout = conf->algorithm;
5264                 mddev->chunk_sectors = conf->chunk_sectors;
5265                 mddev->reshape_position = MaxSector;
5266                 mddev->delta_disks = 0;
5267         }
5268 }
5269
5270 static void raid5_quiesce(mddev_t *mddev, int state)
5271 {
5272         raid5_conf_t *conf = mddev->private;
5273
5274         switch(state) {
5275         case 2: /* resume for a suspend */
5276                 wake_up(&conf->wait_for_overlap);
5277                 break;
5278
5279         case 1: /* stop all writes */
5280                 spin_lock_irq(&conf->device_lock);
5281                 /* '2' tells resync/reshape to pause so that all
5282                  * active stripes can drain
5283                  */
5284                 conf->quiesce = 2;
5285                 wait_event_lock_irq(conf->wait_for_stripe,
5286                                     atomic_read(&conf->active_stripes) == 0 &&
5287                                     atomic_read(&conf->active_aligned_reads) == 0,
5288                                     conf->device_lock, /* nothing */);
5289                 conf->quiesce = 1;
5290                 spin_unlock_irq(&conf->device_lock);
5291                 /* allow reshape to continue */
5292                 wake_up(&conf->wait_for_overlap);
5293                 break;
5294
5295         case 0: /* re-enable writes */
5296                 spin_lock_irq(&conf->device_lock);
5297                 conf->quiesce = 0;
5298                 wake_up(&conf->wait_for_stripe);
5299                 wake_up(&conf->wait_for_overlap);
5300                 spin_unlock_irq(&conf->device_lock);
5301                 break;
5302         }
5303 }
5304
5305
5306 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5307 {
5308         struct raid0_private_data *raid0_priv = mddev->private;
5309         sector_t sectors;
5310
5311         /* for raid0 takeover only one zone is supported */
5312         if (raid0_priv->nr_strip_zones > 1) {
5313                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5314                        mdname(mddev));
5315                 return ERR_PTR(-EINVAL);
5316         }
5317
5318         sectors = raid0_priv->strip_zone[0].zone_end;
5319         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5320         mddev->dev_sectors = sectors;
5321         mddev->new_level = level;
5322         mddev->new_layout = ALGORITHM_PARITY_N;
5323         mddev->new_chunk_sectors = mddev->chunk_sectors;
5324         mddev->raid_disks += 1;
5325         mddev->delta_disks = 1;
5326         /* make sure it will be not marked as dirty */
5327         mddev->recovery_cp = MaxSector;
5328
5329         return setup_conf(mddev);
5330 }
5331
5332
5333 static void *raid5_takeover_raid1(mddev_t *mddev)
5334 {
5335         int chunksect;
5336
5337         if (mddev->raid_disks != 2 ||
5338             mddev->degraded > 1)
5339                 return ERR_PTR(-EINVAL);
5340
5341         /* Should check if there are write-behind devices? */
5342
5343         chunksect = 64*2; /* 64K by default */
5344
5345         /* The array must be an exact multiple of chunksize */
5346         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5347                 chunksect >>= 1;
5348
5349         if ((chunksect<<9) < STRIPE_SIZE)
5350                 /* array size does not allow a suitable chunk size */
5351                 return ERR_PTR(-EINVAL);
5352
5353         mddev->new_level = 5;
5354         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5355         mddev->new_chunk_sectors = chunksect;
5356
5357         return setup_conf(mddev);
5358 }
5359
5360 static void *raid5_takeover_raid6(mddev_t *mddev)
5361 {
5362         int new_layout;
5363
5364         switch (mddev->layout) {
5365         case ALGORITHM_LEFT_ASYMMETRIC_6:
5366                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5367                 break;
5368         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5369                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5370                 break;
5371         case ALGORITHM_LEFT_SYMMETRIC_6:
5372                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5373                 break;
5374         case ALGORITHM_RIGHT_SYMMETRIC_6:
5375                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5376                 break;
5377         case ALGORITHM_PARITY_0_6:
5378                 new_layout = ALGORITHM_PARITY_0;
5379                 break;
5380         case ALGORITHM_PARITY_N:
5381                 new_layout = ALGORITHM_PARITY_N;
5382                 break;
5383         default:
5384                 return ERR_PTR(-EINVAL);
5385         }
5386         mddev->new_level = 5;
5387         mddev->new_layout = new_layout;
5388         mddev->delta_disks = -1;
5389         mddev->raid_disks -= 1;
5390         return setup_conf(mddev);
5391 }
5392
5393
5394 static int raid5_check_reshape(mddev_t *mddev)
5395 {
5396         /* For a 2-drive array, the layout and chunk size can be changed
5397          * immediately as not restriping is needed.
5398          * For larger arrays we record the new value - after validation
5399          * to be used by a reshape pass.
5400          */
5401         raid5_conf_t *conf = mddev->private;
5402         int new_chunk = mddev->new_chunk_sectors;
5403
5404         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5405                 return -EINVAL;
5406         if (new_chunk > 0) {
5407                 if (!is_power_of_2(new_chunk))
5408                         return -EINVAL;
5409                 if (new_chunk < (PAGE_SIZE>>9))
5410                         return -EINVAL;
5411                 if (mddev->array_sectors & (new_chunk-1))
5412                         /* not factor of array size */
5413                         return -EINVAL;
5414         }
5415
5416         /* They look valid */
5417
5418         if (mddev->raid_disks == 2) {
5419                 /* can make the change immediately */
5420                 if (mddev->new_layout >= 0) {
5421                         conf->algorithm = mddev->new_layout;
5422                         mddev->layout = mddev->new_layout;
5423                 }
5424                 if (new_chunk > 0) {
5425                         conf->chunk_sectors = new_chunk ;
5426                         mddev->chunk_sectors = new_chunk;
5427                 }
5428                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5429                 md_wakeup_thread(mddev->thread);
5430         }
5431         return check_reshape(mddev);
5432 }
5433
5434 static int raid6_check_reshape(mddev_t *mddev)
5435 {
5436         int new_chunk = mddev->new_chunk_sectors;
5437
5438         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5439                 return -EINVAL;
5440         if (new_chunk > 0) {
5441                 if (!is_power_of_2(new_chunk))
5442                         return -EINVAL;
5443                 if (new_chunk < (PAGE_SIZE >> 9))
5444                         return -EINVAL;
5445                 if (mddev->array_sectors & (new_chunk-1))
5446                         /* not factor of array size */
5447                         return -EINVAL;
5448         }
5449
5450         /* They look valid */
5451         return check_reshape(mddev);
5452 }
5453
5454 static void *raid5_takeover(mddev_t *mddev)
5455 {
5456         /* raid5 can take over:
5457          *  raid0 - if there is only one strip zone - make it a raid4 layout
5458          *  raid1 - if there are two drives.  We need to know the chunk size
5459          *  raid4 - trivial - just use a raid4 layout.
5460          *  raid6 - Providing it is a *_6 layout
5461          */
5462         if (mddev->level == 0)
5463                 return raid45_takeover_raid0(mddev, 5);
5464         if (mddev->level == 1)
5465                 return raid5_takeover_raid1(mddev);
5466         if (mddev->level == 4) {
5467                 mddev->new_layout = ALGORITHM_PARITY_N;
5468                 mddev->new_level = 5;
5469                 return setup_conf(mddev);
5470         }
5471         if (mddev->level == 6)
5472                 return raid5_takeover_raid6(mddev);
5473
5474         return ERR_PTR(-EINVAL);
5475 }
5476
5477 static void *raid4_takeover(mddev_t *mddev)
5478 {
5479         /* raid4 can take over:
5480          *  raid0 - if there is only one strip zone
5481          *  raid5 - if layout is right
5482          */
5483         if (mddev->level == 0)
5484                 return raid45_takeover_raid0(mddev, 4);
5485         if (mddev->level == 5 &&
5486             mddev->layout == ALGORITHM_PARITY_N) {
5487                 mddev->new_layout = 0;
5488                 mddev->new_level = 4;
5489                 return setup_conf(mddev);
5490         }
5491         return ERR_PTR(-EINVAL);
5492 }
5493
5494 static struct mdk_personality raid5_personality;
5495
5496 static void *raid6_takeover(mddev_t *mddev)
5497 {
5498         /* Currently can only take over a raid5.  We map the
5499          * personality to an equivalent raid6 personality
5500          * with the Q block at the end.
5501          */
5502         int new_layout;
5503
5504         if (mddev->pers != &raid5_personality)
5505                 return ERR_PTR(-EINVAL);
5506         if (mddev->degraded > 1)
5507                 return ERR_PTR(-EINVAL);
5508         if (mddev->raid_disks > 253)
5509                 return ERR_PTR(-EINVAL);
5510         if (mddev->raid_disks < 3)
5511                 return ERR_PTR(-EINVAL);
5512
5513         switch (mddev->layout) {
5514         case ALGORITHM_LEFT_ASYMMETRIC:
5515                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5516                 break;
5517         case ALGORITHM_RIGHT_ASYMMETRIC:
5518                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5519                 break;
5520         case ALGORITHM_LEFT_SYMMETRIC:
5521                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5522                 break;
5523         case ALGORITHM_RIGHT_SYMMETRIC:
5524                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5525                 break;
5526         case ALGORITHM_PARITY_0:
5527                 new_layout = ALGORITHM_PARITY_0_6;
5528                 break;
5529         case ALGORITHM_PARITY_N:
5530                 new_layout = ALGORITHM_PARITY_N;
5531                 break;
5532         default:
5533                 return ERR_PTR(-EINVAL);
5534         }
5535         mddev->new_level = 6;
5536         mddev->new_layout = new_layout;
5537         mddev->delta_disks = 1;
5538         mddev->raid_disks += 1;
5539         return setup_conf(mddev);
5540 }
5541
5542
5543 static struct mdk_personality raid6_personality =
5544 {
5545         .name           = "raid6",
5546         .level          = 6,
5547         .owner          = THIS_MODULE,
5548         .make_request   = make_request,
5549         .run            = run,
5550         .stop           = stop,
5551         .status         = status,
5552         .error_handler  = error,
5553         .hot_add_disk   = raid5_add_disk,
5554         .hot_remove_disk= raid5_remove_disk,
5555         .spare_active   = raid5_spare_active,
5556         .sync_request   = sync_request,
5557         .resize         = raid5_resize,
5558         .size           = raid5_size,
5559         .check_reshape  = raid6_check_reshape,
5560         .start_reshape  = raid5_start_reshape,
5561         .finish_reshape = raid5_finish_reshape,
5562         .quiesce        = raid5_quiesce,
5563         .takeover       = raid6_takeover,
5564 };
5565 static struct mdk_personality raid5_personality =
5566 {
5567         .name           = "raid5",
5568         .level          = 5,
5569         .owner          = THIS_MODULE,
5570         .make_request   = make_request,
5571         .run            = run,
5572         .stop           = stop,
5573         .status         = status,
5574         .error_handler  = error,
5575         .hot_add_disk   = raid5_add_disk,
5576         .hot_remove_disk= raid5_remove_disk,
5577         .spare_active   = raid5_spare_active,
5578         .sync_request   = sync_request,
5579         .resize         = raid5_resize,
5580         .size           = raid5_size,
5581         .check_reshape  = raid5_check_reshape,
5582         .start_reshape  = raid5_start_reshape,
5583         .finish_reshape = raid5_finish_reshape,
5584         .quiesce        = raid5_quiesce,
5585         .takeover       = raid5_takeover,
5586 };
5587
5588 static struct mdk_personality raid4_personality =
5589 {
5590         .name           = "raid4",
5591         .level          = 4,
5592         .owner          = THIS_MODULE,
5593         .make_request   = make_request,
5594         .run            = run,
5595         .stop           = stop,
5596         .status         = status,
5597         .error_handler  = error,
5598         .hot_add_disk   = raid5_add_disk,
5599         .hot_remove_disk= raid5_remove_disk,
5600         .spare_active   = raid5_spare_active,
5601         .sync_request   = sync_request,
5602         .resize         = raid5_resize,
5603         .size           = raid5_size,
5604         .check_reshape  = raid5_check_reshape,
5605         .start_reshape  = raid5_start_reshape,
5606         .finish_reshape = raid5_finish_reshape,
5607         .quiesce        = raid5_quiesce,
5608         .takeover       = raid4_takeover,
5609 };
5610
5611 static int __init raid5_init(void)
5612 {
5613         register_md_personality(&raid6_personality);
5614         register_md_personality(&raid5_personality);
5615         register_md_personality(&raid4_personality);
5616         return 0;
5617 }
5618
5619 static void raid5_exit(void)
5620 {
5621         unregister_md_personality(&raid6_personality);
5622         unregister_md_personality(&raid5_personality);
5623         unregister_md_personality(&raid4_personality);
5624 }
5625
5626 module_init(raid5_init);
5627 module_exit(raid5_exit);
5628 MODULE_LICENSE("GPL");
5629 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5630 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5631 MODULE_ALIAS("md-raid5");
5632 MODULE_ALIAS("md-raid4");
5633 MODULE_ALIAS("md-level-5");
5634 MODULE_ALIAS("md-level-4");
5635 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5636 MODULE_ALIAS("md-raid6");
5637 MODULE_ALIAS("md-level-6");
5638
5639 /* This used to be two separate modules, they were: */
5640 MODULE_ALIAS("raid5");
5641 MODULE_ALIAS("raid6");