]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: move common code into handle_stripe
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock_irq(&sh->raid_conf->device_lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         #ifdef CONFIG_MULTICORE_RAID456
1324         init_waitqueue_head(&sh->ops.wait_for_ops);
1325         #endif
1326
1327         if (grow_buffers(sh)) {
1328                 shrink_buffers(sh);
1329                 kmem_cache_free(conf->slab_cache, sh);
1330                 return 0;
1331         }
1332         /* we just created an active stripe so... */
1333         atomic_set(&sh->count, 1);
1334         atomic_inc(&conf->active_stripes);
1335         INIT_LIST_HEAD(&sh->lru);
1336         release_stripe(sh);
1337         return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342         struct kmem_cache *sc;
1343         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345         if (conf->mddev->gendisk)
1346                 sprintf(conf->cache_name[0],
1347                         "raid%d-%s", conf->level, mdname(conf->mddev));
1348         else
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%p", conf->level, conf->mddev);
1351         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353         conf->active_name = 0;
1354         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356                                0, 0, NULL);
1357         if (!sc)
1358                 return 1;
1359         conf->slab_cache = sc;
1360         conf->pool_size = devs;
1361         while (num--)
1362                 if (!grow_one_stripe(conf))
1363                         return 1;
1364         return 0;
1365 }
1366
1367 /**
1368  * scribble_len - return the required size of the scribble region
1369  * @num - total number of disks in the array
1370  *
1371  * The size must be enough to contain:
1372  * 1/ a struct page pointer for each device in the array +2
1373  * 2/ room to convert each entry in (1) to its corresponding dma
1374  *    (dma_map_page()) or page (page_address()) address.
1375  *
1376  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377  * calculate over all devices (not just the data blocks), using zeros in place
1378  * of the P and Q blocks.
1379  */
1380 static size_t scribble_len(int num)
1381 {
1382         size_t len;
1383
1384         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386         return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391         /* Make all the stripes able to hold 'newsize' devices.
1392          * New slots in each stripe get 'page' set to a new page.
1393          *
1394          * This happens in stages:
1395          * 1/ create a new kmem_cache and allocate the required number of
1396          *    stripe_heads.
1397          * 2/ gather all the old stripe_heads and tranfer the pages across
1398          *    to the new stripe_heads.  This will have the side effect of
1399          *    freezing the array as once all stripe_heads have been collected,
1400          *    no IO will be possible.  Old stripe heads are freed once their
1401          *    pages have been transferred over, and the old kmem_cache is
1402          *    freed when all stripes are done.
1403          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1404          *    we simple return a failre status - no need to clean anything up.
1405          * 4/ allocate new pages for the new slots in the new stripe_heads.
1406          *    If this fails, we don't bother trying the shrink the
1407          *    stripe_heads down again, we just leave them as they are.
1408          *    As each stripe_head is processed the new one is released into
1409          *    active service.
1410          *
1411          * Once step2 is started, we cannot afford to wait for a write,
1412          * so we use GFP_NOIO allocations.
1413          */
1414         struct stripe_head *osh, *nsh;
1415         LIST_HEAD(newstripes);
1416         struct disk_info *ndisks;
1417         unsigned long cpu;
1418         int err;
1419         struct kmem_cache *sc;
1420         int i;
1421
1422         if (newsize <= conf->pool_size)
1423                 return 0; /* never bother to shrink */
1424
1425         err = md_allow_write(conf->mddev);
1426         if (err)
1427                 return err;
1428
1429         /* Step 1 */
1430         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432                                0, 0, NULL);
1433         if (!sc)
1434                 return -ENOMEM;
1435
1436         for (i = conf->max_nr_stripes; i; i--) {
1437                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438                 if (!nsh)
1439                         break;
1440
1441                 nsh->raid_conf = conf;
1442                 #ifdef CONFIG_MULTICORE_RAID456
1443                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444                 #endif
1445
1446                 list_add(&nsh->lru, &newstripes);
1447         }
1448         if (i) {
1449                 /* didn't get enough, give up */
1450                 while (!list_empty(&newstripes)) {
1451                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452                         list_del(&nsh->lru);
1453                         kmem_cache_free(sc, nsh);
1454                 }
1455                 kmem_cache_destroy(sc);
1456                 return -ENOMEM;
1457         }
1458         /* Step 2 - Must use GFP_NOIO now.
1459          * OK, we have enough stripes, start collecting inactive
1460          * stripes and copying them over
1461          */
1462         list_for_each_entry(nsh, &newstripes, lru) {
1463                 spin_lock_irq(&conf->device_lock);
1464                 wait_event_lock_irq(conf->wait_for_stripe,
1465                                     !list_empty(&conf->inactive_list),
1466                                     conf->device_lock,
1467                                     );
1468                 osh = get_free_stripe(conf);
1469                 spin_unlock_irq(&conf->device_lock);
1470                 atomic_set(&nsh->count, 1);
1471                 for(i=0; i<conf->pool_size; i++)
1472                         nsh->dev[i].page = osh->dev[i].page;
1473                 for( ; i<newsize; i++)
1474                         nsh->dev[i].page = NULL;
1475                 kmem_cache_free(conf->slab_cache, osh);
1476         }
1477         kmem_cache_destroy(conf->slab_cache);
1478
1479         /* Step 3.
1480          * At this point, we are holding all the stripes so the array
1481          * is completely stalled, so now is a good time to resize
1482          * conf->disks and the scribble region
1483          */
1484         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485         if (ndisks) {
1486                 for (i=0; i<conf->raid_disks; i++)
1487                         ndisks[i] = conf->disks[i];
1488                 kfree(conf->disks);
1489                 conf->disks = ndisks;
1490         } else
1491                 err = -ENOMEM;
1492
1493         get_online_cpus();
1494         conf->scribble_len = scribble_len(newsize);
1495         for_each_present_cpu(cpu) {
1496                 struct raid5_percpu *percpu;
1497                 void *scribble;
1498
1499                 percpu = per_cpu_ptr(conf->percpu, cpu);
1500                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502                 if (scribble) {
1503                         kfree(percpu->scribble);
1504                         percpu->scribble = scribble;
1505                 } else {
1506                         err = -ENOMEM;
1507                         break;
1508                 }
1509         }
1510         put_online_cpus();
1511
1512         /* Step 4, return new stripes to service */
1513         while(!list_empty(&newstripes)) {
1514                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515                 list_del_init(&nsh->lru);
1516
1517                 for (i=conf->raid_disks; i < newsize; i++)
1518                         if (nsh->dev[i].page == NULL) {
1519                                 struct page *p = alloc_page(GFP_NOIO);
1520                                 nsh->dev[i].page = p;
1521                                 if (!p)
1522                                         err = -ENOMEM;
1523                         }
1524                 release_stripe(nsh);
1525         }
1526         /* critical section pass, GFP_NOIO no longer needed */
1527
1528         conf->slab_cache = sc;
1529         conf->active_name = 1-conf->active_name;
1530         conf->pool_size = newsize;
1531         return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536         struct stripe_head *sh;
1537
1538         spin_lock_irq(&conf->device_lock);
1539         sh = get_free_stripe(conf);
1540         spin_unlock_irq(&conf->device_lock);
1541         if (!sh)
1542                 return 0;
1543         BUG_ON(atomic_read(&sh->count));
1544         shrink_buffers(sh);
1545         kmem_cache_free(conf->slab_cache, sh);
1546         atomic_dec(&conf->active_stripes);
1547         return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552         while (drop_one_stripe(conf))
1553                 ;
1554
1555         if (conf->slab_cache)
1556                 kmem_cache_destroy(conf->slab_cache);
1557         conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562         struct stripe_head *sh = bi->bi_private;
1563         raid5_conf_t *conf = sh->raid_conf;
1564         int disks = sh->disks, i;
1565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566         char b[BDEVNAME_SIZE];
1567         mdk_rdev_t *rdev;
1568
1569
1570         for (i=0 ; i<disks; i++)
1571                 if (bi == &sh->dev[i].req)
1572                         break;
1573
1574         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576                 uptodate);
1577         if (i == disks) {
1578                 BUG();
1579                 return;
1580         }
1581
1582         if (uptodate) {
1583                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585                         rdev = conf->disks[i].rdev;
1586                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587                                   " (%lu sectors at %llu on %s)\n",
1588                                   mdname(conf->mddev), STRIPE_SECTORS,
1589                                   (unsigned long long)(sh->sector
1590                                                        + rdev->data_offset),
1591                                   bdevname(rdev->bdev, b));
1592                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1593                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594                 }
1595                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597         } else {
1598                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599                 int retry = 0;
1600                 rdev = conf->disks[i].rdev;
1601
1602                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 atomic_inc(&rdev->read_errors);
1604                 if (conf->mddev->degraded >= conf->max_degraded)
1605                         printk_rl(KERN_WARNING
1606                                   "md/raid:%s: read error not correctable "
1607                                   "(sector %llu on %s).\n",
1608                                   mdname(conf->mddev),
1609                                   (unsigned long long)(sh->sector
1610                                                        + rdev->data_offset),
1611                                   bdn);
1612                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613                         /* Oh, no!!! */
1614                         printk_rl(KERN_WARNING
1615                                   "md/raid:%s: read error NOT corrected!! "
1616                                   "(sector %llu on %s).\n",
1617                                   mdname(conf->mddev),
1618                                   (unsigned long long)(sh->sector
1619                                                        + rdev->data_offset),
1620                                   bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = ~0;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304         }
2305
2306         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307                 if (atomic_dec_and_test(&conf->pending_full_writes))
2308                         md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block5 - checks the given member device to see if its data needs
2312  * to be read or computed to satisfy a request.
2313  *
2314  * Returns 1 when no more member devices need to be checked, otherwise returns
2315  * 0 to tell the loop in handle_stripe_fill5 to continue
2316  */
2317 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2318                         int disk_idx, int disks)
2319 {
2320         struct r5dev *dev = &sh->dev[disk_idx];
2321         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2322
2323         /* is the data in this block needed, and can we get it? */
2324         if (!test_bit(R5_LOCKED, &dev->flags) &&
2325             !test_bit(R5_UPTODATE, &dev->flags) &&
2326             (dev->toread ||
2327              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2328              s->syncing || s->expanding ||
2329              (s->failed &&
2330               (failed_dev->toread ||
2331                (failed_dev->towrite &&
2332                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2333                 /* We would like to get this block, possibly by computing it,
2334                  * otherwise read it if the backing disk is insync
2335                  */
2336                 if ((s->uptodate == disks - 1) &&
2337                     (s->failed && disk_idx == s->failed_num)) {
2338                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2339                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2340                         set_bit(R5_Wantcompute, &dev->flags);
2341                         sh->ops.target = disk_idx;
2342                         sh->ops.target2 = -1;
2343                         s->req_compute = 1;
2344                         /* Careful: from this point on 'uptodate' is in the eye
2345                          * of raid_run_ops which services 'compute' operations
2346                          * before writes. R5_Wantcompute flags a block that will
2347                          * be R5_UPTODATE by the time it is needed for a
2348                          * subsequent operation.
2349                          */
2350                         s->uptodate++;
2351                         return 1; /* uptodate + compute == disks */
2352                 } else if (test_bit(R5_Insync, &dev->flags)) {
2353                         set_bit(R5_LOCKED, &dev->flags);
2354                         set_bit(R5_Wantread, &dev->flags);
2355                         s->locked++;
2356                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2357                                 s->syncing);
2358                 }
2359         }
2360
2361         return 0;
2362 }
2363
2364 /**
2365  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2366  */
2367 static void handle_stripe_fill5(struct stripe_head *sh,
2368                         struct stripe_head_state *s, int disks)
2369 {
2370         int i;
2371
2372         /* look for blocks to read/compute, skip this if a compute
2373          * is already in flight, or if the stripe contents are in the
2374          * midst of changing due to a write
2375          */
2376         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2377             !sh->reconstruct_state)
2378                 for (i = disks; i--; )
2379                         if (fetch_block5(sh, s, i, disks))
2380                                 break;
2381         set_bit(STRIPE_HANDLE, &sh->state);
2382 }
2383
2384 /* fetch_block6 - checks the given member device to see if its data needs
2385  * to be read or computed to satisfy a request.
2386  *
2387  * Returns 1 when no more member devices need to be checked, otherwise returns
2388  * 0 to tell the loop in handle_stripe_fill6 to continue
2389  */
2390 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2391                          struct r6_state *r6s, int disk_idx, int disks)
2392 {
2393         struct r5dev *dev = &sh->dev[disk_idx];
2394         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2395                                   &sh->dev[r6s->failed_num[1]] };
2396
2397         if (!test_bit(R5_LOCKED, &dev->flags) &&
2398             !test_bit(R5_UPTODATE, &dev->flags) &&
2399             (dev->toread ||
2400              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2401              s->syncing || s->expanding ||
2402              (s->failed >= 1 &&
2403               (fdev[0]->toread || s->to_write)) ||
2404              (s->failed >= 2 &&
2405               (fdev[1]->toread || s->to_write)))) {
2406                 /* we would like to get this block, possibly by computing it,
2407                  * otherwise read it if the backing disk is insync
2408                  */
2409                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2410                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2411                 if ((s->uptodate == disks - 1) &&
2412                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2413                                    disk_idx == r6s->failed_num[1]))) {
2414                         /* have disk failed, and we're requested to fetch it;
2415                          * do compute it
2416                          */
2417                         pr_debug("Computing stripe %llu block %d\n",
2418                                (unsigned long long)sh->sector, disk_idx);
2419                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2420                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2421                         set_bit(R5_Wantcompute, &dev->flags);
2422                         sh->ops.target = disk_idx;
2423                         sh->ops.target2 = -1; /* no 2nd target */
2424                         s->req_compute = 1;
2425                         s->uptodate++;
2426                         return 1;
2427                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2428                         /* Computing 2-failure is *very* expensive; only
2429                          * do it if failed >= 2
2430                          */
2431                         int other;
2432                         for (other = disks; other--; ) {
2433                                 if (other == disk_idx)
2434                                         continue;
2435                                 if (!test_bit(R5_UPTODATE,
2436                                       &sh->dev[other].flags))
2437                                         break;
2438                         }
2439                         BUG_ON(other < 0);
2440                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2441                                (unsigned long long)sh->sector,
2442                                disk_idx, other);
2443                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2444                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2445                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2446                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2447                         sh->ops.target = disk_idx;
2448                         sh->ops.target2 = other;
2449                         s->uptodate += 2;
2450                         s->req_compute = 1;
2451                         return 1;
2452                 } else if (test_bit(R5_Insync, &dev->flags)) {
2453                         set_bit(R5_LOCKED, &dev->flags);
2454                         set_bit(R5_Wantread, &dev->flags);
2455                         s->locked++;
2456                         pr_debug("Reading block %d (sync=%d)\n",
2457                                 disk_idx, s->syncing);
2458                 }
2459         }
2460
2461         return 0;
2462 }
2463
2464 /**
2465  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2466  */
2467 static void handle_stripe_fill6(struct stripe_head *sh,
2468                         struct stripe_head_state *s, struct r6_state *r6s,
2469                         int disks)
2470 {
2471         int i;
2472
2473         /* look for blocks to read/compute, skip this if a compute
2474          * is already in flight, or if the stripe contents are in the
2475          * midst of changing due to a write
2476          */
2477         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2478             !sh->reconstruct_state)
2479                 for (i = disks; i--; )
2480                         if (fetch_block6(sh, s, r6s, i, disks))
2481                                 break;
2482         set_bit(STRIPE_HANDLE, &sh->state);
2483 }
2484
2485
2486 /* handle_stripe_clean_event
2487  * any written block on an uptodate or failed drive can be returned.
2488  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2489  * never LOCKED, so we don't need to test 'failed' directly.
2490  */
2491 static void handle_stripe_clean_event(raid5_conf_t *conf,
2492         struct stripe_head *sh, int disks, struct bio **return_bi)
2493 {
2494         int i;
2495         struct r5dev *dev;
2496
2497         for (i = disks; i--; )
2498                 if (sh->dev[i].written) {
2499                         dev = &sh->dev[i];
2500                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2501                                 test_bit(R5_UPTODATE, &dev->flags)) {
2502                                 /* We can return any write requests */
2503                                 struct bio *wbi, *wbi2;
2504                                 int bitmap_end = 0;
2505                                 pr_debug("Return write for disc %d\n", i);
2506                                 spin_lock_irq(&conf->device_lock);
2507                                 wbi = dev->written;
2508                                 dev->written = NULL;
2509                                 while (wbi && wbi->bi_sector <
2510                                         dev->sector + STRIPE_SECTORS) {
2511                                         wbi2 = r5_next_bio(wbi, dev->sector);
2512                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2513                                                 md_write_end(conf->mddev);
2514                                                 wbi->bi_next = *return_bi;
2515                                                 *return_bi = wbi;
2516                                         }
2517                                         wbi = wbi2;
2518                                 }
2519                                 if (dev->towrite == NULL)
2520                                         bitmap_end = 1;
2521                                 spin_unlock_irq(&conf->device_lock);
2522                                 if (bitmap_end)
2523                                         bitmap_endwrite(conf->mddev->bitmap,
2524                                                         sh->sector,
2525                                                         STRIPE_SECTORS,
2526                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2527                                                         0);
2528                         }
2529                 }
2530
2531         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2532                 if (atomic_dec_and_test(&conf->pending_full_writes))
2533                         md_wakeup_thread(conf->mddev->thread);
2534 }
2535
2536 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2537                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2538 {
2539         int rmw = 0, rcw = 0, i;
2540         for (i = disks; i--; ) {
2541                 /* would I have to read this buffer for read_modify_write */
2542                 struct r5dev *dev = &sh->dev[i];
2543                 if ((dev->towrite || i == sh->pd_idx) &&
2544                     !test_bit(R5_LOCKED, &dev->flags) &&
2545                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2546                       test_bit(R5_Wantcompute, &dev->flags))) {
2547                         if (test_bit(R5_Insync, &dev->flags))
2548                                 rmw++;
2549                         else
2550                                 rmw += 2*disks;  /* cannot read it */
2551                 }
2552                 /* Would I have to read this buffer for reconstruct_write */
2553                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2554                     !test_bit(R5_LOCKED, &dev->flags) &&
2555                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2556                     test_bit(R5_Wantcompute, &dev->flags))) {
2557                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2558                         else
2559                                 rcw += 2*disks;
2560                 }
2561         }
2562         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2563                 (unsigned long long)sh->sector, rmw, rcw);
2564         set_bit(STRIPE_HANDLE, &sh->state);
2565         if (rmw < rcw && rmw > 0)
2566                 /* prefer read-modify-write, but need to get some data */
2567                 for (i = disks; i--; ) {
2568                         struct r5dev *dev = &sh->dev[i];
2569                         if ((dev->towrite || i == sh->pd_idx) &&
2570                             !test_bit(R5_LOCKED, &dev->flags) &&
2571                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2572                             test_bit(R5_Wantcompute, &dev->flags)) &&
2573                             test_bit(R5_Insync, &dev->flags)) {
2574                                 if (
2575                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2576                                         pr_debug("Read_old block "
2577                                                 "%d for r-m-w\n", i);
2578                                         set_bit(R5_LOCKED, &dev->flags);
2579                                         set_bit(R5_Wantread, &dev->flags);
2580                                         s->locked++;
2581                                 } else {
2582                                         set_bit(STRIPE_DELAYED, &sh->state);
2583                                         set_bit(STRIPE_HANDLE, &sh->state);
2584                                 }
2585                         }
2586                 }
2587         if (rcw <= rmw && rcw > 0)
2588                 /* want reconstruct write, but need to get some data */
2589                 for (i = disks; i--; ) {
2590                         struct r5dev *dev = &sh->dev[i];
2591                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2592                             i != sh->pd_idx &&
2593                             !test_bit(R5_LOCKED, &dev->flags) &&
2594                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2595                             test_bit(R5_Wantcompute, &dev->flags)) &&
2596                             test_bit(R5_Insync, &dev->flags)) {
2597                                 if (
2598                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2599                                         pr_debug("Read_old block "
2600                                                 "%d for Reconstruct\n", i);
2601                                         set_bit(R5_LOCKED, &dev->flags);
2602                                         set_bit(R5_Wantread, &dev->flags);
2603                                         s->locked++;
2604                                 } else {
2605                                         set_bit(STRIPE_DELAYED, &sh->state);
2606                                         set_bit(STRIPE_HANDLE, &sh->state);
2607                                 }
2608                         }
2609                 }
2610         /* now if nothing is locked, and if we have enough data,
2611          * we can start a write request
2612          */
2613         /* since handle_stripe can be called at any time we need to handle the
2614          * case where a compute block operation has been submitted and then a
2615          * subsequent call wants to start a write request.  raid_run_ops only
2616          * handles the case where compute block and reconstruct are requested
2617          * simultaneously.  If this is not the case then new writes need to be
2618          * held off until the compute completes.
2619          */
2620         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2621             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2622             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2623                 schedule_reconstruction(sh, s, rcw == 0, 0);
2624 }
2625
2626 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2627                 struct stripe_head *sh, struct stripe_head_state *s,
2628                 struct r6_state *r6s, int disks)
2629 {
2630         int rcw = 0, pd_idx = sh->pd_idx, i;
2631         int qd_idx = sh->qd_idx;
2632
2633         set_bit(STRIPE_HANDLE, &sh->state);
2634         for (i = disks; i--; ) {
2635                 struct r5dev *dev = &sh->dev[i];
2636                 /* check if we haven't enough data */
2637                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2638                     i != pd_idx && i != qd_idx &&
2639                     !test_bit(R5_LOCKED, &dev->flags) &&
2640                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2641                       test_bit(R5_Wantcompute, &dev->flags))) {
2642                         rcw++;
2643                         if (!test_bit(R5_Insync, &dev->flags))
2644                                 continue; /* it's a failed drive */
2645
2646                         if (
2647                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2648                                 pr_debug("Read_old stripe %llu "
2649                                         "block %d for Reconstruct\n",
2650                                      (unsigned long long)sh->sector, i);
2651                                 set_bit(R5_LOCKED, &dev->flags);
2652                                 set_bit(R5_Wantread, &dev->flags);
2653                                 s->locked++;
2654                         } else {
2655                                 pr_debug("Request delayed stripe %llu "
2656                                         "block %d for Reconstruct\n",
2657                                      (unsigned long long)sh->sector, i);
2658                                 set_bit(STRIPE_DELAYED, &sh->state);
2659                                 set_bit(STRIPE_HANDLE, &sh->state);
2660                         }
2661                 }
2662         }
2663         /* now if nothing is locked, and if we have enough data, we can start a
2664          * write request
2665          */
2666         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2667             s->locked == 0 && rcw == 0 &&
2668             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2669                 schedule_reconstruction(sh, s, 1, 0);
2670         }
2671 }
2672
2673 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2674                                 struct stripe_head_state *s, int disks)
2675 {
2676         struct r5dev *dev = NULL;
2677
2678         set_bit(STRIPE_HANDLE, &sh->state);
2679
2680         switch (sh->check_state) {
2681         case check_state_idle:
2682                 /* start a new check operation if there are no failures */
2683                 if (s->failed == 0) {
2684                         BUG_ON(s->uptodate != disks);
2685                         sh->check_state = check_state_run;
2686                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2687                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2688                         s->uptodate--;
2689                         break;
2690                 }
2691                 dev = &sh->dev[s->failed_num];
2692                 /* fall through */
2693         case check_state_compute_result:
2694                 sh->check_state = check_state_idle;
2695                 if (!dev)
2696                         dev = &sh->dev[sh->pd_idx];
2697
2698                 /* check that a write has not made the stripe insync */
2699                 if (test_bit(STRIPE_INSYNC, &sh->state))
2700                         break;
2701
2702                 /* either failed parity check, or recovery is happening */
2703                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2704                 BUG_ON(s->uptodate != disks);
2705
2706                 set_bit(R5_LOCKED, &dev->flags);
2707                 s->locked++;
2708                 set_bit(R5_Wantwrite, &dev->flags);
2709
2710                 clear_bit(STRIPE_DEGRADED, &sh->state);
2711                 set_bit(STRIPE_INSYNC, &sh->state);
2712                 break;
2713         case check_state_run:
2714                 break; /* we will be called again upon completion */
2715         case check_state_check_result:
2716                 sh->check_state = check_state_idle;
2717
2718                 /* if a failure occurred during the check operation, leave
2719                  * STRIPE_INSYNC not set and let the stripe be handled again
2720                  */
2721                 if (s->failed)
2722                         break;
2723
2724                 /* handle a successful check operation, if parity is correct
2725                  * we are done.  Otherwise update the mismatch count and repair
2726                  * parity if !MD_RECOVERY_CHECK
2727                  */
2728                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2729                         /* parity is correct (on disc,
2730                          * not in buffer any more)
2731                          */
2732                         set_bit(STRIPE_INSYNC, &sh->state);
2733                 else {
2734                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2735                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2736                                 /* don't try to repair!! */
2737                                 set_bit(STRIPE_INSYNC, &sh->state);
2738                         else {
2739                                 sh->check_state = check_state_compute_run;
2740                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2741                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2742                                 set_bit(R5_Wantcompute,
2743                                         &sh->dev[sh->pd_idx].flags);
2744                                 sh->ops.target = sh->pd_idx;
2745                                 sh->ops.target2 = -1;
2746                                 s->uptodate++;
2747                         }
2748                 }
2749                 break;
2750         case check_state_compute_run:
2751                 break;
2752         default:
2753                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2754                        __func__, sh->check_state,
2755                        (unsigned long long) sh->sector);
2756                 BUG();
2757         }
2758 }
2759
2760
2761 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2762                                   struct stripe_head_state *s,
2763                                   struct r6_state *r6s, int disks)
2764 {
2765         int pd_idx = sh->pd_idx;
2766         int qd_idx = sh->qd_idx;
2767         struct r5dev *dev;
2768
2769         set_bit(STRIPE_HANDLE, &sh->state);
2770
2771         BUG_ON(s->failed > 2);
2772
2773         /* Want to check and possibly repair P and Q.
2774          * However there could be one 'failed' device, in which
2775          * case we can only check one of them, possibly using the
2776          * other to generate missing data
2777          */
2778
2779         switch (sh->check_state) {
2780         case check_state_idle:
2781                 /* start a new check operation if there are < 2 failures */
2782                 if (s->failed == r6s->q_failed) {
2783                         /* The only possible failed device holds Q, so it
2784                          * makes sense to check P (If anything else were failed,
2785                          * we would have used P to recreate it).
2786                          */
2787                         sh->check_state = check_state_run;
2788                 }
2789                 if (!r6s->q_failed && s->failed < 2) {
2790                         /* Q is not failed, and we didn't use it to generate
2791                          * anything, so it makes sense to check it
2792                          */
2793                         if (sh->check_state == check_state_run)
2794                                 sh->check_state = check_state_run_pq;
2795                         else
2796                                 sh->check_state = check_state_run_q;
2797                 }
2798
2799                 /* discard potentially stale zero_sum_result */
2800                 sh->ops.zero_sum_result = 0;
2801
2802                 if (sh->check_state == check_state_run) {
2803                         /* async_xor_zero_sum destroys the contents of P */
2804                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2805                         s->uptodate--;
2806                 }
2807                 if (sh->check_state >= check_state_run &&
2808                     sh->check_state <= check_state_run_pq) {
2809                         /* async_syndrome_zero_sum preserves P and Q, so
2810                          * no need to mark them !uptodate here
2811                          */
2812                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2813                         break;
2814                 }
2815
2816                 /* we have 2-disk failure */
2817                 BUG_ON(s->failed != 2);
2818                 /* fall through */
2819         case check_state_compute_result:
2820                 sh->check_state = check_state_idle;
2821
2822                 /* check that a write has not made the stripe insync */
2823                 if (test_bit(STRIPE_INSYNC, &sh->state))
2824                         break;
2825
2826                 /* now write out any block on a failed drive,
2827                  * or P or Q if they were recomputed
2828                  */
2829                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2830                 if (s->failed == 2) {
2831                         dev = &sh->dev[r6s->failed_num[1]];
2832                         s->locked++;
2833                         set_bit(R5_LOCKED, &dev->flags);
2834                         set_bit(R5_Wantwrite, &dev->flags);
2835                 }
2836                 if (s->failed >= 1) {
2837                         dev = &sh->dev[r6s->failed_num[0]];
2838                         s->locked++;
2839                         set_bit(R5_LOCKED, &dev->flags);
2840                         set_bit(R5_Wantwrite, &dev->flags);
2841                 }
2842                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2843                         dev = &sh->dev[pd_idx];
2844                         s->locked++;
2845                         set_bit(R5_LOCKED, &dev->flags);
2846                         set_bit(R5_Wantwrite, &dev->flags);
2847                 }
2848                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2849                         dev = &sh->dev[qd_idx];
2850                         s->locked++;
2851                         set_bit(R5_LOCKED, &dev->flags);
2852                         set_bit(R5_Wantwrite, &dev->flags);
2853                 }
2854                 clear_bit(STRIPE_DEGRADED, &sh->state);
2855
2856                 set_bit(STRIPE_INSYNC, &sh->state);
2857                 break;
2858         case check_state_run:
2859         case check_state_run_q:
2860         case check_state_run_pq:
2861                 break; /* we will be called again upon completion */
2862         case check_state_check_result:
2863                 sh->check_state = check_state_idle;
2864
2865                 /* handle a successful check operation, if parity is correct
2866                  * we are done.  Otherwise update the mismatch count and repair
2867                  * parity if !MD_RECOVERY_CHECK
2868                  */
2869                 if (sh->ops.zero_sum_result == 0) {
2870                         /* both parities are correct */
2871                         if (!s->failed)
2872                                 set_bit(STRIPE_INSYNC, &sh->state);
2873                         else {
2874                                 /* in contrast to the raid5 case we can validate
2875                                  * parity, but still have a failure to write
2876                                  * back
2877                                  */
2878                                 sh->check_state = check_state_compute_result;
2879                                 /* Returning at this point means that we may go
2880                                  * off and bring p and/or q uptodate again so
2881                                  * we make sure to check zero_sum_result again
2882                                  * to verify if p or q need writeback
2883                                  */
2884                         }
2885                 } else {
2886                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2887                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2888                                 /* don't try to repair!! */
2889                                 set_bit(STRIPE_INSYNC, &sh->state);
2890                         else {
2891                                 int *target = &sh->ops.target;
2892
2893                                 sh->ops.target = -1;
2894                                 sh->ops.target2 = -1;
2895                                 sh->check_state = check_state_compute_run;
2896                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2897                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2898                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2899                                         set_bit(R5_Wantcompute,
2900                                                 &sh->dev[pd_idx].flags);
2901                                         *target = pd_idx;
2902                                         target = &sh->ops.target2;
2903                                         s->uptodate++;
2904                                 }
2905                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2906                                         set_bit(R5_Wantcompute,
2907                                                 &sh->dev[qd_idx].flags);
2908                                         *target = qd_idx;
2909                                         s->uptodate++;
2910                                 }
2911                         }
2912                 }
2913                 break;
2914         case check_state_compute_run:
2915                 break;
2916         default:
2917                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2918                        __func__, sh->check_state,
2919                        (unsigned long long) sh->sector);
2920                 BUG();
2921         }
2922 }
2923
2924 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2925                                 struct r6_state *r6s)
2926 {
2927         int i;
2928
2929         /* We have read all the blocks in this stripe and now we need to
2930          * copy some of them into a target stripe for expand.
2931          */
2932         struct dma_async_tx_descriptor *tx = NULL;
2933         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2934         for (i = 0; i < sh->disks; i++)
2935                 if (i != sh->pd_idx && i != sh->qd_idx) {
2936                         int dd_idx, j;
2937                         struct stripe_head *sh2;
2938                         struct async_submit_ctl submit;
2939
2940                         sector_t bn = compute_blocknr(sh, i, 1);
2941                         sector_t s = raid5_compute_sector(conf, bn, 0,
2942                                                           &dd_idx, NULL);
2943                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2944                         if (sh2 == NULL)
2945                                 /* so far only the early blocks of this stripe
2946                                  * have been requested.  When later blocks
2947                                  * get requested, we will try again
2948                                  */
2949                                 continue;
2950                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2951                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2952                                 /* must have already done this block */
2953                                 release_stripe(sh2);
2954                                 continue;
2955                         }
2956
2957                         /* place all the copies on one channel */
2958                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2959                         tx = async_memcpy(sh2->dev[dd_idx].page,
2960                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2961                                           &submit);
2962
2963                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2964                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2965                         for (j = 0; j < conf->raid_disks; j++)
2966                                 if (j != sh2->pd_idx &&
2967                                     (!r6s || j != sh2->qd_idx) &&
2968                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2969                                         break;
2970                         if (j == conf->raid_disks) {
2971                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2972                                 set_bit(STRIPE_HANDLE, &sh2->state);
2973                         }
2974                         release_stripe(sh2);
2975
2976                 }
2977         /* done submitting copies, wait for them to complete */
2978         if (tx) {
2979                 async_tx_ack(tx);
2980                 dma_wait_for_async_tx(tx);
2981         }
2982 }
2983
2984
2985 /*
2986  * handle_stripe - do things to a stripe.
2987  *
2988  * We lock the stripe and then examine the state of various bits
2989  * to see what needs to be done.
2990  * Possible results:
2991  *    return some read request which now have data
2992  *    return some write requests which are safely on disc
2993  *    schedule a read on some buffers
2994  *    schedule a write of some buffers
2995  *    return confirmation of parity correctness
2996  *
2997  * buffers are taken off read_list or write_list, and bh_cache buffers
2998  * get BH_Lock set before the stripe lock is released.
2999  *
3000  */
3001
3002 static void handle_stripe5(struct stripe_head *sh)
3003 {
3004         raid5_conf_t *conf = sh->raid_conf;
3005         int disks = sh->disks, i;
3006         struct bio *return_bi = NULL;
3007         struct stripe_head_state s;
3008         struct r5dev *dev;
3009         mdk_rdev_t *blocked_rdev = NULL;
3010         int prexor;
3011         int dec_preread_active = 0;
3012
3013         memset(&s, 0, sizeof(s));
3014         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3015                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3016                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3017                  sh->reconstruct_state);
3018
3019         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3020         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3021         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3022
3023         /* Now to look around and see what can be done */
3024         rcu_read_lock();
3025         spin_lock_irq(&conf->device_lock);
3026         for (i=disks; i--; ) {
3027                 mdk_rdev_t *rdev;
3028
3029                 dev = &sh->dev[i];
3030
3031                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3032                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3033                         dev->towrite, dev->written);
3034
3035                 /* maybe we can request a biofill operation
3036                  *
3037                  * new wantfill requests are only permitted while
3038                  * ops_complete_biofill is guaranteed to be inactive
3039                  */
3040                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3041                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3042                         set_bit(R5_Wantfill, &dev->flags);
3043
3044                 /* now count some things */
3045                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3046                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3047                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3048
3049                 if (test_bit(R5_Wantfill, &dev->flags))
3050                         s.to_fill++;
3051                 else if (dev->toread)
3052                         s.to_read++;
3053                 if (dev->towrite) {
3054                         s.to_write++;
3055                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3056                                 s.non_overwrite++;
3057                 }
3058                 if (dev->written)
3059                         s.written++;
3060                 rdev = rcu_dereference(conf->disks[i].rdev);
3061                 if (blocked_rdev == NULL &&
3062                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3063                         blocked_rdev = rdev;
3064                         atomic_inc(&rdev->nr_pending);
3065                 }
3066                 clear_bit(R5_Insync, &dev->flags);
3067                 if (!rdev)
3068                         /* Not in-sync */;
3069                 else if (test_bit(In_sync, &rdev->flags))
3070                         set_bit(R5_Insync, &dev->flags);
3071                 else {
3072                         /* could be in-sync depending on recovery/reshape status */
3073                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3074                                 set_bit(R5_Insync, &dev->flags);
3075                 }
3076                 if (!test_bit(R5_Insync, &dev->flags)) {
3077                         /* The ReadError flag will just be confusing now */
3078                         clear_bit(R5_ReadError, &dev->flags);
3079                         clear_bit(R5_ReWrite, &dev->flags);
3080                 }
3081                 if (test_bit(R5_ReadError, &dev->flags))
3082                         clear_bit(R5_Insync, &dev->flags);
3083                 if (!test_bit(R5_Insync, &dev->flags)) {
3084                         s.failed++;
3085                         s.failed_num = i;
3086                 }
3087         }
3088         spin_unlock_irq(&conf->device_lock);
3089         rcu_read_unlock();
3090
3091         if (unlikely(blocked_rdev)) {
3092                 if (s.syncing || s.expanding || s.expanded ||
3093                     s.to_write || s.written) {
3094                         set_bit(STRIPE_HANDLE, &sh->state);
3095                         goto unlock;
3096                 }
3097                 /* There is nothing for the blocked_rdev to block */
3098                 rdev_dec_pending(blocked_rdev, conf->mddev);
3099                 blocked_rdev = NULL;
3100         }
3101
3102         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3103                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3104                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3105         }
3106
3107         pr_debug("locked=%d uptodate=%d to_read=%d"
3108                 " to_write=%d failed=%d failed_num=%d\n",
3109                 s.locked, s.uptodate, s.to_read, s.to_write,
3110                 s.failed, s.failed_num);
3111         /* check if the array has lost two devices and, if so, some requests might
3112          * need to be failed
3113          */
3114         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3115                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3116         if (s.failed > 1 && s.syncing) {
3117                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3118                 clear_bit(STRIPE_SYNCING, &sh->state);
3119                 s.syncing = 0;
3120         }
3121
3122         /* might be able to return some write requests if the parity block
3123          * is safe, or on a failed drive
3124          */
3125         dev = &sh->dev[sh->pd_idx];
3126         if ( s.written &&
3127              ((test_bit(R5_Insync, &dev->flags) &&
3128                !test_bit(R5_LOCKED, &dev->flags) &&
3129                test_bit(R5_UPTODATE, &dev->flags)) ||
3130                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3131                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3132
3133         /* Now we might consider reading some blocks, either to check/generate
3134          * parity, or to satisfy requests
3135          * or to load a block that is being partially written.
3136          */
3137         if (s.to_read || s.non_overwrite ||
3138             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3139                 handle_stripe_fill5(sh, &s, disks);
3140
3141         /* Now we check to see if any write operations have recently
3142          * completed
3143          */
3144         prexor = 0;
3145         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3146                 prexor = 1;
3147         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3148             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3149                 sh->reconstruct_state = reconstruct_state_idle;
3150
3151                 /* All the 'written' buffers and the parity block are ready to
3152                  * be written back to disk
3153                  */
3154                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3155                 for (i = disks; i--; ) {
3156                         dev = &sh->dev[i];
3157                         if (test_bit(R5_LOCKED, &dev->flags) &&
3158                                 (i == sh->pd_idx || dev->written)) {
3159                                 pr_debug("Writing block %d\n", i);
3160                                 set_bit(R5_Wantwrite, &dev->flags);
3161                                 if (prexor)
3162                                         continue;
3163                                 if (!test_bit(R5_Insync, &dev->flags) ||
3164                                     (i == sh->pd_idx && s.failed == 0))
3165                                         set_bit(STRIPE_INSYNC, &sh->state);
3166                         }
3167                 }
3168                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3169                         dec_preread_active = 1;
3170         }
3171
3172         /* Now to consider new write requests and what else, if anything
3173          * should be read.  We do not handle new writes when:
3174          * 1/ A 'write' operation (copy+xor) is already in flight.
3175          * 2/ A 'check' operation is in flight, as it may clobber the parity
3176          *    block.
3177          */
3178         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3179                 handle_stripe_dirtying5(conf, sh, &s, disks);
3180
3181         /* maybe we need to check and possibly fix the parity for this stripe
3182          * Any reads will already have been scheduled, so we just see if enough
3183          * data is available.  The parity check is held off while parity
3184          * dependent operations are in flight.
3185          */
3186         if (sh->check_state ||
3187             (s.syncing && s.locked == 0 &&
3188              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3189              !test_bit(STRIPE_INSYNC, &sh->state)))
3190                 handle_parity_checks5(conf, sh, &s, disks);
3191
3192         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3193                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3194                 clear_bit(STRIPE_SYNCING, &sh->state);
3195         }
3196
3197         /* If the failed drive is just a ReadError, then we might need to progress
3198          * the repair/check process
3199          */
3200         if (s.failed == 1 && !conf->mddev->ro &&
3201             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3202             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3203             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3204                 ) {
3205                 dev = &sh->dev[s.failed_num];
3206                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3207                         set_bit(R5_Wantwrite, &dev->flags);
3208                         set_bit(R5_ReWrite, &dev->flags);
3209                         set_bit(R5_LOCKED, &dev->flags);
3210                         s.locked++;
3211                 } else {
3212                         /* let's read it back */
3213                         set_bit(R5_Wantread, &dev->flags);
3214                         set_bit(R5_LOCKED, &dev->flags);
3215                         s.locked++;
3216                 }
3217         }
3218
3219         /* Finish reconstruct operations initiated by the expansion process */
3220         if (sh->reconstruct_state == reconstruct_state_result) {
3221                 struct stripe_head *sh2
3222                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3223                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3224                         /* sh cannot be written until sh2 has been read.
3225                          * so arrange for sh to be delayed a little
3226                          */
3227                         set_bit(STRIPE_DELAYED, &sh->state);
3228                         set_bit(STRIPE_HANDLE, &sh->state);
3229                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3230                                               &sh2->state))
3231                                 atomic_inc(&conf->preread_active_stripes);
3232                         release_stripe(sh2);
3233                         goto unlock;
3234                 }
3235                 if (sh2)
3236                         release_stripe(sh2);
3237
3238                 sh->reconstruct_state = reconstruct_state_idle;
3239                 clear_bit(STRIPE_EXPANDING, &sh->state);
3240                 for (i = conf->raid_disks; i--; ) {
3241                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3242                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3243                         s.locked++;
3244                 }
3245         }
3246
3247         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3248             !sh->reconstruct_state) {
3249                 /* Need to write out all blocks after computing parity */
3250                 sh->disks = conf->raid_disks;
3251                 stripe_set_idx(sh->sector, conf, 0, sh);
3252                 schedule_reconstruction(sh, &s, 1, 1);
3253         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3254                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3255                 atomic_dec(&conf->reshape_stripes);
3256                 wake_up(&conf->wait_for_overlap);
3257                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3258         }
3259
3260         if (s.expanding && s.locked == 0 &&
3261             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3262                 handle_stripe_expansion(conf, sh, NULL);
3263
3264  unlock:
3265
3266         /* wait for this device to become unblocked */
3267         if (unlikely(blocked_rdev))
3268                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3269
3270         if (s.ops_request)
3271                 raid_run_ops(sh, s.ops_request);
3272
3273         ops_run_io(sh, &s);
3274
3275         if (dec_preread_active) {
3276                 /* We delay this until after ops_run_io so that if make_request
3277                  * is waiting on a flush, it won't continue until the writes
3278                  * have actually been submitted.
3279                  */
3280                 atomic_dec(&conf->preread_active_stripes);
3281                 if (atomic_read(&conf->preread_active_stripes) <
3282                     IO_THRESHOLD)
3283                         md_wakeup_thread(conf->mddev->thread);
3284         }
3285         return_io(return_bi);
3286 }
3287
3288 static void handle_stripe6(struct stripe_head *sh)
3289 {
3290         raid5_conf_t *conf = sh->raid_conf;
3291         int disks = sh->disks;
3292         struct bio *return_bi = NULL;
3293         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3294         struct stripe_head_state s;
3295         struct r6_state r6s;
3296         struct r5dev *dev, *pdev, *qdev;
3297         mdk_rdev_t *blocked_rdev = NULL;
3298         int dec_preread_active = 0;
3299
3300         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3301                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3302                (unsigned long long)sh->sector, sh->state,
3303                atomic_read(&sh->count), pd_idx, qd_idx,
3304                sh->check_state, sh->reconstruct_state);
3305         memset(&s, 0, sizeof(s));
3306
3307         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3308         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3309         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3310         /* Now to look around and see what can be done */
3311
3312         rcu_read_lock();
3313         spin_lock_irq(&conf->device_lock);
3314         for (i=disks; i--; ) {
3315                 mdk_rdev_t *rdev;
3316                 dev = &sh->dev[i];
3317
3318                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3319                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3320                 /* maybe we can reply to a read
3321                  *
3322                  * new wantfill requests are only permitted while
3323                  * ops_complete_biofill is guaranteed to be inactive
3324                  */
3325                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3326                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3327                         set_bit(R5_Wantfill, &dev->flags);
3328
3329                 /* now count some things */
3330                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3331                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3332                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3333                         s.compute++;
3334                         BUG_ON(s.compute > 2);
3335                 }
3336
3337                 if (test_bit(R5_Wantfill, &dev->flags)) {
3338                         s.to_fill++;
3339                 } else if (dev->toread)
3340                         s.to_read++;
3341                 if (dev->towrite) {
3342                         s.to_write++;
3343                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3344                                 s.non_overwrite++;
3345                 }
3346                 if (dev->written)
3347                         s.written++;
3348                 rdev = rcu_dereference(conf->disks[i].rdev);
3349                 if (blocked_rdev == NULL &&
3350                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3351                         blocked_rdev = rdev;
3352                         atomic_inc(&rdev->nr_pending);
3353                 }
3354                 clear_bit(R5_Insync, &dev->flags);
3355                 if (!rdev)
3356                         /* Not in-sync */;
3357                 else if (test_bit(In_sync, &rdev->flags))
3358                         set_bit(R5_Insync, &dev->flags);
3359                 else {
3360                         /* in sync if before recovery_offset */
3361                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3362                                 set_bit(R5_Insync, &dev->flags);
3363                 }
3364                 if (!test_bit(R5_Insync, &dev->flags)) {
3365                         /* The ReadError flag will just be confusing now */
3366                         clear_bit(R5_ReadError, &dev->flags);
3367                         clear_bit(R5_ReWrite, &dev->flags);
3368                 }
3369                 if (test_bit(R5_ReadError, &dev->flags))
3370                         clear_bit(R5_Insync, &dev->flags);
3371                 if (!test_bit(R5_Insync, &dev->flags)) {
3372                         if (s.failed < 2)
3373                                 r6s.failed_num[s.failed] = i;
3374                         s.failed++;
3375                 }
3376         }
3377         spin_unlock_irq(&conf->device_lock);
3378         rcu_read_unlock();
3379
3380         if (unlikely(blocked_rdev)) {
3381                 if (s.syncing || s.expanding || s.expanded ||
3382                     s.to_write || s.written) {
3383                         set_bit(STRIPE_HANDLE, &sh->state);
3384                         goto unlock;
3385                 }
3386                 /* There is nothing for the blocked_rdev to block */
3387                 rdev_dec_pending(blocked_rdev, conf->mddev);
3388                 blocked_rdev = NULL;
3389         }
3390
3391         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3392                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3393                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3394         }
3395
3396         pr_debug("locked=%d uptodate=%d to_read=%d"
3397                " to_write=%d failed=%d failed_num=%d,%d\n",
3398                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3399                r6s.failed_num[0], r6s.failed_num[1]);
3400         /* check if the array has lost >2 devices and, if so, some requests
3401          * might need to be failed
3402          */
3403         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3404                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3405         if (s.failed > 2 && s.syncing) {
3406                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3407                 clear_bit(STRIPE_SYNCING, &sh->state);
3408                 s.syncing = 0;
3409         }
3410
3411         /*
3412          * might be able to return some write requests if the parity blocks
3413          * are safe, or on a failed drive
3414          */
3415         pdev = &sh->dev[pd_idx];
3416         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3417                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3418         qdev = &sh->dev[qd_idx];
3419         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3420                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3421
3422         if ( s.written &&
3423              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3424                              && !test_bit(R5_LOCKED, &pdev->flags)
3425                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3426              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3427                              && !test_bit(R5_LOCKED, &qdev->flags)
3428                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3429                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3430
3431         /* Now we might consider reading some blocks, either to check/generate
3432          * parity, or to satisfy requests
3433          * or to load a block that is being partially written.
3434          */
3435         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3436             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3437                 handle_stripe_fill6(sh, &s, &r6s, disks);
3438
3439         /* Now we check to see if any write operations have recently
3440          * completed
3441          */
3442         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3443
3444                 sh->reconstruct_state = reconstruct_state_idle;
3445                 /* All the 'written' buffers and the parity blocks are ready to
3446                  * be written back to disk
3447                  */
3448                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3449                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3450                 for (i = disks; i--; ) {
3451                         dev = &sh->dev[i];
3452                         if (test_bit(R5_LOCKED, &dev->flags) &&
3453                             (i == sh->pd_idx || i == qd_idx ||
3454                              dev->written)) {
3455                                 pr_debug("Writing block %d\n", i);
3456                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3457                                 set_bit(R5_Wantwrite, &dev->flags);
3458                                 if (!test_bit(R5_Insync, &dev->flags) ||
3459                                     ((i == sh->pd_idx || i == qd_idx) &&
3460                                       s.failed == 0))
3461                                         set_bit(STRIPE_INSYNC, &sh->state);
3462                         }
3463                 }
3464                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3465                         dec_preread_active = 1;
3466         }
3467
3468         /* Now to consider new write requests and what else, if anything
3469          * should be read.  We do not handle new writes when:
3470          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3471          * 2/ A 'check' operation is in flight, as it may clobber the parity
3472          *    block.
3473          */
3474         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3475                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3476
3477         /* maybe we need to check and possibly fix the parity for this stripe
3478          * Any reads will already have been scheduled, so we just see if enough
3479          * data is available.  The parity check is held off while parity
3480          * dependent operations are in flight.
3481          */
3482         if (sh->check_state ||
3483             (s.syncing && s.locked == 0 &&
3484              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3485              !test_bit(STRIPE_INSYNC, &sh->state)))
3486                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3487
3488         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3489                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3490                 clear_bit(STRIPE_SYNCING, &sh->state);
3491         }
3492
3493         /* If the failed drives are just a ReadError, then we might need
3494          * to progress the repair/check process
3495          */
3496         if (s.failed <= 2 && !conf->mddev->ro)
3497                 for (i = 0; i < s.failed; i++) {
3498                         dev = &sh->dev[r6s.failed_num[i]];
3499                         if (test_bit(R5_ReadError, &dev->flags)
3500                             && !test_bit(R5_LOCKED, &dev->flags)
3501                             && test_bit(R5_UPTODATE, &dev->flags)
3502                                 ) {
3503                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3504                                         set_bit(R5_Wantwrite, &dev->flags);
3505                                         set_bit(R5_ReWrite, &dev->flags);
3506                                         set_bit(R5_LOCKED, &dev->flags);
3507                                         s.locked++;
3508                                 } else {
3509                                         /* let's read it back */
3510                                         set_bit(R5_Wantread, &dev->flags);
3511                                         set_bit(R5_LOCKED, &dev->flags);
3512                                         s.locked++;
3513                                 }
3514                         }
3515                 }
3516
3517         /* Finish reconstruct operations initiated by the expansion process */
3518         if (sh->reconstruct_state == reconstruct_state_result) {
3519                 sh->reconstruct_state = reconstruct_state_idle;
3520                 clear_bit(STRIPE_EXPANDING, &sh->state);
3521                 for (i = conf->raid_disks; i--; ) {
3522                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3523                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3524                         s.locked++;
3525                 }
3526         }
3527
3528         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3529             !sh->reconstruct_state) {
3530                 struct stripe_head *sh2
3531                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3532                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3533                         /* sh cannot be written until sh2 has been read.
3534                          * so arrange for sh to be delayed a little
3535                          */
3536                         set_bit(STRIPE_DELAYED, &sh->state);
3537                         set_bit(STRIPE_HANDLE, &sh->state);
3538                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3539                                               &sh2->state))
3540                                 atomic_inc(&conf->preread_active_stripes);
3541                         release_stripe(sh2);
3542                         goto unlock;
3543                 }
3544                 if (sh2)
3545                         release_stripe(sh2);
3546
3547                 /* Need to write out all blocks after computing P&Q */
3548                 sh->disks = conf->raid_disks;
3549                 stripe_set_idx(sh->sector, conf, 0, sh);
3550                 schedule_reconstruction(sh, &s, 1, 1);
3551         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3552                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3553                 atomic_dec(&conf->reshape_stripes);
3554                 wake_up(&conf->wait_for_overlap);
3555                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3556         }
3557
3558         if (s.expanding && s.locked == 0 &&
3559             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3560                 handle_stripe_expansion(conf, sh, &r6s);
3561
3562  unlock:
3563
3564         /* wait for this device to become unblocked */
3565         if (unlikely(blocked_rdev))
3566                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3567
3568         if (s.ops_request)
3569                 raid_run_ops(sh, s.ops_request);
3570
3571         ops_run_io(sh, &s);
3572
3573
3574         if (dec_preread_active) {
3575                 /* We delay this until after ops_run_io so that if make_request
3576                  * is waiting on a flush, it won't continue until the writes
3577                  * have actually been submitted.
3578                  */
3579                 atomic_dec(&conf->preread_active_stripes);
3580                 if (atomic_read(&conf->preread_active_stripes) <
3581                     IO_THRESHOLD)
3582                         md_wakeup_thread(conf->mddev->thread);
3583         }
3584
3585         return_io(return_bi);
3586 }
3587
3588 static void handle_stripe(struct stripe_head *sh)
3589 {
3590         clear_bit(STRIPE_HANDLE, &sh->state);
3591         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3592                 /* already being handled, ensure it gets handled
3593                  * again when current action finishes */
3594                 set_bit(STRIPE_HANDLE, &sh->state);
3595                 return;
3596         }
3597
3598         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3599                 set_bit(STRIPE_SYNCING, &sh->state);
3600                 clear_bit(STRIPE_INSYNC, &sh->state);
3601         }
3602         clear_bit(STRIPE_DELAYED, &sh->state);
3603
3604         if (sh->raid_conf->level == 6)
3605                 handle_stripe6(sh);
3606         else
3607                 handle_stripe5(sh);
3608         clear_bit(STRIPE_ACTIVE, &sh->state);
3609 }
3610
3611 static void raid5_activate_delayed(raid5_conf_t *conf)
3612 {
3613         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3614                 while (!list_empty(&conf->delayed_list)) {
3615                         struct list_head *l = conf->delayed_list.next;
3616                         struct stripe_head *sh;
3617                         sh = list_entry(l, struct stripe_head, lru);
3618                         list_del_init(l);
3619                         clear_bit(STRIPE_DELAYED, &sh->state);
3620                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3621                                 atomic_inc(&conf->preread_active_stripes);
3622                         list_add_tail(&sh->lru, &conf->hold_list);
3623                 }
3624         }
3625 }
3626
3627 static void activate_bit_delay(raid5_conf_t *conf)
3628 {
3629         /* device_lock is held */
3630         struct list_head head;
3631         list_add(&head, &conf->bitmap_list);
3632         list_del_init(&conf->bitmap_list);
3633         while (!list_empty(&head)) {
3634                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3635                 list_del_init(&sh->lru);
3636                 atomic_inc(&sh->count);
3637                 __release_stripe(conf, sh);
3638         }
3639 }
3640
3641 int md_raid5_congested(mddev_t *mddev, int bits)
3642 {
3643         raid5_conf_t *conf = mddev->private;
3644
3645         /* No difference between reads and writes.  Just check
3646          * how busy the stripe_cache is
3647          */
3648
3649         if (conf->inactive_blocked)
3650                 return 1;
3651         if (conf->quiesce)
3652                 return 1;
3653         if (list_empty_careful(&conf->inactive_list))
3654                 return 1;
3655
3656         return 0;
3657 }
3658 EXPORT_SYMBOL_GPL(md_raid5_congested);
3659
3660 static int raid5_congested(void *data, int bits)
3661 {
3662         mddev_t *mddev = data;
3663
3664         return mddev_congested(mddev, bits) ||
3665                 md_raid5_congested(mddev, bits);
3666 }
3667
3668 /* We want read requests to align with chunks where possible,
3669  * but write requests don't need to.
3670  */
3671 static int raid5_mergeable_bvec(struct request_queue *q,
3672                                 struct bvec_merge_data *bvm,
3673                                 struct bio_vec *biovec)
3674 {
3675         mddev_t *mddev = q->queuedata;
3676         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3677         int max;
3678         unsigned int chunk_sectors = mddev->chunk_sectors;
3679         unsigned int bio_sectors = bvm->bi_size >> 9;
3680
3681         if ((bvm->bi_rw & 1) == WRITE)
3682                 return biovec->bv_len; /* always allow writes to be mergeable */
3683
3684         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3685                 chunk_sectors = mddev->new_chunk_sectors;
3686         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3687         if (max < 0) max = 0;
3688         if (max <= biovec->bv_len && bio_sectors == 0)
3689                 return biovec->bv_len;
3690         else
3691                 return max;
3692 }
3693
3694
3695 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3696 {
3697         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3698         unsigned int chunk_sectors = mddev->chunk_sectors;
3699         unsigned int bio_sectors = bio->bi_size >> 9;
3700
3701         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3702                 chunk_sectors = mddev->new_chunk_sectors;
3703         return  chunk_sectors >=
3704                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3705 }
3706
3707 /*
3708  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3709  *  later sampled by raid5d.
3710  */
3711 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3712 {
3713         unsigned long flags;
3714
3715         spin_lock_irqsave(&conf->device_lock, flags);
3716
3717         bi->bi_next = conf->retry_read_aligned_list;
3718         conf->retry_read_aligned_list = bi;
3719
3720         spin_unlock_irqrestore(&conf->device_lock, flags);
3721         md_wakeup_thread(conf->mddev->thread);
3722 }
3723
3724
3725 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3726 {
3727         struct bio *bi;
3728
3729         bi = conf->retry_read_aligned;
3730         if (bi) {
3731                 conf->retry_read_aligned = NULL;
3732                 return bi;
3733         }
3734         bi = conf->retry_read_aligned_list;
3735         if(bi) {
3736                 conf->retry_read_aligned_list = bi->bi_next;
3737                 bi->bi_next = NULL;
3738                 /*
3739                  * this sets the active strip count to 1 and the processed
3740                  * strip count to zero (upper 8 bits)
3741                  */
3742                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3743         }
3744
3745         return bi;
3746 }
3747
3748
3749 /*
3750  *  The "raid5_align_endio" should check if the read succeeded and if it
3751  *  did, call bio_endio on the original bio (having bio_put the new bio
3752  *  first).
3753  *  If the read failed..
3754  */
3755 static void raid5_align_endio(struct bio *bi, int error)
3756 {
3757         struct bio* raid_bi  = bi->bi_private;
3758         mddev_t *mddev;
3759         raid5_conf_t *conf;
3760         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3761         mdk_rdev_t *rdev;
3762
3763         bio_put(bi);
3764
3765         rdev = (void*)raid_bi->bi_next;
3766         raid_bi->bi_next = NULL;
3767         mddev = rdev->mddev;
3768         conf = mddev->private;
3769
3770         rdev_dec_pending(rdev, conf->mddev);
3771
3772         if (!error && uptodate) {
3773                 bio_endio(raid_bi, 0);
3774                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3775                         wake_up(&conf->wait_for_stripe);
3776                 return;
3777         }
3778
3779
3780         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3781
3782         add_bio_to_retry(raid_bi, conf);
3783 }
3784
3785 static int bio_fits_rdev(struct bio *bi)
3786 {
3787         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3788
3789         if ((bi->bi_size>>9) > queue_max_sectors(q))
3790                 return 0;
3791         blk_recount_segments(q, bi);
3792         if (bi->bi_phys_segments > queue_max_segments(q))
3793                 return 0;
3794
3795         if (q->merge_bvec_fn)
3796                 /* it's too hard to apply the merge_bvec_fn at this stage,
3797                  * just just give up
3798                  */
3799                 return 0;
3800
3801         return 1;
3802 }
3803
3804
3805 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3806 {
3807         raid5_conf_t *conf = mddev->private;
3808         int dd_idx;
3809         struct bio* align_bi;
3810         mdk_rdev_t *rdev;
3811
3812         if (!in_chunk_boundary(mddev, raid_bio)) {
3813                 pr_debug("chunk_aligned_read : non aligned\n");
3814                 return 0;
3815         }
3816         /*
3817          * use bio_clone_mddev to make a copy of the bio
3818          */
3819         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3820         if (!align_bi)
3821                 return 0;
3822         /*
3823          *   set bi_end_io to a new function, and set bi_private to the
3824          *     original bio.
3825          */
3826         align_bi->bi_end_io  = raid5_align_endio;
3827         align_bi->bi_private = raid_bio;
3828         /*
3829          *      compute position
3830          */
3831         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3832                                                     0,
3833                                                     &dd_idx, NULL);
3834
3835         rcu_read_lock();
3836         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3837         if (rdev && test_bit(In_sync, &rdev->flags)) {
3838                 atomic_inc(&rdev->nr_pending);
3839                 rcu_read_unlock();
3840                 raid_bio->bi_next = (void*)rdev;
3841                 align_bi->bi_bdev =  rdev->bdev;
3842                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3843                 align_bi->bi_sector += rdev->data_offset;
3844
3845                 if (!bio_fits_rdev(align_bi)) {
3846                         /* too big in some way */
3847                         bio_put(align_bi);
3848                         rdev_dec_pending(rdev, mddev);
3849                         return 0;
3850                 }
3851
3852                 spin_lock_irq(&conf->device_lock);
3853                 wait_event_lock_irq(conf->wait_for_stripe,
3854                                     conf->quiesce == 0,
3855                                     conf->device_lock, /* nothing */);
3856                 atomic_inc(&conf->active_aligned_reads);
3857                 spin_unlock_irq(&conf->device_lock);
3858
3859                 generic_make_request(align_bi);
3860                 return 1;
3861         } else {
3862                 rcu_read_unlock();
3863                 bio_put(align_bi);
3864                 return 0;
3865         }
3866 }
3867
3868 /* __get_priority_stripe - get the next stripe to process
3869  *
3870  * Full stripe writes are allowed to pass preread active stripes up until
3871  * the bypass_threshold is exceeded.  In general the bypass_count
3872  * increments when the handle_list is handled before the hold_list; however, it
3873  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3874  * stripe with in flight i/o.  The bypass_count will be reset when the
3875  * head of the hold_list has changed, i.e. the head was promoted to the
3876  * handle_list.
3877  */
3878 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3879 {
3880         struct stripe_head *sh;
3881
3882         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3883                   __func__,
3884                   list_empty(&conf->handle_list) ? "empty" : "busy",
3885                   list_empty(&conf->hold_list) ? "empty" : "busy",
3886                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3887
3888         if (!list_empty(&conf->handle_list)) {
3889                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3890
3891                 if (list_empty(&conf->hold_list))
3892                         conf->bypass_count = 0;
3893                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3894                         if (conf->hold_list.next == conf->last_hold)
3895                                 conf->bypass_count++;
3896                         else {
3897                                 conf->last_hold = conf->hold_list.next;
3898                                 conf->bypass_count -= conf->bypass_threshold;
3899                                 if (conf->bypass_count < 0)
3900                                         conf->bypass_count = 0;
3901                         }
3902                 }
3903         } else if (!list_empty(&conf->hold_list) &&
3904                    ((conf->bypass_threshold &&
3905                      conf->bypass_count > conf->bypass_threshold) ||
3906                     atomic_read(&conf->pending_full_writes) == 0)) {
3907                 sh = list_entry(conf->hold_list.next,
3908                                 typeof(*sh), lru);
3909                 conf->bypass_count -= conf->bypass_threshold;
3910                 if (conf->bypass_count < 0)
3911                         conf->bypass_count = 0;
3912         } else
3913                 return NULL;
3914
3915         list_del_init(&sh->lru);
3916         atomic_inc(&sh->count);
3917         BUG_ON(atomic_read(&sh->count) != 1);
3918         return sh;
3919 }
3920
3921 static int make_request(mddev_t *mddev, struct bio * bi)
3922 {
3923         raid5_conf_t *conf = mddev->private;
3924         int dd_idx;
3925         sector_t new_sector;
3926         sector_t logical_sector, last_sector;
3927         struct stripe_head *sh;
3928         const int rw = bio_data_dir(bi);
3929         int remaining;
3930         int plugged;
3931
3932         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3933                 md_flush_request(mddev, bi);
3934                 return 0;
3935         }
3936
3937         md_write_start(mddev, bi);
3938
3939         if (rw == READ &&
3940              mddev->reshape_position == MaxSector &&
3941              chunk_aligned_read(mddev,bi))
3942                 return 0;
3943
3944         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945         last_sector = bi->bi_sector + (bi->bi_size>>9);
3946         bi->bi_next = NULL;
3947         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3948
3949         plugged = mddev_check_plugged(mddev);
3950         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3951                 DEFINE_WAIT(w);
3952                 int disks, data_disks;
3953                 int previous;
3954
3955         retry:
3956                 previous = 0;
3957                 disks = conf->raid_disks;
3958                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3959                 if (unlikely(conf->reshape_progress != MaxSector)) {
3960                         /* spinlock is needed as reshape_progress may be
3961                          * 64bit on a 32bit platform, and so it might be
3962                          * possible to see a half-updated value
3963                          * Of course reshape_progress could change after
3964                          * the lock is dropped, so once we get a reference
3965                          * to the stripe that we think it is, we will have
3966                          * to check again.
3967                          */
3968                         spin_lock_irq(&conf->device_lock);
3969                         if (mddev->delta_disks < 0
3970                             ? logical_sector < conf->reshape_progress
3971                             : logical_sector >= conf->reshape_progress) {
3972                                 disks = conf->previous_raid_disks;
3973                                 previous = 1;
3974                         } else {
3975                                 if (mddev->delta_disks < 0
3976                                     ? logical_sector < conf->reshape_safe
3977                                     : logical_sector >= conf->reshape_safe) {
3978                                         spin_unlock_irq(&conf->device_lock);
3979                                         schedule();
3980                                         goto retry;
3981                                 }
3982                         }
3983                         spin_unlock_irq(&conf->device_lock);
3984                 }
3985                 data_disks = disks - conf->max_degraded;
3986
3987                 new_sector = raid5_compute_sector(conf, logical_sector,
3988                                                   previous,
3989                                                   &dd_idx, NULL);
3990                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3991                         (unsigned long long)new_sector, 
3992                         (unsigned long long)logical_sector);
3993
3994                 sh = get_active_stripe(conf, new_sector, previous,
3995                                        (bi->bi_rw&RWA_MASK), 0);
3996                 if (sh) {
3997                         if (unlikely(previous)) {
3998                                 /* expansion might have moved on while waiting for a
3999                                  * stripe, so we must do the range check again.
4000                                  * Expansion could still move past after this
4001                                  * test, but as we are holding a reference to
4002                                  * 'sh', we know that if that happens,
4003                                  *  STRIPE_EXPANDING will get set and the expansion
4004                                  * won't proceed until we finish with the stripe.
4005                                  */
4006                                 int must_retry = 0;
4007                                 spin_lock_irq(&conf->device_lock);
4008                                 if (mddev->delta_disks < 0
4009                                     ? logical_sector >= conf->reshape_progress
4010                                     : logical_sector < conf->reshape_progress)
4011                                         /* mismatch, need to try again */
4012                                         must_retry = 1;
4013                                 spin_unlock_irq(&conf->device_lock);
4014                                 if (must_retry) {
4015                                         release_stripe(sh);
4016                                         schedule();
4017                                         goto retry;
4018                                 }
4019                         }
4020
4021                         if (rw == WRITE &&
4022                             logical_sector >= mddev->suspend_lo &&
4023                             logical_sector < mddev->suspend_hi) {
4024                                 release_stripe(sh);
4025                                 /* As the suspend_* range is controlled by
4026                                  * userspace, we want an interruptible
4027                                  * wait.
4028                                  */
4029                                 flush_signals(current);
4030                                 prepare_to_wait(&conf->wait_for_overlap,
4031                                                 &w, TASK_INTERRUPTIBLE);
4032                                 if (logical_sector >= mddev->suspend_lo &&
4033                                     logical_sector < mddev->suspend_hi)
4034                                         schedule();
4035                                 goto retry;
4036                         }
4037
4038                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4039                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4040                                 /* Stripe is busy expanding or
4041                                  * add failed due to overlap.  Flush everything
4042                                  * and wait a while
4043                                  */
4044                                 md_wakeup_thread(mddev->thread);
4045                                 release_stripe(sh);
4046                                 schedule();
4047                                 goto retry;
4048                         }
4049                         finish_wait(&conf->wait_for_overlap, &w);
4050                         set_bit(STRIPE_HANDLE, &sh->state);
4051                         clear_bit(STRIPE_DELAYED, &sh->state);
4052                         if ((bi->bi_rw & REQ_SYNC) &&
4053                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4054                                 atomic_inc(&conf->preread_active_stripes);
4055                         release_stripe(sh);
4056                 } else {
4057                         /* cannot get stripe for read-ahead, just give-up */
4058                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4059                         finish_wait(&conf->wait_for_overlap, &w);
4060                         break;
4061                 }
4062                         
4063         }
4064         if (!plugged)
4065                 md_wakeup_thread(mddev->thread);
4066
4067         spin_lock_irq(&conf->device_lock);
4068         remaining = raid5_dec_bi_phys_segments(bi);
4069         spin_unlock_irq(&conf->device_lock);
4070         if (remaining == 0) {
4071
4072                 if ( rw == WRITE )
4073                         md_write_end(mddev);
4074
4075                 bio_endio(bi, 0);
4076         }
4077
4078         return 0;
4079 }
4080
4081 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4082
4083 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4084 {
4085         /* reshaping is quite different to recovery/resync so it is
4086          * handled quite separately ... here.
4087          *
4088          * On each call to sync_request, we gather one chunk worth of
4089          * destination stripes and flag them as expanding.
4090          * Then we find all the source stripes and request reads.
4091          * As the reads complete, handle_stripe will copy the data
4092          * into the destination stripe and release that stripe.
4093          */
4094         raid5_conf_t *conf = mddev->private;
4095         struct stripe_head *sh;
4096         sector_t first_sector, last_sector;
4097         int raid_disks = conf->previous_raid_disks;
4098         int data_disks = raid_disks - conf->max_degraded;
4099         int new_data_disks = conf->raid_disks - conf->max_degraded;
4100         int i;
4101         int dd_idx;
4102         sector_t writepos, readpos, safepos;
4103         sector_t stripe_addr;
4104         int reshape_sectors;
4105         struct list_head stripes;
4106
4107         if (sector_nr == 0) {
4108                 /* If restarting in the middle, skip the initial sectors */
4109                 if (mddev->delta_disks < 0 &&
4110                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4111                         sector_nr = raid5_size(mddev, 0, 0)
4112                                 - conf->reshape_progress;
4113                 } else if (mddev->delta_disks >= 0 &&
4114                            conf->reshape_progress > 0)
4115                         sector_nr = conf->reshape_progress;
4116                 sector_div(sector_nr, new_data_disks);
4117                 if (sector_nr) {
4118                         mddev->curr_resync_completed = sector_nr;
4119                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120                         *skipped = 1;
4121                         return sector_nr;
4122                 }
4123         }
4124
4125         /* We need to process a full chunk at a time.
4126          * If old and new chunk sizes differ, we need to process the
4127          * largest of these
4128          */
4129         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4130                 reshape_sectors = mddev->new_chunk_sectors;
4131         else
4132                 reshape_sectors = mddev->chunk_sectors;
4133
4134         /* we update the metadata when there is more than 3Meg
4135          * in the block range (that is rather arbitrary, should
4136          * probably be time based) or when the data about to be
4137          * copied would over-write the source of the data at
4138          * the front of the range.
4139          * i.e. one new_stripe along from reshape_progress new_maps
4140          * to after where reshape_safe old_maps to
4141          */
4142         writepos = conf->reshape_progress;
4143         sector_div(writepos, new_data_disks);
4144         readpos = conf->reshape_progress;
4145         sector_div(readpos, data_disks);
4146         safepos = conf->reshape_safe;
4147         sector_div(safepos, data_disks);
4148         if (mddev->delta_disks < 0) {
4149                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4150                 readpos += reshape_sectors;
4151                 safepos += reshape_sectors;
4152         } else {
4153                 writepos += reshape_sectors;
4154                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4155                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4156         }
4157
4158         /* 'writepos' is the most advanced device address we might write.
4159          * 'readpos' is the least advanced device address we might read.
4160          * 'safepos' is the least address recorded in the metadata as having
4161          *     been reshaped.
4162          * If 'readpos' is behind 'writepos', then there is no way that we can
4163          * ensure safety in the face of a crash - that must be done by userspace
4164          * making a backup of the data.  So in that case there is no particular
4165          * rush to update metadata.
4166          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4167          * update the metadata to advance 'safepos' to match 'readpos' so that
4168          * we can be safe in the event of a crash.
4169          * So we insist on updating metadata if safepos is behind writepos and
4170          * readpos is beyond writepos.
4171          * In any case, update the metadata every 10 seconds.
4172          * Maybe that number should be configurable, but I'm not sure it is
4173          * worth it.... maybe it could be a multiple of safemode_delay???
4174          */
4175         if ((mddev->delta_disks < 0
4176              ? (safepos > writepos && readpos < writepos)
4177              : (safepos < writepos && readpos > writepos)) ||
4178             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4179                 /* Cannot proceed until we've updated the superblock... */
4180                 wait_event(conf->wait_for_overlap,
4181                            atomic_read(&conf->reshape_stripes)==0);
4182                 mddev->reshape_position = conf->reshape_progress;
4183                 mddev->curr_resync_completed = sector_nr;
4184                 conf->reshape_checkpoint = jiffies;
4185                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4186                 md_wakeup_thread(mddev->thread);
4187                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4188                            kthread_should_stop());
4189                 spin_lock_irq(&conf->device_lock);
4190                 conf->reshape_safe = mddev->reshape_position;
4191                 spin_unlock_irq(&conf->device_lock);
4192                 wake_up(&conf->wait_for_overlap);
4193                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4194         }
4195
4196         if (mddev->delta_disks < 0) {
4197                 BUG_ON(conf->reshape_progress == 0);
4198                 stripe_addr = writepos;
4199                 BUG_ON((mddev->dev_sectors &
4200                         ~((sector_t)reshape_sectors - 1))
4201                        - reshape_sectors - stripe_addr
4202                        != sector_nr);
4203         } else {
4204                 BUG_ON(writepos != sector_nr + reshape_sectors);
4205                 stripe_addr = sector_nr;
4206         }
4207         INIT_LIST_HEAD(&stripes);
4208         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4209                 int j;
4210                 int skipped_disk = 0;
4211                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4212                 set_bit(STRIPE_EXPANDING, &sh->state);
4213                 atomic_inc(&conf->reshape_stripes);
4214                 /* If any of this stripe is beyond the end of the old
4215                  * array, then we need to zero those blocks
4216                  */
4217                 for (j=sh->disks; j--;) {
4218                         sector_t s;
4219                         if (j == sh->pd_idx)
4220                                 continue;
4221                         if (conf->level == 6 &&
4222                             j == sh->qd_idx)
4223                                 continue;
4224                         s = compute_blocknr(sh, j, 0);
4225                         if (s < raid5_size(mddev, 0, 0)) {
4226                                 skipped_disk = 1;
4227                                 continue;
4228                         }
4229                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4230                         set_bit(R5_Expanded, &sh->dev[j].flags);
4231                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4232                 }
4233                 if (!skipped_disk) {
4234                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4235                         set_bit(STRIPE_HANDLE, &sh->state);
4236                 }
4237                 list_add(&sh->lru, &stripes);
4238         }
4239         spin_lock_irq(&conf->device_lock);
4240         if (mddev->delta_disks < 0)
4241                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4242         else
4243                 conf->reshape_progress += reshape_sectors * new_data_disks;
4244         spin_unlock_irq(&conf->device_lock);
4245         /* Ok, those stripe are ready. We can start scheduling
4246          * reads on the source stripes.
4247          * The source stripes are determined by mapping the first and last
4248          * block on the destination stripes.
4249          */
4250         first_sector =
4251                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4252                                      1, &dd_idx, NULL);
4253         last_sector =
4254                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4255                                             * new_data_disks - 1),
4256                                      1, &dd_idx, NULL);
4257         if (last_sector >= mddev->dev_sectors)
4258                 last_sector = mddev->dev_sectors - 1;
4259         while (first_sector <= last_sector) {
4260                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4261                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4262                 set_bit(STRIPE_HANDLE, &sh->state);
4263                 release_stripe(sh);
4264                 first_sector += STRIPE_SECTORS;
4265         }
4266         /* Now that the sources are clearly marked, we can release
4267          * the destination stripes
4268          */
4269         while (!list_empty(&stripes)) {
4270                 sh = list_entry(stripes.next, struct stripe_head, lru);
4271                 list_del_init(&sh->lru);
4272                 release_stripe(sh);
4273         }
4274         /* If this takes us to the resync_max point where we have to pause,
4275          * then we need to write out the superblock.
4276          */
4277         sector_nr += reshape_sectors;
4278         if ((sector_nr - mddev->curr_resync_completed) * 2
4279             >= mddev->resync_max - mddev->curr_resync_completed) {
4280                 /* Cannot proceed until we've updated the superblock... */
4281                 wait_event(conf->wait_for_overlap,
4282                            atomic_read(&conf->reshape_stripes) == 0);
4283                 mddev->reshape_position = conf->reshape_progress;
4284                 mddev->curr_resync_completed = sector_nr;
4285                 conf->reshape_checkpoint = jiffies;
4286                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4287                 md_wakeup_thread(mddev->thread);
4288                 wait_event(mddev->sb_wait,
4289                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4290                            || kthread_should_stop());
4291                 spin_lock_irq(&conf->device_lock);
4292                 conf->reshape_safe = mddev->reshape_position;
4293                 spin_unlock_irq(&conf->device_lock);
4294                 wake_up(&conf->wait_for_overlap);
4295                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4296         }
4297         return reshape_sectors;
4298 }
4299
4300 /* FIXME go_faster isn't used */
4301 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4302 {
4303         raid5_conf_t *conf = mddev->private;
4304         struct stripe_head *sh;
4305         sector_t max_sector = mddev->dev_sectors;
4306         sector_t sync_blocks;
4307         int still_degraded = 0;
4308         int i;
4309
4310         if (sector_nr >= max_sector) {
4311                 /* just being told to finish up .. nothing much to do */
4312
4313                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4314                         end_reshape(conf);
4315                         return 0;
4316                 }
4317
4318                 if (mddev->curr_resync < max_sector) /* aborted */
4319                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4320                                         &sync_blocks, 1);
4321                 else /* completed sync */
4322                         conf->fullsync = 0;
4323                 bitmap_close_sync(mddev->bitmap);
4324
4325                 return 0;
4326         }
4327
4328         /* Allow raid5_quiesce to complete */
4329         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4330
4331         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4332                 return reshape_request(mddev, sector_nr, skipped);
4333
4334         /* No need to check resync_max as we never do more than one
4335          * stripe, and as resync_max will always be on a chunk boundary,
4336          * if the check in md_do_sync didn't fire, there is no chance
4337          * of overstepping resync_max here
4338          */
4339
4340         /* if there is too many failed drives and we are trying
4341          * to resync, then assert that we are finished, because there is
4342          * nothing we can do.
4343          */
4344         if (mddev->degraded >= conf->max_degraded &&
4345             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4346                 sector_t rv = mddev->dev_sectors - sector_nr;
4347                 *skipped = 1;
4348                 return rv;
4349         }
4350         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4351             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4352             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4353                 /* we can skip this block, and probably more */
4354                 sync_blocks /= STRIPE_SECTORS;
4355                 *skipped = 1;
4356                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4357         }
4358
4359
4360         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4361
4362         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4363         if (sh == NULL) {
4364                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4365                 /* make sure we don't swamp the stripe cache if someone else
4366                  * is trying to get access
4367                  */
4368                 schedule_timeout_uninterruptible(1);
4369         }
4370         /* Need to check if array will still be degraded after recovery/resync
4371          * We don't need to check the 'failed' flag as when that gets set,
4372          * recovery aborts.
4373          */
4374         for (i = 0; i < conf->raid_disks; i++)
4375                 if (conf->disks[i].rdev == NULL)
4376                         still_degraded = 1;
4377
4378         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4379
4380         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4381
4382         handle_stripe(sh);
4383         release_stripe(sh);
4384
4385         return STRIPE_SECTORS;
4386 }
4387
4388 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4389 {
4390         /* We may not be able to submit a whole bio at once as there
4391          * may not be enough stripe_heads available.
4392          * We cannot pre-allocate enough stripe_heads as we may need
4393          * more than exist in the cache (if we allow ever large chunks).
4394          * So we do one stripe head at a time and record in
4395          * ->bi_hw_segments how many have been done.
4396          *
4397          * We *know* that this entire raid_bio is in one chunk, so
4398          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4399          */
4400         struct stripe_head *sh;
4401         int dd_idx;
4402         sector_t sector, logical_sector, last_sector;
4403         int scnt = 0;
4404         int remaining;
4405         int handled = 0;
4406
4407         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4408         sector = raid5_compute_sector(conf, logical_sector,
4409                                       0, &dd_idx, NULL);
4410         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4411
4412         for (; logical_sector < last_sector;
4413              logical_sector += STRIPE_SECTORS,
4414                      sector += STRIPE_SECTORS,
4415                      scnt++) {
4416
4417                 if (scnt < raid5_bi_hw_segments(raid_bio))
4418                         /* already done this stripe */
4419                         continue;
4420
4421                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4422
4423                 if (!sh) {
4424                         /* failed to get a stripe - must wait */
4425                         raid5_set_bi_hw_segments(raid_bio, scnt);
4426                         conf->retry_read_aligned = raid_bio;
4427                         return handled;
4428                 }
4429
4430                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4431                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4432                         release_stripe(sh);
4433                         raid5_set_bi_hw_segments(raid_bio, scnt);
4434                         conf->retry_read_aligned = raid_bio;
4435                         return handled;
4436                 }
4437
4438                 handle_stripe(sh);
4439                 release_stripe(sh);
4440                 handled++;
4441         }
4442         spin_lock_irq(&conf->device_lock);
4443         remaining = raid5_dec_bi_phys_segments(raid_bio);
4444         spin_unlock_irq(&conf->device_lock);
4445         if (remaining == 0)
4446                 bio_endio(raid_bio, 0);
4447         if (atomic_dec_and_test(&conf->active_aligned_reads))
4448                 wake_up(&conf->wait_for_stripe);
4449         return handled;
4450 }
4451
4452
4453 /*
4454  * This is our raid5 kernel thread.
4455  *
4456  * We scan the hash table for stripes which can be handled now.
4457  * During the scan, completed stripes are saved for us by the interrupt
4458  * handler, so that they will not have to wait for our next wakeup.
4459  */
4460 static void raid5d(mddev_t *mddev)
4461 {
4462         struct stripe_head *sh;
4463         raid5_conf_t *conf = mddev->private;
4464         int handled;
4465         struct blk_plug plug;
4466
4467         pr_debug("+++ raid5d active\n");
4468
4469         md_check_recovery(mddev);
4470
4471         blk_start_plug(&plug);
4472         handled = 0;
4473         spin_lock_irq(&conf->device_lock);
4474         while (1) {
4475                 struct bio *bio;
4476
4477                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4478                     !list_empty(&conf->bitmap_list)) {
4479                         /* Now is a good time to flush some bitmap updates */
4480                         conf->seq_flush++;
4481                         spin_unlock_irq(&conf->device_lock);
4482                         bitmap_unplug(mddev->bitmap);
4483                         spin_lock_irq(&conf->device_lock);
4484                         conf->seq_write = conf->seq_flush;
4485                         activate_bit_delay(conf);
4486                 }
4487                 if (atomic_read(&mddev->plug_cnt) == 0)
4488                         raid5_activate_delayed(conf);
4489
4490                 while ((bio = remove_bio_from_retry(conf))) {
4491                         int ok;
4492                         spin_unlock_irq(&conf->device_lock);
4493                         ok = retry_aligned_read(conf, bio);
4494                         spin_lock_irq(&conf->device_lock);
4495                         if (!ok)
4496                                 break;
4497                         handled++;
4498                 }
4499
4500                 sh = __get_priority_stripe(conf);
4501
4502                 if (!sh)
4503                         break;
4504                 spin_unlock_irq(&conf->device_lock);
4505                 
4506                 handled++;
4507                 handle_stripe(sh);
4508                 release_stripe(sh);
4509                 cond_resched();
4510
4511                 spin_lock_irq(&conf->device_lock);
4512         }
4513         pr_debug("%d stripes handled\n", handled);
4514
4515         spin_unlock_irq(&conf->device_lock);
4516
4517         async_tx_issue_pending_all();
4518         blk_finish_plug(&plug);
4519
4520         pr_debug("--- raid5d inactive\n");
4521 }
4522
4523 static ssize_t
4524 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4525 {
4526         raid5_conf_t *conf = mddev->private;
4527         if (conf)
4528                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4529         else
4530                 return 0;
4531 }
4532
4533 int
4534 raid5_set_cache_size(mddev_t *mddev, int size)
4535 {
4536         raid5_conf_t *conf = mddev->private;
4537         int err;
4538
4539         if (size <= 16 || size > 32768)
4540                 return -EINVAL;
4541         while (size < conf->max_nr_stripes) {
4542                 if (drop_one_stripe(conf))
4543                         conf->max_nr_stripes--;
4544                 else
4545                         break;
4546         }
4547         err = md_allow_write(mddev);
4548         if (err)
4549                 return err;
4550         while (size > conf->max_nr_stripes) {
4551                 if (grow_one_stripe(conf))
4552                         conf->max_nr_stripes++;
4553                 else break;
4554         }
4555         return 0;
4556 }
4557 EXPORT_SYMBOL(raid5_set_cache_size);
4558
4559 static ssize_t
4560 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4561 {
4562         raid5_conf_t *conf = mddev->private;
4563         unsigned long new;
4564         int err;
4565
4566         if (len >= PAGE_SIZE)
4567                 return -EINVAL;
4568         if (!conf)
4569                 return -ENODEV;
4570
4571         if (strict_strtoul(page, 10, &new))
4572                 return -EINVAL;
4573         err = raid5_set_cache_size(mddev, new);
4574         if (err)
4575                 return err;
4576         return len;
4577 }
4578
4579 static struct md_sysfs_entry
4580 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4581                                 raid5_show_stripe_cache_size,
4582                                 raid5_store_stripe_cache_size);
4583
4584 static ssize_t
4585 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4586 {
4587         raid5_conf_t *conf = mddev->private;
4588         if (conf)
4589                 return sprintf(page, "%d\n", conf->bypass_threshold);
4590         else
4591                 return 0;
4592 }
4593
4594 static ssize_t
4595 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4596 {
4597         raid5_conf_t *conf = mddev->private;
4598         unsigned long new;
4599         if (len >= PAGE_SIZE)
4600                 return -EINVAL;
4601         if (!conf)
4602                 return -ENODEV;
4603
4604         if (strict_strtoul(page, 10, &new))
4605                 return -EINVAL;
4606         if (new > conf->max_nr_stripes)
4607                 return -EINVAL;
4608         conf->bypass_threshold = new;
4609         return len;
4610 }
4611
4612 static struct md_sysfs_entry
4613 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4614                                         S_IRUGO | S_IWUSR,
4615                                         raid5_show_preread_threshold,
4616                                         raid5_store_preread_threshold);
4617
4618 static ssize_t
4619 stripe_cache_active_show(mddev_t *mddev, char *page)
4620 {
4621         raid5_conf_t *conf = mddev->private;
4622         if (conf)
4623                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4624         else
4625                 return 0;
4626 }
4627
4628 static struct md_sysfs_entry
4629 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4630
4631 static struct attribute *raid5_attrs[] =  {
4632         &raid5_stripecache_size.attr,
4633         &raid5_stripecache_active.attr,
4634         &raid5_preread_bypass_threshold.attr,
4635         NULL,
4636 };
4637 static struct attribute_group raid5_attrs_group = {
4638         .name = NULL,
4639         .attrs = raid5_attrs,
4640 };
4641
4642 static sector_t
4643 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4644 {
4645         raid5_conf_t *conf = mddev->private;
4646
4647         if (!sectors)
4648                 sectors = mddev->dev_sectors;
4649         if (!raid_disks)
4650                 /* size is defined by the smallest of previous and new size */
4651                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4652
4653         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4654         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4655         return sectors * (raid_disks - conf->max_degraded);
4656 }
4657
4658 static void raid5_free_percpu(raid5_conf_t *conf)
4659 {
4660         struct raid5_percpu *percpu;
4661         unsigned long cpu;
4662
4663         if (!conf->percpu)
4664                 return;
4665
4666         get_online_cpus();
4667         for_each_possible_cpu(cpu) {
4668                 percpu = per_cpu_ptr(conf->percpu, cpu);
4669                 safe_put_page(percpu->spare_page);
4670                 kfree(percpu->scribble);
4671         }
4672 #ifdef CONFIG_HOTPLUG_CPU
4673         unregister_cpu_notifier(&conf->cpu_notify);
4674 #endif
4675         put_online_cpus();
4676
4677         free_percpu(conf->percpu);
4678 }
4679
4680 static void free_conf(raid5_conf_t *conf)
4681 {
4682         shrink_stripes(conf);
4683         raid5_free_percpu(conf);
4684         kfree(conf->disks);
4685         kfree(conf->stripe_hashtbl);
4686         kfree(conf);
4687 }
4688
4689 #ifdef CONFIG_HOTPLUG_CPU
4690 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4691                               void *hcpu)
4692 {
4693         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4694         long cpu = (long)hcpu;
4695         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4696
4697         switch (action) {
4698         case CPU_UP_PREPARE:
4699         case CPU_UP_PREPARE_FROZEN:
4700                 if (conf->level == 6 && !percpu->spare_page)
4701                         percpu->spare_page = alloc_page(GFP_KERNEL);
4702                 if (!percpu->scribble)
4703                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4704
4705                 if (!percpu->scribble ||
4706                     (conf->level == 6 && !percpu->spare_page)) {
4707                         safe_put_page(percpu->spare_page);
4708                         kfree(percpu->scribble);
4709                         pr_err("%s: failed memory allocation for cpu%ld\n",
4710                                __func__, cpu);
4711                         return notifier_from_errno(-ENOMEM);
4712                 }
4713                 break;
4714         case CPU_DEAD:
4715         case CPU_DEAD_FROZEN:
4716                 safe_put_page(percpu->spare_page);
4717                 kfree(percpu->scribble);
4718                 percpu->spare_page = NULL;
4719                 percpu->scribble = NULL;
4720                 break;
4721         default:
4722                 break;
4723         }
4724         return NOTIFY_OK;
4725 }
4726 #endif
4727
4728 static int raid5_alloc_percpu(raid5_conf_t *conf)
4729 {
4730         unsigned long cpu;
4731         struct page *spare_page;
4732         struct raid5_percpu __percpu *allcpus;
4733         void *scribble;
4734         int err;
4735
4736         allcpus = alloc_percpu(struct raid5_percpu);
4737         if (!allcpus)
4738                 return -ENOMEM;
4739         conf->percpu = allcpus;
4740
4741         get_online_cpus();
4742         err = 0;
4743         for_each_present_cpu(cpu) {
4744                 if (conf->level == 6) {
4745                         spare_page = alloc_page(GFP_KERNEL);
4746                         if (!spare_page) {
4747                                 err = -ENOMEM;
4748                                 break;
4749                         }
4750                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4751                 }
4752                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4753                 if (!scribble) {
4754                         err = -ENOMEM;
4755                         break;
4756                 }
4757                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4758         }
4759 #ifdef CONFIG_HOTPLUG_CPU
4760         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4761         conf->cpu_notify.priority = 0;
4762         if (err == 0)
4763                 err = register_cpu_notifier(&conf->cpu_notify);
4764 #endif
4765         put_online_cpus();
4766
4767         return err;
4768 }
4769
4770 static raid5_conf_t *setup_conf(mddev_t *mddev)
4771 {
4772         raid5_conf_t *conf;
4773         int raid_disk, memory, max_disks;
4774         mdk_rdev_t *rdev;
4775         struct disk_info *disk;
4776
4777         if (mddev->new_level != 5
4778             && mddev->new_level != 4
4779             && mddev->new_level != 6) {
4780                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4781                        mdname(mddev), mddev->new_level);
4782                 return ERR_PTR(-EIO);
4783         }
4784         if ((mddev->new_level == 5
4785              && !algorithm_valid_raid5(mddev->new_layout)) ||
4786             (mddev->new_level == 6
4787              && !algorithm_valid_raid6(mddev->new_layout))) {
4788                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4789                        mdname(mddev), mddev->new_layout);
4790                 return ERR_PTR(-EIO);
4791         }
4792         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4793                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4794                        mdname(mddev), mddev->raid_disks);
4795                 return ERR_PTR(-EINVAL);
4796         }
4797
4798         if (!mddev->new_chunk_sectors ||
4799             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4800             !is_power_of_2(mddev->new_chunk_sectors)) {
4801                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4802                        mdname(mddev), mddev->new_chunk_sectors << 9);
4803                 return ERR_PTR(-EINVAL);
4804         }
4805
4806         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4807         if (conf == NULL)
4808                 goto abort;
4809         spin_lock_init(&conf->device_lock);
4810         init_waitqueue_head(&conf->wait_for_stripe);
4811         init_waitqueue_head(&conf->wait_for_overlap);
4812         INIT_LIST_HEAD(&conf->handle_list);
4813         INIT_LIST_HEAD(&conf->hold_list);
4814         INIT_LIST_HEAD(&conf->delayed_list);
4815         INIT_LIST_HEAD(&conf->bitmap_list);
4816         INIT_LIST_HEAD(&conf->inactive_list);
4817         atomic_set(&conf->active_stripes, 0);
4818         atomic_set(&conf->preread_active_stripes, 0);
4819         atomic_set(&conf->active_aligned_reads, 0);
4820         conf->bypass_threshold = BYPASS_THRESHOLD;
4821
4822         conf->raid_disks = mddev->raid_disks;
4823         if (mddev->reshape_position == MaxSector)
4824                 conf->previous_raid_disks = mddev->raid_disks;
4825         else
4826                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4827         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4828         conf->scribble_len = scribble_len(max_disks);
4829
4830         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4831                               GFP_KERNEL);
4832         if (!conf->disks)
4833                 goto abort;
4834
4835         conf->mddev = mddev;
4836
4837         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4838                 goto abort;
4839
4840         conf->level = mddev->new_level;
4841         if (raid5_alloc_percpu(conf) != 0)
4842                 goto abort;
4843
4844         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4845
4846         list_for_each_entry(rdev, &mddev->disks, same_set) {
4847                 raid_disk = rdev->raid_disk;
4848                 if (raid_disk >= max_disks
4849                     || raid_disk < 0)
4850                         continue;
4851                 disk = conf->disks + raid_disk;
4852
4853                 disk->rdev = rdev;
4854
4855                 if (test_bit(In_sync, &rdev->flags)) {
4856                         char b[BDEVNAME_SIZE];
4857                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4858                                " disk %d\n",
4859                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4860                 } else if (rdev->saved_raid_disk != raid_disk)
4861                         /* Cannot rely on bitmap to complete recovery */
4862                         conf->fullsync = 1;
4863         }
4864
4865         conf->chunk_sectors = mddev->new_chunk_sectors;
4866         conf->level = mddev->new_level;
4867         if (conf->level == 6)
4868                 conf->max_degraded = 2;
4869         else
4870                 conf->max_degraded = 1;
4871         conf->algorithm = mddev->new_layout;
4872         conf->max_nr_stripes = NR_STRIPES;
4873         conf->reshape_progress = mddev->reshape_position;
4874         if (conf->reshape_progress != MaxSector) {
4875                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4876                 conf->prev_algo = mddev->layout;
4877         }
4878
4879         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4880                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4881         if (grow_stripes(conf, conf->max_nr_stripes)) {
4882                 printk(KERN_ERR
4883                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4884                        mdname(mddev), memory);
4885                 goto abort;
4886         } else
4887                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4888                        mdname(mddev), memory);
4889
4890         conf->thread = md_register_thread(raid5d, mddev, NULL);
4891         if (!conf->thread) {
4892                 printk(KERN_ERR
4893                        "md/raid:%s: couldn't allocate thread.\n",
4894                        mdname(mddev));
4895                 goto abort;
4896         }
4897
4898         return conf;
4899
4900  abort:
4901         if (conf) {
4902                 free_conf(conf);
4903                 return ERR_PTR(-EIO);
4904         } else
4905                 return ERR_PTR(-ENOMEM);
4906 }
4907
4908
4909 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4910 {
4911         switch (algo) {
4912         case ALGORITHM_PARITY_0:
4913                 if (raid_disk < max_degraded)
4914                         return 1;
4915                 break;
4916         case ALGORITHM_PARITY_N:
4917                 if (raid_disk >= raid_disks - max_degraded)
4918                         return 1;
4919                 break;
4920         case ALGORITHM_PARITY_0_6:
4921                 if (raid_disk == 0 || 
4922                     raid_disk == raid_disks - 1)
4923                         return 1;
4924                 break;
4925         case ALGORITHM_LEFT_ASYMMETRIC_6:
4926         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4927         case ALGORITHM_LEFT_SYMMETRIC_6:
4928         case ALGORITHM_RIGHT_SYMMETRIC_6:
4929                 if (raid_disk == raid_disks - 1)
4930                         return 1;
4931         }
4932         return 0;
4933 }
4934
4935 static int run(mddev_t *mddev)
4936 {
4937         raid5_conf_t *conf;
4938         int working_disks = 0;
4939         int dirty_parity_disks = 0;
4940         mdk_rdev_t *rdev;
4941         sector_t reshape_offset = 0;
4942
4943         if (mddev->recovery_cp != MaxSector)
4944                 printk(KERN_NOTICE "md/raid:%s: not clean"
4945                        " -- starting background reconstruction\n",
4946                        mdname(mddev));
4947         if (mddev->reshape_position != MaxSector) {
4948                 /* Check that we can continue the reshape.
4949                  * Currently only disks can change, it must
4950                  * increase, and we must be past the point where
4951                  * a stripe over-writes itself
4952                  */
4953                 sector_t here_new, here_old;
4954                 int old_disks;
4955                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4956
4957                 if (mddev->new_level != mddev->level) {
4958                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4959                                "required - aborting.\n",
4960                                mdname(mddev));
4961                         return -EINVAL;
4962                 }
4963                 old_disks = mddev->raid_disks - mddev->delta_disks;
4964                 /* reshape_position must be on a new-stripe boundary, and one
4965                  * further up in new geometry must map after here in old
4966                  * geometry.
4967                  */
4968                 here_new = mddev->reshape_position;
4969                 if (sector_div(here_new, mddev->new_chunk_sectors *
4970                                (mddev->raid_disks - max_degraded))) {
4971                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4972                                "on a stripe boundary\n", mdname(mddev));
4973                         return -EINVAL;
4974                 }
4975                 reshape_offset = here_new * mddev->new_chunk_sectors;
4976                 /* here_new is the stripe we will write to */
4977                 here_old = mddev->reshape_position;
4978                 sector_div(here_old, mddev->chunk_sectors *
4979                            (old_disks-max_degraded));
4980                 /* here_old is the first stripe that we might need to read
4981                  * from */
4982                 if (mddev->delta_disks == 0) {
4983                         /* We cannot be sure it is safe to start an in-place
4984                          * reshape.  It is only safe if user-space if monitoring
4985                          * and taking constant backups.
4986                          * mdadm always starts a situation like this in
4987                          * readonly mode so it can take control before
4988                          * allowing any writes.  So just check for that.
4989                          */
4990                         if ((here_new * mddev->new_chunk_sectors != 
4991                              here_old * mddev->chunk_sectors) ||
4992                             mddev->ro == 0) {
4993                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4994                                        " in read-only mode - aborting\n",
4995                                        mdname(mddev));
4996                                 return -EINVAL;
4997                         }
4998                 } else if (mddev->delta_disks < 0
4999                     ? (here_new * mddev->new_chunk_sectors <=
5000                        here_old * mddev->chunk_sectors)
5001                     : (here_new * mddev->new_chunk_sectors >=
5002                        here_old * mddev->chunk_sectors)) {
5003                         /* Reading from the same stripe as writing to - bad */
5004                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5005                                "auto-recovery - aborting.\n",
5006                                mdname(mddev));
5007                         return -EINVAL;
5008                 }
5009                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5010                        mdname(mddev));
5011                 /* OK, we should be able to continue; */
5012         } else {
5013                 BUG_ON(mddev->level != mddev->new_level);
5014                 BUG_ON(mddev->layout != mddev->new_layout);
5015                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5016                 BUG_ON(mddev->delta_disks != 0);
5017         }
5018
5019         if (mddev->private == NULL)
5020                 conf = setup_conf(mddev);
5021         else
5022                 conf = mddev->private;
5023
5024         if (IS_ERR(conf))
5025                 return PTR_ERR(conf);
5026
5027         mddev->thread = conf->thread;
5028         conf->thread = NULL;
5029         mddev->private = conf;
5030
5031         /*
5032          * 0 for a fully functional array, 1 or 2 for a degraded array.
5033          */
5034         list_for_each_entry(rdev, &mddev->disks, same_set) {
5035                 if (rdev->raid_disk < 0)
5036                         continue;
5037                 if (test_bit(In_sync, &rdev->flags)) {
5038                         working_disks++;
5039                         continue;
5040                 }
5041                 /* This disc is not fully in-sync.  However if it
5042                  * just stored parity (beyond the recovery_offset),
5043                  * when we don't need to be concerned about the
5044                  * array being dirty.
5045                  * When reshape goes 'backwards', we never have
5046                  * partially completed devices, so we only need
5047                  * to worry about reshape going forwards.
5048                  */
5049                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5050                 if (mddev->major_version == 0 &&
5051                     mddev->minor_version > 90)
5052                         rdev->recovery_offset = reshape_offset;
5053                         
5054                 if (rdev->recovery_offset < reshape_offset) {
5055                         /* We need to check old and new layout */
5056                         if (!only_parity(rdev->raid_disk,
5057                                          conf->algorithm,
5058                                          conf->raid_disks,
5059                                          conf->max_degraded))
5060                                 continue;
5061                 }
5062                 if (!only_parity(rdev->raid_disk,
5063                                  conf->prev_algo,
5064                                  conf->previous_raid_disks,
5065                                  conf->max_degraded))
5066                         continue;
5067                 dirty_parity_disks++;
5068         }
5069
5070         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5071                            - working_disks);
5072
5073         if (has_failed(conf)) {
5074                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5075                         " (%d/%d failed)\n",
5076                         mdname(mddev), mddev->degraded, conf->raid_disks);
5077                 goto abort;
5078         }
5079
5080         /* device size must be a multiple of chunk size */
5081         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5082         mddev->resync_max_sectors = mddev->dev_sectors;
5083
5084         if (mddev->degraded > dirty_parity_disks &&
5085             mddev->recovery_cp != MaxSector) {
5086                 if (mddev->ok_start_degraded)
5087                         printk(KERN_WARNING
5088                                "md/raid:%s: starting dirty degraded array"
5089                                " - data corruption possible.\n",
5090                                mdname(mddev));
5091                 else {
5092                         printk(KERN_ERR
5093                                "md/raid:%s: cannot start dirty degraded array.\n",
5094                                mdname(mddev));
5095                         goto abort;
5096                 }
5097         }
5098
5099         if (mddev->degraded == 0)
5100                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5101                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5102                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5103                        mddev->new_layout);
5104         else
5105                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5106                        " out of %d devices, algorithm %d\n",
5107                        mdname(mddev), conf->level,
5108                        mddev->raid_disks - mddev->degraded,
5109                        mddev->raid_disks, mddev->new_layout);
5110
5111         print_raid5_conf(conf);
5112
5113         if (conf->reshape_progress != MaxSector) {
5114                 conf->reshape_safe = conf->reshape_progress;
5115                 atomic_set(&conf->reshape_stripes, 0);
5116                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5117                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5118                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5119                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5120                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5121                                                         "reshape");
5122         }
5123
5124
5125         /* Ok, everything is just fine now */
5126         if (mddev->to_remove == &raid5_attrs_group)
5127                 mddev->to_remove = NULL;
5128         else if (mddev->kobj.sd &&
5129             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5130                 printk(KERN_WARNING
5131                        "raid5: failed to create sysfs attributes for %s\n",
5132                        mdname(mddev));
5133         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5134
5135         if (mddev->queue) {
5136                 int chunk_size;
5137                 /* read-ahead size must cover two whole stripes, which
5138                  * is 2 * (datadisks) * chunksize where 'n' is the
5139                  * number of raid devices
5140                  */
5141                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5142                 int stripe = data_disks *
5143                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5144                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5145                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5146
5147                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5148
5149                 mddev->queue->backing_dev_info.congested_data = mddev;
5150                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5151
5152                 chunk_size = mddev->chunk_sectors << 9;
5153                 blk_queue_io_min(mddev->queue, chunk_size);
5154                 blk_queue_io_opt(mddev->queue, chunk_size *
5155                                  (conf->raid_disks - conf->max_degraded));
5156
5157                 list_for_each_entry(rdev, &mddev->disks, same_set)
5158                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5159                                           rdev->data_offset << 9);
5160         }
5161
5162         return 0;
5163 abort:
5164         md_unregister_thread(mddev->thread);
5165         mddev->thread = NULL;
5166         if (conf) {
5167                 print_raid5_conf(conf);
5168                 free_conf(conf);
5169         }
5170         mddev->private = NULL;
5171         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5172         return -EIO;
5173 }
5174
5175 static int stop(mddev_t *mddev)
5176 {
5177         raid5_conf_t *conf = mddev->private;
5178
5179         md_unregister_thread(mddev->thread);
5180         mddev->thread = NULL;
5181         if (mddev->queue)
5182                 mddev->queue->backing_dev_info.congested_fn = NULL;
5183         free_conf(conf);
5184         mddev->private = NULL;
5185         mddev->to_remove = &raid5_attrs_group;
5186         return 0;
5187 }
5188
5189 #ifdef DEBUG
5190 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5191 {
5192         int i;
5193
5194         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5195                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5196         seq_printf(seq, "sh %llu,  count %d.\n",
5197                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5198         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5199         for (i = 0; i < sh->disks; i++) {
5200                 seq_printf(seq, "(cache%d: %p %ld) ",
5201                            i, sh->dev[i].page, sh->dev[i].flags);
5202         }
5203         seq_printf(seq, "\n");
5204 }
5205
5206 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5207 {
5208         struct stripe_head *sh;
5209         struct hlist_node *hn;
5210         int i;
5211
5212         spin_lock_irq(&conf->device_lock);
5213         for (i = 0; i < NR_HASH; i++) {
5214                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5215                         if (sh->raid_conf != conf)
5216                                 continue;
5217                         print_sh(seq, sh);
5218                 }
5219         }
5220         spin_unlock_irq(&conf->device_lock);
5221 }
5222 #endif
5223
5224 static void status(struct seq_file *seq, mddev_t *mddev)
5225 {
5226         raid5_conf_t *conf = mddev->private;
5227         int i;
5228
5229         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5230                 mddev->chunk_sectors / 2, mddev->layout);
5231         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5232         for (i = 0; i < conf->raid_disks; i++)
5233                 seq_printf (seq, "%s",
5234                                conf->disks[i].rdev &&
5235                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5236         seq_printf (seq, "]");
5237 #ifdef DEBUG
5238         seq_printf (seq, "\n");
5239         printall(seq, conf);
5240 #endif
5241 }
5242
5243 static void print_raid5_conf (raid5_conf_t *conf)
5244 {
5245         int i;
5246         struct disk_info *tmp;
5247
5248         printk(KERN_DEBUG "RAID conf printout:\n");
5249         if (!conf) {
5250                 printk("(conf==NULL)\n");
5251                 return;
5252         }
5253         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5254                conf->raid_disks,
5255                conf->raid_disks - conf->mddev->degraded);
5256
5257         for (i = 0; i < conf->raid_disks; i++) {
5258                 char b[BDEVNAME_SIZE];
5259                 tmp = conf->disks + i;
5260                 if (tmp->rdev)
5261                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5262                                i, !test_bit(Faulty, &tmp->rdev->flags),
5263                                bdevname(tmp->rdev->bdev, b));
5264         }
5265 }
5266
5267 static int raid5_spare_active(mddev_t *mddev)
5268 {
5269         int i;
5270         raid5_conf_t *conf = mddev->private;
5271         struct disk_info *tmp;
5272         int count = 0;
5273         unsigned long flags;
5274
5275         for (i = 0; i < conf->raid_disks; i++) {
5276                 tmp = conf->disks + i;
5277                 if (tmp->rdev
5278                     && tmp->rdev->recovery_offset == MaxSector
5279                     && !test_bit(Faulty, &tmp->rdev->flags)
5280                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5281                         count++;
5282                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5283                 }
5284         }
5285         spin_lock_irqsave(&conf->device_lock, flags);
5286         mddev->degraded -= count;
5287         spin_unlock_irqrestore(&conf->device_lock, flags);
5288         print_raid5_conf(conf);
5289         return count;
5290 }
5291
5292 static int raid5_remove_disk(mddev_t *mddev, int number)
5293 {
5294         raid5_conf_t *conf = mddev->private;
5295         int err = 0;
5296         mdk_rdev_t *rdev;
5297         struct disk_info *p = conf->disks + number;
5298
5299         print_raid5_conf(conf);
5300         rdev = p->rdev;
5301         if (rdev) {
5302                 if (number >= conf->raid_disks &&
5303                     conf->reshape_progress == MaxSector)
5304                         clear_bit(In_sync, &rdev->flags);
5305
5306                 if (test_bit(In_sync, &rdev->flags) ||
5307                     atomic_read(&rdev->nr_pending)) {
5308                         err = -EBUSY;
5309                         goto abort;
5310                 }
5311                 /* Only remove non-faulty devices if recovery
5312                  * isn't possible.
5313                  */
5314                 if (!test_bit(Faulty, &rdev->flags) &&
5315                     !has_failed(conf) &&
5316                     number < conf->raid_disks) {
5317                         err = -EBUSY;
5318                         goto abort;
5319                 }
5320                 p->rdev = NULL;
5321                 synchronize_rcu();
5322                 if (atomic_read(&rdev->nr_pending)) {
5323                         /* lost the race, try later */
5324                         err = -EBUSY;
5325                         p->rdev = rdev;
5326                 }
5327         }
5328 abort:
5329
5330         print_raid5_conf(conf);
5331         return err;
5332 }
5333
5334 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5335 {
5336         raid5_conf_t *conf = mddev->private;
5337         int err = -EEXIST;
5338         int disk;
5339         struct disk_info *p;
5340         int first = 0;
5341         int last = conf->raid_disks - 1;
5342
5343         if (has_failed(conf))
5344                 /* no point adding a device */
5345                 return -EINVAL;
5346
5347         if (rdev->raid_disk >= 0)
5348                 first = last = rdev->raid_disk;
5349
5350         /*
5351          * find the disk ... but prefer rdev->saved_raid_disk
5352          * if possible.
5353          */
5354         if (rdev->saved_raid_disk >= 0 &&
5355             rdev->saved_raid_disk >= first &&
5356             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5357                 disk = rdev->saved_raid_disk;
5358         else
5359                 disk = first;
5360         for ( ; disk <= last ; disk++)
5361                 if ((p=conf->disks + disk)->rdev == NULL) {
5362                         clear_bit(In_sync, &rdev->flags);
5363                         rdev->raid_disk = disk;
5364                         err = 0;
5365                         if (rdev->saved_raid_disk != disk)
5366                                 conf->fullsync = 1;
5367                         rcu_assign_pointer(p->rdev, rdev);
5368                         break;
5369                 }
5370         print_raid5_conf(conf);
5371         return err;
5372 }
5373
5374 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5375 {
5376         /* no resync is happening, and there is enough space
5377          * on all devices, so we can resize.
5378          * We need to make sure resync covers any new space.
5379          * If the array is shrinking we should possibly wait until
5380          * any io in the removed space completes, but it hardly seems
5381          * worth it.
5382          */
5383         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5384         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5385                                                mddev->raid_disks));
5386         if (mddev->array_sectors >
5387             raid5_size(mddev, sectors, mddev->raid_disks))
5388                 return -EINVAL;
5389         set_capacity(mddev->gendisk, mddev->array_sectors);
5390         revalidate_disk(mddev->gendisk);
5391         if (sectors > mddev->dev_sectors &&
5392             mddev->recovery_cp > mddev->dev_sectors) {
5393                 mddev->recovery_cp = mddev->dev_sectors;
5394                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5395         }
5396         mddev->dev_sectors = sectors;
5397         mddev->resync_max_sectors = sectors;
5398         return 0;
5399 }
5400
5401 static int check_stripe_cache(mddev_t *mddev)
5402 {
5403         /* Can only proceed if there are plenty of stripe_heads.
5404          * We need a minimum of one full stripe,, and for sensible progress
5405          * it is best to have about 4 times that.
5406          * If we require 4 times, then the default 256 4K stripe_heads will
5407          * allow for chunk sizes up to 256K, which is probably OK.
5408          * If the chunk size is greater, user-space should request more
5409          * stripe_heads first.
5410          */
5411         raid5_conf_t *conf = mddev->private;
5412         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5413             > conf->max_nr_stripes ||
5414             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5415             > conf->max_nr_stripes) {
5416                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5417                        mdname(mddev),
5418                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5419                         / STRIPE_SIZE)*4);
5420                 return 0;
5421         }
5422         return 1;
5423 }
5424
5425 static int check_reshape(mddev_t *mddev)
5426 {
5427         raid5_conf_t *conf = mddev->private;
5428
5429         if (mddev->delta_disks == 0 &&
5430             mddev->new_layout == mddev->layout &&
5431             mddev->new_chunk_sectors == mddev->chunk_sectors)
5432                 return 0; /* nothing to do */
5433         if (mddev->bitmap)
5434                 /* Cannot grow a bitmap yet */
5435                 return -EBUSY;
5436         if (has_failed(conf))
5437                 return -EINVAL;
5438         if (mddev->delta_disks < 0) {
5439                 /* We might be able to shrink, but the devices must
5440                  * be made bigger first.
5441                  * For raid6, 4 is the minimum size.
5442                  * Otherwise 2 is the minimum
5443                  */
5444                 int min = 2;
5445                 if (mddev->level == 6)
5446                         min = 4;
5447                 if (mddev->raid_disks + mddev->delta_disks < min)
5448                         return -EINVAL;
5449         }
5450
5451         if (!check_stripe_cache(mddev))
5452                 return -ENOSPC;
5453
5454         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5455 }
5456
5457 static int raid5_start_reshape(mddev_t *mddev)
5458 {
5459         raid5_conf_t *conf = mddev->private;
5460         mdk_rdev_t *rdev;
5461         int spares = 0;
5462         unsigned long flags;
5463
5464         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5465                 return -EBUSY;
5466
5467         if (!check_stripe_cache(mddev))
5468                 return -ENOSPC;
5469
5470         list_for_each_entry(rdev, &mddev->disks, same_set)
5471                 if (!test_bit(In_sync, &rdev->flags)
5472                     && !test_bit(Faulty, &rdev->flags))
5473                         spares++;
5474
5475         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5476                 /* Not enough devices even to make a degraded array
5477                  * of that size
5478                  */
5479                 return -EINVAL;
5480
5481         /* Refuse to reduce size of the array.  Any reductions in
5482          * array size must be through explicit setting of array_size
5483          * attribute.
5484          */
5485         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5486             < mddev->array_sectors) {
5487                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5488                        "before number of disks\n", mdname(mddev));
5489                 return -EINVAL;
5490         }
5491
5492         atomic_set(&conf->reshape_stripes, 0);
5493         spin_lock_irq(&conf->device_lock);
5494         conf->previous_raid_disks = conf->raid_disks;
5495         conf->raid_disks += mddev->delta_disks;
5496         conf->prev_chunk_sectors = conf->chunk_sectors;
5497         conf->chunk_sectors = mddev->new_chunk_sectors;
5498         conf->prev_algo = conf->algorithm;
5499         conf->algorithm = mddev->new_layout;
5500         if (mddev->delta_disks < 0)
5501                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5502         else
5503                 conf->reshape_progress = 0;
5504         conf->reshape_safe = conf->reshape_progress;
5505         conf->generation++;
5506         spin_unlock_irq(&conf->device_lock);
5507
5508         /* Add some new drives, as many as will fit.
5509          * We know there are enough to make the newly sized array work.
5510          * Don't add devices if we are reducing the number of
5511          * devices in the array.  This is because it is not possible
5512          * to correctly record the "partially reconstructed" state of
5513          * such devices during the reshape and confusion could result.
5514          */
5515         if (mddev->delta_disks >= 0) {
5516                 int added_devices = 0;
5517                 list_for_each_entry(rdev, &mddev->disks, same_set)
5518                         if (rdev->raid_disk < 0 &&
5519                             !test_bit(Faulty, &rdev->flags)) {
5520                                 if (raid5_add_disk(mddev, rdev) == 0) {
5521                                         char nm[20];
5522                                         if (rdev->raid_disk
5523                                             >= conf->previous_raid_disks) {
5524                                                 set_bit(In_sync, &rdev->flags);
5525                                                 added_devices++;
5526                                         } else
5527                                                 rdev->recovery_offset = 0;
5528                                         sprintf(nm, "rd%d", rdev->raid_disk);
5529                                         if (sysfs_create_link(&mddev->kobj,
5530                                                               &rdev->kobj, nm))
5531                                                 /* Failure here is OK */;
5532                                 }
5533                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5534                                    && !test_bit(Faulty, &rdev->flags)) {
5535                                 /* This is a spare that was manually added */
5536                                 set_bit(In_sync, &rdev->flags);
5537                                 added_devices++;
5538                         }
5539
5540                 /* When a reshape changes the number of devices,
5541                  * ->degraded is measured against the larger of the
5542                  * pre and post number of devices.
5543                  */
5544                 spin_lock_irqsave(&conf->device_lock, flags);
5545                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5546                         - added_devices;
5547                 spin_unlock_irqrestore(&conf->device_lock, flags);
5548         }
5549         mddev->raid_disks = conf->raid_disks;
5550         mddev->reshape_position = conf->reshape_progress;
5551         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5552
5553         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5554         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5555         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5556         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5557         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5558                                                 "reshape");
5559         if (!mddev->sync_thread) {
5560                 mddev->recovery = 0;
5561                 spin_lock_irq(&conf->device_lock);
5562                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5563                 conf->reshape_progress = MaxSector;
5564                 spin_unlock_irq(&conf->device_lock);
5565                 return -EAGAIN;
5566         }
5567         conf->reshape_checkpoint = jiffies;
5568         md_wakeup_thread(mddev->sync_thread);
5569         md_new_event(mddev);
5570         return 0;
5571 }
5572
5573 /* This is called from the reshape thread and should make any
5574  * changes needed in 'conf'
5575  */
5576 static void end_reshape(raid5_conf_t *conf)
5577 {
5578
5579         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5580
5581                 spin_lock_irq(&conf->device_lock);
5582                 conf->previous_raid_disks = conf->raid_disks;
5583                 conf->reshape_progress = MaxSector;
5584                 spin_unlock_irq(&conf->device_lock);
5585                 wake_up(&conf->wait_for_overlap);
5586
5587                 /* read-ahead size must cover two whole stripes, which is
5588                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5589                  */
5590                 if (conf->mddev->queue) {
5591                         int data_disks = conf->raid_disks - conf->max_degraded;
5592                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5593                                                    / PAGE_SIZE);
5594                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5595                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5596                 }
5597         }
5598 }
5599
5600 /* This is called from the raid5d thread with mddev_lock held.
5601  * It makes config changes to the device.
5602  */
5603 static void raid5_finish_reshape(mddev_t *mddev)
5604 {
5605         raid5_conf_t *conf = mddev->private;
5606
5607         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5608
5609                 if (mddev->delta_disks > 0) {
5610                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5611                         set_capacity(mddev->gendisk, mddev->array_sectors);
5612                         revalidate_disk(mddev->gendisk);
5613                 } else {
5614                         int d;
5615                         mddev->degraded = conf->raid_disks;
5616                         for (d = 0; d < conf->raid_disks ; d++)
5617                                 if (conf->disks[d].rdev &&
5618                                     test_bit(In_sync,
5619                                              &conf->disks[d].rdev->flags))
5620                                         mddev->degraded--;
5621                         for (d = conf->raid_disks ;
5622                              d < conf->raid_disks - mddev->delta_disks;
5623                              d++) {
5624                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5625                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5626                                         char nm[20];
5627                                         sprintf(nm, "rd%d", rdev->raid_disk);
5628                                         sysfs_remove_link(&mddev->kobj, nm);
5629                                         rdev->raid_disk = -1;
5630                                 }
5631                         }
5632                 }
5633                 mddev->layout = conf->algorithm;
5634                 mddev->chunk_sectors = conf->chunk_sectors;
5635                 mddev->reshape_position = MaxSector;
5636                 mddev->delta_disks = 0;
5637         }
5638 }
5639
5640 static void raid5_quiesce(mddev_t *mddev, int state)
5641 {
5642         raid5_conf_t *conf = mddev->private;
5643
5644         switch(state) {
5645         case 2: /* resume for a suspend */
5646                 wake_up(&conf->wait_for_overlap);
5647                 break;
5648
5649         case 1: /* stop all writes */
5650                 spin_lock_irq(&conf->device_lock);
5651                 /* '2' tells resync/reshape to pause so that all
5652                  * active stripes can drain
5653                  */
5654                 conf->quiesce = 2;
5655                 wait_event_lock_irq(conf->wait_for_stripe,
5656                                     atomic_read(&conf->active_stripes) == 0 &&
5657                                     atomic_read(&conf->active_aligned_reads) == 0,
5658                                     conf->device_lock, /* nothing */);
5659                 conf->quiesce = 1;
5660                 spin_unlock_irq(&conf->device_lock);
5661                 /* allow reshape to continue */
5662                 wake_up(&conf->wait_for_overlap);
5663                 break;
5664
5665         case 0: /* re-enable writes */
5666                 spin_lock_irq(&conf->device_lock);
5667                 conf->quiesce = 0;
5668                 wake_up(&conf->wait_for_stripe);
5669                 wake_up(&conf->wait_for_overlap);
5670                 spin_unlock_irq(&conf->device_lock);
5671                 break;
5672         }
5673 }
5674
5675
5676 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5677 {
5678         struct raid0_private_data *raid0_priv = mddev->private;
5679         sector_t sectors;
5680
5681         /* for raid0 takeover only one zone is supported */
5682         if (raid0_priv->nr_strip_zones > 1) {
5683                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5684                        mdname(mddev));
5685                 return ERR_PTR(-EINVAL);
5686         }
5687
5688         sectors = raid0_priv->strip_zone[0].zone_end;
5689         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5690         mddev->dev_sectors = sectors;
5691         mddev->new_level = level;
5692         mddev->new_layout = ALGORITHM_PARITY_N;
5693         mddev->new_chunk_sectors = mddev->chunk_sectors;
5694         mddev->raid_disks += 1;
5695         mddev->delta_disks = 1;
5696         /* make sure it will be not marked as dirty */
5697         mddev->recovery_cp = MaxSector;
5698
5699         return setup_conf(mddev);
5700 }
5701
5702
5703 static void *raid5_takeover_raid1(mddev_t *mddev)
5704 {
5705         int chunksect;
5706
5707         if (mddev->raid_disks != 2 ||
5708             mddev->degraded > 1)
5709                 return ERR_PTR(-EINVAL);
5710
5711         /* Should check if there are write-behind devices? */
5712
5713         chunksect = 64*2; /* 64K by default */
5714
5715         /* The array must be an exact multiple of chunksize */
5716         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5717                 chunksect >>= 1;
5718
5719         if ((chunksect<<9) < STRIPE_SIZE)
5720                 /* array size does not allow a suitable chunk size */
5721                 return ERR_PTR(-EINVAL);
5722
5723         mddev->new_level = 5;
5724         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5725         mddev->new_chunk_sectors = chunksect;
5726
5727         return setup_conf(mddev);
5728 }
5729
5730 static void *raid5_takeover_raid6(mddev_t *mddev)
5731 {
5732         int new_layout;
5733
5734         switch (mddev->layout) {
5735         case ALGORITHM_LEFT_ASYMMETRIC_6:
5736                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5737                 break;
5738         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5739                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5740                 break;
5741         case ALGORITHM_LEFT_SYMMETRIC_6:
5742                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5743                 break;
5744         case ALGORITHM_RIGHT_SYMMETRIC_6:
5745                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5746                 break;
5747         case ALGORITHM_PARITY_0_6:
5748                 new_layout = ALGORITHM_PARITY_0;
5749                 break;
5750         case ALGORITHM_PARITY_N:
5751                 new_layout = ALGORITHM_PARITY_N;
5752                 break;
5753         default:
5754                 return ERR_PTR(-EINVAL);
5755         }
5756         mddev->new_level = 5;
5757         mddev->new_layout = new_layout;
5758         mddev->delta_disks = -1;
5759         mddev->raid_disks -= 1;
5760         return setup_conf(mddev);
5761 }
5762
5763
5764 static int raid5_check_reshape(mddev_t *mddev)
5765 {
5766         /* For a 2-drive array, the layout and chunk size can be changed
5767          * immediately as not restriping is needed.
5768          * For larger arrays we record the new value - after validation
5769          * to be used by a reshape pass.
5770          */
5771         raid5_conf_t *conf = mddev->private;
5772         int new_chunk = mddev->new_chunk_sectors;
5773
5774         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5775                 return -EINVAL;
5776         if (new_chunk > 0) {
5777                 if (!is_power_of_2(new_chunk))
5778                         return -EINVAL;
5779                 if (new_chunk < (PAGE_SIZE>>9))
5780                         return -EINVAL;
5781                 if (mddev->array_sectors & (new_chunk-1))
5782                         /* not factor of array size */
5783                         return -EINVAL;
5784         }
5785
5786         /* They look valid */
5787
5788         if (mddev->raid_disks == 2) {
5789                 /* can make the change immediately */
5790                 if (mddev->new_layout >= 0) {
5791                         conf->algorithm = mddev->new_layout;
5792                         mddev->layout = mddev->new_layout;
5793                 }
5794                 if (new_chunk > 0) {
5795                         conf->chunk_sectors = new_chunk ;
5796                         mddev->chunk_sectors = new_chunk;
5797                 }
5798                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5799                 md_wakeup_thread(mddev->thread);
5800         }
5801         return check_reshape(mddev);
5802 }
5803
5804 static int raid6_check_reshape(mddev_t *mddev)
5805 {
5806         int new_chunk = mddev->new_chunk_sectors;
5807
5808         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5809                 return -EINVAL;
5810         if (new_chunk > 0) {
5811                 if (!is_power_of_2(new_chunk))
5812                         return -EINVAL;
5813                 if (new_chunk < (PAGE_SIZE >> 9))
5814                         return -EINVAL;
5815                 if (mddev->array_sectors & (new_chunk-1))
5816                         /* not factor of array size */
5817                         return -EINVAL;
5818         }
5819
5820         /* They look valid */
5821         return check_reshape(mddev);
5822 }
5823
5824 static void *raid5_takeover(mddev_t *mddev)
5825 {
5826         /* raid5 can take over:
5827          *  raid0 - if there is only one strip zone - make it a raid4 layout
5828          *  raid1 - if there are two drives.  We need to know the chunk size
5829          *  raid4 - trivial - just use a raid4 layout.
5830          *  raid6 - Providing it is a *_6 layout
5831          */
5832         if (mddev->level == 0)
5833                 return raid45_takeover_raid0(mddev, 5);
5834         if (mddev->level == 1)
5835                 return raid5_takeover_raid1(mddev);
5836         if (mddev->level == 4) {
5837                 mddev->new_layout = ALGORITHM_PARITY_N;
5838                 mddev->new_level = 5;
5839                 return setup_conf(mddev);
5840         }
5841         if (mddev->level == 6)
5842                 return raid5_takeover_raid6(mddev);
5843
5844         return ERR_PTR(-EINVAL);
5845 }
5846
5847 static void *raid4_takeover(mddev_t *mddev)
5848 {
5849         /* raid4 can take over:
5850          *  raid0 - if there is only one strip zone
5851          *  raid5 - if layout is right
5852          */
5853         if (mddev->level == 0)
5854                 return raid45_takeover_raid0(mddev, 4);
5855         if (mddev->level == 5 &&
5856             mddev->layout == ALGORITHM_PARITY_N) {
5857                 mddev->new_layout = 0;
5858                 mddev->new_level = 4;
5859                 return setup_conf(mddev);
5860         }
5861         return ERR_PTR(-EINVAL);
5862 }
5863
5864 static struct mdk_personality raid5_personality;
5865
5866 static void *raid6_takeover(mddev_t *mddev)
5867 {
5868         /* Currently can only take over a raid5.  We map the
5869          * personality to an equivalent raid6 personality
5870          * with the Q block at the end.
5871          */
5872         int new_layout;
5873
5874         if (mddev->pers != &raid5_personality)
5875                 return ERR_PTR(-EINVAL);
5876         if (mddev->degraded > 1)
5877                 return ERR_PTR(-EINVAL);
5878         if (mddev->raid_disks > 253)
5879                 return ERR_PTR(-EINVAL);
5880         if (mddev->raid_disks < 3)
5881                 return ERR_PTR(-EINVAL);
5882
5883         switch (mddev->layout) {
5884         case ALGORITHM_LEFT_ASYMMETRIC:
5885                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5886                 break;
5887         case ALGORITHM_RIGHT_ASYMMETRIC:
5888                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5889                 break;
5890         case ALGORITHM_LEFT_SYMMETRIC:
5891                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5892                 break;
5893         case ALGORITHM_RIGHT_SYMMETRIC:
5894                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5895                 break;
5896         case ALGORITHM_PARITY_0:
5897                 new_layout = ALGORITHM_PARITY_0_6;
5898                 break;
5899         case ALGORITHM_PARITY_N:
5900                 new_layout = ALGORITHM_PARITY_N;
5901                 break;
5902         default:
5903                 return ERR_PTR(-EINVAL);
5904         }
5905         mddev->new_level = 6;
5906         mddev->new_layout = new_layout;
5907         mddev->delta_disks = 1;
5908         mddev->raid_disks += 1;
5909         return setup_conf(mddev);
5910 }
5911
5912
5913 static struct mdk_personality raid6_personality =
5914 {
5915         .name           = "raid6",
5916         .level          = 6,
5917         .owner          = THIS_MODULE,
5918         .make_request   = make_request,
5919         .run            = run,
5920         .stop           = stop,
5921         .status         = status,
5922         .error_handler  = error,
5923         .hot_add_disk   = raid5_add_disk,
5924         .hot_remove_disk= raid5_remove_disk,
5925         .spare_active   = raid5_spare_active,
5926         .sync_request   = sync_request,
5927         .resize         = raid5_resize,
5928         .size           = raid5_size,
5929         .check_reshape  = raid6_check_reshape,
5930         .start_reshape  = raid5_start_reshape,
5931         .finish_reshape = raid5_finish_reshape,
5932         .quiesce        = raid5_quiesce,
5933         .takeover       = raid6_takeover,
5934 };
5935 static struct mdk_personality raid5_personality =
5936 {
5937         .name           = "raid5",
5938         .level          = 5,
5939         .owner          = THIS_MODULE,
5940         .make_request   = make_request,
5941         .run            = run,
5942         .stop           = stop,
5943         .status         = status,
5944         .error_handler  = error,
5945         .hot_add_disk   = raid5_add_disk,
5946         .hot_remove_disk= raid5_remove_disk,
5947         .spare_active   = raid5_spare_active,
5948         .sync_request   = sync_request,
5949         .resize         = raid5_resize,
5950         .size           = raid5_size,
5951         .check_reshape  = raid5_check_reshape,
5952         .start_reshape  = raid5_start_reshape,
5953         .finish_reshape = raid5_finish_reshape,
5954         .quiesce        = raid5_quiesce,
5955         .takeover       = raid5_takeover,
5956 };
5957
5958 static struct mdk_personality raid4_personality =
5959 {
5960         .name           = "raid4",
5961         .level          = 4,
5962         .owner          = THIS_MODULE,
5963         .make_request   = make_request,
5964         .run            = run,
5965         .stop           = stop,
5966         .status         = status,
5967         .error_handler  = error,
5968         .hot_add_disk   = raid5_add_disk,
5969         .hot_remove_disk= raid5_remove_disk,
5970         .spare_active   = raid5_spare_active,
5971         .sync_request   = sync_request,
5972         .resize         = raid5_resize,
5973         .size           = raid5_size,
5974         .check_reshape  = raid5_check_reshape,
5975         .start_reshape  = raid5_start_reshape,
5976         .finish_reshape = raid5_finish_reshape,
5977         .quiesce        = raid5_quiesce,
5978         .takeover       = raid4_takeover,
5979 };
5980
5981 static int __init raid5_init(void)
5982 {
5983         register_md_personality(&raid6_personality);
5984         register_md_personality(&raid5_personality);
5985         register_md_personality(&raid4_personality);
5986         return 0;
5987 }
5988
5989 static void raid5_exit(void)
5990 {
5991         unregister_md_personality(&raid6_personality);
5992         unregister_md_personality(&raid5_personality);
5993         unregister_md_personality(&raid4_personality);
5994 }
5995
5996 module_init(raid5_init);
5997 module_exit(raid5_exit);
5998 MODULE_LICENSE("GPL");
5999 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6000 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6001 MODULE_ALIAS("md-raid5");
6002 MODULE_ALIAS("md-raid4");
6003 MODULE_ALIAS("md-level-5");
6004 MODULE_ALIAS("md-level-4");
6005 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6006 MODULE_ALIAS("md-raid6");
6007 MODULE_ALIAS("md-level-6");
6008
6009 /* This used to be two separate modules, they were: */
6010 MODULE_ALIAS("raid5");
6011 MODULE_ALIAS("raid6");