]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: unite fetch_block5 and fetch_block6
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock_irq(&sh->raid_conf->device_lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         #ifdef CONFIG_MULTICORE_RAID456
1324         init_waitqueue_head(&sh->ops.wait_for_ops);
1325         #endif
1326
1327         if (grow_buffers(sh)) {
1328                 shrink_buffers(sh);
1329                 kmem_cache_free(conf->slab_cache, sh);
1330                 return 0;
1331         }
1332         /* we just created an active stripe so... */
1333         atomic_set(&sh->count, 1);
1334         atomic_inc(&conf->active_stripes);
1335         INIT_LIST_HEAD(&sh->lru);
1336         release_stripe(sh);
1337         return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342         struct kmem_cache *sc;
1343         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345         if (conf->mddev->gendisk)
1346                 sprintf(conf->cache_name[0],
1347                         "raid%d-%s", conf->level, mdname(conf->mddev));
1348         else
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%p", conf->level, conf->mddev);
1351         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353         conf->active_name = 0;
1354         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356                                0, 0, NULL);
1357         if (!sc)
1358                 return 1;
1359         conf->slab_cache = sc;
1360         conf->pool_size = devs;
1361         while (num--)
1362                 if (!grow_one_stripe(conf))
1363                         return 1;
1364         return 0;
1365 }
1366
1367 /**
1368  * scribble_len - return the required size of the scribble region
1369  * @num - total number of disks in the array
1370  *
1371  * The size must be enough to contain:
1372  * 1/ a struct page pointer for each device in the array +2
1373  * 2/ room to convert each entry in (1) to its corresponding dma
1374  *    (dma_map_page()) or page (page_address()) address.
1375  *
1376  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377  * calculate over all devices (not just the data blocks), using zeros in place
1378  * of the P and Q blocks.
1379  */
1380 static size_t scribble_len(int num)
1381 {
1382         size_t len;
1383
1384         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386         return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391         /* Make all the stripes able to hold 'newsize' devices.
1392          * New slots in each stripe get 'page' set to a new page.
1393          *
1394          * This happens in stages:
1395          * 1/ create a new kmem_cache and allocate the required number of
1396          *    stripe_heads.
1397          * 2/ gather all the old stripe_heads and tranfer the pages across
1398          *    to the new stripe_heads.  This will have the side effect of
1399          *    freezing the array as once all stripe_heads have been collected,
1400          *    no IO will be possible.  Old stripe heads are freed once their
1401          *    pages have been transferred over, and the old kmem_cache is
1402          *    freed when all stripes are done.
1403          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1404          *    we simple return a failre status - no need to clean anything up.
1405          * 4/ allocate new pages for the new slots in the new stripe_heads.
1406          *    If this fails, we don't bother trying the shrink the
1407          *    stripe_heads down again, we just leave them as they are.
1408          *    As each stripe_head is processed the new one is released into
1409          *    active service.
1410          *
1411          * Once step2 is started, we cannot afford to wait for a write,
1412          * so we use GFP_NOIO allocations.
1413          */
1414         struct stripe_head *osh, *nsh;
1415         LIST_HEAD(newstripes);
1416         struct disk_info *ndisks;
1417         unsigned long cpu;
1418         int err;
1419         struct kmem_cache *sc;
1420         int i;
1421
1422         if (newsize <= conf->pool_size)
1423                 return 0; /* never bother to shrink */
1424
1425         err = md_allow_write(conf->mddev);
1426         if (err)
1427                 return err;
1428
1429         /* Step 1 */
1430         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432                                0, 0, NULL);
1433         if (!sc)
1434                 return -ENOMEM;
1435
1436         for (i = conf->max_nr_stripes; i; i--) {
1437                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438                 if (!nsh)
1439                         break;
1440
1441                 nsh->raid_conf = conf;
1442                 #ifdef CONFIG_MULTICORE_RAID456
1443                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444                 #endif
1445
1446                 list_add(&nsh->lru, &newstripes);
1447         }
1448         if (i) {
1449                 /* didn't get enough, give up */
1450                 while (!list_empty(&newstripes)) {
1451                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452                         list_del(&nsh->lru);
1453                         kmem_cache_free(sc, nsh);
1454                 }
1455                 kmem_cache_destroy(sc);
1456                 return -ENOMEM;
1457         }
1458         /* Step 2 - Must use GFP_NOIO now.
1459          * OK, we have enough stripes, start collecting inactive
1460          * stripes and copying them over
1461          */
1462         list_for_each_entry(nsh, &newstripes, lru) {
1463                 spin_lock_irq(&conf->device_lock);
1464                 wait_event_lock_irq(conf->wait_for_stripe,
1465                                     !list_empty(&conf->inactive_list),
1466                                     conf->device_lock,
1467                                     );
1468                 osh = get_free_stripe(conf);
1469                 spin_unlock_irq(&conf->device_lock);
1470                 atomic_set(&nsh->count, 1);
1471                 for(i=0; i<conf->pool_size; i++)
1472                         nsh->dev[i].page = osh->dev[i].page;
1473                 for( ; i<newsize; i++)
1474                         nsh->dev[i].page = NULL;
1475                 kmem_cache_free(conf->slab_cache, osh);
1476         }
1477         kmem_cache_destroy(conf->slab_cache);
1478
1479         /* Step 3.
1480          * At this point, we are holding all the stripes so the array
1481          * is completely stalled, so now is a good time to resize
1482          * conf->disks and the scribble region
1483          */
1484         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485         if (ndisks) {
1486                 for (i=0; i<conf->raid_disks; i++)
1487                         ndisks[i] = conf->disks[i];
1488                 kfree(conf->disks);
1489                 conf->disks = ndisks;
1490         } else
1491                 err = -ENOMEM;
1492
1493         get_online_cpus();
1494         conf->scribble_len = scribble_len(newsize);
1495         for_each_present_cpu(cpu) {
1496                 struct raid5_percpu *percpu;
1497                 void *scribble;
1498
1499                 percpu = per_cpu_ptr(conf->percpu, cpu);
1500                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502                 if (scribble) {
1503                         kfree(percpu->scribble);
1504                         percpu->scribble = scribble;
1505                 } else {
1506                         err = -ENOMEM;
1507                         break;
1508                 }
1509         }
1510         put_online_cpus();
1511
1512         /* Step 4, return new stripes to service */
1513         while(!list_empty(&newstripes)) {
1514                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515                 list_del_init(&nsh->lru);
1516
1517                 for (i=conf->raid_disks; i < newsize; i++)
1518                         if (nsh->dev[i].page == NULL) {
1519                                 struct page *p = alloc_page(GFP_NOIO);
1520                                 nsh->dev[i].page = p;
1521                                 if (!p)
1522                                         err = -ENOMEM;
1523                         }
1524                 release_stripe(nsh);
1525         }
1526         /* critical section pass, GFP_NOIO no longer needed */
1527
1528         conf->slab_cache = sc;
1529         conf->active_name = 1-conf->active_name;
1530         conf->pool_size = newsize;
1531         return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536         struct stripe_head *sh;
1537
1538         spin_lock_irq(&conf->device_lock);
1539         sh = get_free_stripe(conf);
1540         spin_unlock_irq(&conf->device_lock);
1541         if (!sh)
1542                 return 0;
1543         BUG_ON(atomic_read(&sh->count));
1544         shrink_buffers(sh);
1545         kmem_cache_free(conf->slab_cache, sh);
1546         atomic_dec(&conf->active_stripes);
1547         return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552         while (drop_one_stripe(conf))
1553                 ;
1554
1555         if (conf->slab_cache)
1556                 kmem_cache_destroy(conf->slab_cache);
1557         conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562         struct stripe_head *sh = bi->bi_private;
1563         raid5_conf_t *conf = sh->raid_conf;
1564         int disks = sh->disks, i;
1565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566         char b[BDEVNAME_SIZE];
1567         mdk_rdev_t *rdev;
1568
1569
1570         for (i=0 ; i<disks; i++)
1571                 if (bi == &sh->dev[i].req)
1572                         break;
1573
1574         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576                 uptodate);
1577         if (i == disks) {
1578                 BUG();
1579                 return;
1580         }
1581
1582         if (uptodate) {
1583                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585                         rdev = conf->disks[i].rdev;
1586                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587                                   " (%lu sectors at %llu on %s)\n",
1588                                   mdname(conf->mddev), STRIPE_SECTORS,
1589                                   (unsigned long long)(sh->sector
1590                                                        + rdev->data_offset),
1591                                   bdevname(rdev->bdev, b));
1592                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1593                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594                 }
1595                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597         } else {
1598                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599                 int retry = 0;
1600                 rdev = conf->disks[i].rdev;
1601
1602                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 atomic_inc(&rdev->read_errors);
1604                 if (conf->mddev->degraded >= conf->max_degraded)
1605                         printk_rl(KERN_WARNING
1606                                   "md/raid:%s: read error not correctable "
1607                                   "(sector %llu on %s).\n",
1608                                   mdname(conf->mddev),
1609                                   (unsigned long long)(sh->sector
1610                                                        + rdev->data_offset),
1611                                   bdn);
1612                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613                         /* Oh, no!!! */
1614                         printk_rl(KERN_WARNING
1615                                   "md/raid:%s: read error NOT corrected!! "
1616                                   "(sector %llu on %s).\n",
1617                                   mdname(conf->mddev),
1618                                   (unsigned long long)(sh->sector
1619                                                        + rdev->data_offset),
1620                                   bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = ~0;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304         }
2305
2306         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307                 if (atomic_dec_and_test(&conf->pending_full_writes))
2308                         md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block - checks the given member device to see if its data needs
2312  * to be read or computed to satisfy a request.
2313  *
2314  * Returns 1 when no more member devices need to be checked, otherwise returns
2315  * 0 to tell the loop in handle_stripe_fill to continue
2316  */
2317 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2318                        int disk_idx, int disks)
2319 {
2320         struct r5dev *dev = &sh->dev[disk_idx];
2321         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2322                                   &sh->dev[s->failed_num[1]] };
2323
2324         /* is the data in this block needed, and can we get it? */
2325         if (!test_bit(R5_LOCKED, &dev->flags) &&
2326             !test_bit(R5_UPTODATE, &dev->flags) &&
2327             (dev->toread ||
2328              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329              s->syncing || s->expanding ||
2330              (s->failed >= 1 && fdev[0]->toread) ||
2331              (s->failed >= 2 && fdev[1]->toread) ||
2332              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2333               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2334              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2335                 /* we would like to get this block, possibly by computing it,
2336                  * otherwise read it if the backing disk is insync
2337                  */
2338                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2339                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2340                 if ((s->uptodate == disks - 1) &&
2341                     (s->failed && (disk_idx == s->failed_num[0] ||
2342                                    disk_idx == s->failed_num[1]))) {
2343                         /* have disk failed, and we're requested to fetch it;
2344                          * do compute it
2345                          */
2346                         pr_debug("Computing stripe %llu block %d\n",
2347                                (unsigned long long)sh->sector, disk_idx);
2348                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2349                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2350                         set_bit(R5_Wantcompute, &dev->flags);
2351                         sh->ops.target = disk_idx;
2352                         sh->ops.target2 = -1; /* no 2nd target */
2353                         s->req_compute = 1;
2354                         /* Careful: from this point on 'uptodate' is in the eye
2355                          * of raid_run_ops which services 'compute' operations
2356                          * before writes. R5_Wantcompute flags a block that will
2357                          * be R5_UPTODATE by the time it is needed for a
2358                          * subsequent operation.
2359                          */
2360                         s->uptodate++;
2361                         return 1;
2362                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363                         /* Computing 2-failure is *very* expensive; only
2364                          * do it if failed >= 2
2365                          */
2366                         int other;
2367                         for (other = disks; other--; ) {
2368                                 if (other == disk_idx)
2369                                         continue;
2370                                 if (!test_bit(R5_UPTODATE,
2371                                       &sh->dev[other].flags))
2372                                         break;
2373                         }
2374                         BUG_ON(other < 0);
2375                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2376                                (unsigned long long)sh->sector,
2377                                disk_idx, other);
2378                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382                         sh->ops.target = disk_idx;
2383                         sh->ops.target2 = other;
2384                         s->uptodate += 2;
2385                         s->req_compute = 1;
2386                         return 1;
2387                 } else if (test_bit(R5_Insync, &dev->flags)) {
2388                         set_bit(R5_LOCKED, &dev->flags);
2389                         set_bit(R5_Wantread, &dev->flags);
2390                         s->locked++;
2391                         pr_debug("Reading block %d (sync=%d)\n",
2392                                 disk_idx, s->syncing);
2393                 }
2394         }
2395
2396         return 0;
2397 }
2398
2399 /**
2400  * handle_stripe_fill - read or compute data to satisfy pending requests.
2401  */
2402 static void handle_stripe_fill(struct stripe_head *sh,
2403                                struct stripe_head_state *s,
2404                                int disks)
2405 {
2406         int i;
2407
2408         /* look for blocks to read/compute, skip this if a compute
2409          * is already in flight, or if the stripe contents are in the
2410          * midst of changing due to a write
2411          */
2412         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413             !sh->reconstruct_state)
2414                 for (i = disks; i--; )
2415                         if (fetch_block(sh, s, i, disks))
2416                                 break;
2417         set_bit(STRIPE_HANDLE, &sh->state);
2418 }
2419
2420
2421 /* handle_stripe_clean_event
2422  * any written block on an uptodate or failed drive can be returned.
2423  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424  * never LOCKED, so we don't need to test 'failed' directly.
2425  */
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427         struct stripe_head *sh, int disks, struct bio **return_bi)
2428 {
2429         int i;
2430         struct r5dev *dev;
2431
2432         for (i = disks; i--; )
2433                 if (sh->dev[i].written) {
2434                         dev = &sh->dev[i];
2435                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2436                                 test_bit(R5_UPTODATE, &dev->flags)) {
2437                                 /* We can return any write requests */
2438                                 struct bio *wbi, *wbi2;
2439                                 int bitmap_end = 0;
2440                                 pr_debug("Return write for disc %d\n", i);
2441                                 spin_lock_irq(&conf->device_lock);
2442                                 wbi = dev->written;
2443                                 dev->written = NULL;
2444                                 while (wbi && wbi->bi_sector <
2445                                         dev->sector + STRIPE_SECTORS) {
2446                                         wbi2 = r5_next_bio(wbi, dev->sector);
2447                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2448                                                 md_write_end(conf->mddev);
2449                                                 wbi->bi_next = *return_bi;
2450                                                 *return_bi = wbi;
2451                                         }
2452                                         wbi = wbi2;
2453                                 }
2454                                 if (dev->towrite == NULL)
2455                                         bitmap_end = 1;
2456                                 spin_unlock_irq(&conf->device_lock);
2457                                 if (bitmap_end)
2458                                         bitmap_endwrite(conf->mddev->bitmap,
2459                                                         sh->sector,
2460                                                         STRIPE_SECTORS,
2461                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2462                                                         0);
2463                         }
2464                 }
2465
2466         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467                 if (atomic_dec_and_test(&conf->pending_full_writes))
2468                         md_wakeup_thread(conf->mddev->thread);
2469 }
2470
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2473 {
2474         int rmw = 0, rcw = 0, i;
2475         for (i = disks; i--; ) {
2476                 /* would I have to read this buffer for read_modify_write */
2477                 struct r5dev *dev = &sh->dev[i];
2478                 if ((dev->towrite || i == sh->pd_idx) &&
2479                     !test_bit(R5_LOCKED, &dev->flags) &&
2480                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2481                       test_bit(R5_Wantcompute, &dev->flags))) {
2482                         if (test_bit(R5_Insync, &dev->flags))
2483                                 rmw++;
2484                         else
2485                                 rmw += 2*disks;  /* cannot read it */
2486                 }
2487                 /* Would I have to read this buffer for reconstruct_write */
2488                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489                     !test_bit(R5_LOCKED, &dev->flags) &&
2490                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2491                     test_bit(R5_Wantcompute, &dev->flags))) {
2492                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493                         else
2494                                 rcw += 2*disks;
2495                 }
2496         }
2497         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498                 (unsigned long long)sh->sector, rmw, rcw);
2499         set_bit(STRIPE_HANDLE, &sh->state);
2500         if (rmw < rcw && rmw > 0)
2501                 /* prefer read-modify-write, but need to get some data */
2502                 for (i = disks; i--; ) {
2503                         struct r5dev *dev = &sh->dev[i];
2504                         if ((dev->towrite || i == sh->pd_idx) &&
2505                             !test_bit(R5_LOCKED, &dev->flags) &&
2506                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2507                             test_bit(R5_Wantcompute, &dev->flags)) &&
2508                             test_bit(R5_Insync, &dev->flags)) {
2509                                 if (
2510                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511                                         pr_debug("Read_old block "
2512                                                 "%d for r-m-w\n", i);
2513                                         set_bit(R5_LOCKED, &dev->flags);
2514                                         set_bit(R5_Wantread, &dev->flags);
2515                                         s->locked++;
2516                                 } else {
2517                                         set_bit(STRIPE_DELAYED, &sh->state);
2518                                         set_bit(STRIPE_HANDLE, &sh->state);
2519                                 }
2520                         }
2521                 }
2522         if (rcw <= rmw && rcw > 0)
2523                 /* want reconstruct write, but need to get some data */
2524                 for (i = disks; i--; ) {
2525                         struct r5dev *dev = &sh->dev[i];
2526                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527                             i != sh->pd_idx &&
2528                             !test_bit(R5_LOCKED, &dev->flags) &&
2529                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2530                             test_bit(R5_Wantcompute, &dev->flags)) &&
2531                             test_bit(R5_Insync, &dev->flags)) {
2532                                 if (
2533                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534                                         pr_debug("Read_old block "
2535                                                 "%d for Reconstruct\n", i);
2536                                         set_bit(R5_LOCKED, &dev->flags);
2537                                         set_bit(R5_Wantread, &dev->flags);
2538                                         s->locked++;
2539                                 } else {
2540                                         set_bit(STRIPE_DELAYED, &sh->state);
2541                                         set_bit(STRIPE_HANDLE, &sh->state);
2542                                 }
2543                         }
2544                 }
2545         /* now if nothing is locked, and if we have enough data,
2546          * we can start a write request
2547          */
2548         /* since handle_stripe can be called at any time we need to handle the
2549          * case where a compute block operation has been submitted and then a
2550          * subsequent call wants to start a write request.  raid_run_ops only
2551          * handles the case where compute block and reconstruct are requested
2552          * simultaneously.  If this is not the case then new writes need to be
2553          * held off until the compute completes.
2554          */
2555         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558                 schedule_reconstruction(sh, s, rcw == 0, 0);
2559 }
2560
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562                 struct stripe_head *sh, struct stripe_head_state *s,
2563                 int disks)
2564 {
2565         int rcw = 0, pd_idx = sh->pd_idx, i;
2566         int qd_idx = sh->qd_idx;
2567
2568         set_bit(STRIPE_HANDLE, &sh->state);
2569         for (i = disks; i--; ) {
2570                 struct r5dev *dev = &sh->dev[i];
2571                 /* check if we haven't enough data */
2572                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573                     i != pd_idx && i != qd_idx &&
2574                     !test_bit(R5_LOCKED, &dev->flags) &&
2575                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                       test_bit(R5_Wantcompute, &dev->flags))) {
2577                         rcw++;
2578                         if (!test_bit(R5_Insync, &dev->flags))
2579                                 continue; /* it's a failed drive */
2580
2581                         if (
2582                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583                                 pr_debug("Read_old stripe %llu "
2584                                         "block %d for Reconstruct\n",
2585                                      (unsigned long long)sh->sector, i);
2586                                 set_bit(R5_LOCKED, &dev->flags);
2587                                 set_bit(R5_Wantread, &dev->flags);
2588                                 s->locked++;
2589                         } else {
2590                                 pr_debug("Request delayed stripe %llu "
2591                                         "block %d for Reconstruct\n",
2592                                      (unsigned long long)sh->sector, i);
2593                                 set_bit(STRIPE_DELAYED, &sh->state);
2594                                 set_bit(STRIPE_HANDLE, &sh->state);
2595                         }
2596                 }
2597         }
2598         /* now if nothing is locked, and if we have enough data, we can start a
2599          * write request
2600          */
2601         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602             s->locked == 0 && rcw == 0 &&
2603             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604                 schedule_reconstruction(sh, s, 1, 0);
2605         }
2606 }
2607
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609                                 struct stripe_head_state *s, int disks)
2610 {
2611         struct r5dev *dev = NULL;
2612
2613         set_bit(STRIPE_HANDLE, &sh->state);
2614
2615         switch (sh->check_state) {
2616         case check_state_idle:
2617                 /* start a new check operation if there are no failures */
2618                 if (s->failed == 0) {
2619                         BUG_ON(s->uptodate != disks);
2620                         sh->check_state = check_state_run;
2621                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623                         s->uptodate--;
2624                         break;
2625                 }
2626                 dev = &sh->dev[s->failed_num[0]];
2627                 /* fall through */
2628         case check_state_compute_result:
2629                 sh->check_state = check_state_idle;
2630                 if (!dev)
2631                         dev = &sh->dev[sh->pd_idx];
2632
2633                 /* check that a write has not made the stripe insync */
2634                 if (test_bit(STRIPE_INSYNC, &sh->state))
2635                         break;
2636
2637                 /* either failed parity check, or recovery is happening */
2638                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639                 BUG_ON(s->uptodate != disks);
2640
2641                 set_bit(R5_LOCKED, &dev->flags);
2642                 s->locked++;
2643                 set_bit(R5_Wantwrite, &dev->flags);
2644
2645                 clear_bit(STRIPE_DEGRADED, &sh->state);
2646                 set_bit(STRIPE_INSYNC, &sh->state);
2647                 break;
2648         case check_state_run:
2649                 break; /* we will be called again upon completion */
2650         case check_state_check_result:
2651                 sh->check_state = check_state_idle;
2652
2653                 /* if a failure occurred during the check operation, leave
2654                  * STRIPE_INSYNC not set and let the stripe be handled again
2655                  */
2656                 if (s->failed)
2657                         break;
2658
2659                 /* handle a successful check operation, if parity is correct
2660                  * we are done.  Otherwise update the mismatch count and repair
2661                  * parity if !MD_RECOVERY_CHECK
2662                  */
2663                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664                         /* parity is correct (on disc,
2665                          * not in buffer any more)
2666                          */
2667                         set_bit(STRIPE_INSYNC, &sh->state);
2668                 else {
2669                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671                                 /* don't try to repair!! */
2672                                 set_bit(STRIPE_INSYNC, &sh->state);
2673                         else {
2674                                 sh->check_state = check_state_compute_run;
2675                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677                                 set_bit(R5_Wantcompute,
2678                                         &sh->dev[sh->pd_idx].flags);
2679                                 sh->ops.target = sh->pd_idx;
2680                                 sh->ops.target2 = -1;
2681                                 s->uptodate++;
2682                         }
2683                 }
2684                 break;
2685         case check_state_compute_run:
2686                 break;
2687         default:
2688                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689                        __func__, sh->check_state,
2690                        (unsigned long long) sh->sector);
2691                 BUG();
2692         }
2693 }
2694
2695
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697                                   struct stripe_head_state *s,
2698                                   int disks)
2699 {
2700         int pd_idx = sh->pd_idx;
2701         int qd_idx = sh->qd_idx;
2702         struct r5dev *dev;
2703
2704         set_bit(STRIPE_HANDLE, &sh->state);
2705
2706         BUG_ON(s->failed > 2);
2707
2708         /* Want to check and possibly repair P and Q.
2709          * However there could be one 'failed' device, in which
2710          * case we can only check one of them, possibly using the
2711          * other to generate missing data
2712          */
2713
2714         switch (sh->check_state) {
2715         case check_state_idle:
2716                 /* start a new check operation if there are < 2 failures */
2717                 if (s->failed == s->q_failed) {
2718                         /* The only possible failed device holds Q, so it
2719                          * makes sense to check P (If anything else were failed,
2720                          * we would have used P to recreate it).
2721                          */
2722                         sh->check_state = check_state_run;
2723                 }
2724                 if (!s->q_failed && s->failed < 2) {
2725                         /* Q is not failed, and we didn't use it to generate
2726                          * anything, so it makes sense to check it
2727                          */
2728                         if (sh->check_state == check_state_run)
2729                                 sh->check_state = check_state_run_pq;
2730                         else
2731                                 sh->check_state = check_state_run_q;
2732                 }
2733
2734                 /* discard potentially stale zero_sum_result */
2735                 sh->ops.zero_sum_result = 0;
2736
2737                 if (sh->check_state == check_state_run) {
2738                         /* async_xor_zero_sum destroys the contents of P */
2739                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740                         s->uptodate--;
2741                 }
2742                 if (sh->check_state >= check_state_run &&
2743                     sh->check_state <= check_state_run_pq) {
2744                         /* async_syndrome_zero_sum preserves P and Q, so
2745                          * no need to mark them !uptodate here
2746                          */
2747                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748                         break;
2749                 }
2750
2751                 /* we have 2-disk failure */
2752                 BUG_ON(s->failed != 2);
2753                 /* fall through */
2754         case check_state_compute_result:
2755                 sh->check_state = check_state_idle;
2756
2757                 /* check that a write has not made the stripe insync */
2758                 if (test_bit(STRIPE_INSYNC, &sh->state))
2759                         break;
2760
2761                 /* now write out any block on a failed drive,
2762                  * or P or Q if they were recomputed
2763                  */
2764                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765                 if (s->failed == 2) {
2766                         dev = &sh->dev[s->failed_num[1]];
2767                         s->locked++;
2768                         set_bit(R5_LOCKED, &dev->flags);
2769                         set_bit(R5_Wantwrite, &dev->flags);
2770                 }
2771                 if (s->failed >= 1) {
2772                         dev = &sh->dev[s->failed_num[0]];
2773                         s->locked++;
2774                         set_bit(R5_LOCKED, &dev->flags);
2775                         set_bit(R5_Wantwrite, &dev->flags);
2776                 }
2777                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778                         dev = &sh->dev[pd_idx];
2779                         s->locked++;
2780                         set_bit(R5_LOCKED, &dev->flags);
2781                         set_bit(R5_Wantwrite, &dev->flags);
2782                 }
2783                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784                         dev = &sh->dev[qd_idx];
2785                         s->locked++;
2786                         set_bit(R5_LOCKED, &dev->flags);
2787                         set_bit(R5_Wantwrite, &dev->flags);
2788                 }
2789                 clear_bit(STRIPE_DEGRADED, &sh->state);
2790
2791                 set_bit(STRIPE_INSYNC, &sh->state);
2792                 break;
2793         case check_state_run:
2794         case check_state_run_q:
2795         case check_state_run_pq:
2796                 break; /* we will be called again upon completion */
2797         case check_state_check_result:
2798                 sh->check_state = check_state_idle;
2799
2800                 /* handle a successful check operation, if parity is correct
2801                  * we are done.  Otherwise update the mismatch count and repair
2802                  * parity if !MD_RECOVERY_CHECK
2803                  */
2804                 if (sh->ops.zero_sum_result == 0) {
2805                         /* both parities are correct */
2806                         if (!s->failed)
2807                                 set_bit(STRIPE_INSYNC, &sh->state);
2808                         else {
2809                                 /* in contrast to the raid5 case we can validate
2810                                  * parity, but still have a failure to write
2811                                  * back
2812                                  */
2813                                 sh->check_state = check_state_compute_result;
2814                                 /* Returning at this point means that we may go
2815                                  * off and bring p and/or q uptodate again so
2816                                  * we make sure to check zero_sum_result again
2817                                  * to verify if p or q need writeback
2818                                  */
2819                         }
2820                 } else {
2821                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823                                 /* don't try to repair!! */
2824                                 set_bit(STRIPE_INSYNC, &sh->state);
2825                         else {
2826                                 int *target = &sh->ops.target;
2827
2828                                 sh->ops.target = -1;
2829                                 sh->ops.target2 = -1;
2830                                 sh->check_state = check_state_compute_run;
2831                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834                                         set_bit(R5_Wantcompute,
2835                                                 &sh->dev[pd_idx].flags);
2836                                         *target = pd_idx;
2837                                         target = &sh->ops.target2;
2838                                         s->uptodate++;
2839                                 }
2840                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841                                         set_bit(R5_Wantcompute,
2842                                                 &sh->dev[qd_idx].flags);
2843                                         *target = qd_idx;
2844                                         s->uptodate++;
2845                                 }
2846                         }
2847                 }
2848                 break;
2849         case check_state_compute_run:
2850                 break;
2851         default:
2852                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853                        __func__, sh->check_state,
2854                        (unsigned long long) sh->sector);
2855                 BUG();
2856         }
2857 }
2858
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2860 {
2861         int i;
2862
2863         /* We have read all the blocks in this stripe and now we need to
2864          * copy some of them into a target stripe for expand.
2865          */
2866         struct dma_async_tx_descriptor *tx = NULL;
2867         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2868         for (i = 0; i < sh->disks; i++)
2869                 if (i != sh->pd_idx && i != sh->qd_idx) {
2870                         int dd_idx, j;
2871                         struct stripe_head *sh2;
2872                         struct async_submit_ctl submit;
2873
2874                         sector_t bn = compute_blocknr(sh, i, 1);
2875                         sector_t s = raid5_compute_sector(conf, bn, 0,
2876                                                           &dd_idx, NULL);
2877                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2878                         if (sh2 == NULL)
2879                                 /* so far only the early blocks of this stripe
2880                                  * have been requested.  When later blocks
2881                                  * get requested, we will try again
2882                                  */
2883                                 continue;
2884                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2885                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2886                                 /* must have already done this block */
2887                                 release_stripe(sh2);
2888                                 continue;
2889                         }
2890
2891                         /* place all the copies on one channel */
2892                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2893                         tx = async_memcpy(sh2->dev[dd_idx].page,
2894                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2895                                           &submit);
2896
2897                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2898                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2899                         for (j = 0; j < conf->raid_disks; j++)
2900                                 if (j != sh2->pd_idx &&
2901                                     j != sh2->qd_idx &&
2902                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2903                                         break;
2904                         if (j == conf->raid_disks) {
2905                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2906                                 set_bit(STRIPE_HANDLE, &sh2->state);
2907                         }
2908                         release_stripe(sh2);
2909
2910                 }
2911         /* done submitting copies, wait for them to complete */
2912         if (tx) {
2913                 async_tx_ack(tx);
2914                 dma_wait_for_async_tx(tx);
2915         }
2916 }
2917
2918
2919 /*
2920  * handle_stripe - do things to a stripe.
2921  *
2922  * We lock the stripe and then examine the state of various bits
2923  * to see what needs to be done.
2924  * Possible results:
2925  *    return some read request which now have data
2926  *    return some write requests which are safely on disc
2927  *    schedule a read on some buffers
2928  *    schedule a write of some buffers
2929  *    return confirmation of parity correctness
2930  *
2931  * buffers are taken off read_list or write_list, and bh_cache buffers
2932  * get BH_Lock set before the stripe lock is released.
2933  *
2934  */
2935
2936 static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
2937 {
2938         raid5_conf_t *conf = sh->raid_conf;
2939         int disks = sh->disks, i;
2940         struct r5dev *dev;
2941         int prexor;
2942
2943         /* Now to look around and see what can be done */
2944         rcu_read_lock();
2945         spin_lock_irq(&conf->device_lock);
2946         for (i=disks; i--; ) {
2947                 mdk_rdev_t *rdev;
2948
2949                 dev = &sh->dev[i];
2950
2951                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2952                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2953                         dev->towrite, dev->written);
2954
2955                 /* maybe we can request a biofill operation
2956                  *
2957                  * new wantfill requests are only permitted while
2958                  * ops_complete_biofill is guaranteed to be inactive
2959                  */
2960                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2961                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2962                         set_bit(R5_Wantfill, &dev->flags);
2963
2964                 /* now count some things */
2965                 if (test_bit(R5_LOCKED, &dev->flags))
2966                         s->locked++;
2967                 if (test_bit(R5_UPTODATE, &dev->flags))
2968                         s->uptodate++;
2969                 if (test_bit(R5_Wantcompute, &dev->flags))
2970                         s->compute++;
2971
2972                 if (test_bit(R5_Wantfill, &dev->flags))
2973                         s->to_fill++;
2974                 else if (dev->toread)
2975                         s->to_read++;
2976                 if (dev->towrite) {
2977                         s->to_write++;
2978                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2979                                 s->non_overwrite++;
2980                 }
2981                 if (dev->written)
2982                         s->written++;
2983                 rdev = rcu_dereference(conf->disks[i].rdev);
2984                 if (s->blocked_rdev == NULL &&
2985                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2986                         s->blocked_rdev = rdev;
2987                         atomic_inc(&rdev->nr_pending);
2988                 }
2989                 clear_bit(R5_Insync, &dev->flags);
2990                 if (!rdev)
2991                         /* Not in-sync */;
2992                 else if (test_bit(In_sync, &rdev->flags))
2993                         set_bit(R5_Insync, &dev->flags);
2994                 else {
2995                         /* could be in-sync depending on recovery/reshape status */
2996                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2997                                 set_bit(R5_Insync, &dev->flags);
2998                 }
2999                 if (!test_bit(R5_Insync, &dev->flags)) {
3000                         /* The ReadError flag will just be confusing now */
3001                         clear_bit(R5_ReadError, &dev->flags);
3002                         clear_bit(R5_ReWrite, &dev->flags);
3003                 }
3004                 if (test_bit(R5_ReadError, &dev->flags))
3005                         clear_bit(R5_Insync, &dev->flags);
3006                 if (!test_bit(R5_Insync, &dev->flags)) {
3007                         s->failed++;
3008                         s->failed_num[0] = i;
3009                 }
3010         }
3011         spin_unlock_irq(&conf->device_lock);
3012         rcu_read_unlock();
3013
3014         if (unlikely(s->blocked_rdev)) {
3015                 if (s->syncing || s->expanding || s->expanded ||
3016                     s->to_write || s->written) {
3017                         set_bit(STRIPE_HANDLE, &sh->state);
3018                         return 1;
3019                 }
3020                 /* There is nothing for the blocked_rdev to block */
3021                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3022                 s->blocked_rdev = NULL;
3023         }
3024
3025         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3026                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3027                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3028         }
3029
3030         pr_debug("locked=%d uptodate=%d to_read=%d"
3031                 " to_write=%d failed=%d failed_num=%d\n",
3032                 s->locked, s->uptodate, s->to_read, s->to_write,
3033                 s->failed, s->failed_num[0]);
3034         /* check if the array has lost two devices and, if so, some requests might
3035          * need to be failed
3036          */
3037         if (s->failed > 1 && s->to_read+s->to_write+s->written)
3038                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3039         if (s->failed > 1 && s->syncing) {
3040                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3041                 clear_bit(STRIPE_SYNCING, &sh->state);
3042                 s->syncing = 0;
3043         }
3044
3045         /* might be able to return some write requests if the parity block
3046          * is safe, or on a failed drive
3047          */
3048         dev = &sh->dev[sh->pd_idx];
3049         if (s->written &&
3050             ((test_bit(R5_Insync, &dev->flags) &&
3051               !test_bit(R5_LOCKED, &dev->flags) &&
3052               test_bit(R5_UPTODATE, &dev->flags)) ||
3053              (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
3054                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3055
3056         /* Now we might consider reading some blocks, either to check/generate
3057          * parity, or to satisfy requests
3058          * or to load a block that is being partially written.
3059          */
3060         if (s->to_read || s->non_overwrite ||
3061             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3062                 handle_stripe_fill(sh, s, disks);
3063
3064         /* Now we check to see if any write operations have recently
3065          * completed
3066          */
3067         prexor = 0;
3068         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3069                 prexor = 1;
3070         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3071             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3072                 sh->reconstruct_state = reconstruct_state_idle;
3073
3074                 /* All the 'written' buffers and the parity block are ready to
3075                  * be written back to disk
3076                  */
3077                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3078                 for (i = disks; i--; ) {
3079                         dev = &sh->dev[i];
3080                         if (test_bit(R5_LOCKED, &dev->flags) &&
3081                                 (i == sh->pd_idx || dev->written)) {
3082                                 pr_debug("Writing block %d\n", i);
3083                                 set_bit(R5_Wantwrite, &dev->flags);
3084                                 if (prexor)
3085                                         continue;
3086                                 if (!test_bit(R5_Insync, &dev->flags) ||
3087                                     (i == sh->pd_idx && s->failed == 0))
3088                                         set_bit(STRIPE_INSYNC, &sh->state);
3089                         }
3090                 }
3091                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3092                         s->dec_preread_active = 1;
3093         }
3094
3095         /* Now to consider new write requests and what else, if anything
3096          * should be read.  We do not handle new writes when:
3097          * 1/ A 'write' operation (copy+xor) is already in flight.
3098          * 2/ A 'check' operation is in flight, as it may clobber the parity
3099          *    block.
3100          */
3101         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3102                 handle_stripe_dirtying5(conf, sh, s, disks);
3103
3104         /* maybe we need to check and possibly fix the parity for this stripe
3105          * Any reads will already have been scheduled, so we just see if enough
3106          * data is available.  The parity check is held off while parity
3107          * dependent operations are in flight.
3108          */
3109         if (sh->check_state ||
3110             (s->syncing && s->locked == 0 &&
3111              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3112              !test_bit(STRIPE_INSYNC, &sh->state)))
3113                 handle_parity_checks5(conf, sh, s, disks);
3114         return 0;
3115 }
3116
3117 static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
3118 {
3119         raid5_conf_t *conf = sh->raid_conf;
3120         int disks = sh->disks;
3121         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3122         struct r5dev *dev, *pdev, *qdev;
3123
3124         /* Now to look around and see what can be done */
3125
3126         rcu_read_lock();
3127         spin_lock_irq(&conf->device_lock);
3128         for (i=disks; i--; ) {
3129                 mdk_rdev_t *rdev;
3130                 dev = &sh->dev[i];
3131
3132                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3133                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3134                 /* maybe we can reply to a read
3135                  *
3136                  * new wantfill requests are only permitted while
3137                  * ops_complete_biofill is guaranteed to be inactive
3138                  */
3139                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3140                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3141                         set_bit(R5_Wantfill, &dev->flags);
3142
3143                 /* now count some things */
3144                 if (test_bit(R5_LOCKED, &dev->flags))
3145                         s->locked++;
3146                 if (test_bit(R5_UPTODATE, &dev->flags))
3147                         s->uptodate++;
3148                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3149                         s->compute++;
3150                         BUG_ON(s->compute > 2);
3151                 }
3152
3153                 if (test_bit(R5_Wantfill, &dev->flags)) {
3154                         s->to_fill++;
3155                 } else if (dev->toread)
3156                         s->to_read++;
3157                 if (dev->towrite) {
3158                         s->to_write++;
3159                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3160                                 s->non_overwrite++;
3161                 }
3162                 if (dev->written)
3163                         s->written++;
3164                 rdev = rcu_dereference(conf->disks[i].rdev);
3165                 if (s->blocked_rdev == NULL &&
3166                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3167                         s->blocked_rdev = rdev;
3168                         atomic_inc(&rdev->nr_pending);
3169                 }
3170                 clear_bit(R5_Insync, &dev->flags);
3171                 if (!rdev)
3172                         /* Not in-sync */;
3173                 else if (test_bit(In_sync, &rdev->flags))
3174                         set_bit(R5_Insync, &dev->flags);
3175                 else {
3176                         /* in sync if before recovery_offset */
3177                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3178                                 set_bit(R5_Insync, &dev->flags);
3179                 }
3180                 if (!test_bit(R5_Insync, &dev->flags)) {
3181                         /* The ReadError flag will just be confusing now */
3182                         clear_bit(R5_ReadError, &dev->flags);
3183                         clear_bit(R5_ReWrite, &dev->flags);
3184                 }
3185                 if (test_bit(R5_ReadError, &dev->flags))
3186                         clear_bit(R5_Insync, &dev->flags);
3187                 if (!test_bit(R5_Insync, &dev->flags)) {
3188                         if (s->failed < 2)
3189                                 s->failed_num[s->failed] = i;
3190                         s->failed++;
3191                 }
3192         }
3193         spin_unlock_irq(&conf->device_lock);
3194         rcu_read_unlock();
3195
3196         if (unlikely(s->blocked_rdev)) {
3197                 if (s->syncing || s->expanding || s->expanded ||
3198                     s->to_write || s->written) {
3199                         set_bit(STRIPE_HANDLE, &sh->state);
3200                         return 1;
3201                 }
3202                 /* There is nothing for the blocked_rdev to block */
3203                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3204                 s->blocked_rdev = NULL;
3205         }
3206
3207         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3208                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3209                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3210         }
3211
3212         pr_debug("locked=%d uptodate=%d to_read=%d"
3213                " to_write=%d failed=%d failed_num=%d,%d\n",
3214                s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
3215                s->failed_num[0], s->failed_num[1]);
3216         /* check if the array has lost >2 devices and, if so, some requests
3217          * might need to be failed
3218          */
3219         if (s->failed > 2 && s->to_read+s->to_write+s->written)
3220                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3221         if (s->failed > 2 && s->syncing) {
3222                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3223                 clear_bit(STRIPE_SYNCING, &sh->state);
3224                 s->syncing = 0;
3225         }
3226
3227         /*
3228          * might be able to return some write requests if the parity blocks
3229          * are safe, or on a failed drive
3230          */
3231         pdev = &sh->dev[pd_idx];
3232         s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
3233                 || (s->failed >= 2 && s->failed_num[1] == pd_idx);
3234         qdev = &sh->dev[qd_idx];
3235         s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
3236                 || (s->failed >= 2 && s->failed_num[1] == qd_idx);
3237
3238         if (s->written &&
3239             (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3240                              && !test_bit(R5_LOCKED, &pdev->flags)
3241                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3242             (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3243                              && !test_bit(R5_LOCKED, &qdev->flags)
3244                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3245                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3246
3247         /* Now we might consider reading some blocks, either to check/generate
3248          * parity, or to satisfy requests
3249          * or to load a block that is being partially written.
3250          */
3251         if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
3252             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3253                 handle_stripe_fill(sh, s, disks);
3254
3255         /* Now we check to see if any write operations have recently
3256          * completed
3257          */
3258         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3259
3260                 sh->reconstruct_state = reconstruct_state_idle;
3261                 /* All the 'written' buffers and the parity blocks are ready to
3262                  * be written back to disk
3263                  */
3264                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3265                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3266                 for (i = disks; i--; ) {
3267                         dev = &sh->dev[i];
3268                         if (test_bit(R5_LOCKED, &dev->flags) &&
3269                             (i == sh->pd_idx || i == qd_idx ||
3270                              dev->written)) {
3271                                 pr_debug("Writing block %d\n", i);
3272                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3273                                 set_bit(R5_Wantwrite, &dev->flags);
3274                                 if (!test_bit(R5_Insync, &dev->flags) ||
3275                                     ((i == sh->pd_idx || i == qd_idx) &&
3276                                       s->failed == 0))
3277                                         set_bit(STRIPE_INSYNC, &sh->state);
3278                         }
3279                 }
3280                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3281                         s->dec_preread_active = 1;
3282         }
3283
3284         /* Now to consider new write requests and what else, if anything
3285          * should be read.  We do not handle new writes when:
3286          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3287          * 2/ A 'check' operation is in flight, as it may clobber the parity
3288          *    block.
3289          */
3290         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3291                 handle_stripe_dirtying6(conf, sh, s, disks);
3292
3293         /* maybe we need to check and possibly fix the parity for this stripe
3294          * Any reads will already have been scheduled, so we just see if enough
3295          * data is available.  The parity check is held off while parity
3296          * dependent operations are in flight.
3297          */
3298         if (sh->check_state ||
3299             (s->syncing && s->locked == 0 &&
3300              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3301              !test_bit(STRIPE_INSYNC, &sh->state)))
3302                 handle_parity_checks6(conf, sh, s, disks);
3303         return 0;
3304 }
3305
3306 static void handle_stripe(struct stripe_head *sh)
3307 {
3308         struct stripe_head_state s;
3309         int done;
3310         int i;
3311         raid5_conf_t *conf = sh->raid_conf;
3312
3313         clear_bit(STRIPE_HANDLE, &sh->state);
3314         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3315                 /* already being handled, ensure it gets handled
3316                  * again when current action finishes */
3317                 set_bit(STRIPE_HANDLE, &sh->state);
3318                 return;
3319         }
3320
3321         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3322                 set_bit(STRIPE_SYNCING, &sh->state);
3323                 clear_bit(STRIPE_INSYNC, &sh->state);
3324         }
3325         clear_bit(STRIPE_DELAYED, &sh->state);
3326
3327         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3328                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3329                (unsigned long long)sh->sector, sh->state,
3330                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3331                sh->check_state, sh->reconstruct_state);
3332         memset(&s, 0, sizeof(s));
3333
3334         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3335         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3336         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3337         s.failed_num[0] = -1;
3338         s.failed_num[1] = -1;
3339
3340         if (conf->level == 6)
3341                 done = handle_stripe6(sh, &s);
3342         else
3343                 done = handle_stripe5(sh, &s);
3344
3345         if (done)
3346                 goto finish;
3347
3348
3349         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3350                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3351                 clear_bit(STRIPE_SYNCING, &sh->state);
3352         }
3353
3354         /* If the failed drives are just a ReadError, then we might need
3355          * to progress the repair/check process
3356          */
3357         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3358                 for (i = 0; i < s.failed; i++) {
3359                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3360                         if (test_bit(R5_ReadError, &dev->flags)
3361                             && !test_bit(R5_LOCKED, &dev->flags)
3362                             && test_bit(R5_UPTODATE, &dev->flags)
3363                                 ) {
3364                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3365                                         set_bit(R5_Wantwrite, &dev->flags);
3366                                         set_bit(R5_ReWrite, &dev->flags);
3367                                         set_bit(R5_LOCKED, &dev->flags);
3368                                         s.locked++;
3369                                 } else {
3370                                         /* let's read it back */
3371                                         set_bit(R5_Wantread, &dev->flags);
3372                                         set_bit(R5_LOCKED, &dev->flags);
3373                                         s.locked++;
3374                                 }
3375                         }
3376                 }
3377
3378
3379         /* Finish reconstruct operations initiated by the expansion process */
3380         if (sh->reconstruct_state == reconstruct_state_result) {
3381                 struct stripe_head *sh_src
3382                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3383                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3384                         /* sh cannot be written until sh_src has been read.
3385                          * so arrange for sh to be delayed a little
3386                          */
3387                         set_bit(STRIPE_DELAYED, &sh->state);
3388                         set_bit(STRIPE_HANDLE, &sh->state);
3389                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3390                                               &sh_src->state))
3391                                 atomic_inc(&conf->preread_active_stripes);
3392                         release_stripe(sh_src);
3393                         goto finish;
3394                 }
3395                 if (sh_src)
3396                         release_stripe(sh_src);
3397
3398                 sh->reconstruct_state = reconstruct_state_idle;
3399                 clear_bit(STRIPE_EXPANDING, &sh->state);
3400                 for (i = conf->raid_disks; i--; ) {
3401                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3402                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3403                         s.locked++;
3404                 }
3405         }
3406
3407         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3408             !sh->reconstruct_state) {
3409                 /* Need to write out all blocks after computing parity */
3410                 sh->disks = conf->raid_disks;
3411                 stripe_set_idx(sh->sector, conf, 0, sh);
3412                 schedule_reconstruction(sh, &s, 1, 1);
3413         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3414                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3415                 atomic_dec(&conf->reshape_stripes);
3416                 wake_up(&conf->wait_for_overlap);
3417                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3418         }
3419
3420         if (s.expanding && s.locked == 0 &&
3421             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3422                 handle_stripe_expansion(conf, sh);
3423
3424 finish:
3425         /* wait for this device to become unblocked */
3426         if (unlikely(s.blocked_rdev))
3427                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3428
3429         if (s.ops_request)
3430                 raid_run_ops(sh, s.ops_request);
3431
3432         ops_run_io(sh, &s);
3433
3434
3435         if (s.dec_preread_active) {
3436                 /* We delay this until after ops_run_io so that if make_request
3437                  * is waiting on a flush, it won't continue until the writes
3438                  * have actually been submitted.
3439                  */
3440                 atomic_dec(&conf->preread_active_stripes);
3441                 if (atomic_read(&conf->preread_active_stripes) <
3442                     IO_THRESHOLD)
3443                         md_wakeup_thread(conf->mddev->thread);
3444         }
3445
3446         return_io(s.return_bi);
3447
3448         clear_bit(STRIPE_ACTIVE, &sh->state);
3449 }
3450
3451 static void raid5_activate_delayed(raid5_conf_t *conf)
3452 {
3453         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3454                 while (!list_empty(&conf->delayed_list)) {
3455                         struct list_head *l = conf->delayed_list.next;
3456                         struct stripe_head *sh;
3457                         sh = list_entry(l, struct stripe_head, lru);
3458                         list_del_init(l);
3459                         clear_bit(STRIPE_DELAYED, &sh->state);
3460                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3461                                 atomic_inc(&conf->preread_active_stripes);
3462                         list_add_tail(&sh->lru, &conf->hold_list);
3463                 }
3464         }
3465 }
3466
3467 static void activate_bit_delay(raid5_conf_t *conf)
3468 {
3469         /* device_lock is held */
3470         struct list_head head;
3471         list_add(&head, &conf->bitmap_list);
3472         list_del_init(&conf->bitmap_list);
3473         while (!list_empty(&head)) {
3474                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3475                 list_del_init(&sh->lru);
3476                 atomic_inc(&sh->count);
3477                 __release_stripe(conf, sh);
3478         }
3479 }
3480
3481 int md_raid5_congested(mddev_t *mddev, int bits)
3482 {
3483         raid5_conf_t *conf = mddev->private;
3484
3485         /* No difference between reads and writes.  Just check
3486          * how busy the stripe_cache is
3487          */
3488
3489         if (conf->inactive_blocked)
3490                 return 1;
3491         if (conf->quiesce)
3492                 return 1;
3493         if (list_empty_careful(&conf->inactive_list))
3494                 return 1;
3495
3496         return 0;
3497 }
3498 EXPORT_SYMBOL_GPL(md_raid5_congested);
3499
3500 static int raid5_congested(void *data, int bits)
3501 {
3502         mddev_t *mddev = data;
3503
3504         return mddev_congested(mddev, bits) ||
3505                 md_raid5_congested(mddev, bits);
3506 }
3507
3508 /* We want read requests to align with chunks where possible,
3509  * but write requests don't need to.
3510  */
3511 static int raid5_mergeable_bvec(struct request_queue *q,
3512                                 struct bvec_merge_data *bvm,
3513                                 struct bio_vec *biovec)
3514 {
3515         mddev_t *mddev = q->queuedata;
3516         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3517         int max;
3518         unsigned int chunk_sectors = mddev->chunk_sectors;
3519         unsigned int bio_sectors = bvm->bi_size >> 9;
3520
3521         if ((bvm->bi_rw & 1) == WRITE)
3522                 return biovec->bv_len; /* always allow writes to be mergeable */
3523
3524         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3525                 chunk_sectors = mddev->new_chunk_sectors;
3526         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3527         if (max < 0) max = 0;
3528         if (max <= biovec->bv_len && bio_sectors == 0)
3529                 return biovec->bv_len;
3530         else
3531                 return max;
3532 }
3533
3534
3535 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3536 {
3537         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3538         unsigned int chunk_sectors = mddev->chunk_sectors;
3539         unsigned int bio_sectors = bio->bi_size >> 9;
3540
3541         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3542                 chunk_sectors = mddev->new_chunk_sectors;
3543         return  chunk_sectors >=
3544                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3545 }
3546
3547 /*
3548  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3549  *  later sampled by raid5d.
3550  */
3551 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3552 {
3553         unsigned long flags;
3554
3555         spin_lock_irqsave(&conf->device_lock, flags);
3556
3557         bi->bi_next = conf->retry_read_aligned_list;
3558         conf->retry_read_aligned_list = bi;
3559
3560         spin_unlock_irqrestore(&conf->device_lock, flags);
3561         md_wakeup_thread(conf->mddev->thread);
3562 }
3563
3564
3565 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3566 {
3567         struct bio *bi;
3568
3569         bi = conf->retry_read_aligned;
3570         if (bi) {
3571                 conf->retry_read_aligned = NULL;
3572                 return bi;
3573         }
3574         bi = conf->retry_read_aligned_list;
3575         if(bi) {
3576                 conf->retry_read_aligned_list = bi->bi_next;
3577                 bi->bi_next = NULL;
3578                 /*
3579                  * this sets the active strip count to 1 and the processed
3580                  * strip count to zero (upper 8 bits)
3581                  */
3582                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3583         }
3584
3585         return bi;
3586 }
3587
3588
3589 /*
3590  *  The "raid5_align_endio" should check if the read succeeded and if it
3591  *  did, call bio_endio on the original bio (having bio_put the new bio
3592  *  first).
3593  *  If the read failed..
3594  */
3595 static void raid5_align_endio(struct bio *bi, int error)
3596 {
3597         struct bio* raid_bi  = bi->bi_private;
3598         mddev_t *mddev;
3599         raid5_conf_t *conf;
3600         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3601         mdk_rdev_t *rdev;
3602
3603         bio_put(bi);
3604
3605         rdev = (void*)raid_bi->bi_next;
3606         raid_bi->bi_next = NULL;
3607         mddev = rdev->mddev;
3608         conf = mddev->private;
3609
3610         rdev_dec_pending(rdev, conf->mddev);
3611
3612         if (!error && uptodate) {
3613                 bio_endio(raid_bi, 0);
3614                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3615                         wake_up(&conf->wait_for_stripe);
3616                 return;
3617         }
3618
3619
3620         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3621
3622         add_bio_to_retry(raid_bi, conf);
3623 }
3624
3625 static int bio_fits_rdev(struct bio *bi)
3626 {
3627         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3628
3629         if ((bi->bi_size>>9) > queue_max_sectors(q))
3630                 return 0;
3631         blk_recount_segments(q, bi);
3632         if (bi->bi_phys_segments > queue_max_segments(q))
3633                 return 0;
3634
3635         if (q->merge_bvec_fn)
3636                 /* it's too hard to apply the merge_bvec_fn at this stage,
3637                  * just just give up
3638                  */
3639                 return 0;
3640
3641         return 1;
3642 }
3643
3644
3645 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3646 {
3647         raid5_conf_t *conf = mddev->private;
3648         int dd_idx;
3649         struct bio* align_bi;
3650         mdk_rdev_t *rdev;
3651
3652         if (!in_chunk_boundary(mddev, raid_bio)) {
3653                 pr_debug("chunk_aligned_read : non aligned\n");
3654                 return 0;
3655         }
3656         /*
3657          * use bio_clone_mddev to make a copy of the bio
3658          */
3659         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3660         if (!align_bi)
3661                 return 0;
3662         /*
3663          *   set bi_end_io to a new function, and set bi_private to the
3664          *     original bio.
3665          */
3666         align_bi->bi_end_io  = raid5_align_endio;
3667         align_bi->bi_private = raid_bio;
3668         /*
3669          *      compute position
3670          */
3671         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3672                                                     0,
3673                                                     &dd_idx, NULL);
3674
3675         rcu_read_lock();
3676         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3677         if (rdev && test_bit(In_sync, &rdev->flags)) {
3678                 atomic_inc(&rdev->nr_pending);
3679                 rcu_read_unlock();
3680                 raid_bio->bi_next = (void*)rdev;
3681                 align_bi->bi_bdev =  rdev->bdev;
3682                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3683                 align_bi->bi_sector += rdev->data_offset;
3684
3685                 if (!bio_fits_rdev(align_bi)) {
3686                         /* too big in some way */
3687                         bio_put(align_bi);
3688                         rdev_dec_pending(rdev, mddev);
3689                         return 0;
3690                 }
3691
3692                 spin_lock_irq(&conf->device_lock);
3693                 wait_event_lock_irq(conf->wait_for_stripe,
3694                                     conf->quiesce == 0,
3695                                     conf->device_lock, /* nothing */);
3696                 atomic_inc(&conf->active_aligned_reads);
3697                 spin_unlock_irq(&conf->device_lock);
3698
3699                 generic_make_request(align_bi);
3700                 return 1;
3701         } else {
3702                 rcu_read_unlock();
3703                 bio_put(align_bi);
3704                 return 0;
3705         }
3706 }
3707
3708 /* __get_priority_stripe - get the next stripe to process
3709  *
3710  * Full stripe writes are allowed to pass preread active stripes up until
3711  * the bypass_threshold is exceeded.  In general the bypass_count
3712  * increments when the handle_list is handled before the hold_list; however, it
3713  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3714  * stripe with in flight i/o.  The bypass_count will be reset when the
3715  * head of the hold_list has changed, i.e. the head was promoted to the
3716  * handle_list.
3717  */
3718 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3719 {
3720         struct stripe_head *sh;
3721
3722         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3723                   __func__,
3724                   list_empty(&conf->handle_list) ? "empty" : "busy",
3725                   list_empty(&conf->hold_list) ? "empty" : "busy",
3726                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3727
3728         if (!list_empty(&conf->handle_list)) {
3729                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3730
3731                 if (list_empty(&conf->hold_list))
3732                         conf->bypass_count = 0;
3733                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3734                         if (conf->hold_list.next == conf->last_hold)
3735                                 conf->bypass_count++;
3736                         else {
3737                                 conf->last_hold = conf->hold_list.next;
3738                                 conf->bypass_count -= conf->bypass_threshold;
3739                                 if (conf->bypass_count < 0)
3740                                         conf->bypass_count = 0;
3741                         }
3742                 }
3743         } else if (!list_empty(&conf->hold_list) &&
3744                    ((conf->bypass_threshold &&
3745                      conf->bypass_count > conf->bypass_threshold) ||
3746                     atomic_read(&conf->pending_full_writes) == 0)) {
3747                 sh = list_entry(conf->hold_list.next,
3748                                 typeof(*sh), lru);
3749                 conf->bypass_count -= conf->bypass_threshold;
3750                 if (conf->bypass_count < 0)
3751                         conf->bypass_count = 0;
3752         } else
3753                 return NULL;
3754
3755         list_del_init(&sh->lru);
3756         atomic_inc(&sh->count);
3757         BUG_ON(atomic_read(&sh->count) != 1);
3758         return sh;
3759 }
3760
3761 static int make_request(mddev_t *mddev, struct bio * bi)
3762 {
3763         raid5_conf_t *conf = mddev->private;
3764         int dd_idx;
3765         sector_t new_sector;
3766         sector_t logical_sector, last_sector;
3767         struct stripe_head *sh;
3768         const int rw = bio_data_dir(bi);
3769         int remaining;
3770         int plugged;
3771
3772         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3773                 md_flush_request(mddev, bi);
3774                 return 0;
3775         }
3776
3777         md_write_start(mddev, bi);
3778
3779         if (rw == READ &&
3780              mddev->reshape_position == MaxSector &&
3781              chunk_aligned_read(mddev,bi))
3782                 return 0;
3783
3784         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3785         last_sector = bi->bi_sector + (bi->bi_size>>9);
3786         bi->bi_next = NULL;
3787         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3788
3789         plugged = mddev_check_plugged(mddev);
3790         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3791                 DEFINE_WAIT(w);
3792                 int disks, data_disks;
3793                 int previous;
3794
3795         retry:
3796                 previous = 0;
3797                 disks = conf->raid_disks;
3798                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3799                 if (unlikely(conf->reshape_progress != MaxSector)) {
3800                         /* spinlock is needed as reshape_progress may be
3801                          * 64bit on a 32bit platform, and so it might be
3802                          * possible to see a half-updated value
3803                          * Of course reshape_progress could change after
3804                          * the lock is dropped, so once we get a reference
3805                          * to the stripe that we think it is, we will have
3806                          * to check again.
3807                          */
3808                         spin_lock_irq(&conf->device_lock);
3809                         if (mddev->delta_disks < 0
3810                             ? logical_sector < conf->reshape_progress
3811                             : logical_sector >= conf->reshape_progress) {
3812                                 disks = conf->previous_raid_disks;
3813                                 previous = 1;
3814                         } else {
3815                                 if (mddev->delta_disks < 0
3816                                     ? logical_sector < conf->reshape_safe
3817                                     : logical_sector >= conf->reshape_safe) {
3818                                         spin_unlock_irq(&conf->device_lock);
3819                                         schedule();
3820                                         goto retry;
3821                                 }
3822                         }
3823                         spin_unlock_irq(&conf->device_lock);
3824                 }
3825                 data_disks = disks - conf->max_degraded;
3826
3827                 new_sector = raid5_compute_sector(conf, logical_sector,
3828                                                   previous,
3829                                                   &dd_idx, NULL);
3830                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3831                         (unsigned long long)new_sector, 
3832                         (unsigned long long)logical_sector);
3833
3834                 sh = get_active_stripe(conf, new_sector, previous,
3835                                        (bi->bi_rw&RWA_MASK), 0);
3836                 if (sh) {
3837                         if (unlikely(previous)) {
3838                                 /* expansion might have moved on while waiting for a
3839                                  * stripe, so we must do the range check again.
3840                                  * Expansion could still move past after this
3841                                  * test, but as we are holding a reference to
3842                                  * 'sh', we know that if that happens,
3843                                  *  STRIPE_EXPANDING will get set and the expansion
3844                                  * won't proceed until we finish with the stripe.
3845                                  */
3846                                 int must_retry = 0;
3847                                 spin_lock_irq(&conf->device_lock);
3848                                 if (mddev->delta_disks < 0
3849                                     ? logical_sector >= conf->reshape_progress
3850                                     : logical_sector < conf->reshape_progress)
3851                                         /* mismatch, need to try again */
3852                                         must_retry = 1;
3853                                 spin_unlock_irq(&conf->device_lock);
3854                                 if (must_retry) {
3855                                         release_stripe(sh);
3856                                         schedule();
3857                                         goto retry;
3858                                 }
3859                         }
3860
3861                         if (rw == WRITE &&
3862                             logical_sector >= mddev->suspend_lo &&
3863                             logical_sector < mddev->suspend_hi) {
3864                                 release_stripe(sh);
3865                                 /* As the suspend_* range is controlled by
3866                                  * userspace, we want an interruptible
3867                                  * wait.
3868                                  */
3869                                 flush_signals(current);
3870                                 prepare_to_wait(&conf->wait_for_overlap,
3871                                                 &w, TASK_INTERRUPTIBLE);
3872                                 if (logical_sector >= mddev->suspend_lo &&
3873                                     logical_sector < mddev->suspend_hi)
3874                                         schedule();
3875                                 goto retry;
3876                         }
3877
3878                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3879                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3880                                 /* Stripe is busy expanding or
3881                                  * add failed due to overlap.  Flush everything
3882                                  * and wait a while
3883                                  */
3884                                 md_wakeup_thread(mddev->thread);
3885                                 release_stripe(sh);
3886                                 schedule();
3887                                 goto retry;
3888                         }
3889                         finish_wait(&conf->wait_for_overlap, &w);
3890                         set_bit(STRIPE_HANDLE, &sh->state);
3891                         clear_bit(STRIPE_DELAYED, &sh->state);
3892                         if ((bi->bi_rw & REQ_SYNC) &&
3893                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3894                                 atomic_inc(&conf->preread_active_stripes);
3895                         release_stripe(sh);
3896                 } else {
3897                         /* cannot get stripe for read-ahead, just give-up */
3898                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3899                         finish_wait(&conf->wait_for_overlap, &w);
3900                         break;
3901                 }
3902                         
3903         }
3904         if (!plugged)
3905                 md_wakeup_thread(mddev->thread);
3906
3907         spin_lock_irq(&conf->device_lock);
3908         remaining = raid5_dec_bi_phys_segments(bi);
3909         spin_unlock_irq(&conf->device_lock);
3910         if (remaining == 0) {
3911
3912                 if ( rw == WRITE )
3913                         md_write_end(mddev);
3914
3915                 bio_endio(bi, 0);
3916         }
3917
3918         return 0;
3919 }
3920
3921 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3922
3923 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3924 {
3925         /* reshaping is quite different to recovery/resync so it is
3926          * handled quite separately ... here.
3927          *
3928          * On each call to sync_request, we gather one chunk worth of
3929          * destination stripes and flag them as expanding.
3930          * Then we find all the source stripes and request reads.
3931          * As the reads complete, handle_stripe will copy the data
3932          * into the destination stripe and release that stripe.
3933          */
3934         raid5_conf_t *conf = mddev->private;
3935         struct stripe_head *sh;
3936         sector_t first_sector, last_sector;
3937         int raid_disks = conf->previous_raid_disks;
3938         int data_disks = raid_disks - conf->max_degraded;
3939         int new_data_disks = conf->raid_disks - conf->max_degraded;
3940         int i;
3941         int dd_idx;
3942         sector_t writepos, readpos, safepos;
3943         sector_t stripe_addr;
3944         int reshape_sectors;
3945         struct list_head stripes;
3946
3947         if (sector_nr == 0) {
3948                 /* If restarting in the middle, skip the initial sectors */
3949                 if (mddev->delta_disks < 0 &&
3950                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3951                         sector_nr = raid5_size(mddev, 0, 0)
3952                                 - conf->reshape_progress;
3953                 } else if (mddev->delta_disks >= 0 &&
3954                            conf->reshape_progress > 0)
3955                         sector_nr = conf->reshape_progress;
3956                 sector_div(sector_nr, new_data_disks);
3957                 if (sector_nr) {
3958                         mddev->curr_resync_completed = sector_nr;
3959                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3960                         *skipped = 1;
3961                         return sector_nr;
3962                 }
3963         }
3964
3965         /* We need to process a full chunk at a time.
3966          * If old and new chunk sizes differ, we need to process the
3967          * largest of these
3968          */
3969         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3970                 reshape_sectors = mddev->new_chunk_sectors;
3971         else
3972                 reshape_sectors = mddev->chunk_sectors;
3973
3974         /* we update the metadata when there is more than 3Meg
3975          * in the block range (that is rather arbitrary, should
3976          * probably be time based) or when the data about to be
3977          * copied would over-write the source of the data at
3978          * the front of the range.
3979          * i.e. one new_stripe along from reshape_progress new_maps
3980          * to after where reshape_safe old_maps to
3981          */
3982         writepos = conf->reshape_progress;
3983         sector_div(writepos, new_data_disks);
3984         readpos = conf->reshape_progress;
3985         sector_div(readpos, data_disks);
3986         safepos = conf->reshape_safe;
3987         sector_div(safepos, data_disks);
3988         if (mddev->delta_disks < 0) {
3989                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3990                 readpos += reshape_sectors;
3991                 safepos += reshape_sectors;
3992         } else {
3993                 writepos += reshape_sectors;
3994                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3995                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3996         }
3997
3998         /* 'writepos' is the most advanced device address we might write.
3999          * 'readpos' is the least advanced device address we might read.
4000          * 'safepos' is the least address recorded in the metadata as having
4001          *     been reshaped.
4002          * If 'readpos' is behind 'writepos', then there is no way that we can
4003          * ensure safety in the face of a crash - that must be done by userspace
4004          * making a backup of the data.  So in that case there is no particular
4005          * rush to update metadata.
4006          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4007          * update the metadata to advance 'safepos' to match 'readpos' so that
4008          * we can be safe in the event of a crash.
4009          * So we insist on updating metadata if safepos is behind writepos and
4010          * readpos is beyond writepos.
4011          * In any case, update the metadata every 10 seconds.
4012          * Maybe that number should be configurable, but I'm not sure it is
4013          * worth it.... maybe it could be a multiple of safemode_delay???
4014          */
4015         if ((mddev->delta_disks < 0
4016              ? (safepos > writepos && readpos < writepos)
4017              : (safepos < writepos && readpos > writepos)) ||
4018             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4019                 /* Cannot proceed until we've updated the superblock... */
4020                 wait_event(conf->wait_for_overlap,
4021                            atomic_read(&conf->reshape_stripes)==0);
4022                 mddev->reshape_position = conf->reshape_progress;
4023                 mddev->curr_resync_completed = sector_nr;
4024                 conf->reshape_checkpoint = jiffies;
4025                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4026                 md_wakeup_thread(mddev->thread);
4027                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4028                            kthread_should_stop());
4029                 spin_lock_irq(&conf->device_lock);
4030                 conf->reshape_safe = mddev->reshape_position;
4031                 spin_unlock_irq(&conf->device_lock);
4032                 wake_up(&conf->wait_for_overlap);
4033                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4034         }
4035
4036         if (mddev->delta_disks < 0) {
4037                 BUG_ON(conf->reshape_progress == 0);
4038                 stripe_addr = writepos;
4039                 BUG_ON((mddev->dev_sectors &
4040                         ~((sector_t)reshape_sectors - 1))
4041                        - reshape_sectors - stripe_addr
4042                        != sector_nr);
4043         } else {
4044                 BUG_ON(writepos != sector_nr + reshape_sectors);
4045                 stripe_addr = sector_nr;
4046         }
4047         INIT_LIST_HEAD(&stripes);
4048         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4049                 int j;
4050                 int skipped_disk = 0;
4051                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4052                 set_bit(STRIPE_EXPANDING, &sh->state);
4053                 atomic_inc(&conf->reshape_stripes);
4054                 /* If any of this stripe is beyond the end of the old
4055                  * array, then we need to zero those blocks
4056                  */
4057                 for (j=sh->disks; j--;) {
4058                         sector_t s;
4059                         if (j == sh->pd_idx)
4060                                 continue;
4061                         if (conf->level == 6 &&
4062                             j == sh->qd_idx)
4063                                 continue;
4064                         s = compute_blocknr(sh, j, 0);
4065                         if (s < raid5_size(mddev, 0, 0)) {
4066                                 skipped_disk = 1;
4067                                 continue;
4068                         }
4069                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4070                         set_bit(R5_Expanded, &sh->dev[j].flags);
4071                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4072                 }
4073                 if (!skipped_disk) {
4074                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4075                         set_bit(STRIPE_HANDLE, &sh->state);
4076                 }
4077                 list_add(&sh->lru, &stripes);
4078         }
4079         spin_lock_irq(&conf->device_lock);
4080         if (mddev->delta_disks < 0)
4081                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4082         else
4083                 conf->reshape_progress += reshape_sectors * new_data_disks;
4084         spin_unlock_irq(&conf->device_lock);
4085         /* Ok, those stripe are ready. We can start scheduling
4086          * reads on the source stripes.
4087          * The source stripes are determined by mapping the first and last
4088          * block on the destination stripes.
4089          */
4090         first_sector =
4091                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4092                                      1, &dd_idx, NULL);
4093         last_sector =
4094                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4095                                             * new_data_disks - 1),
4096                                      1, &dd_idx, NULL);
4097         if (last_sector >= mddev->dev_sectors)
4098                 last_sector = mddev->dev_sectors - 1;
4099         while (first_sector <= last_sector) {
4100                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4101                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4102                 set_bit(STRIPE_HANDLE, &sh->state);
4103                 release_stripe(sh);
4104                 first_sector += STRIPE_SECTORS;
4105         }
4106         /* Now that the sources are clearly marked, we can release
4107          * the destination stripes
4108          */
4109         while (!list_empty(&stripes)) {
4110                 sh = list_entry(stripes.next, struct stripe_head, lru);
4111                 list_del_init(&sh->lru);
4112                 release_stripe(sh);
4113         }
4114         /* If this takes us to the resync_max point where we have to pause,
4115          * then we need to write out the superblock.
4116          */
4117         sector_nr += reshape_sectors;
4118         if ((sector_nr - mddev->curr_resync_completed) * 2
4119             >= mddev->resync_max - mddev->curr_resync_completed) {
4120                 /* Cannot proceed until we've updated the superblock... */
4121                 wait_event(conf->wait_for_overlap,
4122                            atomic_read(&conf->reshape_stripes) == 0);
4123                 mddev->reshape_position = conf->reshape_progress;
4124                 mddev->curr_resync_completed = sector_nr;
4125                 conf->reshape_checkpoint = jiffies;
4126                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4127                 md_wakeup_thread(mddev->thread);
4128                 wait_event(mddev->sb_wait,
4129                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4130                            || kthread_should_stop());
4131                 spin_lock_irq(&conf->device_lock);
4132                 conf->reshape_safe = mddev->reshape_position;
4133                 spin_unlock_irq(&conf->device_lock);
4134                 wake_up(&conf->wait_for_overlap);
4135                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4136         }
4137         return reshape_sectors;
4138 }
4139
4140 /* FIXME go_faster isn't used */
4141 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4142 {
4143         raid5_conf_t *conf = mddev->private;
4144         struct stripe_head *sh;
4145         sector_t max_sector = mddev->dev_sectors;
4146         sector_t sync_blocks;
4147         int still_degraded = 0;
4148         int i;
4149
4150         if (sector_nr >= max_sector) {
4151                 /* just being told to finish up .. nothing much to do */
4152
4153                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4154                         end_reshape(conf);
4155                         return 0;
4156                 }
4157
4158                 if (mddev->curr_resync < max_sector) /* aborted */
4159                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4160                                         &sync_blocks, 1);
4161                 else /* completed sync */
4162                         conf->fullsync = 0;
4163                 bitmap_close_sync(mddev->bitmap);
4164
4165                 return 0;
4166         }
4167
4168         /* Allow raid5_quiesce to complete */
4169         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4170
4171         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4172                 return reshape_request(mddev, sector_nr, skipped);
4173
4174         /* No need to check resync_max as we never do more than one
4175          * stripe, and as resync_max will always be on a chunk boundary,
4176          * if the check in md_do_sync didn't fire, there is no chance
4177          * of overstepping resync_max here
4178          */
4179
4180         /* if there is too many failed drives and we are trying
4181          * to resync, then assert that we are finished, because there is
4182          * nothing we can do.
4183          */
4184         if (mddev->degraded >= conf->max_degraded &&
4185             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4186                 sector_t rv = mddev->dev_sectors - sector_nr;
4187                 *skipped = 1;
4188                 return rv;
4189         }
4190         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4191             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4192             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4193                 /* we can skip this block, and probably more */
4194                 sync_blocks /= STRIPE_SECTORS;
4195                 *skipped = 1;
4196                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4197         }
4198
4199
4200         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4201
4202         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4203         if (sh == NULL) {
4204                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4205                 /* make sure we don't swamp the stripe cache if someone else
4206                  * is trying to get access
4207                  */
4208                 schedule_timeout_uninterruptible(1);
4209         }
4210         /* Need to check if array will still be degraded after recovery/resync
4211          * We don't need to check the 'failed' flag as when that gets set,
4212          * recovery aborts.
4213          */
4214         for (i = 0; i < conf->raid_disks; i++)
4215                 if (conf->disks[i].rdev == NULL)
4216                         still_degraded = 1;
4217
4218         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4219
4220         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4221
4222         handle_stripe(sh);
4223         release_stripe(sh);
4224
4225         return STRIPE_SECTORS;
4226 }
4227
4228 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4229 {
4230         /* We may not be able to submit a whole bio at once as there
4231          * may not be enough stripe_heads available.
4232          * We cannot pre-allocate enough stripe_heads as we may need
4233          * more than exist in the cache (if we allow ever large chunks).
4234          * So we do one stripe head at a time and record in
4235          * ->bi_hw_segments how many have been done.
4236          *
4237          * We *know* that this entire raid_bio is in one chunk, so
4238          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4239          */
4240         struct stripe_head *sh;
4241         int dd_idx;
4242         sector_t sector, logical_sector, last_sector;
4243         int scnt = 0;
4244         int remaining;
4245         int handled = 0;
4246
4247         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4248         sector = raid5_compute_sector(conf, logical_sector,
4249                                       0, &dd_idx, NULL);
4250         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4251
4252         for (; logical_sector < last_sector;
4253              logical_sector += STRIPE_SECTORS,
4254                      sector += STRIPE_SECTORS,
4255                      scnt++) {
4256
4257                 if (scnt < raid5_bi_hw_segments(raid_bio))
4258                         /* already done this stripe */
4259                         continue;
4260
4261                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4262
4263                 if (!sh) {
4264                         /* failed to get a stripe - must wait */
4265                         raid5_set_bi_hw_segments(raid_bio, scnt);
4266                         conf->retry_read_aligned = raid_bio;
4267                         return handled;
4268                 }
4269
4270                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4271                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4272                         release_stripe(sh);
4273                         raid5_set_bi_hw_segments(raid_bio, scnt);
4274                         conf->retry_read_aligned = raid_bio;
4275                         return handled;
4276                 }
4277
4278                 handle_stripe(sh);
4279                 release_stripe(sh);
4280                 handled++;
4281         }
4282         spin_lock_irq(&conf->device_lock);
4283         remaining = raid5_dec_bi_phys_segments(raid_bio);
4284         spin_unlock_irq(&conf->device_lock);
4285         if (remaining == 0)
4286                 bio_endio(raid_bio, 0);
4287         if (atomic_dec_and_test(&conf->active_aligned_reads))
4288                 wake_up(&conf->wait_for_stripe);
4289         return handled;
4290 }
4291
4292
4293 /*
4294  * This is our raid5 kernel thread.
4295  *
4296  * We scan the hash table for stripes which can be handled now.
4297  * During the scan, completed stripes are saved for us by the interrupt
4298  * handler, so that they will not have to wait for our next wakeup.
4299  */
4300 static void raid5d(mddev_t *mddev)
4301 {
4302         struct stripe_head *sh;
4303         raid5_conf_t *conf = mddev->private;
4304         int handled;
4305         struct blk_plug plug;
4306
4307         pr_debug("+++ raid5d active\n");
4308
4309         md_check_recovery(mddev);
4310
4311         blk_start_plug(&plug);
4312         handled = 0;
4313         spin_lock_irq(&conf->device_lock);
4314         while (1) {
4315                 struct bio *bio;
4316
4317                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4318                     !list_empty(&conf->bitmap_list)) {
4319                         /* Now is a good time to flush some bitmap updates */
4320                         conf->seq_flush++;
4321                         spin_unlock_irq(&conf->device_lock);
4322                         bitmap_unplug(mddev->bitmap);
4323                         spin_lock_irq(&conf->device_lock);
4324                         conf->seq_write = conf->seq_flush;
4325                         activate_bit_delay(conf);
4326                 }
4327                 if (atomic_read(&mddev->plug_cnt) == 0)
4328                         raid5_activate_delayed(conf);
4329
4330                 while ((bio = remove_bio_from_retry(conf))) {
4331                         int ok;
4332                         spin_unlock_irq(&conf->device_lock);
4333                         ok = retry_aligned_read(conf, bio);
4334                         spin_lock_irq(&conf->device_lock);
4335                         if (!ok)
4336                                 break;
4337                         handled++;
4338                 }
4339
4340                 sh = __get_priority_stripe(conf);
4341
4342                 if (!sh)
4343                         break;
4344                 spin_unlock_irq(&conf->device_lock);
4345                 
4346                 handled++;
4347                 handle_stripe(sh);
4348                 release_stripe(sh);
4349                 cond_resched();
4350
4351                 spin_lock_irq(&conf->device_lock);
4352         }
4353         pr_debug("%d stripes handled\n", handled);
4354
4355         spin_unlock_irq(&conf->device_lock);
4356
4357         async_tx_issue_pending_all();
4358         blk_finish_plug(&plug);
4359
4360         pr_debug("--- raid5d inactive\n");
4361 }
4362
4363 static ssize_t
4364 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4365 {
4366         raid5_conf_t *conf = mddev->private;
4367         if (conf)
4368                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4369         else
4370                 return 0;
4371 }
4372
4373 int
4374 raid5_set_cache_size(mddev_t *mddev, int size)
4375 {
4376         raid5_conf_t *conf = mddev->private;
4377         int err;
4378
4379         if (size <= 16 || size > 32768)
4380                 return -EINVAL;
4381         while (size < conf->max_nr_stripes) {
4382                 if (drop_one_stripe(conf))
4383                         conf->max_nr_stripes--;
4384                 else
4385                         break;
4386         }
4387         err = md_allow_write(mddev);
4388         if (err)
4389                 return err;
4390         while (size > conf->max_nr_stripes) {
4391                 if (grow_one_stripe(conf))
4392                         conf->max_nr_stripes++;
4393                 else break;
4394         }
4395         return 0;
4396 }
4397 EXPORT_SYMBOL(raid5_set_cache_size);
4398
4399 static ssize_t
4400 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4401 {
4402         raid5_conf_t *conf = mddev->private;
4403         unsigned long new;
4404         int err;
4405
4406         if (len >= PAGE_SIZE)
4407                 return -EINVAL;
4408         if (!conf)
4409                 return -ENODEV;
4410
4411         if (strict_strtoul(page, 10, &new))
4412                 return -EINVAL;
4413         err = raid5_set_cache_size(mddev, new);
4414         if (err)
4415                 return err;
4416         return len;
4417 }
4418
4419 static struct md_sysfs_entry
4420 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4421                                 raid5_show_stripe_cache_size,
4422                                 raid5_store_stripe_cache_size);
4423
4424 static ssize_t
4425 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4426 {
4427         raid5_conf_t *conf = mddev->private;
4428         if (conf)
4429                 return sprintf(page, "%d\n", conf->bypass_threshold);
4430         else
4431                 return 0;
4432 }
4433
4434 static ssize_t
4435 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4436 {
4437         raid5_conf_t *conf = mddev->private;
4438         unsigned long new;
4439         if (len >= PAGE_SIZE)
4440                 return -EINVAL;
4441         if (!conf)
4442                 return -ENODEV;
4443
4444         if (strict_strtoul(page, 10, &new))
4445                 return -EINVAL;
4446         if (new > conf->max_nr_stripes)
4447                 return -EINVAL;
4448         conf->bypass_threshold = new;
4449         return len;
4450 }
4451
4452 static struct md_sysfs_entry
4453 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4454                                         S_IRUGO | S_IWUSR,
4455                                         raid5_show_preread_threshold,
4456                                         raid5_store_preread_threshold);
4457
4458 static ssize_t
4459 stripe_cache_active_show(mddev_t *mddev, char *page)
4460 {
4461         raid5_conf_t *conf = mddev->private;
4462         if (conf)
4463                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4464         else
4465                 return 0;
4466 }
4467
4468 static struct md_sysfs_entry
4469 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4470
4471 static struct attribute *raid5_attrs[] =  {
4472         &raid5_stripecache_size.attr,
4473         &raid5_stripecache_active.attr,
4474         &raid5_preread_bypass_threshold.attr,
4475         NULL,
4476 };
4477 static struct attribute_group raid5_attrs_group = {
4478         .name = NULL,
4479         .attrs = raid5_attrs,
4480 };
4481
4482 static sector_t
4483 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4484 {
4485         raid5_conf_t *conf = mddev->private;
4486
4487         if (!sectors)
4488                 sectors = mddev->dev_sectors;
4489         if (!raid_disks)
4490                 /* size is defined by the smallest of previous and new size */
4491                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4492
4493         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4494         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4495         return sectors * (raid_disks - conf->max_degraded);
4496 }
4497
4498 static void raid5_free_percpu(raid5_conf_t *conf)
4499 {
4500         struct raid5_percpu *percpu;
4501         unsigned long cpu;
4502
4503         if (!conf->percpu)
4504                 return;
4505
4506         get_online_cpus();
4507         for_each_possible_cpu(cpu) {
4508                 percpu = per_cpu_ptr(conf->percpu, cpu);
4509                 safe_put_page(percpu->spare_page);
4510                 kfree(percpu->scribble);
4511         }
4512 #ifdef CONFIG_HOTPLUG_CPU
4513         unregister_cpu_notifier(&conf->cpu_notify);
4514 #endif
4515         put_online_cpus();
4516
4517         free_percpu(conf->percpu);
4518 }
4519
4520 static void free_conf(raid5_conf_t *conf)
4521 {
4522         shrink_stripes(conf);
4523         raid5_free_percpu(conf);
4524         kfree(conf->disks);
4525         kfree(conf->stripe_hashtbl);
4526         kfree(conf);
4527 }
4528
4529 #ifdef CONFIG_HOTPLUG_CPU
4530 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4531                               void *hcpu)
4532 {
4533         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4534         long cpu = (long)hcpu;
4535         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4536
4537         switch (action) {
4538         case CPU_UP_PREPARE:
4539         case CPU_UP_PREPARE_FROZEN:
4540                 if (conf->level == 6 && !percpu->spare_page)
4541                         percpu->spare_page = alloc_page(GFP_KERNEL);
4542                 if (!percpu->scribble)
4543                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4544
4545                 if (!percpu->scribble ||
4546                     (conf->level == 6 && !percpu->spare_page)) {
4547                         safe_put_page(percpu->spare_page);
4548                         kfree(percpu->scribble);
4549                         pr_err("%s: failed memory allocation for cpu%ld\n",
4550                                __func__, cpu);
4551                         return notifier_from_errno(-ENOMEM);
4552                 }
4553                 break;
4554         case CPU_DEAD:
4555         case CPU_DEAD_FROZEN:
4556                 safe_put_page(percpu->spare_page);
4557                 kfree(percpu->scribble);
4558                 percpu->spare_page = NULL;
4559                 percpu->scribble = NULL;
4560                 break;
4561         default:
4562                 break;
4563         }
4564         return NOTIFY_OK;
4565 }
4566 #endif
4567
4568 static int raid5_alloc_percpu(raid5_conf_t *conf)
4569 {
4570         unsigned long cpu;
4571         struct page *spare_page;
4572         struct raid5_percpu __percpu *allcpus;
4573         void *scribble;
4574         int err;
4575
4576         allcpus = alloc_percpu(struct raid5_percpu);
4577         if (!allcpus)
4578                 return -ENOMEM;
4579         conf->percpu = allcpus;
4580
4581         get_online_cpus();
4582         err = 0;
4583         for_each_present_cpu(cpu) {
4584                 if (conf->level == 6) {
4585                         spare_page = alloc_page(GFP_KERNEL);
4586                         if (!spare_page) {
4587                                 err = -ENOMEM;
4588                                 break;
4589                         }
4590                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4591                 }
4592                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4593                 if (!scribble) {
4594                         err = -ENOMEM;
4595                         break;
4596                 }
4597                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4598         }
4599 #ifdef CONFIG_HOTPLUG_CPU
4600         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4601         conf->cpu_notify.priority = 0;
4602         if (err == 0)
4603                 err = register_cpu_notifier(&conf->cpu_notify);
4604 #endif
4605         put_online_cpus();
4606
4607         return err;
4608 }
4609
4610 static raid5_conf_t *setup_conf(mddev_t *mddev)
4611 {
4612         raid5_conf_t *conf;
4613         int raid_disk, memory, max_disks;
4614         mdk_rdev_t *rdev;
4615         struct disk_info *disk;
4616
4617         if (mddev->new_level != 5
4618             && mddev->new_level != 4
4619             && mddev->new_level != 6) {
4620                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4621                        mdname(mddev), mddev->new_level);
4622                 return ERR_PTR(-EIO);
4623         }
4624         if ((mddev->new_level == 5
4625              && !algorithm_valid_raid5(mddev->new_layout)) ||
4626             (mddev->new_level == 6
4627              && !algorithm_valid_raid6(mddev->new_layout))) {
4628                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4629                        mdname(mddev), mddev->new_layout);
4630                 return ERR_PTR(-EIO);
4631         }
4632         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4633                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4634                        mdname(mddev), mddev->raid_disks);
4635                 return ERR_PTR(-EINVAL);
4636         }
4637
4638         if (!mddev->new_chunk_sectors ||
4639             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4640             !is_power_of_2(mddev->new_chunk_sectors)) {
4641                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4642                        mdname(mddev), mddev->new_chunk_sectors << 9);
4643                 return ERR_PTR(-EINVAL);
4644         }
4645
4646         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4647         if (conf == NULL)
4648                 goto abort;
4649         spin_lock_init(&conf->device_lock);
4650         init_waitqueue_head(&conf->wait_for_stripe);
4651         init_waitqueue_head(&conf->wait_for_overlap);
4652         INIT_LIST_HEAD(&conf->handle_list);
4653         INIT_LIST_HEAD(&conf->hold_list);
4654         INIT_LIST_HEAD(&conf->delayed_list);
4655         INIT_LIST_HEAD(&conf->bitmap_list);
4656         INIT_LIST_HEAD(&conf->inactive_list);
4657         atomic_set(&conf->active_stripes, 0);
4658         atomic_set(&conf->preread_active_stripes, 0);
4659         atomic_set(&conf->active_aligned_reads, 0);
4660         conf->bypass_threshold = BYPASS_THRESHOLD;
4661
4662         conf->raid_disks = mddev->raid_disks;
4663         if (mddev->reshape_position == MaxSector)
4664                 conf->previous_raid_disks = mddev->raid_disks;
4665         else
4666                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4667         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4668         conf->scribble_len = scribble_len(max_disks);
4669
4670         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4671                               GFP_KERNEL);
4672         if (!conf->disks)
4673                 goto abort;
4674
4675         conf->mddev = mddev;
4676
4677         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4678                 goto abort;
4679
4680         conf->level = mddev->new_level;
4681         if (raid5_alloc_percpu(conf) != 0)
4682                 goto abort;
4683
4684         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4685
4686         list_for_each_entry(rdev, &mddev->disks, same_set) {
4687                 raid_disk = rdev->raid_disk;
4688                 if (raid_disk >= max_disks
4689                     || raid_disk < 0)
4690                         continue;
4691                 disk = conf->disks + raid_disk;
4692
4693                 disk->rdev = rdev;
4694
4695                 if (test_bit(In_sync, &rdev->flags)) {
4696                         char b[BDEVNAME_SIZE];
4697                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4698                                " disk %d\n",
4699                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4700                 } else if (rdev->saved_raid_disk != raid_disk)
4701                         /* Cannot rely on bitmap to complete recovery */
4702                         conf->fullsync = 1;
4703         }
4704
4705         conf->chunk_sectors = mddev->new_chunk_sectors;
4706         conf->level = mddev->new_level;
4707         if (conf->level == 6)
4708                 conf->max_degraded = 2;
4709         else
4710                 conf->max_degraded = 1;
4711         conf->algorithm = mddev->new_layout;
4712         conf->max_nr_stripes = NR_STRIPES;
4713         conf->reshape_progress = mddev->reshape_position;
4714         if (conf->reshape_progress != MaxSector) {
4715                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4716                 conf->prev_algo = mddev->layout;
4717         }
4718
4719         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4720                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4721         if (grow_stripes(conf, conf->max_nr_stripes)) {
4722                 printk(KERN_ERR
4723                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4724                        mdname(mddev), memory);
4725                 goto abort;
4726         } else
4727                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4728                        mdname(mddev), memory);
4729
4730         conf->thread = md_register_thread(raid5d, mddev, NULL);
4731         if (!conf->thread) {
4732                 printk(KERN_ERR
4733                        "md/raid:%s: couldn't allocate thread.\n",
4734                        mdname(mddev));
4735                 goto abort;
4736         }
4737
4738         return conf;
4739
4740  abort:
4741         if (conf) {
4742                 free_conf(conf);
4743                 return ERR_PTR(-EIO);
4744         } else
4745                 return ERR_PTR(-ENOMEM);
4746 }
4747
4748
4749 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4750 {
4751         switch (algo) {
4752         case ALGORITHM_PARITY_0:
4753                 if (raid_disk < max_degraded)
4754                         return 1;
4755                 break;
4756         case ALGORITHM_PARITY_N:
4757                 if (raid_disk >= raid_disks - max_degraded)
4758                         return 1;
4759                 break;
4760         case ALGORITHM_PARITY_0_6:
4761                 if (raid_disk == 0 || 
4762                     raid_disk == raid_disks - 1)
4763                         return 1;
4764                 break;
4765         case ALGORITHM_LEFT_ASYMMETRIC_6:
4766         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4767         case ALGORITHM_LEFT_SYMMETRIC_6:
4768         case ALGORITHM_RIGHT_SYMMETRIC_6:
4769                 if (raid_disk == raid_disks - 1)
4770                         return 1;
4771         }
4772         return 0;
4773 }
4774
4775 static int run(mddev_t *mddev)
4776 {
4777         raid5_conf_t *conf;
4778         int working_disks = 0;
4779         int dirty_parity_disks = 0;
4780         mdk_rdev_t *rdev;
4781         sector_t reshape_offset = 0;
4782
4783         if (mddev->recovery_cp != MaxSector)
4784                 printk(KERN_NOTICE "md/raid:%s: not clean"
4785                        " -- starting background reconstruction\n",
4786                        mdname(mddev));
4787         if (mddev->reshape_position != MaxSector) {
4788                 /* Check that we can continue the reshape.
4789                  * Currently only disks can change, it must
4790                  * increase, and we must be past the point where
4791                  * a stripe over-writes itself
4792                  */
4793                 sector_t here_new, here_old;
4794                 int old_disks;
4795                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4796
4797                 if (mddev->new_level != mddev->level) {
4798                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4799                                "required - aborting.\n",
4800                                mdname(mddev));
4801                         return -EINVAL;
4802                 }
4803                 old_disks = mddev->raid_disks - mddev->delta_disks;
4804                 /* reshape_position must be on a new-stripe boundary, and one
4805                  * further up in new geometry must map after here in old
4806                  * geometry.
4807                  */
4808                 here_new = mddev->reshape_position;
4809                 if (sector_div(here_new, mddev->new_chunk_sectors *
4810                                (mddev->raid_disks - max_degraded))) {
4811                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4812                                "on a stripe boundary\n", mdname(mddev));
4813                         return -EINVAL;
4814                 }
4815                 reshape_offset = here_new * mddev->new_chunk_sectors;
4816                 /* here_new is the stripe we will write to */
4817                 here_old = mddev->reshape_position;
4818                 sector_div(here_old, mddev->chunk_sectors *
4819                            (old_disks-max_degraded));
4820                 /* here_old is the first stripe that we might need to read
4821                  * from */
4822                 if (mddev->delta_disks == 0) {
4823                         /* We cannot be sure it is safe to start an in-place
4824                          * reshape.  It is only safe if user-space if monitoring
4825                          * and taking constant backups.
4826                          * mdadm always starts a situation like this in
4827                          * readonly mode so it can take control before
4828                          * allowing any writes.  So just check for that.
4829                          */
4830                         if ((here_new * mddev->new_chunk_sectors != 
4831                              here_old * mddev->chunk_sectors) ||
4832                             mddev->ro == 0) {
4833                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4834                                        " in read-only mode - aborting\n",
4835                                        mdname(mddev));
4836                                 return -EINVAL;
4837                         }
4838                 } else if (mddev->delta_disks < 0
4839                     ? (here_new * mddev->new_chunk_sectors <=
4840                        here_old * mddev->chunk_sectors)
4841                     : (here_new * mddev->new_chunk_sectors >=
4842                        here_old * mddev->chunk_sectors)) {
4843                         /* Reading from the same stripe as writing to - bad */
4844                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4845                                "auto-recovery - aborting.\n",
4846                                mdname(mddev));
4847                         return -EINVAL;
4848                 }
4849                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4850                        mdname(mddev));
4851                 /* OK, we should be able to continue; */
4852         } else {
4853                 BUG_ON(mddev->level != mddev->new_level);
4854                 BUG_ON(mddev->layout != mddev->new_layout);
4855                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4856                 BUG_ON(mddev->delta_disks != 0);
4857         }
4858
4859         if (mddev->private == NULL)
4860                 conf = setup_conf(mddev);
4861         else
4862                 conf = mddev->private;
4863
4864         if (IS_ERR(conf))
4865                 return PTR_ERR(conf);
4866
4867         mddev->thread = conf->thread;
4868         conf->thread = NULL;
4869         mddev->private = conf;
4870
4871         /*
4872          * 0 for a fully functional array, 1 or 2 for a degraded array.
4873          */
4874         list_for_each_entry(rdev, &mddev->disks, same_set) {
4875                 if (rdev->raid_disk < 0)
4876                         continue;
4877                 if (test_bit(In_sync, &rdev->flags)) {
4878                         working_disks++;
4879                         continue;
4880                 }
4881                 /* This disc is not fully in-sync.  However if it
4882                  * just stored parity (beyond the recovery_offset),
4883                  * when we don't need to be concerned about the
4884                  * array being dirty.
4885                  * When reshape goes 'backwards', we never have
4886                  * partially completed devices, so we only need
4887                  * to worry about reshape going forwards.
4888                  */
4889                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4890                 if (mddev->major_version == 0 &&
4891                     mddev->minor_version > 90)
4892                         rdev->recovery_offset = reshape_offset;
4893                         
4894                 if (rdev->recovery_offset < reshape_offset) {
4895                         /* We need to check old and new layout */
4896                         if (!only_parity(rdev->raid_disk,
4897                                          conf->algorithm,
4898                                          conf->raid_disks,
4899                                          conf->max_degraded))
4900                                 continue;
4901                 }
4902                 if (!only_parity(rdev->raid_disk,
4903                                  conf->prev_algo,
4904                                  conf->previous_raid_disks,
4905                                  conf->max_degraded))
4906                         continue;
4907                 dirty_parity_disks++;
4908         }
4909
4910         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4911                            - working_disks);
4912
4913         if (has_failed(conf)) {
4914                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4915                         " (%d/%d failed)\n",
4916                         mdname(mddev), mddev->degraded, conf->raid_disks);
4917                 goto abort;
4918         }
4919
4920         /* device size must be a multiple of chunk size */
4921         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4922         mddev->resync_max_sectors = mddev->dev_sectors;
4923
4924         if (mddev->degraded > dirty_parity_disks &&
4925             mddev->recovery_cp != MaxSector) {
4926                 if (mddev->ok_start_degraded)
4927                         printk(KERN_WARNING
4928                                "md/raid:%s: starting dirty degraded array"
4929                                " - data corruption possible.\n",
4930                                mdname(mddev));
4931                 else {
4932                         printk(KERN_ERR
4933                                "md/raid:%s: cannot start dirty degraded array.\n",
4934                                mdname(mddev));
4935                         goto abort;
4936                 }
4937         }
4938
4939         if (mddev->degraded == 0)
4940                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4941                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4942                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4943                        mddev->new_layout);
4944         else
4945                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4946                        " out of %d devices, algorithm %d\n",
4947                        mdname(mddev), conf->level,
4948                        mddev->raid_disks - mddev->degraded,
4949                        mddev->raid_disks, mddev->new_layout);
4950
4951         print_raid5_conf(conf);
4952
4953         if (conf->reshape_progress != MaxSector) {
4954                 conf->reshape_safe = conf->reshape_progress;
4955                 atomic_set(&conf->reshape_stripes, 0);
4956                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4957                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4958                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4959                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4960                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4961                                                         "reshape");
4962         }
4963
4964
4965         /* Ok, everything is just fine now */
4966         if (mddev->to_remove == &raid5_attrs_group)
4967                 mddev->to_remove = NULL;
4968         else if (mddev->kobj.sd &&
4969             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4970                 printk(KERN_WARNING
4971                        "raid5: failed to create sysfs attributes for %s\n",
4972                        mdname(mddev));
4973         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4974
4975         if (mddev->queue) {
4976                 int chunk_size;
4977                 /* read-ahead size must cover two whole stripes, which
4978                  * is 2 * (datadisks) * chunksize where 'n' is the
4979                  * number of raid devices
4980                  */
4981                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4982                 int stripe = data_disks *
4983                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4984                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4985                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4986
4987                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4988
4989                 mddev->queue->backing_dev_info.congested_data = mddev;
4990                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4991
4992                 chunk_size = mddev->chunk_sectors << 9;
4993                 blk_queue_io_min(mddev->queue, chunk_size);
4994                 blk_queue_io_opt(mddev->queue, chunk_size *
4995                                  (conf->raid_disks - conf->max_degraded));
4996
4997                 list_for_each_entry(rdev, &mddev->disks, same_set)
4998                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4999                                           rdev->data_offset << 9);
5000         }
5001
5002         return 0;
5003 abort:
5004         md_unregister_thread(mddev->thread);
5005         mddev->thread = NULL;
5006         if (conf) {
5007                 print_raid5_conf(conf);
5008                 free_conf(conf);
5009         }
5010         mddev->private = NULL;
5011         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5012         return -EIO;
5013 }
5014
5015 static int stop(mddev_t *mddev)
5016 {
5017         raid5_conf_t *conf = mddev->private;
5018
5019         md_unregister_thread(mddev->thread);
5020         mddev->thread = NULL;
5021         if (mddev->queue)
5022                 mddev->queue->backing_dev_info.congested_fn = NULL;
5023         free_conf(conf);
5024         mddev->private = NULL;
5025         mddev->to_remove = &raid5_attrs_group;
5026         return 0;
5027 }
5028
5029 #ifdef DEBUG
5030 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5031 {
5032         int i;
5033
5034         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5035                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5036         seq_printf(seq, "sh %llu,  count %d.\n",
5037                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5038         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5039         for (i = 0; i < sh->disks; i++) {
5040                 seq_printf(seq, "(cache%d: %p %ld) ",
5041                            i, sh->dev[i].page, sh->dev[i].flags);
5042         }
5043         seq_printf(seq, "\n");
5044 }
5045
5046 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5047 {
5048         struct stripe_head *sh;
5049         struct hlist_node *hn;
5050         int i;
5051
5052         spin_lock_irq(&conf->device_lock);
5053         for (i = 0; i < NR_HASH; i++) {
5054                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5055                         if (sh->raid_conf != conf)
5056                                 continue;
5057                         print_sh(seq, sh);
5058                 }
5059         }
5060         spin_unlock_irq(&conf->device_lock);
5061 }
5062 #endif
5063
5064 static void status(struct seq_file *seq, mddev_t *mddev)
5065 {
5066         raid5_conf_t *conf = mddev->private;
5067         int i;
5068
5069         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5070                 mddev->chunk_sectors / 2, mddev->layout);
5071         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5072         for (i = 0; i < conf->raid_disks; i++)
5073                 seq_printf (seq, "%s",
5074                                conf->disks[i].rdev &&
5075                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5076         seq_printf (seq, "]");
5077 #ifdef DEBUG
5078         seq_printf (seq, "\n");
5079         printall(seq, conf);
5080 #endif
5081 }
5082
5083 static void print_raid5_conf (raid5_conf_t *conf)
5084 {
5085         int i;
5086         struct disk_info *tmp;
5087
5088         printk(KERN_DEBUG "RAID conf printout:\n");
5089         if (!conf) {
5090                 printk("(conf==NULL)\n");
5091                 return;
5092         }
5093         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5094                conf->raid_disks,
5095                conf->raid_disks - conf->mddev->degraded);
5096
5097         for (i = 0; i < conf->raid_disks; i++) {
5098                 char b[BDEVNAME_SIZE];
5099                 tmp = conf->disks + i;
5100                 if (tmp->rdev)
5101                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5102                                i, !test_bit(Faulty, &tmp->rdev->flags),
5103                                bdevname(tmp->rdev->bdev, b));
5104         }
5105 }
5106
5107 static int raid5_spare_active(mddev_t *mddev)
5108 {
5109         int i;
5110         raid5_conf_t *conf = mddev->private;
5111         struct disk_info *tmp;
5112         int count = 0;
5113         unsigned long flags;
5114
5115         for (i = 0; i < conf->raid_disks; i++) {
5116                 tmp = conf->disks + i;
5117                 if (tmp->rdev
5118                     && tmp->rdev->recovery_offset == MaxSector
5119                     && !test_bit(Faulty, &tmp->rdev->flags)
5120                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5121                         count++;
5122                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5123                 }
5124         }
5125         spin_lock_irqsave(&conf->device_lock, flags);
5126         mddev->degraded -= count;
5127         spin_unlock_irqrestore(&conf->device_lock, flags);
5128         print_raid5_conf(conf);
5129         return count;
5130 }
5131
5132 static int raid5_remove_disk(mddev_t *mddev, int number)
5133 {
5134         raid5_conf_t *conf = mddev->private;
5135         int err = 0;
5136         mdk_rdev_t *rdev;
5137         struct disk_info *p = conf->disks + number;
5138
5139         print_raid5_conf(conf);
5140         rdev = p->rdev;
5141         if (rdev) {
5142                 if (number >= conf->raid_disks &&
5143                     conf->reshape_progress == MaxSector)
5144                         clear_bit(In_sync, &rdev->flags);
5145
5146                 if (test_bit(In_sync, &rdev->flags) ||
5147                     atomic_read(&rdev->nr_pending)) {
5148                         err = -EBUSY;
5149                         goto abort;
5150                 }
5151                 /* Only remove non-faulty devices if recovery
5152                  * isn't possible.
5153                  */
5154                 if (!test_bit(Faulty, &rdev->flags) &&
5155                     !has_failed(conf) &&
5156                     number < conf->raid_disks) {
5157                         err = -EBUSY;
5158                         goto abort;
5159                 }
5160                 p->rdev = NULL;
5161                 synchronize_rcu();
5162                 if (atomic_read(&rdev->nr_pending)) {
5163                         /* lost the race, try later */
5164                         err = -EBUSY;
5165                         p->rdev = rdev;
5166                 }
5167         }
5168 abort:
5169
5170         print_raid5_conf(conf);
5171         return err;
5172 }
5173
5174 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5175 {
5176         raid5_conf_t *conf = mddev->private;
5177         int err = -EEXIST;
5178         int disk;
5179         struct disk_info *p;
5180         int first = 0;
5181         int last = conf->raid_disks - 1;
5182
5183         if (has_failed(conf))
5184                 /* no point adding a device */
5185                 return -EINVAL;
5186
5187         if (rdev->raid_disk >= 0)
5188                 first = last = rdev->raid_disk;
5189
5190         /*
5191          * find the disk ... but prefer rdev->saved_raid_disk
5192          * if possible.
5193          */
5194         if (rdev->saved_raid_disk >= 0 &&
5195             rdev->saved_raid_disk >= first &&
5196             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5197                 disk = rdev->saved_raid_disk;
5198         else
5199                 disk = first;
5200         for ( ; disk <= last ; disk++)
5201                 if ((p=conf->disks + disk)->rdev == NULL) {
5202                         clear_bit(In_sync, &rdev->flags);
5203                         rdev->raid_disk = disk;
5204                         err = 0;
5205                         if (rdev->saved_raid_disk != disk)
5206                                 conf->fullsync = 1;
5207                         rcu_assign_pointer(p->rdev, rdev);
5208                         break;
5209                 }
5210         print_raid5_conf(conf);
5211         return err;
5212 }
5213
5214 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5215 {
5216         /* no resync is happening, and there is enough space
5217          * on all devices, so we can resize.
5218          * We need to make sure resync covers any new space.
5219          * If the array is shrinking we should possibly wait until
5220          * any io in the removed space completes, but it hardly seems
5221          * worth it.
5222          */
5223         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5224         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5225                                                mddev->raid_disks));
5226         if (mddev->array_sectors >
5227             raid5_size(mddev, sectors, mddev->raid_disks))
5228                 return -EINVAL;
5229         set_capacity(mddev->gendisk, mddev->array_sectors);
5230         revalidate_disk(mddev->gendisk);
5231         if (sectors > mddev->dev_sectors &&
5232             mddev->recovery_cp > mddev->dev_sectors) {
5233                 mddev->recovery_cp = mddev->dev_sectors;
5234                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5235         }
5236         mddev->dev_sectors = sectors;
5237         mddev->resync_max_sectors = sectors;
5238         return 0;
5239 }
5240
5241 static int check_stripe_cache(mddev_t *mddev)
5242 {
5243         /* Can only proceed if there are plenty of stripe_heads.
5244          * We need a minimum of one full stripe,, and for sensible progress
5245          * it is best to have about 4 times that.
5246          * If we require 4 times, then the default 256 4K stripe_heads will
5247          * allow for chunk sizes up to 256K, which is probably OK.
5248          * If the chunk size is greater, user-space should request more
5249          * stripe_heads first.
5250          */
5251         raid5_conf_t *conf = mddev->private;
5252         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5253             > conf->max_nr_stripes ||
5254             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5255             > conf->max_nr_stripes) {
5256                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5257                        mdname(mddev),
5258                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5259                         / STRIPE_SIZE)*4);
5260                 return 0;
5261         }
5262         return 1;
5263 }
5264
5265 static int check_reshape(mddev_t *mddev)
5266 {
5267         raid5_conf_t *conf = mddev->private;
5268
5269         if (mddev->delta_disks == 0 &&
5270             mddev->new_layout == mddev->layout &&
5271             mddev->new_chunk_sectors == mddev->chunk_sectors)
5272                 return 0; /* nothing to do */
5273         if (mddev->bitmap)
5274                 /* Cannot grow a bitmap yet */
5275                 return -EBUSY;
5276         if (has_failed(conf))
5277                 return -EINVAL;
5278         if (mddev->delta_disks < 0) {
5279                 /* We might be able to shrink, but the devices must
5280                  * be made bigger first.
5281                  * For raid6, 4 is the minimum size.
5282                  * Otherwise 2 is the minimum
5283                  */
5284                 int min = 2;
5285                 if (mddev->level == 6)
5286                         min = 4;
5287                 if (mddev->raid_disks + mddev->delta_disks < min)
5288                         return -EINVAL;
5289         }
5290
5291         if (!check_stripe_cache(mddev))
5292                 return -ENOSPC;
5293
5294         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5295 }
5296
5297 static int raid5_start_reshape(mddev_t *mddev)
5298 {
5299         raid5_conf_t *conf = mddev->private;
5300         mdk_rdev_t *rdev;
5301         int spares = 0;
5302         unsigned long flags;
5303
5304         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5305                 return -EBUSY;
5306
5307         if (!check_stripe_cache(mddev))
5308                 return -ENOSPC;
5309
5310         list_for_each_entry(rdev, &mddev->disks, same_set)
5311                 if (!test_bit(In_sync, &rdev->flags)
5312                     && !test_bit(Faulty, &rdev->flags))
5313                         spares++;
5314
5315         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5316                 /* Not enough devices even to make a degraded array
5317                  * of that size
5318                  */
5319                 return -EINVAL;
5320
5321         /* Refuse to reduce size of the array.  Any reductions in
5322          * array size must be through explicit setting of array_size
5323          * attribute.
5324          */
5325         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5326             < mddev->array_sectors) {
5327                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5328                        "before number of disks\n", mdname(mddev));
5329                 return -EINVAL;
5330         }
5331
5332         atomic_set(&conf->reshape_stripes, 0);
5333         spin_lock_irq(&conf->device_lock);
5334         conf->previous_raid_disks = conf->raid_disks;
5335         conf->raid_disks += mddev->delta_disks;
5336         conf->prev_chunk_sectors = conf->chunk_sectors;
5337         conf->chunk_sectors = mddev->new_chunk_sectors;
5338         conf->prev_algo = conf->algorithm;
5339         conf->algorithm = mddev->new_layout;
5340         if (mddev->delta_disks < 0)
5341                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5342         else
5343                 conf->reshape_progress = 0;
5344         conf->reshape_safe = conf->reshape_progress;
5345         conf->generation++;
5346         spin_unlock_irq(&conf->device_lock);
5347
5348         /* Add some new drives, as many as will fit.
5349          * We know there are enough to make the newly sized array work.
5350          * Don't add devices if we are reducing the number of
5351          * devices in the array.  This is because it is not possible
5352          * to correctly record the "partially reconstructed" state of
5353          * such devices during the reshape and confusion could result.
5354          */
5355         if (mddev->delta_disks >= 0) {
5356                 int added_devices = 0;
5357                 list_for_each_entry(rdev, &mddev->disks, same_set)
5358                         if (rdev->raid_disk < 0 &&
5359                             !test_bit(Faulty, &rdev->flags)) {
5360                                 if (raid5_add_disk(mddev, rdev) == 0) {
5361                                         char nm[20];
5362                                         if (rdev->raid_disk
5363                                             >= conf->previous_raid_disks) {
5364                                                 set_bit(In_sync, &rdev->flags);
5365                                                 added_devices++;
5366                                         } else
5367                                                 rdev->recovery_offset = 0;
5368                                         sprintf(nm, "rd%d", rdev->raid_disk);
5369                                         if (sysfs_create_link(&mddev->kobj,
5370                                                               &rdev->kobj, nm))
5371                                                 /* Failure here is OK */;
5372                                 }
5373                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5374                                    && !test_bit(Faulty, &rdev->flags)) {
5375                                 /* This is a spare that was manually added */
5376                                 set_bit(In_sync, &rdev->flags);
5377                                 added_devices++;
5378                         }
5379
5380                 /* When a reshape changes the number of devices,
5381                  * ->degraded is measured against the larger of the
5382                  * pre and post number of devices.
5383                  */
5384                 spin_lock_irqsave(&conf->device_lock, flags);
5385                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5386                         - added_devices;
5387                 spin_unlock_irqrestore(&conf->device_lock, flags);
5388         }
5389         mddev->raid_disks = conf->raid_disks;
5390         mddev->reshape_position = conf->reshape_progress;
5391         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5392
5393         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5394         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5395         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5396         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5397         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5398                                                 "reshape");
5399         if (!mddev->sync_thread) {
5400                 mddev->recovery = 0;
5401                 spin_lock_irq(&conf->device_lock);
5402                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5403                 conf->reshape_progress = MaxSector;
5404                 spin_unlock_irq(&conf->device_lock);
5405                 return -EAGAIN;
5406         }
5407         conf->reshape_checkpoint = jiffies;
5408         md_wakeup_thread(mddev->sync_thread);
5409         md_new_event(mddev);
5410         return 0;
5411 }
5412
5413 /* This is called from the reshape thread and should make any
5414  * changes needed in 'conf'
5415  */
5416 static void end_reshape(raid5_conf_t *conf)
5417 {
5418
5419         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5420
5421                 spin_lock_irq(&conf->device_lock);
5422                 conf->previous_raid_disks = conf->raid_disks;
5423                 conf->reshape_progress = MaxSector;
5424                 spin_unlock_irq(&conf->device_lock);
5425                 wake_up(&conf->wait_for_overlap);
5426
5427                 /* read-ahead size must cover two whole stripes, which is
5428                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5429                  */
5430                 if (conf->mddev->queue) {
5431                         int data_disks = conf->raid_disks - conf->max_degraded;
5432                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5433                                                    / PAGE_SIZE);
5434                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5435                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5436                 }
5437         }
5438 }
5439
5440 /* This is called from the raid5d thread with mddev_lock held.
5441  * It makes config changes to the device.
5442  */
5443 static void raid5_finish_reshape(mddev_t *mddev)
5444 {
5445         raid5_conf_t *conf = mddev->private;
5446
5447         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5448
5449                 if (mddev->delta_disks > 0) {
5450                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5451                         set_capacity(mddev->gendisk, mddev->array_sectors);
5452                         revalidate_disk(mddev->gendisk);
5453                 } else {
5454                         int d;
5455                         mddev->degraded = conf->raid_disks;
5456                         for (d = 0; d < conf->raid_disks ; d++)
5457                                 if (conf->disks[d].rdev &&
5458                                     test_bit(In_sync,
5459                                              &conf->disks[d].rdev->flags))
5460                                         mddev->degraded--;
5461                         for (d = conf->raid_disks ;
5462                              d < conf->raid_disks - mddev->delta_disks;
5463                              d++) {
5464                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5465                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5466                                         char nm[20];
5467                                         sprintf(nm, "rd%d", rdev->raid_disk);
5468                                         sysfs_remove_link(&mddev->kobj, nm);
5469                                         rdev->raid_disk = -1;
5470                                 }
5471                         }
5472                 }
5473                 mddev->layout = conf->algorithm;
5474                 mddev->chunk_sectors = conf->chunk_sectors;
5475                 mddev->reshape_position = MaxSector;
5476                 mddev->delta_disks = 0;
5477         }
5478 }
5479
5480 static void raid5_quiesce(mddev_t *mddev, int state)
5481 {
5482         raid5_conf_t *conf = mddev->private;
5483
5484         switch(state) {
5485         case 2: /* resume for a suspend */
5486                 wake_up(&conf->wait_for_overlap);
5487                 break;
5488
5489         case 1: /* stop all writes */
5490                 spin_lock_irq(&conf->device_lock);
5491                 /* '2' tells resync/reshape to pause so that all
5492                  * active stripes can drain
5493                  */
5494                 conf->quiesce = 2;
5495                 wait_event_lock_irq(conf->wait_for_stripe,
5496                                     atomic_read(&conf->active_stripes) == 0 &&
5497                                     atomic_read(&conf->active_aligned_reads) == 0,
5498                                     conf->device_lock, /* nothing */);
5499                 conf->quiesce = 1;
5500                 spin_unlock_irq(&conf->device_lock);
5501                 /* allow reshape to continue */
5502                 wake_up(&conf->wait_for_overlap);
5503                 break;
5504
5505         case 0: /* re-enable writes */
5506                 spin_lock_irq(&conf->device_lock);
5507                 conf->quiesce = 0;
5508                 wake_up(&conf->wait_for_stripe);
5509                 wake_up(&conf->wait_for_overlap);
5510                 spin_unlock_irq(&conf->device_lock);
5511                 break;
5512         }
5513 }
5514
5515
5516 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5517 {
5518         struct raid0_private_data *raid0_priv = mddev->private;
5519         sector_t sectors;
5520
5521         /* for raid0 takeover only one zone is supported */
5522         if (raid0_priv->nr_strip_zones > 1) {
5523                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5524                        mdname(mddev));
5525                 return ERR_PTR(-EINVAL);
5526         }
5527
5528         sectors = raid0_priv->strip_zone[0].zone_end;
5529         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5530         mddev->dev_sectors = sectors;
5531         mddev->new_level = level;
5532         mddev->new_layout = ALGORITHM_PARITY_N;
5533         mddev->new_chunk_sectors = mddev->chunk_sectors;
5534         mddev->raid_disks += 1;
5535         mddev->delta_disks = 1;
5536         /* make sure it will be not marked as dirty */
5537         mddev->recovery_cp = MaxSector;
5538
5539         return setup_conf(mddev);
5540 }
5541
5542
5543 static void *raid5_takeover_raid1(mddev_t *mddev)
5544 {
5545         int chunksect;
5546
5547         if (mddev->raid_disks != 2 ||
5548             mddev->degraded > 1)
5549                 return ERR_PTR(-EINVAL);
5550
5551         /* Should check if there are write-behind devices? */
5552
5553         chunksect = 64*2; /* 64K by default */
5554
5555         /* The array must be an exact multiple of chunksize */
5556         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5557                 chunksect >>= 1;
5558
5559         if ((chunksect<<9) < STRIPE_SIZE)
5560                 /* array size does not allow a suitable chunk size */
5561                 return ERR_PTR(-EINVAL);
5562
5563         mddev->new_level = 5;
5564         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5565         mddev->new_chunk_sectors = chunksect;
5566
5567         return setup_conf(mddev);
5568 }
5569
5570 static void *raid5_takeover_raid6(mddev_t *mddev)
5571 {
5572         int new_layout;
5573
5574         switch (mddev->layout) {
5575         case ALGORITHM_LEFT_ASYMMETRIC_6:
5576                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5577                 break;
5578         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5579                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5580                 break;
5581         case ALGORITHM_LEFT_SYMMETRIC_6:
5582                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5583                 break;
5584         case ALGORITHM_RIGHT_SYMMETRIC_6:
5585                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5586                 break;
5587         case ALGORITHM_PARITY_0_6:
5588                 new_layout = ALGORITHM_PARITY_0;
5589                 break;
5590         case ALGORITHM_PARITY_N:
5591                 new_layout = ALGORITHM_PARITY_N;
5592                 break;
5593         default:
5594                 return ERR_PTR(-EINVAL);
5595         }
5596         mddev->new_level = 5;
5597         mddev->new_layout = new_layout;
5598         mddev->delta_disks = -1;
5599         mddev->raid_disks -= 1;
5600         return setup_conf(mddev);
5601 }
5602
5603
5604 static int raid5_check_reshape(mddev_t *mddev)
5605 {
5606         /* For a 2-drive array, the layout and chunk size can be changed
5607          * immediately as not restriping is needed.
5608          * For larger arrays we record the new value - after validation
5609          * to be used by a reshape pass.
5610          */
5611         raid5_conf_t *conf = mddev->private;
5612         int new_chunk = mddev->new_chunk_sectors;
5613
5614         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5615                 return -EINVAL;
5616         if (new_chunk > 0) {
5617                 if (!is_power_of_2(new_chunk))
5618                         return -EINVAL;
5619                 if (new_chunk < (PAGE_SIZE>>9))
5620                         return -EINVAL;
5621                 if (mddev->array_sectors & (new_chunk-1))
5622                         /* not factor of array size */
5623                         return -EINVAL;
5624         }
5625
5626         /* They look valid */
5627
5628         if (mddev->raid_disks == 2) {
5629                 /* can make the change immediately */
5630                 if (mddev->new_layout >= 0) {
5631                         conf->algorithm = mddev->new_layout;
5632                         mddev->layout = mddev->new_layout;
5633                 }
5634                 if (new_chunk > 0) {
5635                         conf->chunk_sectors = new_chunk ;
5636                         mddev->chunk_sectors = new_chunk;
5637                 }
5638                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5639                 md_wakeup_thread(mddev->thread);
5640         }
5641         return check_reshape(mddev);
5642 }
5643
5644 static int raid6_check_reshape(mddev_t *mddev)
5645 {
5646         int new_chunk = mddev->new_chunk_sectors;
5647
5648         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5649                 return -EINVAL;
5650         if (new_chunk > 0) {
5651                 if (!is_power_of_2(new_chunk))
5652                         return -EINVAL;
5653                 if (new_chunk < (PAGE_SIZE >> 9))
5654                         return -EINVAL;
5655                 if (mddev->array_sectors & (new_chunk-1))
5656                         /* not factor of array size */
5657                         return -EINVAL;
5658         }
5659
5660         /* They look valid */
5661         return check_reshape(mddev);
5662 }
5663
5664 static void *raid5_takeover(mddev_t *mddev)
5665 {
5666         /* raid5 can take over:
5667          *  raid0 - if there is only one strip zone - make it a raid4 layout
5668          *  raid1 - if there are two drives.  We need to know the chunk size
5669          *  raid4 - trivial - just use a raid4 layout.
5670          *  raid6 - Providing it is a *_6 layout
5671          */
5672         if (mddev->level == 0)
5673                 return raid45_takeover_raid0(mddev, 5);
5674         if (mddev->level == 1)
5675                 return raid5_takeover_raid1(mddev);
5676         if (mddev->level == 4) {
5677                 mddev->new_layout = ALGORITHM_PARITY_N;
5678                 mddev->new_level = 5;
5679                 return setup_conf(mddev);
5680         }
5681         if (mddev->level == 6)
5682                 return raid5_takeover_raid6(mddev);
5683
5684         return ERR_PTR(-EINVAL);
5685 }
5686
5687 static void *raid4_takeover(mddev_t *mddev)
5688 {
5689         /* raid4 can take over:
5690          *  raid0 - if there is only one strip zone
5691          *  raid5 - if layout is right
5692          */
5693         if (mddev->level == 0)
5694                 return raid45_takeover_raid0(mddev, 4);
5695         if (mddev->level == 5 &&
5696             mddev->layout == ALGORITHM_PARITY_N) {
5697                 mddev->new_layout = 0;
5698                 mddev->new_level = 4;
5699                 return setup_conf(mddev);
5700         }
5701         return ERR_PTR(-EINVAL);
5702 }
5703
5704 static struct mdk_personality raid5_personality;
5705
5706 static void *raid6_takeover(mddev_t *mddev)
5707 {
5708         /* Currently can only take over a raid5.  We map the
5709          * personality to an equivalent raid6 personality
5710          * with the Q block at the end.
5711          */
5712         int new_layout;
5713
5714         if (mddev->pers != &raid5_personality)
5715                 return ERR_PTR(-EINVAL);
5716         if (mddev->degraded > 1)
5717                 return ERR_PTR(-EINVAL);
5718         if (mddev->raid_disks > 253)
5719                 return ERR_PTR(-EINVAL);
5720         if (mddev->raid_disks < 3)
5721                 return ERR_PTR(-EINVAL);
5722
5723         switch (mddev->layout) {
5724         case ALGORITHM_LEFT_ASYMMETRIC:
5725                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5726                 break;
5727         case ALGORITHM_RIGHT_ASYMMETRIC:
5728                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5729                 break;
5730         case ALGORITHM_LEFT_SYMMETRIC:
5731                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5732                 break;
5733         case ALGORITHM_RIGHT_SYMMETRIC:
5734                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5735                 break;
5736         case ALGORITHM_PARITY_0:
5737                 new_layout = ALGORITHM_PARITY_0_6;
5738                 break;
5739         case ALGORITHM_PARITY_N:
5740                 new_layout = ALGORITHM_PARITY_N;
5741                 break;
5742         default:
5743                 return ERR_PTR(-EINVAL);
5744         }
5745         mddev->new_level = 6;
5746         mddev->new_layout = new_layout;
5747         mddev->delta_disks = 1;
5748         mddev->raid_disks += 1;
5749         return setup_conf(mddev);
5750 }
5751
5752
5753 static struct mdk_personality raid6_personality =
5754 {
5755         .name           = "raid6",
5756         .level          = 6,
5757         .owner          = THIS_MODULE,
5758         .make_request   = make_request,
5759         .run            = run,
5760         .stop           = stop,
5761         .status         = status,
5762         .error_handler  = error,
5763         .hot_add_disk   = raid5_add_disk,
5764         .hot_remove_disk= raid5_remove_disk,
5765         .spare_active   = raid5_spare_active,
5766         .sync_request   = sync_request,
5767         .resize         = raid5_resize,
5768         .size           = raid5_size,
5769         .check_reshape  = raid6_check_reshape,
5770         .start_reshape  = raid5_start_reshape,
5771         .finish_reshape = raid5_finish_reshape,
5772         .quiesce        = raid5_quiesce,
5773         .takeover       = raid6_takeover,
5774 };
5775 static struct mdk_personality raid5_personality =
5776 {
5777         .name           = "raid5",
5778         .level          = 5,
5779         .owner          = THIS_MODULE,
5780         .make_request   = make_request,
5781         .run            = run,
5782         .stop           = stop,
5783         .status         = status,
5784         .error_handler  = error,
5785         .hot_add_disk   = raid5_add_disk,
5786         .hot_remove_disk= raid5_remove_disk,
5787         .spare_active   = raid5_spare_active,
5788         .sync_request   = sync_request,
5789         .resize         = raid5_resize,
5790         .size           = raid5_size,
5791         .check_reshape  = raid5_check_reshape,
5792         .start_reshape  = raid5_start_reshape,
5793         .finish_reshape = raid5_finish_reshape,
5794         .quiesce        = raid5_quiesce,
5795         .takeover       = raid5_takeover,
5796 };
5797
5798 static struct mdk_personality raid4_personality =
5799 {
5800         .name           = "raid4",
5801         .level          = 4,
5802         .owner          = THIS_MODULE,
5803         .make_request   = make_request,
5804         .run            = run,
5805         .stop           = stop,
5806         .status         = status,
5807         .error_handler  = error,
5808         .hot_add_disk   = raid5_add_disk,
5809         .hot_remove_disk= raid5_remove_disk,
5810         .spare_active   = raid5_spare_active,
5811         .sync_request   = sync_request,
5812         .resize         = raid5_resize,
5813         .size           = raid5_size,
5814         .check_reshape  = raid5_check_reshape,
5815         .start_reshape  = raid5_start_reshape,
5816         .finish_reshape = raid5_finish_reshape,
5817         .quiesce        = raid5_quiesce,
5818         .takeover       = raid4_takeover,
5819 };
5820
5821 static int __init raid5_init(void)
5822 {
5823         register_md_personality(&raid6_personality);
5824         register_md_personality(&raid5_personality);
5825         register_md_personality(&raid4_personality);
5826         return 0;
5827 }
5828
5829 static void raid5_exit(void)
5830 {
5831         unregister_md_personality(&raid6_personality);
5832         unregister_md_personality(&raid5_personality);
5833         unregister_md_personality(&raid4_personality);
5834 }
5835
5836 module_init(raid5_init);
5837 module_exit(raid5_exit);
5838 MODULE_LICENSE("GPL");
5839 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5840 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5841 MODULE_ALIAS("md-raid5");
5842 MODULE_ALIAS("md-raid4");
5843 MODULE_ALIAS("md-level-5");
5844 MODULE_ALIAS("md-level-4");
5845 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5846 MODULE_ALIAS("md-raid6");
5847 MODULE_ALIAS("md-level-6");
5848
5849 /* This used to be two separate modules, they were: */
5850 MODULE_ALIAS("raid5");
5851 MODULE_ALIAS("raid6");