]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/md/raid5.c
md/raid5: Add support for new layouts for raid5 and raid6.
[mv-sheeva.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/async_tx.h>
49 #include <linux/seq_file.h>
50 #include "md.h"
51 #include "raid5.h"
52 #include "raid6.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 /*
103  * We maintain a biased count of active stripes in the bottom 16 bits of
104  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105  */
106 static inline int raid5_bi_phys_segments(struct bio *bio)
107 {
108         return bio->bi_phys_segments & 0xffff;
109 }
110
111 static inline int raid5_bi_hw_segments(struct bio *bio)
112 {
113         return (bio->bi_phys_segments >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 {
118         --bio->bi_phys_segments;
119         return raid5_bi_phys_segments(bio);
120 }
121
122 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 {
124         unsigned short val = raid5_bi_hw_segments(bio);
125
126         --val;
127         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128         return val;
129 }
130
131 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 {
133         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 }
135
136 /* Find first data disk in a raid6 stripe */
137 static inline int raid6_d0(struct stripe_head *sh)
138 {
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, int *count)
156 {
157         int slot;
158         if (idx == sh->pd_idx)
159                 return sh->disks - 2;
160         if (idx == sh->qd_idx)
161                 return sh->disks - 1;
162         slot = (*count)++;
163         return slot;
164 }
165
166 static void return_io(struct bio *return_bi)
167 {
168         struct bio *bi = return_bi;
169         while (bi) {
170
171                 return_bi = bi->bi_next;
172                 bi->bi_next = NULL;
173                 bi->bi_size = 0;
174                 bio_endio(bi, 0);
175                 bi = return_bi;
176         }
177 }
178
179 static void print_raid5_conf (raid5_conf_t *conf);
180
181 static int stripe_operations_active(struct stripe_head *sh)
182 {
183         return sh->check_state || sh->reconstruct_state ||
184                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
185                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
186 }
187
188 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
189 {
190         if (atomic_dec_and_test(&sh->count)) {
191                 BUG_ON(!list_empty(&sh->lru));
192                 BUG_ON(atomic_read(&conf->active_stripes)==0);
193                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
194                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
195                                 list_add_tail(&sh->lru, &conf->delayed_list);
196                                 blk_plug_device(conf->mddev->queue);
197                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
198                                    sh->bm_seq - conf->seq_write > 0) {
199                                 list_add_tail(&sh->lru, &conf->bitmap_list);
200                                 blk_plug_device(conf->mddev->queue);
201                         } else {
202                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
203                                 list_add_tail(&sh->lru, &conf->handle_list);
204                         }
205                         md_wakeup_thread(conf->mddev->thread);
206                 } else {
207                         BUG_ON(stripe_operations_active(sh));
208                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
209                                 atomic_dec(&conf->preread_active_stripes);
210                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
211                                         md_wakeup_thread(conf->mddev->thread);
212                         }
213                         atomic_dec(&conf->active_stripes);
214                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
215                                 list_add_tail(&sh->lru, &conf->inactive_list);
216                                 wake_up(&conf->wait_for_stripe);
217                                 if (conf->retry_read_aligned)
218                                         md_wakeup_thread(conf->mddev->thread);
219                         }
220                 }
221         }
222 }
223
224 static void release_stripe(struct stripe_head *sh)
225 {
226         raid5_conf_t *conf = sh->raid_conf;
227         unsigned long flags;
228
229         spin_lock_irqsave(&conf->device_lock, flags);
230         __release_stripe(conf, sh);
231         spin_unlock_irqrestore(&conf->device_lock, flags);
232 }
233
234 static inline void remove_hash(struct stripe_head *sh)
235 {
236         pr_debug("remove_hash(), stripe %llu\n",
237                 (unsigned long long)sh->sector);
238
239         hlist_del_init(&sh->hash);
240 }
241
242 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
243 {
244         struct hlist_head *hp = stripe_hash(conf, sh->sector);
245
246         pr_debug("insert_hash(), stripe %llu\n",
247                 (unsigned long long)sh->sector);
248
249         CHECK_DEVLOCK();
250         hlist_add_head(&sh->hash, hp);
251 }
252
253
254 /* find an idle stripe, make sure it is unhashed, and return it. */
255 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
256 {
257         struct stripe_head *sh = NULL;
258         struct list_head *first;
259
260         CHECK_DEVLOCK();
261         if (list_empty(&conf->inactive_list))
262                 goto out;
263         first = conf->inactive_list.next;
264         sh = list_entry(first, struct stripe_head, lru);
265         list_del_init(first);
266         remove_hash(sh);
267         atomic_inc(&conf->active_stripes);
268 out:
269         return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh, int num)
273 {
274         struct page *p;
275         int i;
276
277         for (i=0; i<num ; i++) {
278                 p = sh->dev[i].page;
279                 if (!p)
280                         continue;
281                 sh->dev[i].page = NULL;
282                 put_page(p);
283         }
284 }
285
286 static int grow_buffers(struct stripe_head *sh, int num)
287 {
288         int i;
289
290         for (i=0; i<num; i++) {
291                 struct page *page;
292
293                 if (!(page = alloc_page(GFP_KERNEL))) {
294                         return 1;
295                 }
296                 sh->dev[i].page = page;
297         }
298         return 0;
299 }
300
301 static void raid5_build_block(struct stripe_head *sh, int i);
302 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
303                             struct stripe_head *sh);
304
305 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
306 {
307         raid5_conf_t *conf = sh->raid_conf;
308         int i;
309
310         BUG_ON(atomic_read(&sh->count) != 0);
311         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
312         BUG_ON(stripe_operations_active(sh));
313
314         CHECK_DEVLOCK();
315         pr_debug("init_stripe called, stripe %llu\n",
316                 (unsigned long long)sh->sector);
317
318         remove_hash(sh);
319
320         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
321         sh->sector = sector;
322         stripe_set_idx(sector, conf, previous, sh);
323         sh->state = 0;
324
325
326         for (i = sh->disks; i--; ) {
327                 struct r5dev *dev = &sh->dev[i];
328
329                 if (dev->toread || dev->read || dev->towrite || dev->written ||
330                     test_bit(R5_LOCKED, &dev->flags)) {
331                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
332                                (unsigned long long)sh->sector, i, dev->toread,
333                                dev->read, dev->towrite, dev->written,
334                                test_bit(R5_LOCKED, &dev->flags));
335                         BUG();
336                 }
337                 dev->flags = 0;
338                 raid5_build_block(sh, i);
339         }
340         insert_hash(conf, sh);
341 }
342
343 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
344 {
345         struct stripe_head *sh;
346         struct hlist_node *hn;
347
348         CHECK_DEVLOCK();
349         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
350         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
351                 if (sh->sector == sector && sh->disks == disks)
352                         return sh;
353         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
354         return NULL;
355 }
356
357 static void unplug_slaves(mddev_t *mddev);
358 static void raid5_unplug_device(struct request_queue *q);
359
360 static struct stripe_head *
361 get_active_stripe(raid5_conf_t *conf, sector_t sector,
362                   int previous, int noblock)
363 {
364         struct stripe_head *sh;
365         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
366
367         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
368
369         spin_lock_irq(&conf->device_lock);
370
371         do {
372                 wait_event_lock_irq(conf->wait_for_stripe,
373                                     conf->quiesce == 0,
374                                     conf->device_lock, /* nothing */);
375                 sh = __find_stripe(conf, sector, disks);
376                 if (!sh) {
377                         if (!conf->inactive_blocked)
378                                 sh = get_free_stripe(conf);
379                         if (noblock && sh == NULL)
380                                 break;
381                         if (!sh) {
382                                 conf->inactive_blocked = 1;
383                                 wait_event_lock_irq(conf->wait_for_stripe,
384                                                     !list_empty(&conf->inactive_list) &&
385                                                     (atomic_read(&conf->active_stripes)
386                                                      < (conf->max_nr_stripes *3/4)
387                                                      || !conf->inactive_blocked),
388                                                     conf->device_lock,
389                                                     raid5_unplug_device(conf->mddev->queue)
390                                         );
391                                 conf->inactive_blocked = 0;
392                         } else
393                                 init_stripe(sh, sector, previous);
394                 } else {
395                         if (atomic_read(&sh->count)) {
396                           BUG_ON(!list_empty(&sh->lru));
397                         } else {
398                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
399                                         atomic_inc(&conf->active_stripes);
400                                 if (list_empty(&sh->lru) &&
401                                     !test_bit(STRIPE_EXPANDING, &sh->state))
402                                         BUG();
403                                 list_del_init(&sh->lru);
404                         }
405                 }
406         } while (sh == NULL);
407
408         if (sh)
409                 atomic_inc(&sh->count);
410
411         spin_unlock_irq(&conf->device_lock);
412         return sh;
413 }
414
415 static void
416 raid5_end_read_request(struct bio *bi, int error);
417 static void
418 raid5_end_write_request(struct bio *bi, int error);
419
420 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
421 {
422         raid5_conf_t *conf = sh->raid_conf;
423         int i, disks = sh->disks;
424
425         might_sleep();
426
427         for (i = disks; i--; ) {
428                 int rw;
429                 struct bio *bi;
430                 mdk_rdev_t *rdev;
431                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
432                         rw = WRITE;
433                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
434                         rw = READ;
435                 else
436                         continue;
437
438                 bi = &sh->dev[i].req;
439
440                 bi->bi_rw = rw;
441                 if (rw == WRITE)
442                         bi->bi_end_io = raid5_end_write_request;
443                 else
444                         bi->bi_end_io = raid5_end_read_request;
445
446                 rcu_read_lock();
447                 rdev = rcu_dereference(conf->disks[i].rdev);
448                 if (rdev && test_bit(Faulty, &rdev->flags))
449                         rdev = NULL;
450                 if (rdev)
451                         atomic_inc(&rdev->nr_pending);
452                 rcu_read_unlock();
453
454                 if (rdev) {
455                         if (s->syncing || s->expanding || s->expanded)
456                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
457
458                         set_bit(STRIPE_IO_STARTED, &sh->state);
459
460                         bi->bi_bdev = rdev->bdev;
461                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
462                                 __func__, (unsigned long long)sh->sector,
463                                 bi->bi_rw, i);
464                         atomic_inc(&sh->count);
465                         bi->bi_sector = sh->sector + rdev->data_offset;
466                         bi->bi_flags = 1 << BIO_UPTODATE;
467                         bi->bi_vcnt = 1;
468                         bi->bi_max_vecs = 1;
469                         bi->bi_idx = 0;
470                         bi->bi_io_vec = &sh->dev[i].vec;
471                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
472                         bi->bi_io_vec[0].bv_offset = 0;
473                         bi->bi_size = STRIPE_SIZE;
474                         bi->bi_next = NULL;
475                         if (rw == WRITE &&
476                             test_bit(R5_ReWrite, &sh->dev[i].flags))
477                                 atomic_add(STRIPE_SECTORS,
478                                         &rdev->corrected_errors);
479                         generic_make_request(bi);
480                 } else {
481                         if (rw == WRITE)
482                                 set_bit(STRIPE_DEGRADED, &sh->state);
483                         pr_debug("skip op %ld on disc %d for sector %llu\n",
484                                 bi->bi_rw, i, (unsigned long long)sh->sector);
485                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
486                         set_bit(STRIPE_HANDLE, &sh->state);
487                 }
488         }
489 }
490
491 static struct dma_async_tx_descriptor *
492 async_copy_data(int frombio, struct bio *bio, struct page *page,
493         sector_t sector, struct dma_async_tx_descriptor *tx)
494 {
495         struct bio_vec *bvl;
496         struct page *bio_page;
497         int i;
498         int page_offset;
499
500         if (bio->bi_sector >= sector)
501                 page_offset = (signed)(bio->bi_sector - sector) * 512;
502         else
503                 page_offset = (signed)(sector - bio->bi_sector) * -512;
504         bio_for_each_segment(bvl, bio, i) {
505                 int len = bio_iovec_idx(bio, i)->bv_len;
506                 int clen;
507                 int b_offset = 0;
508
509                 if (page_offset < 0) {
510                         b_offset = -page_offset;
511                         page_offset += b_offset;
512                         len -= b_offset;
513                 }
514
515                 if (len > 0 && page_offset + len > STRIPE_SIZE)
516                         clen = STRIPE_SIZE - page_offset;
517                 else
518                         clen = len;
519
520                 if (clen > 0) {
521                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
522                         bio_page = bio_iovec_idx(bio, i)->bv_page;
523                         if (frombio)
524                                 tx = async_memcpy(page, bio_page, page_offset,
525                                         b_offset, clen,
526                                         ASYNC_TX_DEP_ACK,
527                                         tx, NULL, NULL);
528                         else
529                                 tx = async_memcpy(bio_page, page, b_offset,
530                                         page_offset, clen,
531                                         ASYNC_TX_DEP_ACK,
532                                         tx, NULL, NULL);
533                 }
534                 if (clen < len) /* hit end of page */
535                         break;
536                 page_offset +=  len;
537         }
538
539         return tx;
540 }
541
542 static void ops_complete_biofill(void *stripe_head_ref)
543 {
544         struct stripe_head *sh = stripe_head_ref;
545         struct bio *return_bi = NULL;
546         raid5_conf_t *conf = sh->raid_conf;
547         int i;
548
549         pr_debug("%s: stripe %llu\n", __func__,
550                 (unsigned long long)sh->sector);
551
552         /* clear completed biofills */
553         spin_lock_irq(&conf->device_lock);
554         for (i = sh->disks; i--; ) {
555                 struct r5dev *dev = &sh->dev[i];
556
557                 /* acknowledge completion of a biofill operation */
558                 /* and check if we need to reply to a read request,
559                  * new R5_Wantfill requests are held off until
560                  * !STRIPE_BIOFILL_RUN
561                  */
562                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
563                         struct bio *rbi, *rbi2;
564
565                         BUG_ON(!dev->read);
566                         rbi = dev->read;
567                         dev->read = NULL;
568                         while (rbi && rbi->bi_sector <
569                                 dev->sector + STRIPE_SECTORS) {
570                                 rbi2 = r5_next_bio(rbi, dev->sector);
571                                 if (!raid5_dec_bi_phys_segments(rbi)) {
572                                         rbi->bi_next = return_bi;
573                                         return_bi = rbi;
574                                 }
575                                 rbi = rbi2;
576                         }
577                 }
578         }
579         spin_unlock_irq(&conf->device_lock);
580         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
581
582         return_io(return_bi);
583
584         set_bit(STRIPE_HANDLE, &sh->state);
585         release_stripe(sh);
586 }
587
588 static void ops_run_biofill(struct stripe_head *sh)
589 {
590         struct dma_async_tx_descriptor *tx = NULL;
591         raid5_conf_t *conf = sh->raid_conf;
592         int i;
593
594         pr_debug("%s: stripe %llu\n", __func__,
595                 (unsigned long long)sh->sector);
596
597         for (i = sh->disks; i--; ) {
598                 struct r5dev *dev = &sh->dev[i];
599                 if (test_bit(R5_Wantfill, &dev->flags)) {
600                         struct bio *rbi;
601                         spin_lock_irq(&conf->device_lock);
602                         dev->read = rbi = dev->toread;
603                         dev->toread = NULL;
604                         spin_unlock_irq(&conf->device_lock);
605                         while (rbi && rbi->bi_sector <
606                                 dev->sector + STRIPE_SECTORS) {
607                                 tx = async_copy_data(0, rbi, dev->page,
608                                         dev->sector, tx);
609                                 rbi = r5_next_bio(rbi, dev->sector);
610                         }
611                 }
612         }
613
614         atomic_inc(&sh->count);
615         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
616                 ops_complete_biofill, sh);
617 }
618
619 static void ops_complete_compute5(void *stripe_head_ref)
620 {
621         struct stripe_head *sh = stripe_head_ref;
622         int target = sh->ops.target;
623         struct r5dev *tgt = &sh->dev[target];
624
625         pr_debug("%s: stripe %llu\n", __func__,
626                 (unsigned long long)sh->sector);
627
628         set_bit(R5_UPTODATE, &tgt->flags);
629         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630         clear_bit(R5_Wantcompute, &tgt->flags);
631         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
632         if (sh->check_state == check_state_compute_run)
633                 sh->check_state = check_state_compute_result;
634         set_bit(STRIPE_HANDLE, &sh->state);
635         release_stripe(sh);
636 }
637
638 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
639 {
640         /* kernel stack size limits the total number of disks */
641         int disks = sh->disks;
642         struct page *xor_srcs[disks];
643         int target = sh->ops.target;
644         struct r5dev *tgt = &sh->dev[target];
645         struct page *xor_dest = tgt->page;
646         int count = 0;
647         struct dma_async_tx_descriptor *tx;
648         int i;
649
650         pr_debug("%s: stripe %llu block: %d\n",
651                 __func__, (unsigned long long)sh->sector, target);
652         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
653
654         for (i = disks; i--; )
655                 if (i != target)
656                         xor_srcs[count++] = sh->dev[i].page;
657
658         atomic_inc(&sh->count);
659
660         if (unlikely(count == 1))
661                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
662                         0, NULL, ops_complete_compute5, sh);
663         else
664                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
665                         ASYNC_TX_XOR_ZERO_DST, NULL,
666                         ops_complete_compute5, sh);
667
668         return tx;
669 }
670
671 static void ops_complete_prexor(void *stripe_head_ref)
672 {
673         struct stripe_head *sh = stripe_head_ref;
674
675         pr_debug("%s: stripe %llu\n", __func__,
676                 (unsigned long long)sh->sector);
677 }
678
679 static struct dma_async_tx_descriptor *
680 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
681 {
682         /* kernel stack size limits the total number of disks */
683         int disks = sh->disks;
684         struct page *xor_srcs[disks];
685         int count = 0, pd_idx = sh->pd_idx, i;
686
687         /* existing parity data subtracted */
688         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
689
690         pr_debug("%s: stripe %llu\n", __func__,
691                 (unsigned long long)sh->sector);
692
693         for (i = disks; i--; ) {
694                 struct r5dev *dev = &sh->dev[i];
695                 /* Only process blocks that are known to be uptodate */
696                 if (test_bit(R5_Wantdrain, &dev->flags))
697                         xor_srcs[count++] = dev->page;
698         }
699
700         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
701                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
702                 ops_complete_prexor, sh);
703
704         return tx;
705 }
706
707 static struct dma_async_tx_descriptor *
708 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
709 {
710         int disks = sh->disks;
711         int i;
712
713         pr_debug("%s: stripe %llu\n", __func__,
714                 (unsigned long long)sh->sector);
715
716         for (i = disks; i--; ) {
717                 struct r5dev *dev = &sh->dev[i];
718                 struct bio *chosen;
719
720                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745         int disks = sh->disks, i, pd_idx = sh->pd_idx;
746
747         pr_debug("%s: stripe %llu\n", __func__,
748                 (unsigned long long)sh->sector);
749
750         for (i = disks; i--; ) {
751                 struct r5dev *dev = &sh->dev[i];
752                 if (dev->written || i == pd_idx)
753                         set_bit(R5_UPTODATE, &dev->flags);
754         }
755
756         if (sh->reconstruct_state == reconstruct_state_drain_run)
757                 sh->reconstruct_state = reconstruct_state_drain_result;
758         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
759                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
760         else {
761                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
762                 sh->reconstruct_state = reconstruct_state_result;
763         }
764
765         set_bit(STRIPE_HANDLE, &sh->state);
766         release_stripe(sh);
767 }
768
769 static void
770 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
771 {
772         /* kernel stack size limits the total number of disks */
773         int disks = sh->disks;
774         struct page *xor_srcs[disks];
775
776         int count = 0, pd_idx = sh->pd_idx, i;
777         struct page *xor_dest;
778         int prexor = 0;
779         unsigned long flags;
780
781         pr_debug("%s: stripe %llu\n", __func__,
782                 (unsigned long long)sh->sector);
783
784         /* check if prexor is active which means only process blocks
785          * that are part of a read-modify-write (written)
786          */
787         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
788                 prexor = 1;
789                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
790                 for (i = disks; i--; ) {
791                         struct r5dev *dev = &sh->dev[i];
792                         if (dev->written)
793                                 xor_srcs[count++] = dev->page;
794                 }
795         } else {
796                 xor_dest = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (i != pd_idx)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         }
803
804         /* 1/ if we prexor'd then the dest is reused as a source
805          * 2/ if we did not prexor then we are redoing the parity
806          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
807          * for the synchronous xor case
808          */
809         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
810                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
811
812         atomic_inc(&sh->count);
813
814         if (unlikely(count == 1)) {
815                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
816                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
817                         flags, tx, ops_complete_postxor, sh);
818         } else
819                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
820                         flags, tx, ops_complete_postxor, sh);
821 }
822
823 static void ops_complete_check(void *stripe_head_ref)
824 {
825         struct stripe_head *sh = stripe_head_ref;
826
827         pr_debug("%s: stripe %llu\n", __func__,
828                 (unsigned long long)sh->sector);
829
830         sh->check_state = check_state_check_result;
831         set_bit(STRIPE_HANDLE, &sh->state);
832         release_stripe(sh);
833 }
834
835 static void ops_run_check(struct stripe_head *sh)
836 {
837         /* kernel stack size limits the total number of disks */
838         int disks = sh->disks;
839         struct page *xor_srcs[disks];
840         struct dma_async_tx_descriptor *tx;
841
842         int count = 0, pd_idx = sh->pd_idx, i;
843         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
844
845         pr_debug("%s: stripe %llu\n", __func__,
846                 (unsigned long long)sh->sector);
847
848         for (i = disks; i--; ) {
849                 struct r5dev *dev = &sh->dev[i];
850                 if (i != pd_idx)
851                         xor_srcs[count++] = dev->page;
852         }
853
854         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
855                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
856
857         atomic_inc(&sh->count);
858         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
859                 ops_complete_check, sh);
860 }
861
862 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
863 {
864         int overlap_clear = 0, i, disks = sh->disks;
865         struct dma_async_tx_descriptor *tx = NULL;
866
867         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
868                 ops_run_biofill(sh);
869                 overlap_clear++;
870         }
871
872         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
873                 tx = ops_run_compute5(sh);
874                 /* terminate the chain if postxor is not set to be run */
875                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
876                         async_tx_ack(tx);
877         }
878
879         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
880                 tx = ops_run_prexor(sh, tx);
881
882         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
883                 tx = ops_run_biodrain(sh, tx);
884                 overlap_clear++;
885         }
886
887         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
888                 ops_run_postxor(sh, tx);
889
890         if (test_bit(STRIPE_OP_CHECK, &ops_request))
891                 ops_run_check(sh);
892
893         if (overlap_clear)
894                 for (i = disks; i--; ) {
895                         struct r5dev *dev = &sh->dev[i];
896                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
897                                 wake_up(&sh->raid_conf->wait_for_overlap);
898                 }
899 }
900
901 static int grow_one_stripe(raid5_conf_t *conf)
902 {
903         struct stripe_head *sh;
904         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
905         if (!sh)
906                 return 0;
907         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
908         sh->raid_conf = conf;
909         spin_lock_init(&sh->lock);
910
911         if (grow_buffers(sh, conf->raid_disks)) {
912                 shrink_buffers(sh, conf->raid_disks);
913                 kmem_cache_free(conf->slab_cache, sh);
914                 return 0;
915         }
916         sh->disks = conf->raid_disks;
917         /* we just created an active stripe so... */
918         atomic_set(&sh->count, 1);
919         atomic_inc(&conf->active_stripes);
920         INIT_LIST_HEAD(&sh->lru);
921         release_stripe(sh);
922         return 1;
923 }
924
925 static int grow_stripes(raid5_conf_t *conf, int num)
926 {
927         struct kmem_cache *sc;
928         int devs = conf->raid_disks;
929
930         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
931         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
932         conf->active_name = 0;
933         sc = kmem_cache_create(conf->cache_name[conf->active_name],
934                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
935                                0, 0, NULL);
936         if (!sc)
937                 return 1;
938         conf->slab_cache = sc;
939         conf->pool_size = devs;
940         while (num--)
941                 if (!grow_one_stripe(conf))
942                         return 1;
943         return 0;
944 }
945
946 #ifdef CONFIG_MD_RAID5_RESHAPE
947 static int resize_stripes(raid5_conf_t *conf, int newsize)
948 {
949         /* Make all the stripes able to hold 'newsize' devices.
950          * New slots in each stripe get 'page' set to a new page.
951          *
952          * This happens in stages:
953          * 1/ create a new kmem_cache and allocate the required number of
954          *    stripe_heads.
955          * 2/ gather all the old stripe_heads and tranfer the pages across
956          *    to the new stripe_heads.  This will have the side effect of
957          *    freezing the array as once all stripe_heads have been collected,
958          *    no IO will be possible.  Old stripe heads are freed once their
959          *    pages have been transferred over, and the old kmem_cache is
960          *    freed when all stripes are done.
961          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
962          *    we simple return a failre status - no need to clean anything up.
963          * 4/ allocate new pages for the new slots in the new stripe_heads.
964          *    If this fails, we don't bother trying the shrink the
965          *    stripe_heads down again, we just leave them as they are.
966          *    As each stripe_head is processed the new one is released into
967          *    active service.
968          *
969          * Once step2 is started, we cannot afford to wait for a write,
970          * so we use GFP_NOIO allocations.
971          */
972         struct stripe_head *osh, *nsh;
973         LIST_HEAD(newstripes);
974         struct disk_info *ndisks;
975         int err;
976         struct kmem_cache *sc;
977         int i;
978
979         if (newsize <= conf->pool_size)
980                 return 0; /* never bother to shrink */
981
982         err = md_allow_write(conf->mddev);
983         if (err)
984                 return err;
985
986         /* Step 1 */
987         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
988                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
989                                0, 0, NULL);
990         if (!sc)
991                 return -ENOMEM;
992
993         for (i = conf->max_nr_stripes; i; i--) {
994                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
995                 if (!nsh)
996                         break;
997
998                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
999
1000                 nsh->raid_conf = conf;
1001                 spin_lock_init(&nsh->lock);
1002
1003                 list_add(&nsh->lru, &newstripes);
1004         }
1005         if (i) {
1006                 /* didn't get enough, give up */
1007                 while (!list_empty(&newstripes)) {
1008                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1009                         list_del(&nsh->lru);
1010                         kmem_cache_free(sc, nsh);
1011                 }
1012                 kmem_cache_destroy(sc);
1013                 return -ENOMEM;
1014         }
1015         /* Step 2 - Must use GFP_NOIO now.
1016          * OK, we have enough stripes, start collecting inactive
1017          * stripes and copying them over
1018          */
1019         list_for_each_entry(nsh, &newstripes, lru) {
1020                 spin_lock_irq(&conf->device_lock);
1021                 wait_event_lock_irq(conf->wait_for_stripe,
1022                                     !list_empty(&conf->inactive_list),
1023                                     conf->device_lock,
1024                                     unplug_slaves(conf->mddev)
1025                         );
1026                 osh = get_free_stripe(conf);
1027                 spin_unlock_irq(&conf->device_lock);
1028                 atomic_set(&nsh->count, 1);
1029                 for(i=0; i<conf->pool_size; i++)
1030                         nsh->dev[i].page = osh->dev[i].page;
1031                 for( ; i<newsize; i++)
1032                         nsh->dev[i].page = NULL;
1033                 kmem_cache_free(conf->slab_cache, osh);
1034         }
1035         kmem_cache_destroy(conf->slab_cache);
1036
1037         /* Step 3.
1038          * At this point, we are holding all the stripes so the array
1039          * is completely stalled, so now is a good time to resize
1040          * conf->disks.
1041          */
1042         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1043         if (ndisks) {
1044                 for (i=0; i<conf->raid_disks; i++)
1045                         ndisks[i] = conf->disks[i];
1046                 kfree(conf->disks);
1047                 conf->disks = ndisks;
1048         } else
1049                 err = -ENOMEM;
1050
1051         /* Step 4, return new stripes to service */
1052         while(!list_empty(&newstripes)) {
1053                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1054                 list_del_init(&nsh->lru);
1055                 for (i=conf->raid_disks; i < newsize; i++)
1056                         if (nsh->dev[i].page == NULL) {
1057                                 struct page *p = alloc_page(GFP_NOIO);
1058                                 nsh->dev[i].page = p;
1059                                 if (!p)
1060                                         err = -ENOMEM;
1061                         }
1062                 release_stripe(nsh);
1063         }
1064         /* critical section pass, GFP_NOIO no longer needed */
1065
1066         conf->slab_cache = sc;
1067         conf->active_name = 1-conf->active_name;
1068         conf->pool_size = newsize;
1069         return err;
1070 }
1071 #endif
1072
1073 static int drop_one_stripe(raid5_conf_t *conf)
1074 {
1075         struct stripe_head *sh;
1076
1077         spin_lock_irq(&conf->device_lock);
1078         sh = get_free_stripe(conf);
1079         spin_unlock_irq(&conf->device_lock);
1080         if (!sh)
1081                 return 0;
1082         BUG_ON(atomic_read(&sh->count));
1083         shrink_buffers(sh, conf->pool_size);
1084         kmem_cache_free(conf->slab_cache, sh);
1085         atomic_dec(&conf->active_stripes);
1086         return 1;
1087 }
1088
1089 static void shrink_stripes(raid5_conf_t *conf)
1090 {
1091         while (drop_one_stripe(conf))
1092                 ;
1093
1094         if (conf->slab_cache)
1095                 kmem_cache_destroy(conf->slab_cache);
1096         conf->slab_cache = NULL;
1097 }
1098
1099 static void raid5_end_read_request(struct bio * bi, int error)
1100 {
1101         struct stripe_head *sh = bi->bi_private;
1102         raid5_conf_t *conf = sh->raid_conf;
1103         int disks = sh->disks, i;
1104         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1105         char b[BDEVNAME_SIZE];
1106         mdk_rdev_t *rdev;
1107
1108
1109         for (i=0 ; i<disks; i++)
1110                 if (bi == &sh->dev[i].req)
1111                         break;
1112
1113         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1114                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1115                 uptodate);
1116         if (i == disks) {
1117                 BUG();
1118                 return;
1119         }
1120
1121         if (uptodate) {
1122                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1123                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1124                         rdev = conf->disks[i].rdev;
1125                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1126                                   " (%lu sectors at %llu on %s)\n",
1127                                   mdname(conf->mddev), STRIPE_SECTORS,
1128                                   (unsigned long long)(sh->sector
1129                                                        + rdev->data_offset),
1130                                   bdevname(rdev->bdev, b));
1131                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1132                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1133                 }
1134                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1135                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1136         } else {
1137                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1138                 int retry = 0;
1139                 rdev = conf->disks[i].rdev;
1140
1141                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1142                 atomic_inc(&rdev->read_errors);
1143                 if (conf->mddev->degraded)
1144                         printk_rl(KERN_WARNING
1145                                   "raid5:%s: read error not correctable "
1146                                   "(sector %llu on %s).\n",
1147                                   mdname(conf->mddev),
1148                                   (unsigned long long)(sh->sector
1149                                                        + rdev->data_offset),
1150                                   bdn);
1151                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1152                         /* Oh, no!!! */
1153                         printk_rl(KERN_WARNING
1154                                   "raid5:%s: read error NOT corrected!! "
1155                                   "(sector %llu on %s).\n",
1156                                   mdname(conf->mddev),
1157                                   (unsigned long long)(sh->sector
1158                                                        + rdev->data_offset),
1159                                   bdn);
1160                 else if (atomic_read(&rdev->read_errors)
1161                          > conf->max_nr_stripes)
1162                         printk(KERN_WARNING
1163                                "raid5:%s: Too many read errors, failing device %s.\n",
1164                                mdname(conf->mddev), bdn);
1165                 else
1166                         retry = 1;
1167                 if (retry)
1168                         set_bit(R5_ReadError, &sh->dev[i].flags);
1169                 else {
1170                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1171                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1172                         md_error(conf->mddev, rdev);
1173                 }
1174         }
1175         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1176         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1177         set_bit(STRIPE_HANDLE, &sh->state);
1178         release_stripe(sh);
1179 }
1180
1181 static void raid5_end_write_request(struct bio *bi, int error)
1182 {
1183         struct stripe_head *sh = bi->bi_private;
1184         raid5_conf_t *conf = sh->raid_conf;
1185         int disks = sh->disks, i;
1186         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1187
1188         for (i=0 ; i<disks; i++)
1189                 if (bi == &sh->dev[i].req)
1190                         break;
1191
1192         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1193                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1194                 uptodate);
1195         if (i == disks) {
1196                 BUG();
1197                 return;
1198         }
1199
1200         if (!uptodate)
1201                 md_error(conf->mddev, conf->disks[i].rdev);
1202
1203         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1204         
1205         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1206         set_bit(STRIPE_HANDLE, &sh->state);
1207         release_stripe(sh);
1208 }
1209
1210
1211 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1212         
1213 static void raid5_build_block(struct stripe_head *sh, int i)
1214 {
1215         struct r5dev *dev = &sh->dev[i];
1216
1217         bio_init(&dev->req);
1218         dev->req.bi_io_vec = &dev->vec;
1219         dev->req.bi_vcnt++;
1220         dev->req.bi_max_vecs++;
1221         dev->vec.bv_page = dev->page;
1222         dev->vec.bv_len = STRIPE_SIZE;
1223         dev->vec.bv_offset = 0;
1224
1225         dev->req.bi_sector = sh->sector;
1226         dev->req.bi_private = sh;
1227
1228         dev->flags = 0;
1229         dev->sector = compute_blocknr(sh, i);
1230 }
1231
1232 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1233 {
1234         char b[BDEVNAME_SIZE];
1235         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1236         pr_debug("raid5: error called\n");
1237
1238         if (!test_bit(Faulty, &rdev->flags)) {
1239                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1240                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1241                         unsigned long flags;
1242                         spin_lock_irqsave(&conf->device_lock, flags);
1243                         mddev->degraded++;
1244                         spin_unlock_irqrestore(&conf->device_lock, flags);
1245                         /*
1246                          * if recovery was running, make sure it aborts.
1247                          */
1248                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1249                 }
1250                 set_bit(Faulty, &rdev->flags);
1251                 printk(KERN_ALERT
1252                        "raid5: Disk failure on %s, disabling device.\n"
1253                        "raid5: Operation continuing on %d devices.\n",
1254                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1255         }
1256 }
1257
1258 /*
1259  * Input: a 'big' sector number,
1260  * Output: index of the data and parity disk, and the sector # in them.
1261  */
1262 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1263                                      int previous, int *dd_idx,
1264                                      struct stripe_head *sh)
1265 {
1266         long stripe;
1267         unsigned long chunk_number;
1268         unsigned int chunk_offset;
1269         int pd_idx, qd_idx;
1270         sector_t new_sector;
1271         int sectors_per_chunk = conf->chunk_size >> 9;
1272         int raid_disks = previous ? conf->previous_raid_disks
1273                                   : conf->raid_disks;
1274         int data_disks = raid_disks - conf->max_degraded;
1275
1276         /* First compute the information on this sector */
1277
1278         /*
1279          * Compute the chunk number and the sector offset inside the chunk
1280          */
1281         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1282         chunk_number = r_sector;
1283         BUG_ON(r_sector != chunk_number);
1284
1285         /*
1286          * Compute the stripe number
1287          */
1288         stripe = chunk_number / data_disks;
1289
1290         /*
1291          * Compute the data disk and parity disk indexes inside the stripe
1292          */
1293         *dd_idx = chunk_number % data_disks;
1294
1295         /*
1296          * Select the parity disk based on the user selected algorithm.
1297          */
1298         pd_idx = qd_idx = ~0;
1299         switch(conf->level) {
1300         case 4:
1301                 pd_idx = data_disks;
1302                 break;
1303         case 5:
1304                 switch (conf->algorithm) {
1305                 case ALGORITHM_LEFT_ASYMMETRIC:
1306                         pd_idx = data_disks - stripe % raid_disks;
1307                         if (*dd_idx >= pd_idx)
1308                                 (*dd_idx)++;
1309                         break;
1310                 case ALGORITHM_RIGHT_ASYMMETRIC:
1311                         pd_idx = stripe % raid_disks;
1312                         if (*dd_idx >= pd_idx)
1313                                 (*dd_idx)++;
1314                         break;
1315                 case ALGORITHM_LEFT_SYMMETRIC:
1316                         pd_idx = data_disks - stripe % raid_disks;
1317                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1318                         break;
1319                 case ALGORITHM_RIGHT_SYMMETRIC:
1320                         pd_idx = stripe % raid_disks;
1321                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1322                         break;
1323                 case ALGORITHM_PARITY_0:
1324                         pd_idx = 0;
1325                         (*dd_idx)++;
1326                         break;
1327                 case ALGORITHM_PARITY_N:
1328                         pd_idx = data_disks;
1329                         break;
1330                 default:
1331                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1332                                 conf->algorithm);
1333                         BUG();
1334                 }
1335                 break;
1336         case 6:
1337
1338                 switch (conf->algorithm) {
1339                 case ALGORITHM_LEFT_ASYMMETRIC:
1340                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1341                         qd_idx = pd_idx + 1;
1342                         if (pd_idx == raid_disks-1) {
1343                                 (*dd_idx)++;    /* Q D D D P */
1344                                 qd_idx = 0;
1345                         } else if (*dd_idx >= pd_idx)
1346                                 (*dd_idx) += 2; /* D D P Q D */
1347                         break;
1348                 case ALGORITHM_RIGHT_ASYMMETRIC:
1349                         pd_idx = stripe % raid_disks;
1350                         qd_idx = pd_idx + 1;
1351                         if (pd_idx == raid_disks-1) {
1352                                 (*dd_idx)++;    /* Q D D D P */
1353                                 qd_idx = 0;
1354                         } else if (*dd_idx >= pd_idx)
1355                                 (*dd_idx) += 2; /* D D P Q D */
1356                         break;
1357                 case ALGORITHM_LEFT_SYMMETRIC:
1358                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1359                         qd_idx = (pd_idx + 1) % raid_disks;
1360                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1361                         break;
1362                 case ALGORITHM_RIGHT_SYMMETRIC:
1363                         pd_idx = stripe % raid_disks;
1364                         qd_idx = (pd_idx + 1) % raid_disks;
1365                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1366                         break;
1367
1368                 case ALGORITHM_PARITY_0:
1369                         pd_idx = 0;
1370                         qd_idx = 1;
1371                         (*dd_idx) += 2;
1372                         break;
1373                 case ALGORITHM_PARITY_N:
1374                         pd_idx = data_disks;
1375                         qd_idx = data_disks + 1;
1376                         break;
1377
1378                 case ALGORITHM_ROTATING_ZERO_RESTART:
1379                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1380                          * of blocks for computing Q is different.
1381                          */
1382                         pd_idx = stripe % raid_disks;
1383                         qd_idx = pd_idx + 1;
1384                         if (pd_idx == raid_disks-1) {
1385                                 (*dd_idx)++;    /* Q D D D P */
1386                                 qd_idx = 0;
1387                         } else if (*dd_idx >= pd_idx)
1388                                 (*dd_idx) += 2; /* D D P Q D */
1389                         break;
1390
1391                 case ALGORITHM_ROTATING_N_RESTART:
1392                         /* Same a left_asymmetric, by first stripe is
1393                          * D D D P Q  rather than
1394                          * Q D D D P
1395                          */
1396                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1397                         qd_idx = pd_idx + 1;
1398                         if (pd_idx == raid_disks-1) {
1399                                 (*dd_idx)++;    /* Q D D D P */
1400                                 qd_idx = 0;
1401                         } else if (*dd_idx >= pd_idx)
1402                                 (*dd_idx) += 2; /* D D P Q D */
1403                         break;
1404
1405                 case ALGORITHM_ROTATING_N_CONTINUE:
1406                         /* Same as left_symmetric but Q is before P */
1407                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1408                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1409                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1410                         break;
1411
1412                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1413                         /* RAID5 left_asymmetric, with Q on last device */
1414                         pd_idx = data_disks - stripe % (raid_disks-1);
1415                         if (*dd_idx >= pd_idx)
1416                                 (*dd_idx)++;
1417                         qd_idx = raid_disks - 1;
1418                         break;
1419
1420                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1421                         pd_idx = stripe % (raid_disks-1);
1422                         if (*dd_idx >= pd_idx)
1423                                 (*dd_idx)++;
1424                         qd_idx = raid_disks - 1;
1425                         break;
1426
1427                 case ALGORITHM_LEFT_SYMMETRIC_6:
1428                         pd_idx = data_disks - stripe % (raid_disks-1);
1429                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1430                         qd_idx = raid_disks - 1;
1431                         break;
1432
1433                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1434                         pd_idx = stripe % (raid_disks-1);
1435                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1436                         qd_idx = raid_disks - 1;
1437                         break;
1438
1439                 case ALGORITHM_PARITY_0_6:
1440                         pd_idx = 0;
1441                         (*dd_idx)++;
1442                         qd_idx = raid_disks - 1;
1443                         break;
1444
1445
1446                 default:
1447                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1448                                conf->algorithm);
1449                         BUG();
1450                 }
1451                 break;
1452         }
1453
1454         if (sh) {
1455                 sh->pd_idx = pd_idx;
1456                 sh->qd_idx = qd_idx;
1457         }
1458         /*
1459          * Finally, compute the new sector number
1460          */
1461         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1462         return new_sector;
1463 }
1464
1465
1466 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1467 {
1468         raid5_conf_t *conf = sh->raid_conf;
1469         int raid_disks = sh->disks;
1470         int data_disks = raid_disks - conf->max_degraded;
1471         sector_t new_sector = sh->sector, check;
1472         int sectors_per_chunk = conf->chunk_size >> 9;
1473         sector_t stripe;
1474         int chunk_offset;
1475         int chunk_number, dummy1, dd_idx = i;
1476         sector_t r_sector;
1477         struct stripe_head sh2;
1478
1479
1480         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1481         stripe = new_sector;
1482         BUG_ON(new_sector != stripe);
1483
1484         if (i == sh->pd_idx)
1485                 return 0;
1486         switch(conf->level) {
1487         case 4: break;
1488         case 5:
1489                 switch (conf->algorithm) {
1490                 case ALGORITHM_LEFT_ASYMMETRIC:
1491                 case ALGORITHM_RIGHT_ASYMMETRIC:
1492                         if (i > sh->pd_idx)
1493                                 i--;
1494                         break;
1495                 case ALGORITHM_LEFT_SYMMETRIC:
1496                 case ALGORITHM_RIGHT_SYMMETRIC:
1497                         if (i < sh->pd_idx)
1498                                 i += raid_disks;
1499                         i -= (sh->pd_idx + 1);
1500                         break;
1501                 case ALGORITHM_PARITY_0:
1502                         i -= 1;
1503                         break;
1504                 case ALGORITHM_PARITY_N:
1505                         break;
1506                 default:
1507                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1508                                conf->algorithm);
1509                         BUG();
1510                 }
1511                 break;
1512         case 6:
1513                 if (i == sh->qd_idx)
1514                         return 0; /* It is the Q disk */
1515                 switch (conf->algorithm) {
1516                 case ALGORITHM_LEFT_ASYMMETRIC:
1517                 case ALGORITHM_RIGHT_ASYMMETRIC:
1518                 case ALGORITHM_ROTATING_ZERO_RESTART:
1519                 case ALGORITHM_ROTATING_N_RESTART:
1520                         if (sh->pd_idx == raid_disks-1)
1521                                 i--;    /* Q D D D P */
1522                         else if (i > sh->pd_idx)
1523                                 i -= 2; /* D D P Q D */
1524                         break;
1525                 case ALGORITHM_LEFT_SYMMETRIC:
1526                 case ALGORITHM_RIGHT_SYMMETRIC:
1527                         if (sh->pd_idx == raid_disks-1)
1528                                 i--; /* Q D D D P */
1529                         else {
1530                                 /* D D P Q D */
1531                                 if (i < sh->pd_idx)
1532                                         i += raid_disks;
1533                                 i -= (sh->pd_idx + 2);
1534                         }
1535                         break;
1536                 case ALGORITHM_PARITY_0:
1537                         i -= 2;
1538                         break;
1539                 case ALGORITHM_PARITY_N:
1540                         break;
1541                 case ALGORITHM_ROTATING_N_CONTINUE:
1542                         if (sh->pd_idx == 0)
1543                                 i--;    /* P D D D Q */
1544                         else if (i > sh->pd_idx)
1545                                 i -= 2; /* D D Q P D */
1546                         break;
1547                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1548                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1549                         if (i > sh->pd_idx)
1550                                 i--;
1551                         break;
1552                 case ALGORITHM_LEFT_SYMMETRIC_6:
1553                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1554                         if (i < sh->pd_idx)
1555                                 i += data_disks + 1;
1556                         i -= (sh->pd_idx + 1);
1557                         break;
1558                 case ALGORITHM_PARITY_0_6:
1559                         i -= 1;
1560                         break;
1561                 default:
1562                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1563                                conf->algorithm);
1564                         BUG();
1565                 }
1566                 break;
1567         }
1568
1569         chunk_number = stripe * data_disks + i;
1570         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1571
1572         check = raid5_compute_sector(conf, r_sector,
1573                                      (raid_disks != conf->raid_disks),
1574                                      &dummy1, &sh2);
1575         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1576                 || sh2.qd_idx != sh->qd_idx) {
1577                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1578                 return 0;
1579         }
1580         return r_sector;
1581 }
1582
1583
1584
1585 /*
1586  * Copy data between a page in the stripe cache, and one or more bion
1587  * The page could align with the middle of the bio, or there could be
1588  * several bion, each with several bio_vecs, which cover part of the page
1589  * Multiple bion are linked together on bi_next.  There may be extras
1590  * at the end of this list.  We ignore them.
1591  */
1592 static void copy_data(int frombio, struct bio *bio,
1593                      struct page *page,
1594                      sector_t sector)
1595 {
1596         char *pa = page_address(page);
1597         struct bio_vec *bvl;
1598         int i;
1599         int page_offset;
1600
1601         if (bio->bi_sector >= sector)
1602                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1603         else
1604                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1605         bio_for_each_segment(bvl, bio, i) {
1606                 int len = bio_iovec_idx(bio,i)->bv_len;
1607                 int clen;
1608                 int b_offset = 0;
1609
1610                 if (page_offset < 0) {
1611                         b_offset = -page_offset;
1612                         page_offset += b_offset;
1613                         len -= b_offset;
1614                 }
1615
1616                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1617                         clen = STRIPE_SIZE - page_offset;
1618                 else clen = len;
1619
1620                 if (clen > 0) {
1621                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1622                         if (frombio)
1623                                 memcpy(pa+page_offset, ba+b_offset, clen);
1624                         else
1625                                 memcpy(ba+b_offset, pa+page_offset, clen);
1626                         __bio_kunmap_atomic(ba, KM_USER0);
1627                 }
1628                 if (clen < len) /* hit end of page */
1629                         break;
1630                 page_offset +=  len;
1631         }
1632 }
1633
1634 #define check_xor()     do {                                              \
1635                                 if (count == MAX_XOR_BLOCKS) {            \
1636                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1637                                 count = 0;                                \
1638                            }                                              \
1639                         } while(0)
1640
1641 static void compute_parity6(struct stripe_head *sh, int method)
1642 {
1643         raid5_conf_t *conf = sh->raid_conf;
1644         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1645         struct bio *chosen;
1646         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1647         void *ptrs[disks];
1648
1649         pd_idx = sh->pd_idx;
1650         qd_idx = sh->qd_idx;
1651         d0_idx = raid6_d0(sh);
1652
1653         pr_debug("compute_parity, stripe %llu, method %d\n",
1654                 (unsigned long long)sh->sector, method);
1655
1656         switch(method) {
1657         case READ_MODIFY_WRITE:
1658                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1659         case RECONSTRUCT_WRITE:
1660                 for (i= disks; i-- ;)
1661                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1662                                 chosen = sh->dev[i].towrite;
1663                                 sh->dev[i].towrite = NULL;
1664
1665                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1666                                         wake_up(&conf->wait_for_overlap);
1667
1668                                 BUG_ON(sh->dev[i].written);
1669                                 sh->dev[i].written = chosen;
1670                         }
1671                 break;
1672         case CHECK_PARITY:
1673                 BUG();          /* Not implemented yet */
1674         }
1675
1676         for (i = disks; i--;)
1677                 if (sh->dev[i].written) {
1678                         sector_t sector = sh->dev[i].sector;
1679                         struct bio *wbi = sh->dev[i].written;
1680                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1681                                 copy_data(1, wbi, sh->dev[i].page, sector);
1682                                 wbi = r5_next_bio(wbi, sector);
1683                         }
1684
1685                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1686                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1687                 }
1688
1689         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1690         /* FIX: Is this ordering of drives even remotely optimal? */
1691         count = 0;
1692         i = d0_idx;
1693         do {
1694                 int slot = raid6_idx_to_slot(i, sh, &count);
1695                 ptrs[slot] = page_address(sh->dev[i].page);
1696                 if (slot < sh->disks - 2 &&
1697                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1698                         printk(KERN_ERR "block %d/%d not uptodate "
1699                                "on parity calc\n", i, count);
1700                         BUG();
1701                 }
1702                 i = raid6_next_disk(i, disks);
1703         } while (i != d0_idx);
1704         BUG_ON(count+2 != disks);
1705
1706         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1707
1708         switch(method) {
1709         case RECONSTRUCT_WRITE:
1710                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1711                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1712                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1713                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1714                 break;
1715         case UPDATE_PARITY:
1716                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1717                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1718                 break;
1719         }
1720 }
1721
1722
1723 /* Compute one missing block */
1724 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1725 {
1726         int i, count, disks = sh->disks;
1727         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1728         int qd_idx = sh->qd_idx;
1729
1730         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1731                 (unsigned long long)sh->sector, dd_idx);
1732
1733         if ( dd_idx == qd_idx ) {
1734                 /* We're actually computing the Q drive */
1735                 compute_parity6(sh, UPDATE_PARITY);
1736         } else {
1737                 dest = page_address(sh->dev[dd_idx].page);
1738                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1739                 count = 0;
1740                 for (i = disks ; i--; ) {
1741                         if (i == dd_idx || i == qd_idx)
1742                                 continue;
1743                         p = page_address(sh->dev[i].page);
1744                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1745                                 ptr[count++] = p;
1746                         else
1747                                 printk("compute_block() %d, stripe %llu, %d"
1748                                        " not present\n", dd_idx,
1749                                        (unsigned long long)sh->sector, i);
1750
1751                         check_xor();
1752                 }
1753                 if (count)
1754                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1755                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1756                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1757         }
1758 }
1759
1760 /* Compute two missing blocks */
1761 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1762 {
1763         int i, count, disks = sh->disks;
1764         int d0_idx = raid6_d0(sh);
1765         int faila = -1, failb = -1;
1766         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1767         void *ptrs[disks];
1768
1769         count = 0;
1770         i = d0_idx;
1771         do {
1772                 int slot;
1773                 slot = raid6_idx_to_slot(i, sh, &count);
1774                 ptrs[slot] = page_address(sh->dev[i].page);
1775                 if (i == dd_idx1)
1776                         faila = slot;
1777                 if (i == dd_idx2)
1778                         failb = slot;
1779                 i = raid6_next_disk(i, disks);
1780         } while (i != d0_idx);
1781         BUG_ON(count+2 != disks);
1782
1783         BUG_ON(faila == failb);
1784         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1785
1786         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1787                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1788                  faila, failb);
1789
1790         if ( failb == disks-1 ) {
1791                 /* Q disk is one of the missing disks */
1792                 if ( faila == disks-2 ) {
1793                         /* Missing P+Q, just recompute */
1794                         compute_parity6(sh, UPDATE_PARITY);
1795                         return;
1796                 } else {
1797                         /* We're missing D+Q; recompute D from P */
1798                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1799                                              dd_idx2 : dd_idx1),
1800                                         0);
1801                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1802                         return;
1803                 }
1804         }
1805
1806         /* We're missing D+P or D+D; */
1807         if (failb == disks-2) {
1808                 /* We're missing D+P. */
1809                 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1810         } else {
1811                 /* We're missing D+D. */
1812                 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1813         }
1814
1815         /* Both the above update both missing blocks */
1816         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1817         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1818 }
1819
1820 static void
1821 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1822                          int rcw, int expand)
1823 {
1824         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1825
1826         if (rcw) {
1827                 /* if we are not expanding this is a proper write request, and
1828                  * there will be bios with new data to be drained into the
1829                  * stripe cache
1830                  */
1831                 if (!expand) {
1832                         sh->reconstruct_state = reconstruct_state_drain_run;
1833                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1834                 } else
1835                         sh->reconstruct_state = reconstruct_state_run;
1836
1837                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1838
1839                 for (i = disks; i--; ) {
1840                         struct r5dev *dev = &sh->dev[i];
1841
1842                         if (dev->towrite) {
1843                                 set_bit(R5_LOCKED, &dev->flags);
1844                                 set_bit(R5_Wantdrain, &dev->flags);
1845                                 if (!expand)
1846                                         clear_bit(R5_UPTODATE, &dev->flags);
1847                                 s->locked++;
1848                         }
1849                 }
1850                 if (s->locked + 1 == disks)
1851                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1852                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1853         } else {
1854                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1855                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1856
1857                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1858                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1859                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1860                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1861
1862                 for (i = disks; i--; ) {
1863                         struct r5dev *dev = &sh->dev[i];
1864                         if (i == pd_idx)
1865                                 continue;
1866
1867                         if (dev->towrite &&
1868                             (test_bit(R5_UPTODATE, &dev->flags) ||
1869                              test_bit(R5_Wantcompute, &dev->flags))) {
1870                                 set_bit(R5_Wantdrain, &dev->flags);
1871                                 set_bit(R5_LOCKED, &dev->flags);
1872                                 clear_bit(R5_UPTODATE, &dev->flags);
1873                                 s->locked++;
1874                         }
1875                 }
1876         }
1877
1878         /* keep the parity disk locked while asynchronous operations
1879          * are in flight
1880          */
1881         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1882         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1883         s->locked++;
1884
1885         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1886                 __func__, (unsigned long long)sh->sector,
1887                 s->locked, s->ops_request);
1888 }
1889
1890 /*
1891  * Each stripe/dev can have one or more bion attached.
1892  * toread/towrite point to the first in a chain.
1893  * The bi_next chain must be in order.
1894  */
1895 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1896 {
1897         struct bio **bip;
1898         raid5_conf_t *conf = sh->raid_conf;
1899         int firstwrite=0;
1900
1901         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1902                 (unsigned long long)bi->bi_sector,
1903                 (unsigned long long)sh->sector);
1904
1905
1906         spin_lock(&sh->lock);
1907         spin_lock_irq(&conf->device_lock);
1908         if (forwrite) {
1909                 bip = &sh->dev[dd_idx].towrite;
1910                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1911                         firstwrite = 1;
1912         } else
1913                 bip = &sh->dev[dd_idx].toread;
1914         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1915                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1916                         goto overlap;
1917                 bip = & (*bip)->bi_next;
1918         }
1919         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1920                 goto overlap;
1921
1922         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1923         if (*bip)
1924                 bi->bi_next = *bip;
1925         *bip = bi;
1926         bi->bi_phys_segments++;
1927         spin_unlock_irq(&conf->device_lock);
1928         spin_unlock(&sh->lock);
1929
1930         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1931                 (unsigned long long)bi->bi_sector,
1932                 (unsigned long long)sh->sector, dd_idx);
1933
1934         if (conf->mddev->bitmap && firstwrite) {
1935                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1936                                   STRIPE_SECTORS, 0);
1937                 sh->bm_seq = conf->seq_flush+1;
1938                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1939         }
1940
1941         if (forwrite) {
1942                 /* check if page is covered */
1943                 sector_t sector = sh->dev[dd_idx].sector;
1944                 for (bi=sh->dev[dd_idx].towrite;
1945                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1946                              bi && bi->bi_sector <= sector;
1947                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1948                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1949                                 sector = bi->bi_sector + (bi->bi_size>>9);
1950                 }
1951                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1952                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1953         }
1954         return 1;
1955
1956  overlap:
1957         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1958         spin_unlock_irq(&conf->device_lock);
1959         spin_unlock(&sh->lock);
1960         return 0;
1961 }
1962
1963 static void end_reshape(raid5_conf_t *conf);
1964
1965 static int page_is_zero(struct page *p)
1966 {
1967         char *a = page_address(p);
1968         return ((*(u32*)a) == 0 &&
1969                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1970 }
1971
1972 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1973                             struct stripe_head *sh)
1974 {
1975         int sectors_per_chunk = conf->chunk_size >> 9;
1976         int dd_idx;
1977         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1978         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1979
1980         raid5_compute_sector(conf,
1981                              stripe * (disks - conf->max_degraded)
1982                              *sectors_per_chunk + chunk_offset,
1983                              previous,
1984                              &dd_idx, sh);
1985 }
1986
1987 static void
1988 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1989                                 struct stripe_head_state *s, int disks,
1990                                 struct bio **return_bi)
1991 {
1992         int i;
1993         for (i = disks; i--; ) {
1994                 struct bio *bi;
1995                 int bitmap_end = 0;
1996
1997                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1998                         mdk_rdev_t *rdev;
1999                         rcu_read_lock();
2000                         rdev = rcu_dereference(conf->disks[i].rdev);
2001                         if (rdev && test_bit(In_sync, &rdev->flags))
2002                                 /* multiple read failures in one stripe */
2003                                 md_error(conf->mddev, rdev);
2004                         rcu_read_unlock();
2005                 }
2006                 spin_lock_irq(&conf->device_lock);
2007                 /* fail all writes first */
2008                 bi = sh->dev[i].towrite;
2009                 sh->dev[i].towrite = NULL;
2010                 if (bi) {
2011                         s->to_write--;
2012                         bitmap_end = 1;
2013                 }
2014
2015                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2016                         wake_up(&conf->wait_for_overlap);
2017
2018                 while (bi && bi->bi_sector <
2019                         sh->dev[i].sector + STRIPE_SECTORS) {
2020                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2021                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2022                         if (!raid5_dec_bi_phys_segments(bi)) {
2023                                 md_write_end(conf->mddev);
2024                                 bi->bi_next = *return_bi;
2025                                 *return_bi = bi;
2026                         }
2027                         bi = nextbi;
2028                 }
2029                 /* and fail all 'written' */
2030                 bi = sh->dev[i].written;
2031                 sh->dev[i].written = NULL;
2032                 if (bi) bitmap_end = 1;
2033                 while (bi && bi->bi_sector <
2034                        sh->dev[i].sector + STRIPE_SECTORS) {
2035                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2036                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2037                         if (!raid5_dec_bi_phys_segments(bi)) {
2038                                 md_write_end(conf->mddev);
2039                                 bi->bi_next = *return_bi;
2040                                 *return_bi = bi;
2041                         }
2042                         bi = bi2;
2043                 }
2044
2045                 /* fail any reads if this device is non-operational and
2046                  * the data has not reached the cache yet.
2047                  */
2048                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2049                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2050                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2051                         bi = sh->dev[i].toread;
2052                         sh->dev[i].toread = NULL;
2053                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2054                                 wake_up(&conf->wait_for_overlap);
2055                         if (bi) s->to_read--;
2056                         while (bi && bi->bi_sector <
2057                                sh->dev[i].sector + STRIPE_SECTORS) {
2058                                 struct bio *nextbi =
2059                                         r5_next_bio(bi, sh->dev[i].sector);
2060                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2061                                 if (!raid5_dec_bi_phys_segments(bi)) {
2062                                         bi->bi_next = *return_bi;
2063                                         *return_bi = bi;
2064                                 }
2065                                 bi = nextbi;
2066                         }
2067                 }
2068                 spin_unlock_irq(&conf->device_lock);
2069                 if (bitmap_end)
2070                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2071                                         STRIPE_SECTORS, 0, 0);
2072         }
2073
2074         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2075                 if (atomic_dec_and_test(&conf->pending_full_writes))
2076                         md_wakeup_thread(conf->mddev->thread);
2077 }
2078
2079 /* fetch_block5 - checks the given member device to see if its data needs
2080  * to be read or computed to satisfy a request.
2081  *
2082  * Returns 1 when no more member devices need to be checked, otherwise returns
2083  * 0 to tell the loop in handle_stripe_fill5 to continue
2084  */
2085 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2086                         int disk_idx, int disks)
2087 {
2088         struct r5dev *dev = &sh->dev[disk_idx];
2089         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2090
2091         /* is the data in this block needed, and can we get it? */
2092         if (!test_bit(R5_LOCKED, &dev->flags) &&
2093             !test_bit(R5_UPTODATE, &dev->flags) &&
2094             (dev->toread ||
2095              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2096              s->syncing || s->expanding ||
2097              (s->failed &&
2098               (failed_dev->toread ||
2099                (failed_dev->towrite &&
2100                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2101                 /* We would like to get this block, possibly by computing it,
2102                  * otherwise read it if the backing disk is insync
2103                  */
2104                 if ((s->uptodate == disks - 1) &&
2105                     (s->failed && disk_idx == s->failed_num)) {
2106                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2107                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2108                         set_bit(R5_Wantcompute, &dev->flags);
2109                         sh->ops.target = disk_idx;
2110                         s->req_compute = 1;
2111                         /* Careful: from this point on 'uptodate' is in the eye
2112                          * of raid5_run_ops which services 'compute' operations
2113                          * before writes. R5_Wantcompute flags a block that will
2114                          * be R5_UPTODATE by the time it is needed for a
2115                          * subsequent operation.
2116                          */
2117                         s->uptodate++;
2118                         return 1; /* uptodate + compute == disks */
2119                 } else if (test_bit(R5_Insync, &dev->flags)) {
2120                         set_bit(R5_LOCKED, &dev->flags);
2121                         set_bit(R5_Wantread, &dev->flags);
2122                         s->locked++;
2123                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2124                                 s->syncing);
2125                 }
2126         }
2127
2128         return 0;
2129 }
2130
2131 /**
2132  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2133  */
2134 static void handle_stripe_fill5(struct stripe_head *sh,
2135                         struct stripe_head_state *s, int disks)
2136 {
2137         int i;
2138
2139         /* look for blocks to read/compute, skip this if a compute
2140          * is already in flight, or if the stripe contents are in the
2141          * midst of changing due to a write
2142          */
2143         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2144             !sh->reconstruct_state)
2145                 for (i = disks; i--; )
2146                         if (fetch_block5(sh, s, i, disks))
2147                                 break;
2148         set_bit(STRIPE_HANDLE, &sh->state);
2149 }
2150
2151 static void handle_stripe_fill6(struct stripe_head *sh,
2152                         struct stripe_head_state *s, struct r6_state *r6s,
2153                         int disks)
2154 {
2155         int i;
2156         for (i = disks; i--; ) {
2157                 struct r5dev *dev = &sh->dev[i];
2158                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2159                     !test_bit(R5_UPTODATE, &dev->flags) &&
2160                     (dev->toread || (dev->towrite &&
2161                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2162                      s->syncing || s->expanding ||
2163                      (s->failed >= 1 &&
2164                       (sh->dev[r6s->failed_num[0]].toread ||
2165                        s->to_write)) ||
2166                      (s->failed >= 2 &&
2167                       (sh->dev[r6s->failed_num[1]].toread ||
2168                        s->to_write)))) {
2169                         /* we would like to get this block, possibly
2170                          * by computing it, but we might not be able to
2171                          */
2172                         if ((s->uptodate == disks - 1) &&
2173                             (s->failed && (i == r6s->failed_num[0] ||
2174                                            i == r6s->failed_num[1]))) {
2175                                 pr_debug("Computing stripe %llu block %d\n",
2176                                        (unsigned long long)sh->sector, i);
2177                                 compute_block_1(sh, i, 0);
2178                                 s->uptodate++;
2179                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2180                                 /* Computing 2-failure is *very* expensive; only
2181                                  * do it if failed >= 2
2182                                  */
2183                                 int other;
2184                                 for (other = disks; other--; ) {
2185                                         if (other == i)
2186                                                 continue;
2187                                         if (!test_bit(R5_UPTODATE,
2188                                               &sh->dev[other].flags))
2189                                                 break;
2190                                 }
2191                                 BUG_ON(other < 0);
2192                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2193                                        (unsigned long long)sh->sector,
2194                                        i, other);
2195                                 compute_block_2(sh, i, other);
2196                                 s->uptodate += 2;
2197                         } else if (test_bit(R5_Insync, &dev->flags)) {
2198                                 set_bit(R5_LOCKED, &dev->flags);
2199                                 set_bit(R5_Wantread, &dev->flags);
2200                                 s->locked++;
2201                                 pr_debug("Reading block %d (sync=%d)\n",
2202                                         i, s->syncing);
2203                         }
2204                 }
2205         }
2206         set_bit(STRIPE_HANDLE, &sh->state);
2207 }
2208
2209
2210 /* handle_stripe_clean_event
2211  * any written block on an uptodate or failed drive can be returned.
2212  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2213  * never LOCKED, so we don't need to test 'failed' directly.
2214  */
2215 static void handle_stripe_clean_event(raid5_conf_t *conf,
2216         struct stripe_head *sh, int disks, struct bio **return_bi)
2217 {
2218         int i;
2219         struct r5dev *dev;
2220
2221         for (i = disks; i--; )
2222                 if (sh->dev[i].written) {
2223                         dev = &sh->dev[i];
2224                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2225                                 test_bit(R5_UPTODATE, &dev->flags)) {
2226                                 /* We can return any write requests */
2227                                 struct bio *wbi, *wbi2;
2228                                 int bitmap_end = 0;
2229                                 pr_debug("Return write for disc %d\n", i);
2230                                 spin_lock_irq(&conf->device_lock);
2231                                 wbi = dev->written;
2232                                 dev->written = NULL;
2233                                 while (wbi && wbi->bi_sector <
2234                                         dev->sector + STRIPE_SECTORS) {
2235                                         wbi2 = r5_next_bio(wbi, dev->sector);
2236                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2237                                                 md_write_end(conf->mddev);
2238                                                 wbi->bi_next = *return_bi;
2239                                                 *return_bi = wbi;
2240                                         }
2241                                         wbi = wbi2;
2242                                 }
2243                                 if (dev->towrite == NULL)
2244                                         bitmap_end = 1;
2245                                 spin_unlock_irq(&conf->device_lock);
2246                                 if (bitmap_end)
2247                                         bitmap_endwrite(conf->mddev->bitmap,
2248                                                         sh->sector,
2249                                                         STRIPE_SECTORS,
2250                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2251                                                         0);
2252                         }
2253                 }
2254
2255         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2256                 if (atomic_dec_and_test(&conf->pending_full_writes))
2257                         md_wakeup_thread(conf->mddev->thread);
2258 }
2259
2260 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2261                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2262 {
2263         int rmw = 0, rcw = 0, i;
2264         for (i = disks; i--; ) {
2265                 /* would I have to read this buffer for read_modify_write */
2266                 struct r5dev *dev = &sh->dev[i];
2267                 if ((dev->towrite || i == sh->pd_idx) &&
2268                     !test_bit(R5_LOCKED, &dev->flags) &&
2269                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2270                       test_bit(R5_Wantcompute, &dev->flags))) {
2271                         if (test_bit(R5_Insync, &dev->flags))
2272                                 rmw++;
2273                         else
2274                                 rmw += 2*disks;  /* cannot read it */
2275                 }
2276                 /* Would I have to read this buffer for reconstruct_write */
2277                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2278                     !test_bit(R5_LOCKED, &dev->flags) &&
2279                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2280                     test_bit(R5_Wantcompute, &dev->flags))) {
2281                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2282                         else
2283                                 rcw += 2*disks;
2284                 }
2285         }
2286         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2287                 (unsigned long long)sh->sector, rmw, rcw);
2288         set_bit(STRIPE_HANDLE, &sh->state);
2289         if (rmw < rcw && rmw > 0)
2290                 /* prefer read-modify-write, but need to get some data */
2291                 for (i = disks; i--; ) {
2292                         struct r5dev *dev = &sh->dev[i];
2293                         if ((dev->towrite || i == sh->pd_idx) &&
2294                             !test_bit(R5_LOCKED, &dev->flags) &&
2295                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2296                             test_bit(R5_Wantcompute, &dev->flags)) &&
2297                             test_bit(R5_Insync, &dev->flags)) {
2298                                 if (
2299                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2300                                         pr_debug("Read_old block "
2301                                                 "%d for r-m-w\n", i);
2302                                         set_bit(R5_LOCKED, &dev->flags);
2303                                         set_bit(R5_Wantread, &dev->flags);
2304                                         s->locked++;
2305                                 } else {
2306                                         set_bit(STRIPE_DELAYED, &sh->state);
2307                                         set_bit(STRIPE_HANDLE, &sh->state);
2308                                 }
2309                         }
2310                 }
2311         if (rcw <= rmw && rcw > 0)
2312                 /* want reconstruct write, but need to get some data */
2313                 for (i = disks; i--; ) {
2314                         struct r5dev *dev = &sh->dev[i];
2315                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2316                             i != sh->pd_idx &&
2317                             !test_bit(R5_LOCKED, &dev->flags) &&
2318                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2319                             test_bit(R5_Wantcompute, &dev->flags)) &&
2320                             test_bit(R5_Insync, &dev->flags)) {
2321                                 if (
2322                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2323                                         pr_debug("Read_old block "
2324                                                 "%d for Reconstruct\n", i);
2325                                         set_bit(R5_LOCKED, &dev->flags);
2326                                         set_bit(R5_Wantread, &dev->flags);
2327                                         s->locked++;
2328                                 } else {
2329                                         set_bit(STRIPE_DELAYED, &sh->state);
2330                                         set_bit(STRIPE_HANDLE, &sh->state);
2331                                 }
2332                         }
2333                 }
2334         /* now if nothing is locked, and if we have enough data,
2335          * we can start a write request
2336          */
2337         /* since handle_stripe can be called at any time we need to handle the
2338          * case where a compute block operation has been submitted and then a
2339          * subsequent call wants to start a write request.  raid5_run_ops only
2340          * handles the case where compute block and postxor are requested
2341          * simultaneously.  If this is not the case then new writes need to be
2342          * held off until the compute completes.
2343          */
2344         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2345             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2346             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2347                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2348 }
2349
2350 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2351                 struct stripe_head *sh, struct stripe_head_state *s,
2352                 struct r6_state *r6s, int disks)
2353 {
2354         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2355         int qd_idx = r6s->qd_idx;
2356         for (i = disks; i--; ) {
2357                 struct r5dev *dev = &sh->dev[i];
2358                 /* Would I have to read this buffer for reconstruct_write */
2359                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2360                     && i != pd_idx && i != qd_idx
2361                     && (!test_bit(R5_LOCKED, &dev->flags)
2362                             ) &&
2363                     !test_bit(R5_UPTODATE, &dev->flags)) {
2364                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2365                         else {
2366                                 pr_debug("raid6: must_compute: "
2367                                         "disk %d flags=%#lx\n", i, dev->flags);
2368                                 must_compute++;
2369                         }
2370                 }
2371         }
2372         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2373                (unsigned long long)sh->sector, rcw, must_compute);
2374         set_bit(STRIPE_HANDLE, &sh->state);
2375
2376         if (rcw > 0)
2377                 /* want reconstruct write, but need to get some data */
2378                 for (i = disks; i--; ) {
2379                         struct r5dev *dev = &sh->dev[i];
2380                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2381                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2382                             && !test_bit(R5_LOCKED, &dev->flags) &&
2383                             !test_bit(R5_UPTODATE, &dev->flags) &&
2384                             test_bit(R5_Insync, &dev->flags)) {
2385                                 if (
2386                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2387                                         pr_debug("Read_old stripe %llu "
2388                                                 "block %d for Reconstruct\n",
2389                                              (unsigned long long)sh->sector, i);
2390                                         set_bit(R5_LOCKED, &dev->flags);
2391                                         set_bit(R5_Wantread, &dev->flags);
2392                                         s->locked++;
2393                                 } else {
2394                                         pr_debug("Request delayed stripe %llu "
2395                                                 "block %d for Reconstruct\n",
2396                                              (unsigned long long)sh->sector, i);
2397                                         set_bit(STRIPE_DELAYED, &sh->state);
2398                                         set_bit(STRIPE_HANDLE, &sh->state);
2399                                 }
2400                         }
2401                 }
2402         /* now if nothing is locked, and if we have enough data, we can start a
2403          * write request
2404          */
2405         if (s->locked == 0 && rcw == 0 &&
2406             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2407                 if (must_compute > 0) {
2408                         /* We have failed blocks and need to compute them */
2409                         switch (s->failed) {
2410                         case 0:
2411                                 BUG();
2412                         case 1:
2413                                 compute_block_1(sh, r6s->failed_num[0], 0);
2414                                 break;
2415                         case 2:
2416                                 compute_block_2(sh, r6s->failed_num[0],
2417                                                 r6s->failed_num[1]);
2418                                 break;
2419                         default: /* This request should have been failed? */
2420                                 BUG();
2421                         }
2422                 }
2423
2424                 pr_debug("Computing parity for stripe %llu\n",
2425                         (unsigned long long)sh->sector);
2426                 compute_parity6(sh, RECONSTRUCT_WRITE);
2427                 /* now every locked buffer is ready to be written */
2428                 for (i = disks; i--; )
2429                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2430                                 pr_debug("Writing stripe %llu block %d\n",
2431                                        (unsigned long long)sh->sector, i);
2432                                 s->locked++;
2433                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2434                         }
2435                 if (s->locked == disks)
2436                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2437                                 atomic_inc(&conf->pending_full_writes);
2438                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2439                 set_bit(STRIPE_INSYNC, &sh->state);
2440
2441                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2442                         atomic_dec(&conf->preread_active_stripes);
2443                         if (atomic_read(&conf->preread_active_stripes) <
2444                             IO_THRESHOLD)
2445                                 md_wakeup_thread(conf->mddev->thread);
2446                 }
2447         }
2448 }
2449
2450 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2451                                 struct stripe_head_state *s, int disks)
2452 {
2453         struct r5dev *dev = NULL;
2454
2455         set_bit(STRIPE_HANDLE, &sh->state);
2456
2457         switch (sh->check_state) {
2458         case check_state_idle:
2459                 /* start a new check operation if there are no failures */
2460                 if (s->failed == 0) {
2461                         BUG_ON(s->uptodate != disks);
2462                         sh->check_state = check_state_run;
2463                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2464                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2465                         s->uptodate--;
2466                         break;
2467                 }
2468                 dev = &sh->dev[s->failed_num];
2469                 /* fall through */
2470         case check_state_compute_result:
2471                 sh->check_state = check_state_idle;
2472                 if (!dev)
2473                         dev = &sh->dev[sh->pd_idx];
2474
2475                 /* check that a write has not made the stripe insync */
2476                 if (test_bit(STRIPE_INSYNC, &sh->state))
2477                         break;
2478
2479                 /* either failed parity check, or recovery is happening */
2480                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2481                 BUG_ON(s->uptodate != disks);
2482
2483                 set_bit(R5_LOCKED, &dev->flags);
2484                 s->locked++;
2485                 set_bit(R5_Wantwrite, &dev->flags);
2486
2487                 clear_bit(STRIPE_DEGRADED, &sh->state);
2488                 set_bit(STRIPE_INSYNC, &sh->state);
2489                 break;
2490         case check_state_run:
2491                 break; /* we will be called again upon completion */
2492         case check_state_check_result:
2493                 sh->check_state = check_state_idle;
2494
2495                 /* if a failure occurred during the check operation, leave
2496                  * STRIPE_INSYNC not set and let the stripe be handled again
2497                  */
2498                 if (s->failed)
2499                         break;
2500
2501                 /* handle a successful check operation, if parity is correct
2502                  * we are done.  Otherwise update the mismatch count and repair
2503                  * parity if !MD_RECOVERY_CHECK
2504                  */
2505                 if (sh->ops.zero_sum_result == 0)
2506                         /* parity is correct (on disc,
2507                          * not in buffer any more)
2508                          */
2509                         set_bit(STRIPE_INSYNC, &sh->state);
2510                 else {
2511                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2512                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2513                                 /* don't try to repair!! */
2514                                 set_bit(STRIPE_INSYNC, &sh->state);
2515                         else {
2516                                 sh->check_state = check_state_compute_run;
2517                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2518                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2519                                 set_bit(R5_Wantcompute,
2520                                         &sh->dev[sh->pd_idx].flags);
2521                                 sh->ops.target = sh->pd_idx;
2522                                 s->uptodate++;
2523                         }
2524                 }
2525                 break;
2526         case check_state_compute_run:
2527                 break;
2528         default:
2529                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2530                        __func__, sh->check_state,
2531                        (unsigned long long) sh->sector);
2532                 BUG();
2533         }
2534 }
2535
2536
2537 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2538                                 struct stripe_head_state *s,
2539                                 struct r6_state *r6s, struct page *tmp_page,
2540                                 int disks)
2541 {
2542         int update_p = 0, update_q = 0;
2543         struct r5dev *dev;
2544         int pd_idx = sh->pd_idx;
2545         int qd_idx = r6s->qd_idx;
2546
2547         set_bit(STRIPE_HANDLE, &sh->state);
2548
2549         BUG_ON(s->failed > 2);
2550         BUG_ON(s->uptodate < disks);
2551         /* Want to check and possibly repair P and Q.
2552          * However there could be one 'failed' device, in which
2553          * case we can only check one of them, possibly using the
2554          * other to generate missing data
2555          */
2556
2557         /* If !tmp_page, we cannot do the calculations,
2558          * but as we have set STRIPE_HANDLE, we will soon be called
2559          * by stripe_handle with a tmp_page - just wait until then.
2560          */
2561         if (tmp_page) {
2562                 if (s->failed == r6s->q_failed) {
2563                         /* The only possible failed device holds 'Q', so it
2564                          * makes sense to check P (If anything else were failed,
2565                          * we would have used P to recreate it).
2566                          */
2567                         compute_block_1(sh, pd_idx, 1);
2568                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2569                                 compute_block_1(sh, pd_idx, 0);
2570                                 update_p = 1;
2571                         }
2572                 }
2573                 if (!r6s->q_failed && s->failed < 2) {
2574                         /* q is not failed, and we didn't use it to generate
2575                          * anything, so it makes sense to check it
2576                          */
2577                         memcpy(page_address(tmp_page),
2578                                page_address(sh->dev[qd_idx].page),
2579                                STRIPE_SIZE);
2580                         compute_parity6(sh, UPDATE_PARITY);
2581                         if (memcmp(page_address(tmp_page),
2582                                    page_address(sh->dev[qd_idx].page),
2583                                    STRIPE_SIZE) != 0) {
2584                                 clear_bit(STRIPE_INSYNC, &sh->state);
2585                                 update_q = 1;
2586                         }
2587                 }
2588                 if (update_p || update_q) {
2589                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2590                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2591                                 /* don't try to repair!! */
2592                                 update_p = update_q = 0;
2593                 }
2594
2595                 /* now write out any block on a failed drive,
2596                  * or P or Q if they need it
2597                  */
2598
2599                 if (s->failed == 2) {
2600                         dev = &sh->dev[r6s->failed_num[1]];
2601                         s->locked++;
2602                         set_bit(R5_LOCKED, &dev->flags);
2603                         set_bit(R5_Wantwrite, &dev->flags);
2604                 }
2605                 if (s->failed >= 1) {
2606                         dev = &sh->dev[r6s->failed_num[0]];
2607                         s->locked++;
2608                         set_bit(R5_LOCKED, &dev->flags);
2609                         set_bit(R5_Wantwrite, &dev->flags);
2610                 }
2611
2612                 if (update_p) {
2613                         dev = &sh->dev[pd_idx];
2614                         s->locked++;
2615                         set_bit(R5_LOCKED, &dev->flags);
2616                         set_bit(R5_Wantwrite, &dev->flags);
2617                 }
2618                 if (update_q) {
2619                         dev = &sh->dev[qd_idx];
2620                         s->locked++;
2621                         set_bit(R5_LOCKED, &dev->flags);
2622                         set_bit(R5_Wantwrite, &dev->flags);
2623                 }
2624                 clear_bit(STRIPE_DEGRADED, &sh->state);
2625
2626                 set_bit(STRIPE_INSYNC, &sh->state);
2627         }
2628 }
2629
2630 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2631                                 struct r6_state *r6s)
2632 {
2633         int i;
2634
2635         /* We have read all the blocks in this stripe and now we need to
2636          * copy some of them into a target stripe for expand.
2637          */
2638         struct dma_async_tx_descriptor *tx = NULL;
2639         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2640         for (i = 0; i < sh->disks; i++)
2641                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2642                         int dd_idx, j;
2643                         struct stripe_head *sh2;
2644
2645                         sector_t bn = compute_blocknr(sh, i);
2646                         sector_t s = raid5_compute_sector(conf, bn, 0,
2647                                                           &dd_idx, NULL);
2648                         sh2 = get_active_stripe(conf, s, 0, 1);
2649                         if (sh2 == NULL)
2650                                 /* so far only the early blocks of this stripe
2651                                  * have been requested.  When later blocks
2652                                  * get requested, we will try again
2653                                  */
2654                                 continue;
2655                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2656                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2657                                 /* must have already done this block */
2658                                 release_stripe(sh2);
2659                                 continue;
2660                         }
2661
2662                         /* place all the copies on one channel */
2663                         tx = async_memcpy(sh2->dev[dd_idx].page,
2664                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2665                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2666
2667                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2668                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2669                         for (j = 0; j < conf->raid_disks; j++)
2670                                 if (j != sh2->pd_idx &&
2671                                     (!r6s || j != sh2->qd_idx) &&
2672                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2673                                         break;
2674                         if (j == conf->raid_disks) {
2675                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2676                                 set_bit(STRIPE_HANDLE, &sh2->state);
2677                         }
2678                         release_stripe(sh2);
2679
2680                 }
2681         /* done submitting copies, wait for them to complete */
2682         if (tx) {
2683                 async_tx_ack(tx);
2684                 dma_wait_for_async_tx(tx);
2685         }
2686 }
2687
2688
2689 /*
2690  * handle_stripe - do things to a stripe.
2691  *
2692  * We lock the stripe and then examine the state of various bits
2693  * to see what needs to be done.
2694  * Possible results:
2695  *    return some read request which now have data
2696  *    return some write requests which are safely on disc
2697  *    schedule a read on some buffers
2698  *    schedule a write of some buffers
2699  *    return confirmation of parity correctness
2700  *
2701  * buffers are taken off read_list or write_list, and bh_cache buffers
2702  * get BH_Lock set before the stripe lock is released.
2703  *
2704  */
2705
2706 static bool handle_stripe5(struct stripe_head *sh)
2707 {
2708         raid5_conf_t *conf = sh->raid_conf;
2709         int disks = sh->disks, i;
2710         struct bio *return_bi = NULL;
2711         struct stripe_head_state s;
2712         struct r5dev *dev;
2713         mdk_rdev_t *blocked_rdev = NULL;
2714         int prexor;
2715
2716         memset(&s, 0, sizeof(s));
2717         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2718                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2719                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2720                  sh->reconstruct_state);
2721
2722         spin_lock(&sh->lock);
2723         clear_bit(STRIPE_HANDLE, &sh->state);
2724         clear_bit(STRIPE_DELAYED, &sh->state);
2725
2726         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2727         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2728         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2729
2730         /* Now to look around and see what can be done */
2731         rcu_read_lock();
2732         for (i=disks; i--; ) {
2733                 mdk_rdev_t *rdev;
2734                 struct r5dev *dev = &sh->dev[i];
2735                 clear_bit(R5_Insync, &dev->flags);
2736
2737                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2738                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2739                         dev->towrite, dev->written);
2740
2741                 /* maybe we can request a biofill operation
2742                  *
2743                  * new wantfill requests are only permitted while
2744                  * ops_complete_biofill is guaranteed to be inactive
2745                  */
2746                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2747                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2748                         set_bit(R5_Wantfill, &dev->flags);
2749
2750                 /* now count some things */
2751                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2752                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2753                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2754
2755                 if (test_bit(R5_Wantfill, &dev->flags))
2756                         s.to_fill++;
2757                 else if (dev->toread)
2758                         s.to_read++;
2759                 if (dev->towrite) {
2760                         s.to_write++;
2761                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2762                                 s.non_overwrite++;
2763                 }
2764                 if (dev->written)
2765                         s.written++;
2766                 rdev = rcu_dereference(conf->disks[i].rdev);
2767                 if (blocked_rdev == NULL &&
2768                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2769                         blocked_rdev = rdev;
2770                         atomic_inc(&rdev->nr_pending);
2771                 }
2772                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2773                         /* The ReadError flag will just be confusing now */
2774                         clear_bit(R5_ReadError, &dev->flags);
2775                         clear_bit(R5_ReWrite, &dev->flags);
2776                 }
2777                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2778                     || test_bit(R5_ReadError, &dev->flags)) {
2779                         s.failed++;
2780                         s.failed_num = i;
2781                 } else
2782                         set_bit(R5_Insync, &dev->flags);
2783         }
2784         rcu_read_unlock();
2785
2786         if (unlikely(blocked_rdev)) {
2787                 if (s.syncing || s.expanding || s.expanded ||
2788                     s.to_write || s.written) {
2789                         set_bit(STRIPE_HANDLE, &sh->state);
2790                         goto unlock;
2791                 }
2792                 /* There is nothing for the blocked_rdev to block */
2793                 rdev_dec_pending(blocked_rdev, conf->mddev);
2794                 blocked_rdev = NULL;
2795         }
2796
2797         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2798                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2799                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2800         }
2801
2802         pr_debug("locked=%d uptodate=%d to_read=%d"
2803                 " to_write=%d failed=%d failed_num=%d\n",
2804                 s.locked, s.uptodate, s.to_read, s.to_write,
2805                 s.failed, s.failed_num);
2806         /* check if the array has lost two devices and, if so, some requests might
2807          * need to be failed
2808          */
2809         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2810                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2811         if (s.failed > 1 && s.syncing) {
2812                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2813                 clear_bit(STRIPE_SYNCING, &sh->state);
2814                 s.syncing = 0;
2815         }
2816
2817         /* might be able to return some write requests if the parity block
2818          * is safe, or on a failed drive
2819          */
2820         dev = &sh->dev[sh->pd_idx];
2821         if ( s.written &&
2822              ((test_bit(R5_Insync, &dev->flags) &&
2823                !test_bit(R5_LOCKED, &dev->flags) &&
2824                test_bit(R5_UPTODATE, &dev->flags)) ||
2825                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2826                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2827
2828         /* Now we might consider reading some blocks, either to check/generate
2829          * parity, or to satisfy requests
2830          * or to load a block that is being partially written.
2831          */
2832         if (s.to_read || s.non_overwrite ||
2833             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2834                 handle_stripe_fill5(sh, &s, disks);
2835
2836         /* Now we check to see if any write operations have recently
2837          * completed
2838          */
2839         prexor = 0;
2840         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2841                 prexor = 1;
2842         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2843             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2844                 sh->reconstruct_state = reconstruct_state_idle;
2845
2846                 /* All the 'written' buffers and the parity block are ready to
2847                  * be written back to disk
2848                  */
2849                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2850                 for (i = disks; i--; ) {
2851                         dev = &sh->dev[i];
2852                         if (test_bit(R5_LOCKED, &dev->flags) &&
2853                                 (i == sh->pd_idx || dev->written)) {
2854                                 pr_debug("Writing block %d\n", i);
2855                                 set_bit(R5_Wantwrite, &dev->flags);
2856                                 if (prexor)
2857                                         continue;
2858                                 if (!test_bit(R5_Insync, &dev->flags) ||
2859                                     (i == sh->pd_idx && s.failed == 0))
2860                                         set_bit(STRIPE_INSYNC, &sh->state);
2861                         }
2862                 }
2863                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2864                         atomic_dec(&conf->preread_active_stripes);
2865                         if (atomic_read(&conf->preread_active_stripes) <
2866                                 IO_THRESHOLD)
2867                                 md_wakeup_thread(conf->mddev->thread);
2868                 }
2869         }
2870
2871         /* Now to consider new write requests and what else, if anything
2872          * should be read.  We do not handle new writes when:
2873          * 1/ A 'write' operation (copy+xor) is already in flight.
2874          * 2/ A 'check' operation is in flight, as it may clobber the parity
2875          *    block.
2876          */
2877         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2878                 handle_stripe_dirtying5(conf, sh, &s, disks);
2879
2880         /* maybe we need to check and possibly fix the parity for this stripe
2881          * Any reads will already have been scheduled, so we just see if enough
2882          * data is available.  The parity check is held off while parity
2883          * dependent operations are in flight.
2884          */
2885         if (sh->check_state ||
2886             (s.syncing && s.locked == 0 &&
2887              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2888              !test_bit(STRIPE_INSYNC, &sh->state)))
2889                 handle_parity_checks5(conf, sh, &s, disks);
2890
2891         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2892                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2893                 clear_bit(STRIPE_SYNCING, &sh->state);
2894         }
2895
2896         /* If the failed drive is just a ReadError, then we might need to progress
2897          * the repair/check process
2898          */
2899         if (s.failed == 1 && !conf->mddev->ro &&
2900             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2901             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2902             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2903                 ) {
2904                 dev = &sh->dev[s.failed_num];
2905                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2906                         set_bit(R5_Wantwrite, &dev->flags);
2907                         set_bit(R5_ReWrite, &dev->flags);
2908                         set_bit(R5_LOCKED, &dev->flags);
2909                         s.locked++;
2910                 } else {
2911                         /* let's read it back */
2912                         set_bit(R5_Wantread, &dev->flags);
2913                         set_bit(R5_LOCKED, &dev->flags);
2914                         s.locked++;
2915                 }
2916         }
2917
2918         /* Finish reconstruct operations initiated by the expansion process */
2919         if (sh->reconstruct_state == reconstruct_state_result) {
2920                 sh->reconstruct_state = reconstruct_state_idle;
2921                 clear_bit(STRIPE_EXPANDING, &sh->state);
2922                 for (i = conf->raid_disks; i--; ) {
2923                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2924                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2925                         s.locked++;
2926                 }
2927         }
2928
2929         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2930             !sh->reconstruct_state) {
2931                 /* Need to write out all blocks after computing parity */
2932                 sh->disks = conf->raid_disks;
2933                 stripe_set_idx(sh->sector, conf, 0, sh);
2934                 schedule_reconstruction5(sh, &s, 1, 1);
2935         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2936                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2937                 atomic_dec(&conf->reshape_stripes);
2938                 wake_up(&conf->wait_for_overlap);
2939                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2940         }
2941
2942         if (s.expanding && s.locked == 0 &&
2943             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2944                 handle_stripe_expansion(conf, sh, NULL);
2945
2946  unlock:
2947         spin_unlock(&sh->lock);
2948
2949         /* wait for this device to become unblocked */
2950         if (unlikely(blocked_rdev))
2951                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2952
2953         if (s.ops_request)
2954                 raid5_run_ops(sh, s.ops_request);
2955
2956         ops_run_io(sh, &s);
2957
2958         return_io(return_bi);
2959
2960         return blocked_rdev == NULL;
2961 }
2962
2963 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2964 {
2965         raid5_conf_t *conf = sh->raid_conf;
2966         int disks = sh->disks;
2967         struct bio *return_bi = NULL;
2968         int i, pd_idx = sh->pd_idx;
2969         struct stripe_head_state s;
2970         struct r6_state r6s;
2971         struct r5dev *dev, *pdev, *qdev;
2972         mdk_rdev_t *blocked_rdev = NULL;
2973
2974         r6s.qd_idx = sh->qd_idx;
2975         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2976                 "pd_idx=%d, qd_idx=%d\n",
2977                (unsigned long long)sh->sector, sh->state,
2978                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2979         memset(&s, 0, sizeof(s));
2980
2981         spin_lock(&sh->lock);
2982         clear_bit(STRIPE_HANDLE, &sh->state);
2983         clear_bit(STRIPE_DELAYED, &sh->state);
2984
2985         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2986         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2987         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2988         /* Now to look around and see what can be done */
2989
2990         rcu_read_lock();
2991         for (i=disks; i--; ) {
2992                 mdk_rdev_t *rdev;
2993                 dev = &sh->dev[i];
2994                 clear_bit(R5_Insync, &dev->flags);
2995
2996                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2997                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2998                 /* maybe we can reply to a read */
2999                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3000                         struct bio *rbi, *rbi2;
3001                         pr_debug("Return read for disc %d\n", i);
3002                         spin_lock_irq(&conf->device_lock);
3003                         rbi = dev->toread;
3004                         dev->toread = NULL;
3005                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3006                                 wake_up(&conf->wait_for_overlap);
3007                         spin_unlock_irq(&conf->device_lock);
3008                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3009                                 copy_data(0, rbi, dev->page, dev->sector);
3010                                 rbi2 = r5_next_bio(rbi, dev->sector);
3011                                 spin_lock_irq(&conf->device_lock);
3012                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3013                                         rbi->bi_next = return_bi;
3014                                         return_bi = rbi;
3015                                 }
3016                                 spin_unlock_irq(&conf->device_lock);
3017                                 rbi = rbi2;
3018                         }
3019                 }
3020
3021                 /* now count some things */
3022                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3023                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3024
3025
3026                 if (dev->toread)
3027                         s.to_read++;
3028                 if (dev->towrite) {
3029                         s.to_write++;
3030                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3031                                 s.non_overwrite++;
3032                 }
3033                 if (dev->written)
3034                         s.written++;
3035                 rdev = rcu_dereference(conf->disks[i].rdev);
3036                 if (blocked_rdev == NULL &&
3037                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3038                         blocked_rdev = rdev;
3039                         atomic_inc(&rdev->nr_pending);
3040                 }
3041                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3042                         /* The ReadError flag will just be confusing now */
3043                         clear_bit(R5_ReadError, &dev->flags);
3044                         clear_bit(R5_ReWrite, &dev->flags);
3045                 }
3046                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3047                     || test_bit(R5_ReadError, &dev->flags)) {
3048                         if (s.failed < 2)
3049                                 r6s.failed_num[s.failed] = i;
3050                         s.failed++;
3051                 } else
3052                         set_bit(R5_Insync, &dev->flags);
3053         }
3054         rcu_read_unlock();
3055
3056         if (unlikely(blocked_rdev)) {
3057                 if (s.syncing || s.expanding || s.expanded ||
3058                     s.to_write || s.written) {
3059                         set_bit(STRIPE_HANDLE, &sh->state);
3060                         goto unlock;
3061                 }
3062                 /* There is nothing for the blocked_rdev to block */
3063                 rdev_dec_pending(blocked_rdev, conf->mddev);
3064                 blocked_rdev = NULL;
3065         }
3066
3067         pr_debug("locked=%d uptodate=%d to_read=%d"
3068                " to_write=%d failed=%d failed_num=%d,%d\n",
3069                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3070                r6s.failed_num[0], r6s.failed_num[1]);
3071         /* check if the array has lost >2 devices and, if so, some requests
3072          * might need to be failed
3073          */
3074         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3075                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3076         if (s.failed > 2 && s.syncing) {
3077                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3078                 clear_bit(STRIPE_SYNCING, &sh->state);
3079                 s.syncing = 0;
3080         }
3081
3082         /*
3083          * might be able to return some write requests if the parity blocks
3084          * are safe, or on a failed drive
3085          */
3086         pdev = &sh->dev[pd_idx];
3087         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3088                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3089         qdev = &sh->dev[r6s.qd_idx];
3090         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3091                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3092
3093         if ( s.written &&
3094              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3095                              && !test_bit(R5_LOCKED, &pdev->flags)
3096                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3097              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3098                              && !test_bit(R5_LOCKED, &qdev->flags)
3099                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3100                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3101
3102         /* Now we might consider reading some blocks, either to check/generate
3103          * parity, or to satisfy requests
3104          * or to load a block that is being partially written.
3105          */
3106         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3107             (s.syncing && (s.uptodate < disks)) || s.expanding)
3108                 handle_stripe_fill6(sh, &s, &r6s, disks);
3109
3110         /* now to consider writing and what else, if anything should be read */
3111         if (s.to_write)
3112                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3113
3114         /* maybe we need to check and possibly fix the parity for this stripe
3115          * Any reads will already have been scheduled, so we just see if enough
3116          * data is available
3117          */
3118         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3119                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3120
3121         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3122                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3123                 clear_bit(STRIPE_SYNCING, &sh->state);
3124         }
3125
3126         /* If the failed drives are just a ReadError, then we might need
3127          * to progress the repair/check process
3128          */
3129         if (s.failed <= 2 && !conf->mddev->ro)
3130                 for (i = 0; i < s.failed; i++) {
3131                         dev = &sh->dev[r6s.failed_num[i]];
3132                         if (test_bit(R5_ReadError, &dev->flags)
3133                             && !test_bit(R5_LOCKED, &dev->flags)
3134                             && test_bit(R5_UPTODATE, &dev->flags)
3135                                 ) {
3136                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3137                                         set_bit(R5_Wantwrite, &dev->flags);
3138                                         set_bit(R5_ReWrite, &dev->flags);
3139                                         set_bit(R5_LOCKED, &dev->flags);
3140                                 } else {
3141                                         /* let's read it back */
3142                                         set_bit(R5_Wantread, &dev->flags);
3143                                         set_bit(R5_LOCKED, &dev->flags);
3144                                 }
3145                         }
3146                 }
3147
3148         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3149                 /* Need to write out all blocks after computing P&Q */
3150                 sh->disks = conf->raid_disks;
3151                 stripe_set_idx(sh->sector, conf, 0, sh);
3152                 compute_parity6(sh, RECONSTRUCT_WRITE);
3153                 for (i = conf->raid_disks ; i-- ;  ) {
3154                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3155                         s.locked++;
3156                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3157                 }
3158                 clear_bit(STRIPE_EXPANDING, &sh->state);
3159         } else if (s.expanded) {
3160                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3161                 atomic_dec(&conf->reshape_stripes);
3162                 wake_up(&conf->wait_for_overlap);
3163                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3164         }
3165
3166         if (s.expanding && s.locked == 0 &&
3167             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3168                 handle_stripe_expansion(conf, sh, &r6s);
3169
3170  unlock:
3171         spin_unlock(&sh->lock);
3172
3173         /* wait for this device to become unblocked */
3174         if (unlikely(blocked_rdev))
3175                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3176
3177         ops_run_io(sh, &s);
3178
3179         return_io(return_bi);
3180
3181         return blocked_rdev == NULL;
3182 }
3183
3184 /* returns true if the stripe was handled */
3185 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3186 {
3187         if (sh->raid_conf->level == 6)
3188                 return handle_stripe6(sh, tmp_page);
3189         else
3190                 return handle_stripe5(sh);
3191 }
3192
3193
3194
3195 static void raid5_activate_delayed(raid5_conf_t *conf)
3196 {
3197         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3198                 while (!list_empty(&conf->delayed_list)) {
3199                         struct list_head *l = conf->delayed_list.next;
3200                         struct stripe_head *sh;
3201                         sh = list_entry(l, struct stripe_head, lru);
3202                         list_del_init(l);
3203                         clear_bit(STRIPE_DELAYED, &sh->state);
3204                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3205                                 atomic_inc(&conf->preread_active_stripes);
3206                         list_add_tail(&sh->lru, &conf->hold_list);
3207                 }
3208         } else
3209                 blk_plug_device(conf->mddev->queue);
3210 }
3211
3212 static void activate_bit_delay(raid5_conf_t *conf)
3213 {
3214         /* device_lock is held */
3215         struct list_head head;
3216         list_add(&head, &conf->bitmap_list);
3217         list_del_init(&conf->bitmap_list);
3218         while (!list_empty(&head)) {
3219                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3220                 list_del_init(&sh->lru);
3221                 atomic_inc(&sh->count);
3222                 __release_stripe(conf, sh);
3223         }
3224 }
3225
3226 static void unplug_slaves(mddev_t *mddev)
3227 {
3228         raid5_conf_t *conf = mddev_to_conf(mddev);
3229         int i;
3230
3231         rcu_read_lock();
3232         for (i=0; i<mddev->raid_disks; i++) {
3233                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3234                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3235                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3236
3237                         atomic_inc(&rdev->nr_pending);
3238                         rcu_read_unlock();
3239
3240                         blk_unplug(r_queue);
3241
3242                         rdev_dec_pending(rdev, mddev);
3243                         rcu_read_lock();
3244                 }
3245         }
3246         rcu_read_unlock();
3247 }
3248
3249 static void raid5_unplug_device(struct request_queue *q)
3250 {
3251         mddev_t *mddev = q->queuedata;
3252         raid5_conf_t *conf = mddev_to_conf(mddev);
3253         unsigned long flags;
3254
3255         spin_lock_irqsave(&conf->device_lock, flags);
3256
3257         if (blk_remove_plug(q)) {
3258                 conf->seq_flush++;
3259                 raid5_activate_delayed(conf);
3260         }
3261         md_wakeup_thread(mddev->thread);
3262
3263         spin_unlock_irqrestore(&conf->device_lock, flags);
3264
3265         unplug_slaves(mddev);
3266 }
3267
3268 static int raid5_congested(void *data, int bits)
3269 {
3270         mddev_t *mddev = data;
3271         raid5_conf_t *conf = mddev_to_conf(mddev);
3272
3273         /* No difference between reads and writes.  Just check
3274          * how busy the stripe_cache is
3275          */
3276         if (conf->inactive_blocked)
3277                 return 1;
3278         if (conf->quiesce)
3279                 return 1;
3280         if (list_empty_careful(&conf->inactive_list))
3281                 return 1;
3282
3283         return 0;
3284 }
3285
3286 /* We want read requests to align with chunks where possible,
3287  * but write requests don't need to.
3288  */
3289 static int raid5_mergeable_bvec(struct request_queue *q,
3290                                 struct bvec_merge_data *bvm,
3291                                 struct bio_vec *biovec)
3292 {
3293         mddev_t *mddev = q->queuedata;
3294         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3295         int max;
3296         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3297         unsigned int bio_sectors = bvm->bi_size >> 9;
3298
3299         if ((bvm->bi_rw & 1) == WRITE)
3300                 return biovec->bv_len; /* always allow writes to be mergeable */
3301
3302         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3303         if (max < 0) max = 0;
3304         if (max <= biovec->bv_len && bio_sectors == 0)
3305                 return biovec->bv_len;
3306         else
3307                 return max;
3308 }
3309
3310
3311 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3312 {
3313         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3314         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3315         unsigned int bio_sectors = bio->bi_size >> 9;
3316
3317         return  chunk_sectors >=
3318                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3319 }
3320
3321 /*
3322  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3323  *  later sampled by raid5d.
3324  */
3325 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3326 {
3327         unsigned long flags;
3328
3329         spin_lock_irqsave(&conf->device_lock, flags);
3330
3331         bi->bi_next = conf->retry_read_aligned_list;
3332         conf->retry_read_aligned_list = bi;
3333
3334         spin_unlock_irqrestore(&conf->device_lock, flags);
3335         md_wakeup_thread(conf->mddev->thread);
3336 }
3337
3338
3339 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3340 {
3341         struct bio *bi;
3342
3343         bi = conf->retry_read_aligned;
3344         if (bi) {
3345                 conf->retry_read_aligned = NULL;
3346                 return bi;
3347         }
3348         bi = conf->retry_read_aligned_list;
3349         if(bi) {
3350                 conf->retry_read_aligned_list = bi->bi_next;
3351                 bi->bi_next = NULL;
3352                 /*
3353                  * this sets the active strip count to 1 and the processed
3354                  * strip count to zero (upper 8 bits)
3355                  */
3356                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3357         }
3358
3359         return bi;
3360 }
3361
3362
3363 /*
3364  *  The "raid5_align_endio" should check if the read succeeded and if it
3365  *  did, call bio_endio on the original bio (having bio_put the new bio
3366  *  first).
3367  *  If the read failed..
3368  */
3369 static void raid5_align_endio(struct bio *bi, int error)
3370 {
3371         struct bio* raid_bi  = bi->bi_private;
3372         mddev_t *mddev;
3373         raid5_conf_t *conf;
3374         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3375         mdk_rdev_t *rdev;
3376
3377         bio_put(bi);
3378
3379         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3380         conf = mddev_to_conf(mddev);
3381         rdev = (void*)raid_bi->bi_next;
3382         raid_bi->bi_next = NULL;
3383
3384         rdev_dec_pending(rdev, conf->mddev);
3385
3386         if (!error && uptodate) {
3387                 bio_endio(raid_bi, 0);
3388                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3389                         wake_up(&conf->wait_for_stripe);
3390                 return;
3391         }
3392
3393
3394         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3395
3396         add_bio_to_retry(raid_bi, conf);
3397 }
3398
3399 static int bio_fits_rdev(struct bio *bi)
3400 {
3401         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3402
3403         if ((bi->bi_size>>9) > q->max_sectors)
3404                 return 0;
3405         blk_recount_segments(q, bi);
3406         if (bi->bi_phys_segments > q->max_phys_segments)
3407                 return 0;
3408
3409         if (q->merge_bvec_fn)
3410                 /* it's too hard to apply the merge_bvec_fn at this stage,
3411                  * just just give up
3412                  */
3413                 return 0;
3414
3415         return 1;
3416 }
3417
3418
3419 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3420 {
3421         mddev_t *mddev = q->queuedata;
3422         raid5_conf_t *conf = mddev_to_conf(mddev);
3423         unsigned int dd_idx;
3424         struct bio* align_bi;
3425         mdk_rdev_t *rdev;
3426
3427         if (!in_chunk_boundary(mddev, raid_bio)) {
3428                 pr_debug("chunk_aligned_read : non aligned\n");
3429                 return 0;
3430         }
3431         /*
3432          * use bio_clone to make a copy of the bio
3433          */
3434         align_bi = bio_clone(raid_bio, GFP_NOIO);
3435         if (!align_bi)
3436                 return 0;
3437         /*
3438          *   set bi_end_io to a new function, and set bi_private to the
3439          *     original bio.
3440          */
3441         align_bi->bi_end_io  = raid5_align_endio;
3442         align_bi->bi_private = raid_bio;
3443         /*
3444          *      compute position
3445          */
3446         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3447                                                     0,
3448                                                     &dd_idx, NULL);
3449
3450         rcu_read_lock();
3451         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3452         if (rdev && test_bit(In_sync, &rdev->flags)) {
3453                 atomic_inc(&rdev->nr_pending);
3454                 rcu_read_unlock();
3455                 raid_bio->bi_next = (void*)rdev;
3456                 align_bi->bi_bdev =  rdev->bdev;
3457                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3458                 align_bi->bi_sector += rdev->data_offset;
3459
3460                 if (!bio_fits_rdev(align_bi)) {
3461                         /* too big in some way */
3462                         bio_put(align_bi);
3463                         rdev_dec_pending(rdev, mddev);
3464                         return 0;
3465                 }
3466
3467                 spin_lock_irq(&conf->device_lock);
3468                 wait_event_lock_irq(conf->wait_for_stripe,
3469                                     conf->quiesce == 0,
3470                                     conf->device_lock, /* nothing */);
3471                 atomic_inc(&conf->active_aligned_reads);
3472                 spin_unlock_irq(&conf->device_lock);
3473
3474                 generic_make_request(align_bi);
3475                 return 1;
3476         } else {
3477                 rcu_read_unlock();
3478                 bio_put(align_bi);
3479                 return 0;
3480         }
3481 }
3482
3483 /* __get_priority_stripe - get the next stripe to process
3484  *
3485  * Full stripe writes are allowed to pass preread active stripes up until
3486  * the bypass_threshold is exceeded.  In general the bypass_count
3487  * increments when the handle_list is handled before the hold_list; however, it
3488  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3489  * stripe with in flight i/o.  The bypass_count will be reset when the
3490  * head of the hold_list has changed, i.e. the head was promoted to the
3491  * handle_list.
3492  */
3493 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3494 {
3495         struct stripe_head *sh;
3496
3497         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3498                   __func__,
3499                   list_empty(&conf->handle_list) ? "empty" : "busy",
3500                   list_empty(&conf->hold_list) ? "empty" : "busy",
3501                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3502
3503         if (!list_empty(&conf->handle_list)) {
3504                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3505
3506                 if (list_empty(&conf->hold_list))
3507                         conf->bypass_count = 0;
3508                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3509                         if (conf->hold_list.next == conf->last_hold)
3510                                 conf->bypass_count++;
3511                         else {
3512                                 conf->last_hold = conf->hold_list.next;
3513                                 conf->bypass_count -= conf->bypass_threshold;
3514                                 if (conf->bypass_count < 0)
3515                                         conf->bypass_count = 0;
3516                         }
3517                 }
3518         } else if (!list_empty(&conf->hold_list) &&
3519                    ((conf->bypass_threshold &&
3520                      conf->bypass_count > conf->bypass_threshold) ||
3521                     atomic_read(&conf->pending_full_writes) == 0)) {
3522                 sh = list_entry(conf->hold_list.next,
3523                                 typeof(*sh), lru);
3524                 conf->bypass_count -= conf->bypass_threshold;
3525                 if (conf->bypass_count < 0)
3526                         conf->bypass_count = 0;
3527         } else
3528                 return NULL;
3529
3530         list_del_init(&sh->lru);
3531         atomic_inc(&sh->count);
3532         BUG_ON(atomic_read(&sh->count) != 1);
3533         return sh;
3534 }
3535
3536 static int make_request(struct request_queue *q, struct bio * bi)
3537 {
3538         mddev_t *mddev = q->queuedata;
3539         raid5_conf_t *conf = mddev_to_conf(mddev);
3540         int dd_idx;
3541         sector_t new_sector;
3542         sector_t logical_sector, last_sector;
3543         struct stripe_head *sh;
3544         const int rw = bio_data_dir(bi);
3545         int cpu, remaining;
3546
3547         if (unlikely(bio_barrier(bi))) {
3548                 bio_endio(bi, -EOPNOTSUPP);
3549                 return 0;
3550         }
3551
3552         md_write_start(mddev, bi);
3553
3554         cpu = part_stat_lock();
3555         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3556         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3557                       bio_sectors(bi));
3558         part_stat_unlock();
3559
3560         if (rw == READ &&
3561              mddev->reshape_position == MaxSector &&
3562              chunk_aligned_read(q,bi))
3563                 return 0;
3564
3565         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3566         last_sector = bi->bi_sector + (bi->bi_size>>9);
3567         bi->bi_next = NULL;
3568         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3569
3570         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3571                 DEFINE_WAIT(w);
3572                 int disks, data_disks;
3573                 int previous;
3574
3575         retry:
3576                 previous = 0;
3577                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3578                 if (likely(conf->expand_progress == MaxSector))
3579                         disks = conf->raid_disks;
3580                 else {
3581                         /* spinlock is needed as expand_progress may be
3582                          * 64bit on a 32bit platform, and so it might be
3583                          * possible to see a half-updated value
3584                          * Ofcourse expand_progress could change after
3585                          * the lock is dropped, so once we get a reference
3586                          * to the stripe that we think it is, we will have
3587                          * to check again.
3588                          */
3589                         spin_lock_irq(&conf->device_lock);
3590                         disks = conf->raid_disks;
3591                         if (logical_sector >= conf->expand_progress) {
3592                                 disks = conf->previous_raid_disks;
3593                                 previous = 1;
3594                         } else {
3595                                 if (logical_sector >= conf->expand_lo) {
3596                                         spin_unlock_irq(&conf->device_lock);
3597                                         schedule();
3598                                         goto retry;
3599                                 }
3600                         }
3601                         spin_unlock_irq(&conf->device_lock);
3602                 }
3603                 data_disks = disks - conf->max_degraded;
3604
3605                 new_sector = raid5_compute_sector(conf, logical_sector,
3606                                                   previous,
3607                                                   &dd_idx, NULL);
3608                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3609                         (unsigned long long)new_sector, 
3610                         (unsigned long long)logical_sector);
3611
3612                 sh = get_active_stripe(conf, new_sector, previous,
3613                                        (bi->bi_rw&RWA_MASK));
3614                 if (sh) {
3615                         if (unlikely(conf->expand_progress != MaxSector)) {
3616                                 /* expansion might have moved on while waiting for a
3617                                  * stripe, so we must do the range check again.
3618                                  * Expansion could still move past after this
3619                                  * test, but as we are holding a reference to
3620                                  * 'sh', we know that if that happens,
3621                                  *  STRIPE_EXPANDING will get set and the expansion
3622                                  * won't proceed until we finish with the stripe.
3623                                  */
3624                                 int must_retry = 0;
3625                                 spin_lock_irq(&conf->device_lock);
3626                                 if (logical_sector <  conf->expand_progress &&
3627                                     disks == conf->previous_raid_disks)
3628                                         /* mismatch, need to try again */
3629                                         must_retry = 1;
3630                                 spin_unlock_irq(&conf->device_lock);
3631                                 if (must_retry) {
3632                                         release_stripe(sh);
3633                                         goto retry;
3634                                 }
3635                         }
3636                         /* FIXME what if we get a false positive because these
3637                          * are being updated.
3638                          */
3639                         if (logical_sector >= mddev->suspend_lo &&
3640                             logical_sector < mddev->suspend_hi) {
3641                                 release_stripe(sh);
3642                                 schedule();
3643                                 goto retry;
3644                         }
3645
3646                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3647                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3648                                 /* Stripe is busy expanding or
3649                                  * add failed due to overlap.  Flush everything
3650                                  * and wait a while
3651                                  */
3652                                 raid5_unplug_device(mddev->queue);
3653                                 release_stripe(sh);
3654                                 schedule();
3655                                 goto retry;
3656                         }
3657                         finish_wait(&conf->wait_for_overlap, &w);
3658                         set_bit(STRIPE_HANDLE, &sh->state);
3659                         clear_bit(STRIPE_DELAYED, &sh->state);
3660                         release_stripe(sh);
3661                 } else {
3662                         /* cannot get stripe for read-ahead, just give-up */
3663                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3664                         finish_wait(&conf->wait_for_overlap, &w);
3665                         break;
3666                 }
3667                         
3668         }
3669         spin_lock_irq(&conf->device_lock);
3670         remaining = raid5_dec_bi_phys_segments(bi);
3671         spin_unlock_irq(&conf->device_lock);
3672         if (remaining == 0) {
3673
3674                 if ( rw == WRITE )
3675                         md_write_end(mddev);
3676
3677                 bio_endio(bi, 0);
3678         }
3679         return 0;
3680 }
3681
3682 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3683 {
3684         /* reshaping is quite different to recovery/resync so it is
3685          * handled quite separately ... here.
3686          *
3687          * On each call to sync_request, we gather one chunk worth of
3688          * destination stripes and flag them as expanding.
3689          * Then we find all the source stripes and request reads.
3690          * As the reads complete, handle_stripe will copy the data
3691          * into the destination stripe and release that stripe.
3692          */
3693         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3694         struct stripe_head *sh;
3695         sector_t first_sector, last_sector;
3696         int raid_disks = conf->previous_raid_disks;
3697         int data_disks = raid_disks - conf->max_degraded;
3698         int new_data_disks = conf->raid_disks - conf->max_degraded;
3699         int i;
3700         int dd_idx;
3701         sector_t writepos, safepos, gap;
3702
3703         if (sector_nr == 0 &&
3704             conf->expand_progress != 0) {
3705                 /* restarting in the middle, skip the initial sectors */
3706                 sector_nr = conf->expand_progress;
3707                 sector_div(sector_nr, new_data_disks);
3708                 *skipped = 1;
3709                 return sector_nr;
3710         }
3711
3712         /* we update the metadata when there is more than 3Meg
3713          * in the block range (that is rather arbitrary, should
3714          * probably be time based) or when the data about to be
3715          * copied would over-write the source of the data at
3716          * the front of the range.
3717          * i.e. one new_stripe forward from expand_progress new_maps
3718          * to after where expand_lo old_maps to
3719          */
3720         writepos = conf->expand_progress +
3721                 conf->chunk_size/512*(new_data_disks);
3722         sector_div(writepos, new_data_disks);
3723         safepos = conf->expand_lo;
3724         sector_div(safepos, data_disks);
3725         gap = conf->expand_progress - conf->expand_lo;
3726
3727         if (writepos >= safepos ||
3728             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3729                 /* Cannot proceed until we've updated the superblock... */
3730                 wait_event(conf->wait_for_overlap,
3731                            atomic_read(&conf->reshape_stripes)==0);
3732                 mddev->reshape_position = conf->expand_progress;
3733                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3734                 md_wakeup_thread(mddev->thread);
3735                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3736                            kthread_should_stop());
3737                 spin_lock_irq(&conf->device_lock);
3738                 conf->expand_lo = mddev->reshape_position;
3739                 spin_unlock_irq(&conf->device_lock);
3740                 wake_up(&conf->wait_for_overlap);
3741         }
3742
3743         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3744                 int j;
3745                 int skipped = 0;
3746                 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3747                 set_bit(STRIPE_EXPANDING, &sh->state);
3748                 atomic_inc(&conf->reshape_stripes);
3749                 /* If any of this stripe is beyond the end of the old
3750                  * array, then we need to zero those blocks
3751                  */
3752                 for (j=sh->disks; j--;) {
3753                         sector_t s;
3754                         if (j == sh->pd_idx)
3755                                 continue;
3756                         if (conf->level == 6 &&
3757                             j == sh->qd_idx)
3758                                 continue;
3759                         s = compute_blocknr(sh, j);
3760                         if (s < mddev->array_sectors) {
3761                                 skipped = 1;
3762                                 continue;
3763                         }
3764                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3765                         set_bit(R5_Expanded, &sh->dev[j].flags);
3766                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3767                 }
3768                 if (!skipped) {
3769                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3770                         set_bit(STRIPE_HANDLE, &sh->state);
3771                 }
3772                 release_stripe(sh);
3773         }
3774         spin_lock_irq(&conf->device_lock);
3775         conf->expand_progress = (sector_nr + i) * new_data_disks;
3776         spin_unlock_irq(&conf->device_lock);
3777         /* Ok, those stripe are ready. We can start scheduling
3778          * reads on the source stripes.
3779          * The source stripes are determined by mapping the first and last
3780          * block on the destination stripes.
3781          */
3782         first_sector =
3783                 raid5_compute_sector(conf, sector_nr*(new_data_disks),
3784                                      1, &dd_idx, NULL);
3785         last_sector =
3786                 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3787                                             *(new_data_disks) - 1),
3788                                      1, &dd_idx, NULL);
3789         if (last_sector >= mddev->dev_sectors)
3790                 last_sector = mddev->dev_sectors - 1;
3791         while (first_sector <= last_sector) {
3792                 sh = get_active_stripe(conf, first_sector, 1, 0);
3793                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3794                 set_bit(STRIPE_HANDLE, &sh->state);
3795                 release_stripe(sh);
3796                 first_sector += STRIPE_SECTORS;
3797         }
3798         /* If this takes us to the resync_max point where we have to pause,
3799          * then we need to write out the superblock.
3800          */
3801         sector_nr += conf->chunk_size>>9;
3802         if (sector_nr >= mddev->resync_max) {
3803                 /* Cannot proceed until we've updated the superblock... */
3804                 wait_event(conf->wait_for_overlap,
3805                            atomic_read(&conf->reshape_stripes) == 0);
3806                 mddev->reshape_position = conf->expand_progress;
3807                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3808                 md_wakeup_thread(mddev->thread);
3809                 wait_event(mddev->sb_wait,
3810                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3811                            || kthread_should_stop());
3812                 spin_lock_irq(&conf->device_lock);
3813                 conf->expand_lo = mddev->reshape_position;
3814                 spin_unlock_irq(&conf->device_lock);
3815                 wake_up(&conf->wait_for_overlap);
3816         }
3817         return conf->chunk_size>>9;
3818 }
3819
3820 /* FIXME go_faster isn't used */
3821 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3822 {
3823         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3824         struct stripe_head *sh;
3825         sector_t max_sector = mddev->dev_sectors;
3826         int sync_blocks;
3827         int still_degraded = 0;
3828         int i;
3829
3830         if (sector_nr >= max_sector) {
3831                 /* just being told to finish up .. nothing much to do */
3832                 unplug_slaves(mddev);
3833                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3834                         end_reshape(conf);
3835                         return 0;
3836                 }
3837
3838                 if (mddev->curr_resync < max_sector) /* aborted */
3839                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3840                                         &sync_blocks, 1);
3841                 else /* completed sync */
3842                         conf->fullsync = 0;
3843                 bitmap_close_sync(mddev->bitmap);
3844
3845                 return 0;
3846         }
3847
3848         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3849                 return reshape_request(mddev, sector_nr, skipped);
3850
3851         /* No need to check resync_max as we never do more than one
3852          * stripe, and as resync_max will always be on a chunk boundary,
3853          * if the check in md_do_sync didn't fire, there is no chance
3854          * of overstepping resync_max here
3855          */
3856
3857         /* if there is too many failed drives and we are trying
3858          * to resync, then assert that we are finished, because there is
3859          * nothing we can do.
3860          */
3861         if (mddev->degraded >= conf->max_degraded &&
3862             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3863                 sector_t rv = mddev->dev_sectors - sector_nr;
3864                 *skipped = 1;
3865                 return rv;
3866         }
3867         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3868             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3869             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3870                 /* we can skip this block, and probably more */
3871                 sync_blocks /= STRIPE_SECTORS;
3872                 *skipped = 1;
3873                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3874         }
3875
3876
3877         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3878
3879         sh = get_active_stripe(conf, sector_nr, 0, 1);
3880         if (sh == NULL) {
3881                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3882                 /* make sure we don't swamp the stripe cache if someone else
3883                  * is trying to get access
3884                  */
3885                 schedule_timeout_uninterruptible(1);
3886         }
3887         /* Need to check if array will still be degraded after recovery/resync
3888          * We don't need to check the 'failed' flag as when that gets set,
3889          * recovery aborts.
3890          */
3891         for (i=0; i<mddev->raid_disks; i++)
3892                 if (conf->disks[i].rdev == NULL)
3893                         still_degraded = 1;
3894
3895         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3896
3897         spin_lock(&sh->lock);
3898         set_bit(STRIPE_SYNCING, &sh->state);
3899         clear_bit(STRIPE_INSYNC, &sh->state);
3900         spin_unlock(&sh->lock);
3901
3902         /* wait for any blocked device to be handled */
3903         while(unlikely(!handle_stripe(sh, NULL)))
3904                 ;
3905         release_stripe(sh);
3906
3907         return STRIPE_SECTORS;
3908 }
3909
3910 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3911 {
3912         /* We may not be able to submit a whole bio at once as there
3913          * may not be enough stripe_heads available.
3914          * We cannot pre-allocate enough stripe_heads as we may need
3915          * more than exist in the cache (if we allow ever large chunks).
3916          * So we do one stripe head at a time and record in
3917          * ->bi_hw_segments how many have been done.
3918          *
3919          * We *know* that this entire raid_bio is in one chunk, so
3920          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3921          */
3922         struct stripe_head *sh;
3923         int dd_idx;
3924         sector_t sector, logical_sector, last_sector;
3925         int scnt = 0;
3926         int remaining;
3927         int handled = 0;
3928
3929         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3930         sector = raid5_compute_sector(conf, logical_sector,
3931                                       0, &dd_idx, NULL);
3932         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3933
3934         for (; logical_sector < last_sector;
3935              logical_sector += STRIPE_SECTORS,
3936                      sector += STRIPE_SECTORS,
3937                      scnt++) {
3938
3939                 if (scnt < raid5_bi_hw_segments(raid_bio))
3940                         /* already done this stripe */
3941                         continue;
3942
3943                 sh = get_active_stripe(conf, sector, 0, 1);
3944
3945                 if (!sh) {
3946                         /* failed to get a stripe - must wait */
3947                         raid5_set_bi_hw_segments(raid_bio, scnt);
3948                         conf->retry_read_aligned = raid_bio;
3949                         return handled;
3950                 }
3951
3952                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3953                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3954                         release_stripe(sh);
3955                         raid5_set_bi_hw_segments(raid_bio, scnt);
3956                         conf->retry_read_aligned = raid_bio;
3957                         return handled;
3958                 }
3959
3960                 handle_stripe(sh, NULL);
3961                 release_stripe(sh);
3962                 handled++;
3963         }
3964         spin_lock_irq(&conf->device_lock);
3965         remaining = raid5_dec_bi_phys_segments(raid_bio);
3966         spin_unlock_irq(&conf->device_lock);
3967         if (remaining == 0)
3968                 bio_endio(raid_bio, 0);
3969         if (atomic_dec_and_test(&conf->active_aligned_reads))
3970                 wake_up(&conf->wait_for_stripe);
3971         return handled;
3972 }
3973
3974
3975
3976 /*
3977  * This is our raid5 kernel thread.
3978  *
3979  * We scan the hash table for stripes which can be handled now.
3980  * During the scan, completed stripes are saved for us by the interrupt
3981  * handler, so that they will not have to wait for our next wakeup.
3982  */
3983 static void raid5d(mddev_t *mddev)
3984 {
3985         struct stripe_head *sh;
3986         raid5_conf_t *conf = mddev_to_conf(mddev);
3987         int handled;
3988
3989         pr_debug("+++ raid5d active\n");
3990
3991         md_check_recovery(mddev);
3992
3993         handled = 0;
3994         spin_lock_irq(&conf->device_lock);
3995         while (1) {
3996                 struct bio *bio;
3997
3998                 if (conf->seq_flush != conf->seq_write) {
3999                         int seq = conf->seq_flush;
4000                         spin_unlock_irq(&conf->device_lock);
4001                         bitmap_unplug(mddev->bitmap);
4002                         spin_lock_irq(&conf->device_lock);
4003                         conf->seq_write = seq;
4004                         activate_bit_delay(conf);
4005                 }
4006
4007                 while ((bio = remove_bio_from_retry(conf))) {
4008                         int ok;
4009                         spin_unlock_irq(&conf->device_lock);
4010                         ok = retry_aligned_read(conf, bio);
4011                         spin_lock_irq(&conf->device_lock);
4012                         if (!ok)
4013                                 break;
4014                         handled++;
4015                 }
4016
4017                 sh = __get_priority_stripe(conf);
4018
4019                 if (!sh)
4020                         break;
4021                 spin_unlock_irq(&conf->device_lock);
4022                 
4023                 handled++;
4024                 handle_stripe(sh, conf->spare_page);
4025                 release_stripe(sh);
4026
4027                 spin_lock_irq(&conf->device_lock);
4028         }
4029         pr_debug("%d stripes handled\n", handled);
4030
4031         spin_unlock_irq(&conf->device_lock);
4032
4033         async_tx_issue_pending_all();
4034         unplug_slaves(mddev);
4035
4036         pr_debug("--- raid5d inactive\n");
4037 }
4038
4039 static ssize_t
4040 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4041 {
4042         raid5_conf_t *conf = mddev_to_conf(mddev);
4043         if (conf)
4044                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4045         else
4046                 return 0;
4047 }
4048
4049 static ssize_t
4050 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4051 {
4052         raid5_conf_t *conf = mddev_to_conf(mddev);
4053         unsigned long new;
4054         int err;
4055
4056         if (len >= PAGE_SIZE)
4057                 return -EINVAL;
4058         if (!conf)
4059                 return -ENODEV;
4060
4061         if (strict_strtoul(page, 10, &new))
4062                 return -EINVAL;
4063         if (new <= 16 || new > 32768)
4064                 return -EINVAL;
4065         while (new < conf->max_nr_stripes) {
4066                 if (drop_one_stripe(conf))
4067                         conf->max_nr_stripes--;
4068                 else
4069                         break;
4070         }
4071         err = md_allow_write(mddev);
4072         if (err)
4073                 return err;
4074         while (new > conf->max_nr_stripes) {
4075                 if (grow_one_stripe(conf))
4076                         conf->max_nr_stripes++;
4077                 else break;
4078         }
4079         return len;
4080 }
4081
4082 static struct md_sysfs_entry
4083 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4084                                 raid5_show_stripe_cache_size,
4085                                 raid5_store_stripe_cache_size);
4086
4087 static ssize_t
4088 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4089 {
4090         raid5_conf_t *conf = mddev_to_conf(mddev);
4091         if (conf)
4092                 return sprintf(page, "%d\n", conf->bypass_threshold);
4093         else
4094                 return 0;
4095 }
4096
4097 static ssize_t
4098 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4099 {
4100         raid5_conf_t *conf = mddev_to_conf(mddev);
4101         unsigned long new;
4102         if (len >= PAGE_SIZE)
4103                 return -EINVAL;
4104         if (!conf)
4105                 return -ENODEV;
4106
4107         if (strict_strtoul(page, 10, &new))
4108                 return -EINVAL;
4109         if (new > conf->max_nr_stripes)
4110                 return -EINVAL;
4111         conf->bypass_threshold = new;
4112         return len;
4113 }
4114
4115 static struct md_sysfs_entry
4116 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4117                                         S_IRUGO | S_IWUSR,
4118                                         raid5_show_preread_threshold,
4119                                         raid5_store_preread_threshold);
4120
4121 static ssize_t
4122 stripe_cache_active_show(mddev_t *mddev, char *page)
4123 {
4124         raid5_conf_t *conf = mddev_to_conf(mddev);
4125         if (conf)
4126                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4127         else
4128                 return 0;
4129 }
4130
4131 static struct md_sysfs_entry
4132 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4133
4134 static struct attribute *raid5_attrs[] =  {
4135         &raid5_stripecache_size.attr,
4136         &raid5_stripecache_active.attr,
4137         &raid5_preread_bypass_threshold.attr,
4138         NULL,
4139 };
4140 static struct attribute_group raid5_attrs_group = {
4141         .name = NULL,
4142         .attrs = raid5_attrs,
4143 };
4144
4145 static int run(mddev_t *mddev)
4146 {
4147         raid5_conf_t *conf;
4148         int raid_disk, memory;
4149         mdk_rdev_t *rdev;
4150         struct disk_info *disk;
4151         int working_disks = 0;
4152
4153         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4154                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4155                        mdname(mddev), mddev->level);
4156                 return -EIO;
4157         }
4158         if ((mddev->level == 5 && !algorithm_valid_raid5(mddev->layout)) ||
4159             (mddev->level == 6 && !algorithm_valid_raid6(mddev->layout))) {
4160                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4161                        mdname(mddev), mddev->layout);
4162                 return -EIO;
4163         }
4164
4165         if (mddev->chunk_size < PAGE_SIZE) {
4166                 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4167                        "PAGE_SIZE but %d < %ld\n",
4168                        mddev->chunk_size, PAGE_SIZE);
4169                 return -EINVAL;
4170         }
4171
4172         if (mddev->reshape_position != MaxSector) {
4173                 /* Check that we can continue the reshape.
4174                  * Currently only disks can change, it must
4175                  * increase, and we must be past the point where
4176                  * a stripe over-writes itself
4177                  */
4178                 sector_t here_new, here_old;
4179                 int old_disks;
4180                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4181
4182                 if (mddev->new_level != mddev->level ||
4183                     mddev->new_layout != mddev->layout ||
4184                     mddev->new_chunk != mddev->chunk_size) {
4185                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4186                                "required - aborting.\n",
4187                                mdname(mddev));
4188                         return -EINVAL;
4189                 }
4190                 if (mddev->delta_disks <= 0) {
4191                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4192                                "(reduce disks) required - aborting.\n",
4193                                mdname(mddev));
4194                         return -EINVAL;
4195                 }
4196                 old_disks = mddev->raid_disks - mddev->delta_disks;
4197                 /* reshape_position must be on a new-stripe boundary, and one
4198                  * further up in new geometry must map after here in old
4199                  * geometry.
4200                  */
4201                 here_new = mddev->reshape_position;
4202                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4203                                (mddev->raid_disks - max_degraded))) {
4204                         printk(KERN_ERR "raid5: reshape_position not "
4205                                "on a stripe boundary\n");
4206                         return -EINVAL;
4207                 }
4208                 /* here_new is the stripe we will write to */
4209                 here_old = mddev->reshape_position;
4210                 sector_div(here_old, (mddev->chunk_size>>9)*
4211                            (old_disks-max_degraded));
4212                 /* here_old is the first stripe that we might need to read
4213                  * from */
4214                 if (here_new >= here_old) {
4215                         /* Reading from the same stripe as writing to - bad */
4216                         printk(KERN_ERR "raid5: reshape_position too early for "
4217                                "auto-recovery - aborting.\n");
4218                         return -EINVAL;
4219                 }
4220                 printk(KERN_INFO "raid5: reshape will continue\n");
4221                 /* OK, we should be able to continue; */
4222         }
4223
4224
4225         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4226         if ((conf = mddev->private) == NULL)
4227                 goto abort;
4228         if (mddev->reshape_position == MaxSector) {
4229                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4230         } else {
4231                 conf->raid_disks = mddev->raid_disks;
4232                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4233         }
4234
4235         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4236                               GFP_KERNEL);
4237         if (!conf->disks)
4238                 goto abort;
4239
4240         conf->mddev = mddev;
4241
4242         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4243                 goto abort;
4244
4245         if (mddev->level == 6) {
4246                 conf->spare_page = alloc_page(GFP_KERNEL);
4247                 if (!conf->spare_page)
4248                         goto abort;
4249         }
4250         spin_lock_init(&conf->device_lock);
4251         mddev->queue->queue_lock = &conf->device_lock;
4252         init_waitqueue_head(&conf->wait_for_stripe);
4253         init_waitqueue_head(&conf->wait_for_overlap);
4254         INIT_LIST_HEAD(&conf->handle_list);
4255         INIT_LIST_HEAD(&conf->hold_list);
4256         INIT_LIST_HEAD(&conf->delayed_list);
4257         INIT_LIST_HEAD(&conf->bitmap_list);
4258         INIT_LIST_HEAD(&conf->inactive_list);
4259         atomic_set(&conf->active_stripes, 0);
4260         atomic_set(&conf->preread_active_stripes, 0);
4261         atomic_set(&conf->active_aligned_reads, 0);
4262         conf->bypass_threshold = BYPASS_THRESHOLD;
4263
4264         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4265
4266         list_for_each_entry(rdev, &mddev->disks, same_set) {
4267                 raid_disk = rdev->raid_disk;
4268                 if (raid_disk >= conf->raid_disks
4269                     || raid_disk < 0)
4270                         continue;
4271                 disk = conf->disks + raid_disk;
4272
4273                 disk->rdev = rdev;
4274
4275                 if (test_bit(In_sync, &rdev->flags)) {
4276                         char b[BDEVNAME_SIZE];
4277                         printk(KERN_INFO "raid5: device %s operational as raid"
4278                                 " disk %d\n", bdevname(rdev->bdev,b),
4279                                 raid_disk);
4280                         working_disks++;
4281                 } else
4282                         /* Cannot rely on bitmap to complete recovery */
4283                         conf->fullsync = 1;
4284         }
4285
4286         /*
4287          * 0 for a fully functional array, 1 or 2 for a degraded array.
4288          */
4289         mddev->degraded = conf->raid_disks - working_disks;
4290         conf->mddev = mddev;
4291         conf->chunk_size = mddev->chunk_size;
4292         conf->level = mddev->level;
4293         if (conf->level == 6)
4294                 conf->max_degraded = 2;
4295         else
4296                 conf->max_degraded = 1;
4297         conf->algorithm = mddev->layout;
4298         conf->max_nr_stripes = NR_STRIPES;
4299         conf->expand_progress = mddev->reshape_position;
4300
4301         /* device size must be a multiple of chunk size */
4302         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4303         mddev->resync_max_sectors = mddev->dev_sectors;
4304
4305         if (conf->level == 6 && conf->raid_disks < 4) {
4306                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4307                        mdname(mddev), conf->raid_disks);
4308                 goto abort;
4309         }
4310         if (!conf->chunk_size || conf->chunk_size % 4) {
4311                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4312                         conf->chunk_size, mdname(mddev));
4313                 goto abort;
4314         }
4315         if (mddev->degraded > conf->max_degraded) {
4316                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4317                         " (%d/%d failed)\n",
4318                         mdname(mddev), mddev->degraded, conf->raid_disks);
4319                 goto abort;
4320         }
4321
4322         if (mddev->degraded > 0 &&
4323             mddev->recovery_cp != MaxSector) {
4324                 if (mddev->ok_start_degraded)
4325                         printk(KERN_WARNING
4326                                "raid5: starting dirty degraded array: %s"
4327                                "- data corruption possible.\n",
4328                                mdname(mddev));
4329                 else {
4330                         printk(KERN_ERR
4331                                "raid5: cannot start dirty degraded array for %s\n",
4332                                mdname(mddev));
4333                         goto abort;
4334                 }
4335         }
4336
4337         {
4338                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4339                 if (!mddev->thread) {
4340                         printk(KERN_ERR 
4341                                 "raid5: couldn't allocate thread for %s\n",
4342                                 mdname(mddev));
4343                         goto abort;
4344                 }
4345         }
4346         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4347                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4348         if (grow_stripes(conf, conf->max_nr_stripes)) {
4349                 printk(KERN_ERR 
4350                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4351                 shrink_stripes(conf);
4352                 md_unregister_thread(mddev->thread);
4353                 goto abort;
4354         } else
4355                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4356                         memory, mdname(mddev));
4357
4358         if (mddev->degraded == 0)
4359                 printk("raid5: raid level %d set %s active with %d out of %d"
4360                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4361                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4362                         conf->algorithm);
4363         else
4364                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4365                         " out of %d devices, algorithm %d\n", conf->level,
4366                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4367                         mddev->raid_disks, conf->algorithm);
4368
4369         print_raid5_conf(conf);
4370
4371         if (conf->expand_progress != MaxSector) {
4372                 printk("...ok start reshape thread\n");
4373                 conf->expand_lo = conf->expand_progress;
4374                 atomic_set(&conf->reshape_stripes, 0);
4375                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4376                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4377                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4378                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4379                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4380                                                         "%s_reshape");
4381         }
4382
4383         /* read-ahead size must cover two whole stripes, which is
4384          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4385          */
4386         {
4387                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4388                 int stripe = data_disks *
4389                         (mddev->chunk_size / PAGE_SIZE);
4390                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4391                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4392         }
4393
4394         /* Ok, everything is just fine now */
4395         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4396                 printk(KERN_WARNING
4397                        "raid5: failed to create sysfs attributes for %s\n",
4398                        mdname(mddev));
4399
4400         mddev->queue->unplug_fn = raid5_unplug_device;
4401         mddev->queue->backing_dev_info.congested_data = mddev;
4402         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4403
4404         mddev->array_sectors = mddev->dev_sectors *
4405                 (conf->previous_raid_disks - conf->max_degraded);
4406
4407         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4408
4409         return 0;
4410 abort:
4411         if (conf) {
4412                 print_raid5_conf(conf);
4413                 safe_put_page(conf->spare_page);
4414                 kfree(conf->disks);
4415                 kfree(conf->stripe_hashtbl);
4416                 kfree(conf);
4417         }
4418         mddev->private = NULL;
4419         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4420         return -EIO;
4421 }
4422
4423
4424
4425 static int stop(mddev_t *mddev)
4426 {
4427         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4428
4429         md_unregister_thread(mddev->thread);
4430         mddev->thread = NULL;
4431         shrink_stripes(conf);
4432         kfree(conf->stripe_hashtbl);
4433         mddev->queue->backing_dev_info.congested_fn = NULL;
4434         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4435         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4436         kfree(conf->disks);
4437         kfree(conf);
4438         mddev->private = NULL;
4439         return 0;
4440 }
4441
4442 #ifdef DEBUG
4443 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4444 {
4445         int i;
4446
4447         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4448                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4449         seq_printf(seq, "sh %llu,  count %d.\n",
4450                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4451         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4452         for (i = 0; i < sh->disks; i++) {
4453                 seq_printf(seq, "(cache%d: %p %ld) ",
4454                            i, sh->dev[i].page, sh->dev[i].flags);
4455         }
4456         seq_printf(seq, "\n");
4457 }
4458
4459 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4460 {
4461         struct stripe_head *sh;
4462         struct hlist_node *hn;
4463         int i;
4464
4465         spin_lock_irq(&conf->device_lock);
4466         for (i = 0; i < NR_HASH; i++) {
4467                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4468                         if (sh->raid_conf != conf)
4469                                 continue;
4470                         print_sh(seq, sh);
4471                 }
4472         }
4473         spin_unlock_irq(&conf->device_lock);
4474 }
4475 #endif
4476
4477 static void status(struct seq_file *seq, mddev_t *mddev)
4478 {
4479         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4480         int i;
4481
4482         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4483         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4484         for (i = 0; i < conf->raid_disks; i++)
4485                 seq_printf (seq, "%s",
4486                                conf->disks[i].rdev &&
4487                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4488         seq_printf (seq, "]");
4489 #ifdef DEBUG
4490         seq_printf (seq, "\n");
4491         printall(seq, conf);
4492 #endif
4493 }
4494
4495 static void print_raid5_conf (raid5_conf_t *conf)
4496 {
4497         int i;
4498         struct disk_info *tmp;
4499
4500         printk("RAID5 conf printout:\n");
4501         if (!conf) {
4502                 printk("(conf==NULL)\n");
4503                 return;
4504         }
4505         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4506                  conf->raid_disks - conf->mddev->degraded);
4507
4508         for (i = 0; i < conf->raid_disks; i++) {
4509                 char b[BDEVNAME_SIZE];
4510                 tmp = conf->disks + i;
4511                 if (tmp->rdev)
4512                 printk(" disk %d, o:%d, dev:%s\n",
4513                         i, !test_bit(Faulty, &tmp->rdev->flags),
4514                         bdevname(tmp->rdev->bdev,b));
4515         }
4516 }
4517
4518 static int raid5_spare_active(mddev_t *mddev)
4519 {
4520         int i;
4521         raid5_conf_t *conf = mddev->private;
4522         struct disk_info *tmp;
4523
4524         for (i = 0; i < conf->raid_disks; i++) {
4525                 tmp = conf->disks + i;
4526                 if (tmp->rdev
4527                     && !test_bit(Faulty, &tmp->rdev->flags)
4528                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4529                         unsigned long flags;
4530                         spin_lock_irqsave(&conf->device_lock, flags);
4531                         mddev->degraded--;
4532                         spin_unlock_irqrestore(&conf->device_lock, flags);
4533                 }
4534         }
4535         print_raid5_conf(conf);
4536         return 0;
4537 }
4538
4539 static int raid5_remove_disk(mddev_t *mddev, int number)
4540 {
4541         raid5_conf_t *conf = mddev->private;
4542         int err = 0;
4543         mdk_rdev_t *rdev;
4544         struct disk_info *p = conf->disks + number;
4545
4546         print_raid5_conf(conf);
4547         rdev = p->rdev;
4548         if (rdev) {
4549                 if (test_bit(In_sync, &rdev->flags) ||
4550                     atomic_read(&rdev->nr_pending)) {
4551                         err = -EBUSY;
4552                         goto abort;
4553                 }
4554                 /* Only remove non-faulty devices if recovery
4555                  * isn't possible.
4556                  */
4557                 if (!test_bit(Faulty, &rdev->flags) &&
4558                     mddev->degraded <= conf->max_degraded) {
4559                         err = -EBUSY;
4560                         goto abort;
4561                 }
4562                 p->rdev = NULL;
4563                 synchronize_rcu();
4564                 if (atomic_read(&rdev->nr_pending)) {
4565                         /* lost the race, try later */
4566                         err = -EBUSY;
4567                         p->rdev = rdev;
4568                 }
4569         }
4570 abort:
4571
4572         print_raid5_conf(conf);
4573         return err;
4574 }
4575
4576 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4577 {
4578         raid5_conf_t *conf = mddev->private;
4579         int err = -EEXIST;
4580         int disk;
4581         struct disk_info *p;
4582         int first = 0;
4583         int last = conf->raid_disks - 1;
4584
4585         if (mddev->degraded > conf->max_degraded)
4586                 /* no point adding a device */
4587                 return -EINVAL;
4588
4589         if (rdev->raid_disk >= 0)
4590                 first = last = rdev->raid_disk;
4591
4592         /*
4593          * find the disk ... but prefer rdev->saved_raid_disk
4594          * if possible.
4595          */
4596         if (rdev->saved_raid_disk >= 0 &&
4597             rdev->saved_raid_disk >= first &&
4598             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4599                 disk = rdev->saved_raid_disk;
4600         else
4601                 disk = first;
4602         for ( ; disk <= last ; disk++)
4603                 if ((p=conf->disks + disk)->rdev == NULL) {
4604                         clear_bit(In_sync, &rdev->flags);
4605                         rdev->raid_disk = disk;
4606                         err = 0;
4607                         if (rdev->saved_raid_disk != disk)
4608                                 conf->fullsync = 1;
4609                         rcu_assign_pointer(p->rdev, rdev);
4610                         break;
4611                 }
4612         print_raid5_conf(conf);
4613         return err;
4614 }
4615
4616 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4617 {
4618         /* no resync is happening, and there is enough space
4619          * on all devices, so we can resize.
4620          * We need to make sure resync covers any new space.
4621          * If the array is shrinking we should possibly wait until
4622          * any io in the removed space completes, but it hardly seems
4623          * worth it.
4624          */
4625         raid5_conf_t *conf = mddev_to_conf(mddev);
4626
4627         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4628         mddev->array_sectors = sectors * (mddev->raid_disks
4629                                           - conf->max_degraded);
4630         set_capacity(mddev->gendisk, mddev->array_sectors);
4631         mddev->changed = 1;
4632         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4633                 mddev->recovery_cp = mddev->dev_sectors;
4634                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4635         }
4636         mddev->dev_sectors = sectors;
4637         mddev->resync_max_sectors = sectors;
4638         return 0;
4639 }
4640
4641 #ifdef CONFIG_MD_RAID5_RESHAPE
4642 static int raid5_check_reshape(mddev_t *mddev)
4643 {
4644         raid5_conf_t *conf = mddev_to_conf(mddev);
4645         int err;
4646
4647         if (mddev->delta_disks < 0 ||
4648             mddev->new_level != mddev->level)
4649                 return -EINVAL; /* Cannot shrink array or change level yet */
4650         if (mddev->delta_disks == 0)
4651                 return 0; /* nothing to do */
4652         if (mddev->bitmap)
4653                 /* Cannot grow a bitmap yet */
4654                 return -EBUSY;
4655
4656         /* Can only proceed if there are plenty of stripe_heads.
4657          * We need a minimum of one full stripe,, and for sensible progress
4658          * it is best to have about 4 times that.
4659          * If we require 4 times, then the default 256 4K stripe_heads will
4660          * allow for chunk sizes up to 256K, which is probably OK.
4661          * If the chunk size is greater, user-space should request more
4662          * stripe_heads first.
4663          */
4664         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4665             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4666                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4667                        (mddev->chunk_size / STRIPE_SIZE)*4);
4668                 return -ENOSPC;
4669         }
4670
4671         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4672         if (err)
4673                 return err;
4674
4675         if (mddev->degraded > conf->max_degraded)
4676                 return -EINVAL;
4677         /* looks like we might be able to manage this */
4678         return 0;
4679 }
4680
4681 static int raid5_start_reshape(mddev_t *mddev)
4682 {
4683         raid5_conf_t *conf = mddev_to_conf(mddev);
4684         mdk_rdev_t *rdev;
4685         int spares = 0;
4686         int added_devices = 0;
4687         unsigned long flags;
4688
4689         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4690                 return -EBUSY;
4691
4692         list_for_each_entry(rdev, &mddev->disks, same_set)
4693                 if (rdev->raid_disk < 0 &&
4694                     !test_bit(Faulty, &rdev->flags))
4695                         spares++;
4696
4697         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4698                 /* Not enough devices even to make a degraded array
4699                  * of that size
4700                  */
4701                 return -EINVAL;
4702
4703         atomic_set(&conf->reshape_stripes, 0);
4704         spin_lock_irq(&conf->device_lock);
4705         conf->previous_raid_disks = conf->raid_disks;
4706         conf->raid_disks += mddev->delta_disks;
4707         conf->expand_progress = 0;
4708         conf->expand_lo = 0;
4709         spin_unlock_irq(&conf->device_lock);
4710
4711         /* Add some new drives, as many as will fit.
4712          * We know there are enough to make the newly sized array work.
4713          */
4714         list_for_each_entry(rdev, &mddev->disks, same_set)
4715                 if (rdev->raid_disk < 0 &&
4716                     !test_bit(Faulty, &rdev->flags)) {
4717                         if (raid5_add_disk(mddev, rdev) == 0) {
4718                                 char nm[20];
4719                                 set_bit(In_sync, &rdev->flags);
4720                                 added_devices++;
4721                                 rdev->recovery_offset = 0;
4722                                 sprintf(nm, "rd%d", rdev->raid_disk);
4723                                 if (sysfs_create_link(&mddev->kobj,
4724                                                       &rdev->kobj, nm))
4725                                         printk(KERN_WARNING
4726                                                "raid5: failed to create "
4727                                                " link %s for %s\n",
4728                                                nm, mdname(mddev));
4729                         } else
4730                                 break;
4731                 }
4732
4733         spin_lock_irqsave(&conf->device_lock, flags);
4734         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4735         spin_unlock_irqrestore(&conf->device_lock, flags);
4736         mddev->raid_disks = conf->raid_disks;
4737         mddev->reshape_position = 0;
4738         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4739
4740         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4741         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4742         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4743         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4744         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4745                                                 "%s_reshape");
4746         if (!mddev->sync_thread) {
4747                 mddev->recovery = 0;
4748                 spin_lock_irq(&conf->device_lock);
4749                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4750                 conf->expand_progress = MaxSector;
4751                 spin_unlock_irq(&conf->device_lock);
4752                 return -EAGAIN;
4753         }
4754         md_wakeup_thread(mddev->sync_thread);
4755         md_new_event(mddev);
4756         return 0;
4757 }
4758 #endif
4759
4760 static void end_reshape(raid5_conf_t *conf)
4761 {
4762         struct block_device *bdev;
4763
4764         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4765                 conf->mddev->array_sectors = conf->mddev->dev_sectors *
4766                         (conf->raid_disks - conf->max_degraded);
4767                 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4768                 conf->mddev->changed = 1;
4769
4770                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4771                 if (bdev) {
4772                         mutex_lock(&bdev->bd_inode->i_mutex);
4773                         i_size_write(bdev->bd_inode,
4774                                      (loff_t)conf->mddev->array_sectors << 9);
4775                         mutex_unlock(&bdev->bd_inode->i_mutex);
4776                         bdput(bdev);
4777                 }
4778                 spin_lock_irq(&conf->device_lock);
4779                 conf->expand_progress = MaxSector;
4780                 spin_unlock_irq(&conf->device_lock);
4781                 conf->mddev->reshape_position = MaxSector;
4782
4783                 /* read-ahead size must cover two whole stripes, which is
4784                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4785                  */
4786                 {
4787                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4788                         int stripe = data_disks *
4789                                 (conf->mddev->chunk_size / PAGE_SIZE);
4790                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4791                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4792                 }
4793         }
4794 }
4795
4796 static void raid5_quiesce(mddev_t *mddev, int state)
4797 {
4798         raid5_conf_t *conf = mddev_to_conf(mddev);
4799
4800         switch(state) {
4801         case 2: /* resume for a suspend */
4802                 wake_up(&conf->wait_for_overlap);
4803                 break;
4804
4805         case 1: /* stop all writes */
4806                 spin_lock_irq(&conf->device_lock);
4807                 conf->quiesce = 1;
4808                 wait_event_lock_irq(conf->wait_for_stripe,
4809                                     atomic_read(&conf->active_stripes) == 0 &&
4810                                     atomic_read(&conf->active_aligned_reads) == 0,
4811                                     conf->device_lock, /* nothing */);
4812                 spin_unlock_irq(&conf->device_lock);
4813                 break;
4814
4815         case 0: /* re-enable writes */
4816                 spin_lock_irq(&conf->device_lock);
4817                 conf->quiesce = 0;
4818                 wake_up(&conf->wait_for_stripe);
4819                 wake_up(&conf->wait_for_overlap);
4820                 spin_unlock_irq(&conf->device_lock);
4821                 break;
4822         }
4823 }
4824
4825 static struct mdk_personality raid6_personality =
4826 {
4827         .name           = "raid6",
4828         .level          = 6,
4829         .owner          = THIS_MODULE,
4830         .make_request   = make_request,
4831         .run            = run,
4832         .stop           = stop,
4833         .status         = status,
4834         .error_handler  = error,
4835         .hot_add_disk   = raid5_add_disk,
4836         .hot_remove_disk= raid5_remove_disk,
4837         .spare_active   = raid5_spare_active,
4838         .sync_request   = sync_request,
4839         .resize         = raid5_resize,
4840 #ifdef CONFIG_MD_RAID5_RESHAPE
4841         .check_reshape  = raid5_check_reshape,
4842         .start_reshape  = raid5_start_reshape,
4843 #endif
4844         .quiesce        = raid5_quiesce,
4845 };
4846 static struct mdk_personality raid5_personality =
4847 {
4848         .name           = "raid5",
4849         .level          = 5,
4850         .owner          = THIS_MODULE,
4851         .make_request   = make_request,
4852         .run            = run,
4853         .stop           = stop,
4854         .status         = status,
4855         .error_handler  = error,
4856         .hot_add_disk   = raid5_add_disk,
4857         .hot_remove_disk= raid5_remove_disk,
4858         .spare_active   = raid5_spare_active,
4859         .sync_request   = sync_request,
4860         .resize         = raid5_resize,
4861 #ifdef CONFIG_MD_RAID5_RESHAPE
4862         .check_reshape  = raid5_check_reshape,
4863         .start_reshape  = raid5_start_reshape,
4864 #endif
4865         .quiesce        = raid5_quiesce,
4866 };
4867
4868 static struct mdk_personality raid4_personality =
4869 {
4870         .name           = "raid4",
4871         .level          = 4,
4872         .owner          = THIS_MODULE,
4873         .make_request   = make_request,
4874         .run            = run,
4875         .stop           = stop,
4876         .status         = status,
4877         .error_handler  = error,
4878         .hot_add_disk   = raid5_add_disk,
4879         .hot_remove_disk= raid5_remove_disk,
4880         .spare_active   = raid5_spare_active,
4881         .sync_request   = sync_request,
4882         .resize         = raid5_resize,
4883 #ifdef CONFIG_MD_RAID5_RESHAPE
4884         .check_reshape  = raid5_check_reshape,
4885         .start_reshape  = raid5_start_reshape,
4886 #endif
4887         .quiesce        = raid5_quiesce,
4888 };
4889
4890 static int __init raid5_init(void)
4891 {
4892         int e;
4893
4894         e = raid6_select_algo();
4895         if ( e )
4896                 return e;
4897         register_md_personality(&raid6_personality);
4898         register_md_personality(&raid5_personality);
4899         register_md_personality(&raid4_personality);
4900         return 0;
4901 }
4902
4903 static void raid5_exit(void)
4904 {
4905         unregister_md_personality(&raid6_personality);
4906         unregister_md_personality(&raid5_personality);
4907         unregister_md_personality(&raid4_personality);
4908 }
4909
4910 module_init(raid5_init);
4911 module_exit(raid5_exit);
4912 MODULE_LICENSE("GPL");
4913 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4914 MODULE_ALIAS("md-raid5");
4915 MODULE_ALIAS("md-raid4");
4916 MODULE_ALIAS("md-level-5");
4917 MODULE_ALIAS("md-level-4");
4918 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4919 MODULE_ALIAS("md-raid6");
4920 MODULE_ALIAS("md-level-6");
4921
4922 /* This used to be two separate modules, they were: */
4923 MODULE_ALIAS("raid5");
4924 MODULE_ALIAS("raid6");