]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: add blktrace calls
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64  * Stripe cache
65  */
66
67 #define NR_STRIPES              256
68 #define STRIPE_SIZE             PAGE_SIZE
69 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD            1
72 #define BYPASS_THRESHOLD        1
73 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK               (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79         return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93         int sectors = bio->bi_size >> 9;
94         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95                 return bio->bi_next;
96         else
97                 return NULL;
98 }
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107         return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123         unsigned int cnt)
124 {
125         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126         int old, new;
127
128         do {
129                 old = atomic_read(segments);
130                 new = (old & 0xffff) | (cnt << 16);
131         } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137         atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143         if (sh->ddf_layout)
144                 /* ddf always start from first device */
145                 return 0;
146         /* md starts just after Q block */
147         if (sh->qd_idx == sh->disks - 1)
148                 return 0;
149         else
150                 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154         disk++;
155         return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164                              int *count, int syndrome_disks)
165 {
166         int slot = *count;
167
168         if (sh->ddf_layout)
169                 (*count)++;
170         if (idx == sh->pd_idx)
171                 return syndrome_disks;
172         if (idx == sh->qd_idx)
173                 return syndrome_disks + 1;
174         if (!sh->ddf_layout)
175                 (*count)++;
176         return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181         struct bio *bi = return_bi;
182         while (bi) {
183
184                 return_bi = bi->bi_next;
185                 bi->bi_next = NULL;
186                 bi->bi_size = 0;
187                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188                                          bi, 0);
189                 bio_endio(bi, 0);
190                 bi = return_bi;
191         }
192 }
193
194 static void print_raid5_conf (struct r5conf *conf);
195
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198         return sh->check_state || sh->reconstruct_state ||
199                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205         BUG_ON(!list_empty(&sh->lru));
206         BUG_ON(atomic_read(&conf->active_stripes)==0);
207         if (test_bit(STRIPE_HANDLE, &sh->state)) {
208                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210                         list_add_tail(&sh->lru, &conf->delayed_list);
211                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212                            sh->bm_seq - conf->seq_write > 0)
213                         list_add_tail(&sh->lru, &conf->bitmap_list);
214                 else {
215                         clear_bit(STRIPE_DELAYED, &sh->state);
216                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
217                         list_add_tail(&sh->lru, &conf->handle_list);
218                 }
219                 md_wakeup_thread(conf->mddev->thread);
220         } else {
221                 BUG_ON(stripe_operations_active(sh));
222                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223                         if (atomic_dec_return(&conf->preread_active_stripes)
224                             < IO_THRESHOLD)
225                                 md_wakeup_thread(conf->mddev->thread);
226                 atomic_dec(&conf->active_stripes);
227                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228                         list_add_tail(&sh->lru, &conf->inactive_list);
229                         wake_up(&conf->wait_for_stripe);
230                         if (conf->retry_read_aligned)
231                                 md_wakeup_thread(conf->mddev->thread);
232                 }
233         }
234 }
235
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238         if (atomic_dec_and_test(&sh->count))
239                 do_release_stripe(conf, sh);
240 }
241
242 static void release_stripe(struct stripe_head *sh)
243 {
244         struct r5conf *conf = sh->raid_conf;
245         unsigned long flags;
246
247         local_irq_save(flags);
248         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249                 do_release_stripe(conf, sh);
250                 spin_unlock(&conf->device_lock);
251         }
252         local_irq_restore(flags);
253 }
254
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257         pr_debug("remove_hash(), stripe %llu\n",
258                 (unsigned long long)sh->sector);
259
260         hlist_del_init(&sh->hash);
261 }
262
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265         struct hlist_head *hp = stripe_hash(conf, sh->sector);
266
267         pr_debug("insert_hash(), stripe %llu\n",
268                 (unsigned long long)sh->sector);
269
270         hlist_add_head(&sh->hash, hp);
271 }
272
273
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277         struct stripe_head *sh = NULL;
278         struct list_head *first;
279
280         if (list_empty(&conf->inactive_list))
281                 goto out;
282         first = conf->inactive_list.next;
283         sh = list_entry(first, struct stripe_head, lru);
284         list_del_init(first);
285         remove_hash(sh);
286         atomic_inc(&conf->active_stripes);
287 out:
288         return sh;
289 }
290
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293         struct page *p;
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num ; i++) {
298                 p = sh->dev[i].page;
299                 if (!p)
300                         continue;
301                 sh->dev[i].page = NULL;
302                 put_page(p);
303         }
304 }
305
306 static int grow_buffers(struct stripe_head *sh)
307 {
308         int i;
309         int num = sh->raid_conf->pool_size;
310
311         for (i = 0; i < num; i++) {
312                 struct page *page;
313
314                 if (!(page = alloc_page(GFP_KERNEL))) {
315                         return 1;
316                 }
317                 sh->dev[i].page = page;
318         }
319         return 0;
320 }
321
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324                             struct stripe_head *sh);
325
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328         struct r5conf *conf = sh->raid_conf;
329         int i;
330
331         BUG_ON(atomic_read(&sh->count) != 0);
332         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333         BUG_ON(stripe_operations_active(sh));
334
335         pr_debug("init_stripe called, stripe %llu\n",
336                 (unsigned long long)sh->sector);
337
338         remove_hash(sh);
339
340         sh->generation = conf->generation - previous;
341         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342         sh->sector = sector;
343         stripe_set_idx(sector, conf, previous, sh);
344         sh->state = 0;
345
346
347         for (i = sh->disks; i--; ) {
348                 struct r5dev *dev = &sh->dev[i];
349
350                 if (dev->toread || dev->read || dev->towrite || dev->written ||
351                     test_bit(R5_LOCKED, &dev->flags)) {
352                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353                                (unsigned long long)sh->sector, i, dev->toread,
354                                dev->read, dev->towrite, dev->written,
355                                test_bit(R5_LOCKED, &dev->flags));
356                         WARN_ON(1);
357                 }
358                 dev->flags = 0;
359                 raid5_build_block(sh, i, previous);
360         }
361         insert_hash(conf, sh);
362 }
363
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365                                          short generation)
366 {
367         struct stripe_head *sh;
368         struct hlist_node *hn;
369
370         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
371         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
372                 if (sh->sector == sector && sh->generation == generation)
373                         return sh;
374         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
375         return NULL;
376 }
377
378 /*
379  * Need to check if array has failed when deciding whether to:
380  *  - start an array
381  *  - remove non-faulty devices
382  *  - add a spare
383  *  - allow a reshape
384  * This determination is simple when no reshape is happening.
385  * However if there is a reshape, we need to carefully check
386  * both the before and after sections.
387  * This is because some failed devices may only affect one
388  * of the two sections, and some non-in_sync devices may
389  * be insync in the section most affected by failed devices.
390  */
391 static int calc_degraded(struct r5conf *conf)
392 {
393         int degraded, degraded2;
394         int i;
395
396         rcu_read_lock();
397         degraded = 0;
398         for (i = 0; i < conf->previous_raid_disks; i++) {
399                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
400                 if (rdev && test_bit(Faulty, &rdev->flags))
401                         rdev = rcu_dereference(conf->disks[i].replacement);
402                 if (!rdev || test_bit(Faulty, &rdev->flags))
403                         degraded++;
404                 else if (test_bit(In_sync, &rdev->flags))
405                         ;
406                 else
407                         /* not in-sync or faulty.
408                          * If the reshape increases the number of devices,
409                          * this is being recovered by the reshape, so
410                          * this 'previous' section is not in_sync.
411                          * If the number of devices is being reduced however,
412                          * the device can only be part of the array if
413                          * we are reverting a reshape, so this section will
414                          * be in-sync.
415                          */
416                         if (conf->raid_disks >= conf->previous_raid_disks)
417                                 degraded++;
418         }
419         rcu_read_unlock();
420         if (conf->raid_disks == conf->previous_raid_disks)
421                 return degraded;
422         rcu_read_lock();
423         degraded2 = 0;
424         for (i = 0; i < conf->raid_disks; i++) {
425                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
426                 if (rdev && test_bit(Faulty, &rdev->flags))
427                         rdev = rcu_dereference(conf->disks[i].replacement);
428                 if (!rdev || test_bit(Faulty, &rdev->flags))
429                         degraded2++;
430                 else if (test_bit(In_sync, &rdev->flags))
431                         ;
432                 else
433                         /* not in-sync or faulty.
434                          * If reshape increases the number of devices, this
435                          * section has already been recovered, else it
436                          * almost certainly hasn't.
437                          */
438                         if (conf->raid_disks <= conf->previous_raid_disks)
439                                 degraded2++;
440         }
441         rcu_read_unlock();
442         if (degraded2 > degraded)
443                 return degraded2;
444         return degraded;
445 }
446
447 static int has_failed(struct r5conf *conf)
448 {
449         int degraded;
450
451         if (conf->mddev->reshape_position == MaxSector)
452                 return conf->mddev->degraded > conf->max_degraded;
453
454         degraded = calc_degraded(conf);
455         if (degraded > conf->max_degraded)
456                 return 1;
457         return 0;
458 }
459
460 static struct stripe_head *
461 get_active_stripe(struct r5conf *conf, sector_t sector,
462                   int previous, int noblock, int noquiesce)
463 {
464         struct stripe_head *sh;
465
466         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
467
468         spin_lock_irq(&conf->device_lock);
469
470         do {
471                 wait_event_lock_irq(conf->wait_for_stripe,
472                                     conf->quiesce == 0 || noquiesce,
473                                     conf->device_lock, /* nothing */);
474                 sh = __find_stripe(conf, sector, conf->generation - previous);
475                 if (!sh) {
476                         if (!conf->inactive_blocked)
477                                 sh = get_free_stripe(conf);
478                         if (noblock && sh == NULL)
479                                 break;
480                         if (!sh) {
481                                 conf->inactive_blocked = 1;
482                                 wait_event_lock_irq(conf->wait_for_stripe,
483                                                     !list_empty(&conf->inactive_list) &&
484                                                     (atomic_read(&conf->active_stripes)
485                                                      < (conf->max_nr_stripes *3/4)
486                                                      || !conf->inactive_blocked),
487                                                     conf->device_lock,
488                                                     );
489                                 conf->inactive_blocked = 0;
490                         } else
491                                 init_stripe(sh, sector, previous);
492                 } else {
493                         if (atomic_read(&sh->count)) {
494                                 BUG_ON(!list_empty(&sh->lru)
495                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
496                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
497                         } else {
498                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
499                                         atomic_inc(&conf->active_stripes);
500                                 if (list_empty(&sh->lru) &&
501                                     !test_bit(STRIPE_EXPANDING, &sh->state))
502                                         BUG();
503                                 list_del_init(&sh->lru);
504                         }
505                 }
506         } while (sh == NULL);
507
508         if (sh)
509                 atomic_inc(&sh->count);
510
511         spin_unlock_irq(&conf->device_lock);
512         return sh;
513 }
514
515 /* Determine if 'data_offset' or 'new_data_offset' should be used
516  * in this stripe_head.
517  */
518 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
519 {
520         sector_t progress = conf->reshape_progress;
521         /* Need a memory barrier to make sure we see the value
522          * of conf->generation, or ->data_offset that was set before
523          * reshape_progress was updated.
524          */
525         smp_rmb();
526         if (progress == MaxSector)
527                 return 0;
528         if (sh->generation == conf->generation - 1)
529                 return 0;
530         /* We are in a reshape, and this is a new-generation stripe,
531          * so use new_data_offset.
532          */
533         return 1;
534 }
535
536 static void
537 raid5_end_read_request(struct bio *bi, int error);
538 static void
539 raid5_end_write_request(struct bio *bi, int error);
540
541 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
542 {
543         struct r5conf *conf = sh->raid_conf;
544         int i, disks = sh->disks;
545
546         might_sleep();
547
548         for (i = disks; i--; ) {
549                 int rw;
550                 int replace_only = 0;
551                 struct bio *bi, *rbi;
552                 struct md_rdev *rdev, *rrdev = NULL;
553                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
554                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
555                                 rw = WRITE_FUA;
556                         else
557                                 rw = WRITE;
558                         if (test_bit(R5_Discard, &sh->dev[i].flags))
559                                 rw |= REQ_DISCARD;
560                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
561                         rw = READ;
562                 else if (test_and_clear_bit(R5_WantReplace,
563                                             &sh->dev[i].flags)) {
564                         rw = WRITE;
565                         replace_only = 1;
566                 } else
567                         continue;
568                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
569                         rw |= REQ_SYNC;
570
571                 bi = &sh->dev[i].req;
572                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
573
574                 bi->bi_rw = rw;
575                 rbi->bi_rw = rw;
576                 if (rw & WRITE) {
577                         bi->bi_end_io = raid5_end_write_request;
578                         rbi->bi_end_io = raid5_end_write_request;
579                 } else
580                         bi->bi_end_io = raid5_end_read_request;
581
582                 rcu_read_lock();
583                 rrdev = rcu_dereference(conf->disks[i].replacement);
584                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
585                 rdev = rcu_dereference(conf->disks[i].rdev);
586                 if (!rdev) {
587                         rdev = rrdev;
588                         rrdev = NULL;
589                 }
590                 if (rw & WRITE) {
591                         if (replace_only)
592                                 rdev = NULL;
593                         if (rdev == rrdev)
594                                 /* We raced and saw duplicates */
595                                 rrdev = NULL;
596                 } else {
597                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
598                                 rdev = rrdev;
599                         rrdev = NULL;
600                 }
601
602                 if (rdev && test_bit(Faulty, &rdev->flags))
603                         rdev = NULL;
604                 if (rdev)
605                         atomic_inc(&rdev->nr_pending);
606                 if (rrdev && test_bit(Faulty, &rrdev->flags))
607                         rrdev = NULL;
608                 if (rrdev)
609                         atomic_inc(&rrdev->nr_pending);
610                 rcu_read_unlock();
611
612                 /* We have already checked bad blocks for reads.  Now
613                  * need to check for writes.  We never accept write errors
614                  * on the replacement, so we don't to check rrdev.
615                  */
616                 while ((rw & WRITE) && rdev &&
617                        test_bit(WriteErrorSeen, &rdev->flags)) {
618                         sector_t first_bad;
619                         int bad_sectors;
620                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
621                                               &first_bad, &bad_sectors);
622                         if (!bad)
623                                 break;
624
625                         if (bad < 0) {
626                                 set_bit(BlockedBadBlocks, &rdev->flags);
627                                 if (!conf->mddev->external &&
628                                     conf->mddev->flags) {
629                                         /* It is very unlikely, but we might
630                                          * still need to write out the
631                                          * bad block log - better give it
632                                          * a chance*/
633                                         md_check_recovery(conf->mddev);
634                                 }
635                                 /*
636                                  * Because md_wait_for_blocked_rdev
637                                  * will dec nr_pending, we must
638                                  * increment it first.
639                                  */
640                                 atomic_inc(&rdev->nr_pending);
641                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
642                         } else {
643                                 /* Acknowledged bad block - skip the write */
644                                 rdev_dec_pending(rdev, conf->mddev);
645                                 rdev = NULL;
646                         }
647                 }
648
649                 if (rdev) {
650                         if (s->syncing || s->expanding || s->expanded
651                             || s->replacing)
652                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
653
654                         set_bit(STRIPE_IO_STARTED, &sh->state);
655
656                         bi->bi_bdev = rdev->bdev;
657                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
658                                 __func__, (unsigned long long)sh->sector,
659                                 bi->bi_rw, i);
660                         atomic_inc(&sh->count);
661                         if (use_new_offset(conf, sh))
662                                 bi->bi_sector = (sh->sector
663                                                  + rdev->new_data_offset);
664                         else
665                                 bi->bi_sector = (sh->sector
666                                                  + rdev->data_offset);
667                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
668                                 bi->bi_rw |= REQ_FLUSH;
669
670                         bi->bi_flags = 1 << BIO_UPTODATE;
671                         bi->bi_idx = 0;
672                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
673                         bi->bi_io_vec[0].bv_offset = 0;
674                         bi->bi_size = STRIPE_SIZE;
675                         bi->bi_next = NULL;
676                         if (rrdev)
677                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
678                         trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
679                                               bi, disk_devt(conf->mddev->gendisk),
680                                               sh->dev[i].sector);
681                         generic_make_request(bi);
682                 }
683                 if (rrdev) {
684                         if (s->syncing || s->expanding || s->expanded
685                             || s->replacing)
686                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
687
688                         set_bit(STRIPE_IO_STARTED, &sh->state);
689
690                         rbi->bi_bdev = rrdev->bdev;
691                         pr_debug("%s: for %llu schedule op %ld on "
692                                  "replacement disc %d\n",
693                                 __func__, (unsigned long long)sh->sector,
694                                 rbi->bi_rw, i);
695                         atomic_inc(&sh->count);
696                         if (use_new_offset(conf, sh))
697                                 rbi->bi_sector = (sh->sector
698                                                   + rrdev->new_data_offset);
699                         else
700                                 rbi->bi_sector = (sh->sector
701                                                   + rrdev->data_offset);
702                         rbi->bi_flags = 1 << BIO_UPTODATE;
703                         rbi->bi_idx = 0;
704                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
705                         rbi->bi_io_vec[0].bv_offset = 0;
706                         rbi->bi_size = STRIPE_SIZE;
707                         rbi->bi_next = NULL;
708                         trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
709                                               rbi, disk_devt(conf->mddev->gendisk),
710                                               sh->dev[i].sector);
711                         generic_make_request(rbi);
712                 }
713                 if (!rdev && !rrdev) {
714                         if (rw & WRITE)
715                                 set_bit(STRIPE_DEGRADED, &sh->state);
716                         pr_debug("skip op %ld on disc %d for sector %llu\n",
717                                 bi->bi_rw, i, (unsigned long long)sh->sector);
718                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
719                         set_bit(STRIPE_HANDLE, &sh->state);
720                 }
721         }
722 }
723
724 static struct dma_async_tx_descriptor *
725 async_copy_data(int frombio, struct bio *bio, struct page *page,
726         sector_t sector, struct dma_async_tx_descriptor *tx)
727 {
728         struct bio_vec *bvl;
729         struct page *bio_page;
730         int i;
731         int page_offset;
732         struct async_submit_ctl submit;
733         enum async_tx_flags flags = 0;
734
735         if (bio->bi_sector >= sector)
736                 page_offset = (signed)(bio->bi_sector - sector) * 512;
737         else
738                 page_offset = (signed)(sector - bio->bi_sector) * -512;
739
740         if (frombio)
741                 flags |= ASYNC_TX_FENCE;
742         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
743
744         bio_for_each_segment(bvl, bio, i) {
745                 int len = bvl->bv_len;
746                 int clen;
747                 int b_offset = 0;
748
749                 if (page_offset < 0) {
750                         b_offset = -page_offset;
751                         page_offset += b_offset;
752                         len -= b_offset;
753                 }
754
755                 if (len > 0 && page_offset + len > STRIPE_SIZE)
756                         clen = STRIPE_SIZE - page_offset;
757                 else
758                         clen = len;
759
760                 if (clen > 0) {
761                         b_offset += bvl->bv_offset;
762                         bio_page = bvl->bv_page;
763                         if (frombio)
764                                 tx = async_memcpy(page, bio_page, page_offset,
765                                                   b_offset, clen, &submit);
766                         else
767                                 tx = async_memcpy(bio_page, page, b_offset,
768                                                   page_offset, clen, &submit);
769                 }
770                 /* chain the operations */
771                 submit.depend_tx = tx;
772
773                 if (clen < len) /* hit end of page */
774                         break;
775                 page_offset +=  len;
776         }
777
778         return tx;
779 }
780
781 static void ops_complete_biofill(void *stripe_head_ref)
782 {
783         struct stripe_head *sh = stripe_head_ref;
784         struct bio *return_bi = NULL;
785         int i;
786
787         pr_debug("%s: stripe %llu\n", __func__,
788                 (unsigned long long)sh->sector);
789
790         /* clear completed biofills */
791         for (i = sh->disks; i--; ) {
792                 struct r5dev *dev = &sh->dev[i];
793
794                 /* acknowledge completion of a biofill operation */
795                 /* and check if we need to reply to a read request,
796                  * new R5_Wantfill requests are held off until
797                  * !STRIPE_BIOFILL_RUN
798                  */
799                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
800                         struct bio *rbi, *rbi2;
801
802                         BUG_ON(!dev->read);
803                         rbi = dev->read;
804                         dev->read = NULL;
805                         while (rbi && rbi->bi_sector <
806                                 dev->sector + STRIPE_SECTORS) {
807                                 rbi2 = r5_next_bio(rbi, dev->sector);
808                                 if (!raid5_dec_bi_active_stripes(rbi)) {
809                                         rbi->bi_next = return_bi;
810                                         return_bi = rbi;
811                                 }
812                                 rbi = rbi2;
813                         }
814                 }
815         }
816         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
817
818         return_io(return_bi);
819
820         set_bit(STRIPE_HANDLE, &sh->state);
821         release_stripe(sh);
822 }
823
824 static void ops_run_biofill(struct stripe_head *sh)
825 {
826         struct dma_async_tx_descriptor *tx = NULL;
827         struct async_submit_ctl submit;
828         int i;
829
830         pr_debug("%s: stripe %llu\n", __func__,
831                 (unsigned long long)sh->sector);
832
833         for (i = sh->disks; i--; ) {
834                 struct r5dev *dev = &sh->dev[i];
835                 if (test_bit(R5_Wantfill, &dev->flags)) {
836                         struct bio *rbi;
837                         spin_lock_irq(&sh->stripe_lock);
838                         dev->read = rbi = dev->toread;
839                         dev->toread = NULL;
840                         spin_unlock_irq(&sh->stripe_lock);
841                         while (rbi && rbi->bi_sector <
842                                 dev->sector + STRIPE_SECTORS) {
843                                 tx = async_copy_data(0, rbi, dev->page,
844                                         dev->sector, tx);
845                                 rbi = r5_next_bio(rbi, dev->sector);
846                         }
847                 }
848         }
849
850         atomic_inc(&sh->count);
851         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
852         async_trigger_callback(&submit);
853 }
854
855 static void mark_target_uptodate(struct stripe_head *sh, int target)
856 {
857         struct r5dev *tgt;
858
859         if (target < 0)
860                 return;
861
862         tgt = &sh->dev[target];
863         set_bit(R5_UPTODATE, &tgt->flags);
864         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
865         clear_bit(R5_Wantcompute, &tgt->flags);
866 }
867
868 static void ops_complete_compute(void *stripe_head_ref)
869 {
870         struct stripe_head *sh = stripe_head_ref;
871
872         pr_debug("%s: stripe %llu\n", __func__,
873                 (unsigned long long)sh->sector);
874
875         /* mark the computed target(s) as uptodate */
876         mark_target_uptodate(sh, sh->ops.target);
877         mark_target_uptodate(sh, sh->ops.target2);
878
879         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
880         if (sh->check_state == check_state_compute_run)
881                 sh->check_state = check_state_compute_result;
882         set_bit(STRIPE_HANDLE, &sh->state);
883         release_stripe(sh);
884 }
885
886 /* return a pointer to the address conversion region of the scribble buffer */
887 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
888                                  struct raid5_percpu *percpu)
889 {
890         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
891 }
892
893 static struct dma_async_tx_descriptor *
894 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
895 {
896         int disks = sh->disks;
897         struct page **xor_srcs = percpu->scribble;
898         int target = sh->ops.target;
899         struct r5dev *tgt = &sh->dev[target];
900         struct page *xor_dest = tgt->page;
901         int count = 0;
902         struct dma_async_tx_descriptor *tx;
903         struct async_submit_ctl submit;
904         int i;
905
906         pr_debug("%s: stripe %llu block: %d\n",
907                 __func__, (unsigned long long)sh->sector, target);
908         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
909
910         for (i = disks; i--; )
911                 if (i != target)
912                         xor_srcs[count++] = sh->dev[i].page;
913
914         atomic_inc(&sh->count);
915
916         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
917                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
918         if (unlikely(count == 1))
919                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
920         else
921                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
922
923         return tx;
924 }
925
926 /* set_syndrome_sources - populate source buffers for gen_syndrome
927  * @srcs - (struct page *) array of size sh->disks
928  * @sh - stripe_head to parse
929  *
930  * Populates srcs in proper layout order for the stripe and returns the
931  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
932  * destination buffer is recorded in srcs[count] and the Q destination
933  * is recorded in srcs[count+1]].
934  */
935 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
936 {
937         int disks = sh->disks;
938         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
939         int d0_idx = raid6_d0(sh);
940         int count;
941         int i;
942
943         for (i = 0; i < disks; i++)
944                 srcs[i] = NULL;
945
946         count = 0;
947         i = d0_idx;
948         do {
949                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
950
951                 srcs[slot] = sh->dev[i].page;
952                 i = raid6_next_disk(i, disks);
953         } while (i != d0_idx);
954
955         return syndrome_disks;
956 }
957
958 static struct dma_async_tx_descriptor *
959 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
960 {
961         int disks = sh->disks;
962         struct page **blocks = percpu->scribble;
963         int target;
964         int qd_idx = sh->qd_idx;
965         struct dma_async_tx_descriptor *tx;
966         struct async_submit_ctl submit;
967         struct r5dev *tgt;
968         struct page *dest;
969         int i;
970         int count;
971
972         if (sh->ops.target < 0)
973                 target = sh->ops.target2;
974         else if (sh->ops.target2 < 0)
975                 target = sh->ops.target;
976         else
977                 /* we should only have one valid target */
978                 BUG();
979         BUG_ON(target < 0);
980         pr_debug("%s: stripe %llu block: %d\n",
981                 __func__, (unsigned long long)sh->sector, target);
982
983         tgt = &sh->dev[target];
984         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
985         dest = tgt->page;
986
987         atomic_inc(&sh->count);
988
989         if (target == qd_idx) {
990                 count = set_syndrome_sources(blocks, sh);
991                 blocks[count] = NULL; /* regenerating p is not necessary */
992                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
993                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
994                                   ops_complete_compute, sh,
995                                   to_addr_conv(sh, percpu));
996                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
997         } else {
998                 /* Compute any data- or p-drive using XOR */
999                 count = 0;
1000                 for (i = disks; i-- ; ) {
1001                         if (i == target || i == qd_idx)
1002                                 continue;
1003                         blocks[count++] = sh->dev[i].page;
1004                 }
1005
1006                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1007                                   NULL, ops_complete_compute, sh,
1008                                   to_addr_conv(sh, percpu));
1009                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1010         }
1011
1012         return tx;
1013 }
1014
1015 static struct dma_async_tx_descriptor *
1016 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1017 {
1018         int i, count, disks = sh->disks;
1019         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1020         int d0_idx = raid6_d0(sh);
1021         int faila = -1, failb = -1;
1022         int target = sh->ops.target;
1023         int target2 = sh->ops.target2;
1024         struct r5dev *tgt = &sh->dev[target];
1025         struct r5dev *tgt2 = &sh->dev[target2];
1026         struct dma_async_tx_descriptor *tx;
1027         struct page **blocks = percpu->scribble;
1028         struct async_submit_ctl submit;
1029
1030         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1031                  __func__, (unsigned long long)sh->sector, target, target2);
1032         BUG_ON(target < 0 || target2 < 0);
1033         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1034         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1035
1036         /* we need to open-code set_syndrome_sources to handle the
1037          * slot number conversion for 'faila' and 'failb'
1038          */
1039         for (i = 0; i < disks ; i++)
1040                 blocks[i] = NULL;
1041         count = 0;
1042         i = d0_idx;
1043         do {
1044                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1045
1046                 blocks[slot] = sh->dev[i].page;
1047
1048                 if (i == target)
1049                         faila = slot;
1050                 if (i == target2)
1051                         failb = slot;
1052                 i = raid6_next_disk(i, disks);
1053         } while (i != d0_idx);
1054
1055         BUG_ON(faila == failb);
1056         if (failb < faila)
1057                 swap(faila, failb);
1058         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1059                  __func__, (unsigned long long)sh->sector, faila, failb);
1060
1061         atomic_inc(&sh->count);
1062
1063         if (failb == syndrome_disks+1) {
1064                 /* Q disk is one of the missing disks */
1065                 if (faila == syndrome_disks) {
1066                         /* Missing P+Q, just recompute */
1067                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1068                                           ops_complete_compute, sh,
1069                                           to_addr_conv(sh, percpu));
1070                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1071                                                   STRIPE_SIZE, &submit);
1072                 } else {
1073                         struct page *dest;
1074                         int data_target;
1075                         int qd_idx = sh->qd_idx;
1076
1077                         /* Missing D+Q: recompute D from P, then recompute Q */
1078                         if (target == qd_idx)
1079                                 data_target = target2;
1080                         else
1081                                 data_target = target;
1082
1083                         count = 0;
1084                         for (i = disks; i-- ; ) {
1085                                 if (i == data_target || i == qd_idx)
1086                                         continue;
1087                                 blocks[count++] = sh->dev[i].page;
1088                         }
1089                         dest = sh->dev[data_target].page;
1090                         init_async_submit(&submit,
1091                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1092                                           NULL, NULL, NULL,
1093                                           to_addr_conv(sh, percpu));
1094                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1095                                        &submit);
1096
1097                         count = set_syndrome_sources(blocks, sh);
1098                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1099                                           ops_complete_compute, sh,
1100                                           to_addr_conv(sh, percpu));
1101                         return async_gen_syndrome(blocks, 0, count+2,
1102                                                   STRIPE_SIZE, &submit);
1103                 }
1104         } else {
1105                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1106                                   ops_complete_compute, sh,
1107                                   to_addr_conv(sh, percpu));
1108                 if (failb == syndrome_disks) {
1109                         /* We're missing D+P. */
1110                         return async_raid6_datap_recov(syndrome_disks+2,
1111                                                        STRIPE_SIZE, faila,
1112                                                        blocks, &submit);
1113                 } else {
1114                         /* We're missing D+D. */
1115                         return async_raid6_2data_recov(syndrome_disks+2,
1116                                                        STRIPE_SIZE, faila, failb,
1117                                                        blocks, &submit);
1118                 }
1119         }
1120 }
1121
1122
1123 static void ops_complete_prexor(void *stripe_head_ref)
1124 {
1125         struct stripe_head *sh = stripe_head_ref;
1126
1127         pr_debug("%s: stripe %llu\n", __func__,
1128                 (unsigned long long)sh->sector);
1129 }
1130
1131 static struct dma_async_tx_descriptor *
1132 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1133                struct dma_async_tx_descriptor *tx)
1134 {
1135         int disks = sh->disks;
1136         struct page **xor_srcs = percpu->scribble;
1137         int count = 0, pd_idx = sh->pd_idx, i;
1138         struct async_submit_ctl submit;
1139
1140         /* existing parity data subtracted */
1141         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1142
1143         pr_debug("%s: stripe %llu\n", __func__,
1144                 (unsigned long long)sh->sector);
1145
1146         for (i = disks; i--; ) {
1147                 struct r5dev *dev = &sh->dev[i];
1148                 /* Only process blocks that are known to be uptodate */
1149                 if (test_bit(R5_Wantdrain, &dev->flags))
1150                         xor_srcs[count++] = dev->page;
1151         }
1152
1153         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1154                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1155         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1156
1157         return tx;
1158 }
1159
1160 static struct dma_async_tx_descriptor *
1161 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1162 {
1163         int disks = sh->disks;
1164         int i;
1165
1166         pr_debug("%s: stripe %llu\n", __func__,
1167                 (unsigned long long)sh->sector);
1168
1169         for (i = disks; i--; ) {
1170                 struct r5dev *dev = &sh->dev[i];
1171                 struct bio *chosen;
1172
1173                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1174                         struct bio *wbi;
1175
1176                         spin_lock_irq(&sh->stripe_lock);
1177                         chosen = dev->towrite;
1178                         dev->towrite = NULL;
1179                         BUG_ON(dev->written);
1180                         wbi = dev->written = chosen;
1181                         spin_unlock_irq(&sh->stripe_lock);
1182
1183                         while (wbi && wbi->bi_sector <
1184                                 dev->sector + STRIPE_SECTORS) {
1185                                 if (wbi->bi_rw & REQ_FUA)
1186                                         set_bit(R5_WantFUA, &dev->flags);
1187                                 if (wbi->bi_rw & REQ_SYNC)
1188                                         set_bit(R5_SyncIO, &dev->flags);
1189                                 if (wbi->bi_rw & REQ_DISCARD)
1190                                         set_bit(R5_Discard, &dev->flags);
1191                                 else
1192                                         tx = async_copy_data(1, wbi, dev->page,
1193                                                 dev->sector, tx);
1194                                 wbi = r5_next_bio(wbi, dev->sector);
1195                         }
1196                 }
1197         }
1198
1199         return tx;
1200 }
1201
1202 static void ops_complete_reconstruct(void *stripe_head_ref)
1203 {
1204         struct stripe_head *sh = stripe_head_ref;
1205         int disks = sh->disks;
1206         int pd_idx = sh->pd_idx;
1207         int qd_idx = sh->qd_idx;
1208         int i;
1209         bool fua = false, sync = false, discard = false;
1210
1211         pr_debug("%s: stripe %llu\n", __func__,
1212                 (unsigned long long)sh->sector);
1213
1214         for (i = disks; i--; ) {
1215                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1216                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1217                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1218         }
1219
1220         for (i = disks; i--; ) {
1221                 struct r5dev *dev = &sh->dev[i];
1222
1223                 if (dev->written || i == pd_idx || i == qd_idx) {
1224                         if (!discard)
1225                                 set_bit(R5_UPTODATE, &dev->flags);
1226                         if (fua)
1227                                 set_bit(R5_WantFUA, &dev->flags);
1228                         if (sync)
1229                                 set_bit(R5_SyncIO, &dev->flags);
1230                 }
1231         }
1232
1233         if (sh->reconstruct_state == reconstruct_state_drain_run)
1234                 sh->reconstruct_state = reconstruct_state_drain_result;
1235         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1236                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1237         else {
1238                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1239                 sh->reconstruct_state = reconstruct_state_result;
1240         }
1241
1242         set_bit(STRIPE_HANDLE, &sh->state);
1243         release_stripe(sh);
1244 }
1245
1246 static void
1247 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1248                      struct dma_async_tx_descriptor *tx)
1249 {
1250         int disks = sh->disks;
1251         struct page **xor_srcs = percpu->scribble;
1252         struct async_submit_ctl submit;
1253         int count = 0, pd_idx = sh->pd_idx, i;
1254         struct page *xor_dest;
1255         int prexor = 0;
1256         unsigned long flags;
1257
1258         pr_debug("%s: stripe %llu\n", __func__,
1259                 (unsigned long long)sh->sector);
1260
1261         for (i = 0; i < sh->disks; i++) {
1262                 if (pd_idx == i)
1263                         continue;
1264                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1265                         break;
1266         }
1267         if (i >= sh->disks) {
1268                 atomic_inc(&sh->count);
1269                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1270                 ops_complete_reconstruct(sh);
1271                 return;
1272         }
1273         /* check if prexor is active which means only process blocks
1274          * that are part of a read-modify-write (written)
1275          */
1276         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1277                 prexor = 1;
1278                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1279                 for (i = disks; i--; ) {
1280                         struct r5dev *dev = &sh->dev[i];
1281                         if (dev->written)
1282                                 xor_srcs[count++] = dev->page;
1283                 }
1284         } else {
1285                 xor_dest = sh->dev[pd_idx].page;
1286                 for (i = disks; i--; ) {
1287                         struct r5dev *dev = &sh->dev[i];
1288                         if (i != pd_idx)
1289                                 xor_srcs[count++] = dev->page;
1290                 }
1291         }
1292
1293         /* 1/ if we prexor'd then the dest is reused as a source
1294          * 2/ if we did not prexor then we are redoing the parity
1295          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1296          * for the synchronous xor case
1297          */
1298         flags = ASYNC_TX_ACK |
1299                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1300
1301         atomic_inc(&sh->count);
1302
1303         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1304                           to_addr_conv(sh, percpu));
1305         if (unlikely(count == 1))
1306                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1307         else
1308                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1309 }
1310
1311 static void
1312 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1313                      struct dma_async_tx_descriptor *tx)
1314 {
1315         struct async_submit_ctl submit;
1316         struct page **blocks = percpu->scribble;
1317         int count, i;
1318
1319         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1320
1321         for (i = 0; i < sh->disks; i++) {
1322                 if (sh->pd_idx == i || sh->qd_idx == i)
1323                         continue;
1324                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1325                         break;
1326         }
1327         if (i >= sh->disks) {
1328                 atomic_inc(&sh->count);
1329                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1330                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1331                 ops_complete_reconstruct(sh);
1332                 return;
1333         }
1334
1335         count = set_syndrome_sources(blocks, sh);
1336
1337         atomic_inc(&sh->count);
1338
1339         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1340                           sh, to_addr_conv(sh, percpu));
1341         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1342 }
1343
1344 static void ops_complete_check(void *stripe_head_ref)
1345 {
1346         struct stripe_head *sh = stripe_head_ref;
1347
1348         pr_debug("%s: stripe %llu\n", __func__,
1349                 (unsigned long long)sh->sector);
1350
1351         sh->check_state = check_state_check_result;
1352         set_bit(STRIPE_HANDLE, &sh->state);
1353         release_stripe(sh);
1354 }
1355
1356 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1357 {
1358         int disks = sh->disks;
1359         int pd_idx = sh->pd_idx;
1360         int qd_idx = sh->qd_idx;
1361         struct page *xor_dest;
1362         struct page **xor_srcs = percpu->scribble;
1363         struct dma_async_tx_descriptor *tx;
1364         struct async_submit_ctl submit;
1365         int count;
1366         int i;
1367
1368         pr_debug("%s: stripe %llu\n", __func__,
1369                 (unsigned long long)sh->sector);
1370
1371         count = 0;
1372         xor_dest = sh->dev[pd_idx].page;
1373         xor_srcs[count++] = xor_dest;
1374         for (i = disks; i--; ) {
1375                 if (i == pd_idx || i == qd_idx)
1376                         continue;
1377                 xor_srcs[count++] = sh->dev[i].page;
1378         }
1379
1380         init_async_submit(&submit, 0, NULL, NULL, NULL,
1381                           to_addr_conv(sh, percpu));
1382         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1383                            &sh->ops.zero_sum_result, &submit);
1384
1385         atomic_inc(&sh->count);
1386         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1387         tx = async_trigger_callback(&submit);
1388 }
1389
1390 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1391 {
1392         struct page **srcs = percpu->scribble;
1393         struct async_submit_ctl submit;
1394         int count;
1395
1396         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1397                 (unsigned long long)sh->sector, checkp);
1398
1399         count = set_syndrome_sources(srcs, sh);
1400         if (!checkp)
1401                 srcs[count] = NULL;
1402
1403         atomic_inc(&sh->count);
1404         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1405                           sh, to_addr_conv(sh, percpu));
1406         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1407                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1408 }
1409
1410 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1411 {
1412         int overlap_clear = 0, i, disks = sh->disks;
1413         struct dma_async_tx_descriptor *tx = NULL;
1414         struct r5conf *conf = sh->raid_conf;
1415         int level = conf->level;
1416         struct raid5_percpu *percpu;
1417         unsigned long cpu;
1418
1419         cpu = get_cpu();
1420         percpu = per_cpu_ptr(conf->percpu, cpu);
1421         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1422                 ops_run_biofill(sh);
1423                 overlap_clear++;
1424         }
1425
1426         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1427                 if (level < 6)
1428                         tx = ops_run_compute5(sh, percpu);
1429                 else {
1430                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1431                                 tx = ops_run_compute6_1(sh, percpu);
1432                         else
1433                                 tx = ops_run_compute6_2(sh, percpu);
1434                 }
1435                 /* terminate the chain if reconstruct is not set to be run */
1436                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1437                         async_tx_ack(tx);
1438         }
1439
1440         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1441                 tx = ops_run_prexor(sh, percpu, tx);
1442
1443         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1444                 tx = ops_run_biodrain(sh, tx);
1445                 overlap_clear++;
1446         }
1447
1448         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1449                 if (level < 6)
1450                         ops_run_reconstruct5(sh, percpu, tx);
1451                 else
1452                         ops_run_reconstruct6(sh, percpu, tx);
1453         }
1454
1455         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1456                 if (sh->check_state == check_state_run)
1457                         ops_run_check_p(sh, percpu);
1458                 else if (sh->check_state == check_state_run_q)
1459                         ops_run_check_pq(sh, percpu, 0);
1460                 else if (sh->check_state == check_state_run_pq)
1461                         ops_run_check_pq(sh, percpu, 1);
1462                 else
1463                         BUG();
1464         }
1465
1466         if (overlap_clear)
1467                 for (i = disks; i--; ) {
1468                         struct r5dev *dev = &sh->dev[i];
1469                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1470                                 wake_up(&sh->raid_conf->wait_for_overlap);
1471                 }
1472         put_cpu();
1473 }
1474
1475 #ifdef CONFIG_MULTICORE_RAID456
1476 static void async_run_ops(void *param, async_cookie_t cookie)
1477 {
1478         struct stripe_head *sh = param;
1479         unsigned long ops_request = sh->ops.request;
1480
1481         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1482         wake_up(&sh->ops.wait_for_ops);
1483
1484         __raid_run_ops(sh, ops_request);
1485         release_stripe(sh);
1486 }
1487
1488 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1489 {
1490         /* since handle_stripe can be called outside of raid5d context
1491          * we need to ensure sh->ops.request is de-staged before another
1492          * request arrives
1493          */
1494         wait_event(sh->ops.wait_for_ops,
1495                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1496         sh->ops.request = ops_request;
1497
1498         atomic_inc(&sh->count);
1499         async_schedule(async_run_ops, sh);
1500 }
1501 #else
1502 #define raid_run_ops __raid_run_ops
1503 #endif
1504
1505 static int grow_one_stripe(struct r5conf *conf)
1506 {
1507         struct stripe_head *sh;
1508         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1509         if (!sh)
1510                 return 0;
1511
1512         sh->raid_conf = conf;
1513         #ifdef CONFIG_MULTICORE_RAID456
1514         init_waitqueue_head(&sh->ops.wait_for_ops);
1515         #endif
1516
1517         spin_lock_init(&sh->stripe_lock);
1518
1519         if (grow_buffers(sh)) {
1520                 shrink_buffers(sh);
1521                 kmem_cache_free(conf->slab_cache, sh);
1522                 return 0;
1523         }
1524         /* we just created an active stripe so... */
1525         atomic_set(&sh->count, 1);
1526         atomic_inc(&conf->active_stripes);
1527         INIT_LIST_HEAD(&sh->lru);
1528         release_stripe(sh);
1529         return 1;
1530 }
1531
1532 static int grow_stripes(struct r5conf *conf, int num)
1533 {
1534         struct kmem_cache *sc;
1535         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1536
1537         if (conf->mddev->gendisk)
1538                 sprintf(conf->cache_name[0],
1539                         "raid%d-%s", conf->level, mdname(conf->mddev));
1540         else
1541                 sprintf(conf->cache_name[0],
1542                         "raid%d-%p", conf->level, conf->mddev);
1543         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1544
1545         conf->active_name = 0;
1546         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1547                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1548                                0, 0, NULL);
1549         if (!sc)
1550                 return 1;
1551         conf->slab_cache = sc;
1552         conf->pool_size = devs;
1553         while (num--)
1554                 if (!grow_one_stripe(conf))
1555                         return 1;
1556         return 0;
1557 }
1558
1559 /**
1560  * scribble_len - return the required size of the scribble region
1561  * @num - total number of disks in the array
1562  *
1563  * The size must be enough to contain:
1564  * 1/ a struct page pointer for each device in the array +2
1565  * 2/ room to convert each entry in (1) to its corresponding dma
1566  *    (dma_map_page()) or page (page_address()) address.
1567  *
1568  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1569  * calculate over all devices (not just the data blocks), using zeros in place
1570  * of the P and Q blocks.
1571  */
1572 static size_t scribble_len(int num)
1573 {
1574         size_t len;
1575
1576         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1577
1578         return len;
1579 }
1580
1581 static int resize_stripes(struct r5conf *conf, int newsize)
1582 {
1583         /* Make all the stripes able to hold 'newsize' devices.
1584          * New slots in each stripe get 'page' set to a new page.
1585          *
1586          * This happens in stages:
1587          * 1/ create a new kmem_cache and allocate the required number of
1588          *    stripe_heads.
1589          * 2/ gather all the old stripe_heads and tranfer the pages across
1590          *    to the new stripe_heads.  This will have the side effect of
1591          *    freezing the array as once all stripe_heads have been collected,
1592          *    no IO will be possible.  Old stripe heads are freed once their
1593          *    pages have been transferred over, and the old kmem_cache is
1594          *    freed when all stripes are done.
1595          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1596          *    we simple return a failre status - no need to clean anything up.
1597          * 4/ allocate new pages for the new slots in the new stripe_heads.
1598          *    If this fails, we don't bother trying the shrink the
1599          *    stripe_heads down again, we just leave them as they are.
1600          *    As each stripe_head is processed the new one is released into
1601          *    active service.
1602          *
1603          * Once step2 is started, we cannot afford to wait for a write,
1604          * so we use GFP_NOIO allocations.
1605          */
1606         struct stripe_head *osh, *nsh;
1607         LIST_HEAD(newstripes);
1608         struct disk_info *ndisks;
1609         unsigned long cpu;
1610         int err;
1611         struct kmem_cache *sc;
1612         int i;
1613
1614         if (newsize <= conf->pool_size)
1615                 return 0; /* never bother to shrink */
1616
1617         err = md_allow_write(conf->mddev);
1618         if (err)
1619                 return err;
1620
1621         /* Step 1 */
1622         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1623                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1624                                0, 0, NULL);
1625         if (!sc)
1626                 return -ENOMEM;
1627
1628         for (i = conf->max_nr_stripes; i; i--) {
1629                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1630                 if (!nsh)
1631                         break;
1632
1633                 nsh->raid_conf = conf;
1634                 #ifdef CONFIG_MULTICORE_RAID456
1635                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1636                 #endif
1637                 spin_lock_init(&nsh->stripe_lock);
1638
1639                 list_add(&nsh->lru, &newstripes);
1640         }
1641         if (i) {
1642                 /* didn't get enough, give up */
1643                 while (!list_empty(&newstripes)) {
1644                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1645                         list_del(&nsh->lru);
1646                         kmem_cache_free(sc, nsh);
1647                 }
1648                 kmem_cache_destroy(sc);
1649                 return -ENOMEM;
1650         }
1651         /* Step 2 - Must use GFP_NOIO now.
1652          * OK, we have enough stripes, start collecting inactive
1653          * stripes and copying them over
1654          */
1655         list_for_each_entry(nsh, &newstripes, lru) {
1656                 spin_lock_irq(&conf->device_lock);
1657                 wait_event_lock_irq(conf->wait_for_stripe,
1658                                     !list_empty(&conf->inactive_list),
1659                                     conf->device_lock,
1660                                     );
1661                 osh = get_free_stripe(conf);
1662                 spin_unlock_irq(&conf->device_lock);
1663                 atomic_set(&nsh->count, 1);
1664                 for(i=0; i<conf->pool_size; i++)
1665                         nsh->dev[i].page = osh->dev[i].page;
1666                 for( ; i<newsize; i++)
1667                         nsh->dev[i].page = NULL;
1668                 kmem_cache_free(conf->slab_cache, osh);
1669         }
1670         kmem_cache_destroy(conf->slab_cache);
1671
1672         /* Step 3.
1673          * At this point, we are holding all the stripes so the array
1674          * is completely stalled, so now is a good time to resize
1675          * conf->disks and the scribble region
1676          */
1677         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1678         if (ndisks) {
1679                 for (i=0; i<conf->raid_disks; i++)
1680                         ndisks[i] = conf->disks[i];
1681                 kfree(conf->disks);
1682                 conf->disks = ndisks;
1683         } else
1684                 err = -ENOMEM;
1685
1686         get_online_cpus();
1687         conf->scribble_len = scribble_len(newsize);
1688         for_each_present_cpu(cpu) {
1689                 struct raid5_percpu *percpu;
1690                 void *scribble;
1691
1692                 percpu = per_cpu_ptr(conf->percpu, cpu);
1693                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1694
1695                 if (scribble) {
1696                         kfree(percpu->scribble);
1697                         percpu->scribble = scribble;
1698                 } else {
1699                         err = -ENOMEM;
1700                         break;
1701                 }
1702         }
1703         put_online_cpus();
1704
1705         /* Step 4, return new stripes to service */
1706         while(!list_empty(&newstripes)) {
1707                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1708                 list_del_init(&nsh->lru);
1709
1710                 for (i=conf->raid_disks; i < newsize; i++)
1711                         if (nsh->dev[i].page == NULL) {
1712                                 struct page *p = alloc_page(GFP_NOIO);
1713                                 nsh->dev[i].page = p;
1714                                 if (!p)
1715                                         err = -ENOMEM;
1716                         }
1717                 release_stripe(nsh);
1718         }
1719         /* critical section pass, GFP_NOIO no longer needed */
1720
1721         conf->slab_cache = sc;
1722         conf->active_name = 1-conf->active_name;
1723         conf->pool_size = newsize;
1724         return err;
1725 }
1726
1727 static int drop_one_stripe(struct r5conf *conf)
1728 {
1729         struct stripe_head *sh;
1730
1731         spin_lock_irq(&conf->device_lock);
1732         sh = get_free_stripe(conf);
1733         spin_unlock_irq(&conf->device_lock);
1734         if (!sh)
1735                 return 0;
1736         BUG_ON(atomic_read(&sh->count));
1737         shrink_buffers(sh);
1738         kmem_cache_free(conf->slab_cache, sh);
1739         atomic_dec(&conf->active_stripes);
1740         return 1;
1741 }
1742
1743 static void shrink_stripes(struct r5conf *conf)
1744 {
1745         while (drop_one_stripe(conf))
1746                 ;
1747
1748         if (conf->slab_cache)
1749                 kmem_cache_destroy(conf->slab_cache);
1750         conf->slab_cache = NULL;
1751 }
1752
1753 static void raid5_end_read_request(struct bio * bi, int error)
1754 {
1755         struct stripe_head *sh = bi->bi_private;
1756         struct r5conf *conf = sh->raid_conf;
1757         int disks = sh->disks, i;
1758         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1759         char b[BDEVNAME_SIZE];
1760         struct md_rdev *rdev = NULL;
1761         sector_t s;
1762
1763         for (i=0 ; i<disks; i++)
1764                 if (bi == &sh->dev[i].req)
1765                         break;
1766
1767         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1768                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1769                 uptodate);
1770         if (i == disks) {
1771                 BUG();
1772                 return;
1773         }
1774         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1775                 /* If replacement finished while this request was outstanding,
1776                  * 'replacement' might be NULL already.
1777                  * In that case it moved down to 'rdev'.
1778                  * rdev is not removed until all requests are finished.
1779                  */
1780                 rdev = conf->disks[i].replacement;
1781         if (!rdev)
1782                 rdev = conf->disks[i].rdev;
1783
1784         if (use_new_offset(conf, sh))
1785                 s = sh->sector + rdev->new_data_offset;
1786         else
1787                 s = sh->sector + rdev->data_offset;
1788         if (uptodate) {
1789                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1790                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1791                         /* Note that this cannot happen on a
1792                          * replacement device.  We just fail those on
1793                          * any error
1794                          */
1795                         printk_ratelimited(
1796                                 KERN_INFO
1797                                 "md/raid:%s: read error corrected"
1798                                 " (%lu sectors at %llu on %s)\n",
1799                                 mdname(conf->mddev), STRIPE_SECTORS,
1800                                 (unsigned long long)s,
1801                                 bdevname(rdev->bdev, b));
1802                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1803                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1804                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1805                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1806                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1807
1808                 if (atomic_read(&rdev->read_errors))
1809                         atomic_set(&rdev->read_errors, 0);
1810         } else {
1811                 const char *bdn = bdevname(rdev->bdev, b);
1812                 int retry = 0;
1813                 int set_bad = 0;
1814
1815                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1816                 atomic_inc(&rdev->read_errors);
1817                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1818                         printk_ratelimited(
1819                                 KERN_WARNING
1820                                 "md/raid:%s: read error on replacement device "
1821                                 "(sector %llu on %s).\n",
1822                                 mdname(conf->mddev),
1823                                 (unsigned long long)s,
1824                                 bdn);
1825                 else if (conf->mddev->degraded >= conf->max_degraded) {
1826                         set_bad = 1;
1827                         printk_ratelimited(
1828                                 KERN_WARNING
1829                                 "md/raid:%s: read error not correctable "
1830                                 "(sector %llu on %s).\n",
1831                                 mdname(conf->mddev),
1832                                 (unsigned long long)s,
1833                                 bdn);
1834                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1835                         /* Oh, no!!! */
1836                         set_bad = 1;
1837                         printk_ratelimited(
1838                                 KERN_WARNING
1839                                 "md/raid:%s: read error NOT corrected!! "
1840                                 "(sector %llu on %s).\n",
1841                                 mdname(conf->mddev),
1842                                 (unsigned long long)s,
1843                                 bdn);
1844                 } else if (atomic_read(&rdev->read_errors)
1845                          > conf->max_nr_stripes)
1846                         printk(KERN_WARNING
1847                                "md/raid:%s: Too many read errors, failing device %s.\n",
1848                                mdname(conf->mddev), bdn);
1849                 else
1850                         retry = 1;
1851                 if (retry)
1852                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1853                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1854                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1855                         } else
1856                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1857                 else {
1858                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1859                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1860                         if (!(set_bad
1861                               && test_bit(In_sync, &rdev->flags)
1862                               && rdev_set_badblocks(
1863                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1864                                 md_error(conf->mddev, rdev);
1865                 }
1866         }
1867         rdev_dec_pending(rdev, conf->mddev);
1868         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1869         set_bit(STRIPE_HANDLE, &sh->state);
1870         release_stripe(sh);
1871 }
1872
1873 static void raid5_end_write_request(struct bio *bi, int error)
1874 {
1875         struct stripe_head *sh = bi->bi_private;
1876         struct r5conf *conf = sh->raid_conf;
1877         int disks = sh->disks, i;
1878         struct md_rdev *uninitialized_var(rdev);
1879         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1880         sector_t first_bad;
1881         int bad_sectors;
1882         int replacement = 0;
1883
1884         for (i = 0 ; i < disks; i++) {
1885                 if (bi == &sh->dev[i].req) {
1886                         rdev = conf->disks[i].rdev;
1887                         break;
1888                 }
1889                 if (bi == &sh->dev[i].rreq) {
1890                         rdev = conf->disks[i].replacement;
1891                         if (rdev)
1892                                 replacement = 1;
1893                         else
1894                                 /* rdev was removed and 'replacement'
1895                                  * replaced it.  rdev is not removed
1896                                  * until all requests are finished.
1897                                  */
1898                                 rdev = conf->disks[i].rdev;
1899                         break;
1900                 }
1901         }
1902         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1903                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1904                 uptodate);
1905         if (i == disks) {
1906                 BUG();
1907                 return;
1908         }
1909
1910         if (replacement) {
1911                 if (!uptodate)
1912                         md_error(conf->mddev, rdev);
1913                 else if (is_badblock(rdev, sh->sector,
1914                                      STRIPE_SECTORS,
1915                                      &first_bad, &bad_sectors))
1916                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1917         } else {
1918                 if (!uptodate) {
1919                         set_bit(WriteErrorSeen, &rdev->flags);
1920                         set_bit(R5_WriteError, &sh->dev[i].flags);
1921                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1922                                 set_bit(MD_RECOVERY_NEEDED,
1923                                         &rdev->mddev->recovery);
1924                 } else if (is_badblock(rdev, sh->sector,
1925                                        STRIPE_SECTORS,
1926                                        &first_bad, &bad_sectors))
1927                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1928         }
1929         rdev_dec_pending(rdev, conf->mddev);
1930
1931         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1932                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1933         set_bit(STRIPE_HANDLE, &sh->state);
1934         release_stripe(sh);
1935 }
1936
1937 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1938         
1939 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1940 {
1941         struct r5dev *dev = &sh->dev[i];
1942
1943         bio_init(&dev->req);
1944         dev->req.bi_io_vec = &dev->vec;
1945         dev->req.bi_vcnt++;
1946         dev->req.bi_max_vecs++;
1947         dev->req.bi_private = sh;
1948         dev->vec.bv_page = dev->page;
1949
1950         bio_init(&dev->rreq);
1951         dev->rreq.bi_io_vec = &dev->rvec;
1952         dev->rreq.bi_vcnt++;
1953         dev->rreq.bi_max_vecs++;
1954         dev->rreq.bi_private = sh;
1955         dev->rvec.bv_page = dev->page;
1956
1957         dev->flags = 0;
1958         dev->sector = compute_blocknr(sh, i, previous);
1959 }
1960
1961 static void error(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963         char b[BDEVNAME_SIZE];
1964         struct r5conf *conf = mddev->private;
1965         unsigned long flags;
1966         pr_debug("raid456: error called\n");
1967
1968         spin_lock_irqsave(&conf->device_lock, flags);
1969         clear_bit(In_sync, &rdev->flags);
1970         mddev->degraded = calc_degraded(conf);
1971         spin_unlock_irqrestore(&conf->device_lock, flags);
1972         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1973
1974         set_bit(Blocked, &rdev->flags);
1975         set_bit(Faulty, &rdev->flags);
1976         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1977         printk(KERN_ALERT
1978                "md/raid:%s: Disk failure on %s, disabling device.\n"
1979                "md/raid:%s: Operation continuing on %d devices.\n",
1980                mdname(mddev),
1981                bdevname(rdev->bdev, b),
1982                mdname(mddev),
1983                conf->raid_disks - mddev->degraded);
1984 }
1985
1986 /*
1987  * Input: a 'big' sector number,
1988  * Output: index of the data and parity disk, and the sector # in them.
1989  */
1990 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1991                                      int previous, int *dd_idx,
1992                                      struct stripe_head *sh)
1993 {
1994         sector_t stripe, stripe2;
1995         sector_t chunk_number;
1996         unsigned int chunk_offset;
1997         int pd_idx, qd_idx;
1998         int ddf_layout = 0;
1999         sector_t new_sector;
2000         int algorithm = previous ? conf->prev_algo
2001                                  : conf->algorithm;
2002         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2003                                          : conf->chunk_sectors;
2004         int raid_disks = previous ? conf->previous_raid_disks
2005                                   : conf->raid_disks;
2006         int data_disks = raid_disks - conf->max_degraded;
2007
2008         /* First compute the information on this sector */
2009
2010         /*
2011          * Compute the chunk number and the sector offset inside the chunk
2012          */
2013         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2014         chunk_number = r_sector;
2015
2016         /*
2017          * Compute the stripe number
2018          */
2019         stripe = chunk_number;
2020         *dd_idx = sector_div(stripe, data_disks);
2021         stripe2 = stripe;
2022         /*
2023          * Select the parity disk based on the user selected algorithm.
2024          */
2025         pd_idx = qd_idx = -1;
2026         switch(conf->level) {
2027         case 4:
2028                 pd_idx = data_disks;
2029                 break;
2030         case 5:
2031                 switch (algorithm) {
2032                 case ALGORITHM_LEFT_ASYMMETRIC:
2033                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034                         if (*dd_idx >= pd_idx)
2035                                 (*dd_idx)++;
2036                         break;
2037                 case ALGORITHM_RIGHT_ASYMMETRIC:
2038                         pd_idx = sector_div(stripe2, raid_disks);
2039                         if (*dd_idx >= pd_idx)
2040                                 (*dd_idx)++;
2041                         break;
2042                 case ALGORITHM_LEFT_SYMMETRIC:
2043                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2044                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2045                         break;
2046                 case ALGORITHM_RIGHT_SYMMETRIC:
2047                         pd_idx = sector_div(stripe2, raid_disks);
2048                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2049                         break;
2050                 case ALGORITHM_PARITY_0:
2051                         pd_idx = 0;
2052                         (*dd_idx)++;
2053                         break;
2054                 case ALGORITHM_PARITY_N:
2055                         pd_idx = data_disks;
2056                         break;
2057                 default:
2058                         BUG();
2059                 }
2060                 break;
2061         case 6:
2062
2063                 switch (algorithm) {
2064                 case ALGORITHM_LEFT_ASYMMETRIC:
2065                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2066                         qd_idx = pd_idx + 1;
2067                         if (pd_idx == raid_disks-1) {
2068                                 (*dd_idx)++;    /* Q D D D P */
2069                                 qd_idx = 0;
2070                         } else if (*dd_idx >= pd_idx)
2071                                 (*dd_idx) += 2; /* D D P Q D */
2072                         break;
2073                 case ALGORITHM_RIGHT_ASYMMETRIC:
2074                         pd_idx = sector_div(stripe2, raid_disks);
2075                         qd_idx = pd_idx + 1;
2076                         if (pd_idx == raid_disks-1) {
2077                                 (*dd_idx)++;    /* Q D D D P */
2078                                 qd_idx = 0;
2079                         } else if (*dd_idx >= pd_idx)
2080                                 (*dd_idx) += 2; /* D D P Q D */
2081                         break;
2082                 case ALGORITHM_LEFT_SYMMETRIC:
2083                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2084                         qd_idx = (pd_idx + 1) % raid_disks;
2085                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2086                         break;
2087                 case ALGORITHM_RIGHT_SYMMETRIC:
2088                         pd_idx = sector_div(stripe2, raid_disks);
2089                         qd_idx = (pd_idx + 1) % raid_disks;
2090                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2091                         break;
2092
2093                 case ALGORITHM_PARITY_0:
2094                         pd_idx = 0;
2095                         qd_idx = 1;
2096                         (*dd_idx) += 2;
2097                         break;
2098                 case ALGORITHM_PARITY_N:
2099                         pd_idx = data_disks;
2100                         qd_idx = data_disks + 1;
2101                         break;
2102
2103                 case ALGORITHM_ROTATING_ZERO_RESTART:
2104                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2105                          * of blocks for computing Q is different.
2106                          */
2107                         pd_idx = sector_div(stripe2, raid_disks);
2108                         qd_idx = pd_idx + 1;
2109                         if (pd_idx == raid_disks-1) {
2110                                 (*dd_idx)++;    /* Q D D D P */
2111                                 qd_idx = 0;
2112                         } else if (*dd_idx >= pd_idx)
2113                                 (*dd_idx) += 2; /* D D P Q D */
2114                         ddf_layout = 1;
2115                         break;
2116
2117                 case ALGORITHM_ROTATING_N_RESTART:
2118                         /* Same a left_asymmetric, by first stripe is
2119                          * D D D P Q  rather than
2120                          * Q D D D P
2121                          */
2122                         stripe2 += 1;
2123                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2124                         qd_idx = pd_idx + 1;
2125                         if (pd_idx == raid_disks-1) {
2126                                 (*dd_idx)++;    /* Q D D D P */
2127                                 qd_idx = 0;
2128                         } else if (*dd_idx >= pd_idx)
2129                                 (*dd_idx) += 2; /* D D P Q D */
2130                         ddf_layout = 1;
2131                         break;
2132
2133                 case ALGORITHM_ROTATING_N_CONTINUE:
2134                         /* Same as left_symmetric but Q is before P */
2135                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2136                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2137                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2138                         ddf_layout = 1;
2139                         break;
2140
2141                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2142                         /* RAID5 left_asymmetric, with Q on last device */
2143                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2144                         if (*dd_idx >= pd_idx)
2145                                 (*dd_idx)++;
2146                         qd_idx = raid_disks - 1;
2147                         break;
2148
2149                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2150                         pd_idx = sector_div(stripe2, raid_disks-1);
2151                         if (*dd_idx >= pd_idx)
2152                                 (*dd_idx)++;
2153                         qd_idx = raid_disks - 1;
2154                         break;
2155
2156                 case ALGORITHM_LEFT_SYMMETRIC_6:
2157                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2158                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2159                         qd_idx = raid_disks - 1;
2160                         break;
2161
2162                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2163                         pd_idx = sector_div(stripe2, raid_disks-1);
2164                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2165                         qd_idx = raid_disks - 1;
2166                         break;
2167
2168                 case ALGORITHM_PARITY_0_6:
2169                         pd_idx = 0;
2170                         (*dd_idx)++;
2171                         qd_idx = raid_disks - 1;
2172                         break;
2173
2174                 default:
2175                         BUG();
2176                 }
2177                 break;
2178         }
2179
2180         if (sh) {
2181                 sh->pd_idx = pd_idx;
2182                 sh->qd_idx = qd_idx;
2183                 sh->ddf_layout = ddf_layout;
2184         }
2185         /*
2186          * Finally, compute the new sector number
2187          */
2188         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2189         return new_sector;
2190 }
2191
2192
2193 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2194 {
2195         struct r5conf *conf = sh->raid_conf;
2196         int raid_disks = sh->disks;
2197         int data_disks = raid_disks - conf->max_degraded;
2198         sector_t new_sector = sh->sector, check;
2199         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2200                                          : conf->chunk_sectors;
2201         int algorithm = previous ? conf->prev_algo
2202                                  : conf->algorithm;
2203         sector_t stripe;
2204         int chunk_offset;
2205         sector_t chunk_number;
2206         int dummy1, dd_idx = i;
2207         sector_t r_sector;
2208         struct stripe_head sh2;
2209
2210
2211         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2212         stripe = new_sector;
2213
2214         if (i == sh->pd_idx)
2215                 return 0;
2216         switch(conf->level) {
2217         case 4: break;
2218         case 5:
2219                 switch (algorithm) {
2220                 case ALGORITHM_LEFT_ASYMMETRIC:
2221                 case ALGORITHM_RIGHT_ASYMMETRIC:
2222                         if (i > sh->pd_idx)
2223                                 i--;
2224                         break;
2225                 case ALGORITHM_LEFT_SYMMETRIC:
2226                 case ALGORITHM_RIGHT_SYMMETRIC:
2227                         if (i < sh->pd_idx)
2228                                 i += raid_disks;
2229                         i -= (sh->pd_idx + 1);
2230                         break;
2231                 case ALGORITHM_PARITY_0:
2232                         i -= 1;
2233                         break;
2234                 case ALGORITHM_PARITY_N:
2235                         break;
2236                 default:
2237                         BUG();
2238                 }
2239                 break;
2240         case 6:
2241                 if (i == sh->qd_idx)
2242                         return 0; /* It is the Q disk */
2243                 switch (algorithm) {
2244                 case ALGORITHM_LEFT_ASYMMETRIC:
2245                 case ALGORITHM_RIGHT_ASYMMETRIC:
2246                 case ALGORITHM_ROTATING_ZERO_RESTART:
2247                 case ALGORITHM_ROTATING_N_RESTART:
2248                         if (sh->pd_idx == raid_disks-1)
2249                                 i--;    /* Q D D D P */
2250                         else if (i > sh->pd_idx)
2251                                 i -= 2; /* D D P Q D */
2252                         break;
2253                 case ALGORITHM_LEFT_SYMMETRIC:
2254                 case ALGORITHM_RIGHT_SYMMETRIC:
2255                         if (sh->pd_idx == raid_disks-1)
2256                                 i--; /* Q D D D P */
2257                         else {
2258                                 /* D D P Q D */
2259                                 if (i < sh->pd_idx)
2260                                         i += raid_disks;
2261                                 i -= (sh->pd_idx + 2);
2262                         }
2263                         break;
2264                 case ALGORITHM_PARITY_0:
2265                         i -= 2;
2266                         break;
2267                 case ALGORITHM_PARITY_N:
2268                         break;
2269                 case ALGORITHM_ROTATING_N_CONTINUE:
2270                         /* Like left_symmetric, but P is before Q */
2271                         if (sh->pd_idx == 0)
2272                                 i--;    /* P D D D Q */
2273                         else {
2274                                 /* D D Q P D */
2275                                 if (i < sh->pd_idx)
2276                                         i += raid_disks;
2277                                 i -= (sh->pd_idx + 1);
2278                         }
2279                         break;
2280                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2281                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2282                         if (i > sh->pd_idx)
2283                                 i--;
2284                         break;
2285                 case ALGORITHM_LEFT_SYMMETRIC_6:
2286                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2287                         if (i < sh->pd_idx)
2288                                 i += data_disks + 1;
2289                         i -= (sh->pd_idx + 1);
2290                         break;
2291                 case ALGORITHM_PARITY_0_6:
2292                         i -= 1;
2293                         break;
2294                 default:
2295                         BUG();
2296                 }
2297                 break;
2298         }
2299
2300         chunk_number = stripe * data_disks + i;
2301         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2302
2303         check = raid5_compute_sector(conf, r_sector,
2304                                      previous, &dummy1, &sh2);
2305         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2306                 || sh2.qd_idx != sh->qd_idx) {
2307                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2308                        mdname(conf->mddev));
2309                 return 0;
2310         }
2311         return r_sector;
2312 }
2313
2314
2315 static void
2316 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2317                          int rcw, int expand)
2318 {
2319         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2320         struct r5conf *conf = sh->raid_conf;
2321         int level = conf->level;
2322
2323         if (rcw) {
2324                 /* if we are not expanding this is a proper write request, and
2325                  * there will be bios with new data to be drained into the
2326                  * stripe cache
2327                  */
2328                 if (!expand) {
2329                         sh->reconstruct_state = reconstruct_state_drain_run;
2330                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2331                 } else
2332                         sh->reconstruct_state = reconstruct_state_run;
2333
2334                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2335
2336                 for (i = disks; i--; ) {
2337                         struct r5dev *dev = &sh->dev[i];
2338
2339                         if (dev->towrite) {
2340                                 set_bit(R5_LOCKED, &dev->flags);
2341                                 set_bit(R5_Wantdrain, &dev->flags);
2342                                 if (!expand)
2343                                         clear_bit(R5_UPTODATE, &dev->flags);
2344                                 s->locked++;
2345                         }
2346                 }
2347                 if (s->locked + conf->max_degraded == disks)
2348                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2349                                 atomic_inc(&conf->pending_full_writes);
2350         } else {
2351                 BUG_ON(level == 6);
2352                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2353                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2354
2355                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2356                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2357                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2358                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2359
2360                 for (i = disks; i--; ) {
2361                         struct r5dev *dev = &sh->dev[i];
2362                         if (i == pd_idx)
2363                                 continue;
2364
2365                         if (dev->towrite &&
2366                             (test_bit(R5_UPTODATE, &dev->flags) ||
2367                              test_bit(R5_Wantcompute, &dev->flags))) {
2368                                 set_bit(R5_Wantdrain, &dev->flags);
2369                                 set_bit(R5_LOCKED, &dev->flags);
2370                                 clear_bit(R5_UPTODATE, &dev->flags);
2371                                 s->locked++;
2372                         }
2373                 }
2374         }
2375
2376         /* keep the parity disk(s) locked while asynchronous operations
2377          * are in flight
2378          */
2379         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2380         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2381         s->locked++;
2382
2383         if (level == 6) {
2384                 int qd_idx = sh->qd_idx;
2385                 struct r5dev *dev = &sh->dev[qd_idx];
2386
2387                 set_bit(R5_LOCKED, &dev->flags);
2388                 clear_bit(R5_UPTODATE, &dev->flags);
2389                 s->locked++;
2390         }
2391
2392         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2393                 __func__, (unsigned long long)sh->sector,
2394                 s->locked, s->ops_request);
2395 }
2396
2397 /*
2398  * Each stripe/dev can have one or more bion attached.
2399  * toread/towrite point to the first in a chain.
2400  * The bi_next chain must be in order.
2401  */
2402 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2403 {
2404         struct bio **bip;
2405         struct r5conf *conf = sh->raid_conf;
2406         int firstwrite=0;
2407
2408         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2409                 (unsigned long long)bi->bi_sector,
2410                 (unsigned long long)sh->sector);
2411
2412         /*
2413          * If several bio share a stripe. The bio bi_phys_segments acts as a
2414          * reference count to avoid race. The reference count should already be
2415          * increased before this function is called (for example, in
2416          * make_request()), so other bio sharing this stripe will not free the
2417          * stripe. If a stripe is owned by one stripe, the stripe lock will
2418          * protect it.
2419          */
2420         spin_lock_irq(&sh->stripe_lock);
2421         if (forwrite) {
2422                 bip = &sh->dev[dd_idx].towrite;
2423                 if (*bip == NULL)
2424                         firstwrite = 1;
2425         } else
2426                 bip = &sh->dev[dd_idx].toread;
2427         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2428                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2429                         goto overlap;
2430                 bip = & (*bip)->bi_next;
2431         }
2432         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2433                 goto overlap;
2434
2435         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2436         if (*bip)
2437                 bi->bi_next = *bip;
2438         *bip = bi;
2439         raid5_inc_bi_active_stripes(bi);
2440
2441         if (forwrite) {
2442                 /* check if page is covered */
2443                 sector_t sector = sh->dev[dd_idx].sector;
2444                 for (bi=sh->dev[dd_idx].towrite;
2445                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2446                              bi && bi->bi_sector <= sector;
2447                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2448                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2449                                 sector = bi->bi_sector + (bi->bi_size>>9);
2450                 }
2451                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2452                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2453         }
2454
2455         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2456                 (unsigned long long)(*bip)->bi_sector,
2457                 (unsigned long long)sh->sector, dd_idx);
2458         spin_unlock_irq(&sh->stripe_lock);
2459
2460         if (conf->mddev->bitmap && firstwrite) {
2461                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2462                                   STRIPE_SECTORS, 0);
2463                 sh->bm_seq = conf->seq_flush+1;
2464                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2465         }
2466         return 1;
2467
2468  overlap:
2469         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2470         spin_unlock_irq(&sh->stripe_lock);
2471         return 0;
2472 }
2473
2474 static void end_reshape(struct r5conf *conf);
2475
2476 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2477                             struct stripe_head *sh)
2478 {
2479         int sectors_per_chunk =
2480                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2481         int dd_idx;
2482         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2483         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2484
2485         raid5_compute_sector(conf,
2486                              stripe * (disks - conf->max_degraded)
2487                              *sectors_per_chunk + chunk_offset,
2488                              previous,
2489                              &dd_idx, sh);
2490 }
2491
2492 static void
2493 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2494                                 struct stripe_head_state *s, int disks,
2495                                 struct bio **return_bi)
2496 {
2497         int i;
2498         for (i = disks; i--; ) {
2499                 struct bio *bi;
2500                 int bitmap_end = 0;
2501
2502                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503                         struct md_rdev *rdev;
2504                         rcu_read_lock();
2505                         rdev = rcu_dereference(conf->disks[i].rdev);
2506                         if (rdev && test_bit(In_sync, &rdev->flags))
2507                                 atomic_inc(&rdev->nr_pending);
2508                         else
2509                                 rdev = NULL;
2510                         rcu_read_unlock();
2511                         if (rdev) {
2512                                 if (!rdev_set_badblocks(
2513                                             rdev,
2514                                             sh->sector,
2515                                             STRIPE_SECTORS, 0))
2516                                         md_error(conf->mddev, rdev);
2517                                 rdev_dec_pending(rdev, conf->mddev);
2518                         }
2519                 }
2520                 spin_lock_irq(&sh->stripe_lock);
2521                 /* fail all writes first */
2522                 bi = sh->dev[i].towrite;
2523                 sh->dev[i].towrite = NULL;
2524                 spin_unlock_irq(&sh->stripe_lock);
2525                 if (bi)
2526                         bitmap_end = 1;
2527
2528                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2529                         wake_up(&conf->wait_for_overlap);
2530
2531                 while (bi && bi->bi_sector <
2532                         sh->dev[i].sector + STRIPE_SECTORS) {
2533                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2534                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2535                         if (!raid5_dec_bi_active_stripes(bi)) {
2536                                 md_write_end(conf->mddev);
2537                                 bi->bi_next = *return_bi;
2538                                 *return_bi = bi;
2539                         }
2540                         bi = nextbi;
2541                 }
2542                 if (bitmap_end)
2543                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2544                                 STRIPE_SECTORS, 0, 0);
2545                 bitmap_end = 0;
2546                 /* and fail all 'written' */
2547                 bi = sh->dev[i].written;
2548                 sh->dev[i].written = NULL;
2549                 if (bi) bitmap_end = 1;
2550                 while (bi && bi->bi_sector <
2551                        sh->dev[i].sector + STRIPE_SECTORS) {
2552                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2553                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2554                         if (!raid5_dec_bi_active_stripes(bi)) {
2555                                 md_write_end(conf->mddev);
2556                                 bi->bi_next = *return_bi;
2557                                 *return_bi = bi;
2558                         }
2559                         bi = bi2;
2560                 }
2561
2562                 /* fail any reads if this device is non-operational and
2563                  * the data has not reached the cache yet.
2564                  */
2565                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2566                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2567                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2568                         spin_lock_irq(&sh->stripe_lock);
2569                         bi = sh->dev[i].toread;
2570                         sh->dev[i].toread = NULL;
2571                         spin_unlock_irq(&sh->stripe_lock);
2572                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2573                                 wake_up(&conf->wait_for_overlap);
2574                         while (bi && bi->bi_sector <
2575                                sh->dev[i].sector + STRIPE_SECTORS) {
2576                                 struct bio *nextbi =
2577                                         r5_next_bio(bi, sh->dev[i].sector);
2578                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2579                                 if (!raid5_dec_bi_active_stripes(bi)) {
2580                                         bi->bi_next = *return_bi;
2581                                         *return_bi = bi;
2582                                 }
2583                                 bi = nextbi;
2584                         }
2585                 }
2586                 if (bitmap_end)
2587                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2588                                         STRIPE_SECTORS, 0, 0);
2589                 /* If we were in the middle of a write the parity block might
2590                  * still be locked - so just clear all R5_LOCKED flags
2591                  */
2592                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593         }
2594
2595         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2596                 if (atomic_dec_and_test(&conf->pending_full_writes))
2597                         md_wakeup_thread(conf->mddev->thread);
2598 }
2599
2600 static void
2601 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2602                    struct stripe_head_state *s)
2603 {
2604         int abort = 0;
2605         int i;
2606
2607         clear_bit(STRIPE_SYNCING, &sh->state);
2608         s->syncing = 0;
2609         s->replacing = 0;
2610         /* There is nothing more to do for sync/check/repair.
2611          * Don't even need to abort as that is handled elsewhere
2612          * if needed, and not always wanted e.g. if there is a known
2613          * bad block here.
2614          * For recover/replace we need to record a bad block on all
2615          * non-sync devices, or abort the recovery
2616          */
2617         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2618                 /* During recovery devices cannot be removed, so
2619                  * locking and refcounting of rdevs is not needed
2620                  */
2621                 for (i = 0; i < conf->raid_disks; i++) {
2622                         struct md_rdev *rdev = conf->disks[i].rdev;
2623                         if (rdev
2624                             && !test_bit(Faulty, &rdev->flags)
2625                             && !test_bit(In_sync, &rdev->flags)
2626                             && !rdev_set_badblocks(rdev, sh->sector,
2627                                                    STRIPE_SECTORS, 0))
2628                                 abort = 1;
2629                         rdev = conf->disks[i].replacement;
2630                         if (rdev
2631                             && !test_bit(Faulty, &rdev->flags)
2632                             && !test_bit(In_sync, &rdev->flags)
2633                             && !rdev_set_badblocks(rdev, sh->sector,
2634                                                    STRIPE_SECTORS, 0))
2635                                 abort = 1;
2636                 }
2637                 if (abort)
2638                         conf->recovery_disabled =
2639                                 conf->mddev->recovery_disabled;
2640         }
2641         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2642 }
2643
2644 static int want_replace(struct stripe_head *sh, int disk_idx)
2645 {
2646         struct md_rdev *rdev;
2647         int rv = 0;
2648         /* Doing recovery so rcu locking not required */
2649         rdev = sh->raid_conf->disks[disk_idx].replacement;
2650         if (rdev
2651             && !test_bit(Faulty, &rdev->flags)
2652             && !test_bit(In_sync, &rdev->flags)
2653             && (rdev->recovery_offset <= sh->sector
2654                 || rdev->mddev->recovery_cp <= sh->sector))
2655                 rv = 1;
2656
2657         return rv;
2658 }
2659
2660 /* fetch_block - checks the given member device to see if its data needs
2661  * to be read or computed to satisfy a request.
2662  *
2663  * Returns 1 when no more member devices need to be checked, otherwise returns
2664  * 0 to tell the loop in handle_stripe_fill to continue
2665  */
2666 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2667                        int disk_idx, int disks)
2668 {
2669         struct r5dev *dev = &sh->dev[disk_idx];
2670         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2671                                   &sh->dev[s->failed_num[1]] };
2672
2673         /* is the data in this block needed, and can we get it? */
2674         if (!test_bit(R5_LOCKED, &dev->flags) &&
2675             !test_bit(R5_UPTODATE, &dev->flags) &&
2676             (dev->toread ||
2677              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2678              s->syncing || s->expanding ||
2679              (s->replacing && want_replace(sh, disk_idx)) ||
2680              (s->failed >= 1 && fdev[0]->toread) ||
2681              (s->failed >= 2 && fdev[1]->toread) ||
2682              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2683               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2684              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2685                 /* we would like to get this block, possibly by computing it,
2686                  * otherwise read it if the backing disk is insync
2687                  */
2688                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2689                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2690                 if ((s->uptodate == disks - 1) &&
2691                     (s->failed && (disk_idx == s->failed_num[0] ||
2692                                    disk_idx == s->failed_num[1]))) {
2693                         /* have disk failed, and we're requested to fetch it;
2694                          * do compute it
2695                          */
2696                         pr_debug("Computing stripe %llu block %d\n",
2697                                (unsigned long long)sh->sector, disk_idx);
2698                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2699                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2700                         set_bit(R5_Wantcompute, &dev->flags);
2701                         sh->ops.target = disk_idx;
2702                         sh->ops.target2 = -1; /* no 2nd target */
2703                         s->req_compute = 1;
2704                         /* Careful: from this point on 'uptodate' is in the eye
2705                          * of raid_run_ops which services 'compute' operations
2706                          * before writes. R5_Wantcompute flags a block that will
2707                          * be R5_UPTODATE by the time it is needed for a
2708                          * subsequent operation.
2709                          */
2710                         s->uptodate++;
2711                         return 1;
2712                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2713                         /* Computing 2-failure is *very* expensive; only
2714                          * do it if failed >= 2
2715                          */
2716                         int other;
2717                         for (other = disks; other--; ) {
2718                                 if (other == disk_idx)
2719                                         continue;
2720                                 if (!test_bit(R5_UPTODATE,
2721                                       &sh->dev[other].flags))
2722                                         break;
2723                         }
2724                         BUG_ON(other < 0);
2725                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2726                                (unsigned long long)sh->sector,
2727                                disk_idx, other);
2728                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2729                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2730                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2731                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2732                         sh->ops.target = disk_idx;
2733                         sh->ops.target2 = other;
2734                         s->uptodate += 2;
2735                         s->req_compute = 1;
2736                         return 1;
2737                 } else if (test_bit(R5_Insync, &dev->flags)) {
2738                         set_bit(R5_LOCKED, &dev->flags);
2739                         set_bit(R5_Wantread, &dev->flags);
2740                         s->locked++;
2741                         pr_debug("Reading block %d (sync=%d)\n",
2742                                 disk_idx, s->syncing);
2743                 }
2744         }
2745
2746         return 0;
2747 }
2748
2749 /**
2750  * handle_stripe_fill - read or compute data to satisfy pending requests.
2751  */
2752 static void handle_stripe_fill(struct stripe_head *sh,
2753                                struct stripe_head_state *s,
2754                                int disks)
2755 {
2756         int i;
2757
2758         /* look for blocks to read/compute, skip this if a compute
2759          * is already in flight, or if the stripe contents are in the
2760          * midst of changing due to a write
2761          */
2762         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2763             !sh->reconstruct_state)
2764                 for (i = disks; i--; )
2765                         if (fetch_block(sh, s, i, disks))
2766                                 break;
2767         set_bit(STRIPE_HANDLE, &sh->state);
2768 }
2769
2770
2771 /* handle_stripe_clean_event
2772  * any written block on an uptodate or failed drive can be returned.
2773  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2774  * never LOCKED, so we don't need to test 'failed' directly.
2775  */
2776 static void handle_stripe_clean_event(struct r5conf *conf,
2777         struct stripe_head *sh, int disks, struct bio **return_bi)
2778 {
2779         int i;
2780         struct r5dev *dev;
2781
2782         for (i = disks; i--; )
2783                 if (sh->dev[i].written) {
2784                         dev = &sh->dev[i];
2785                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2786                             (test_bit(R5_UPTODATE, &dev->flags) ||
2787                              test_bit(R5_Discard, &dev->flags))) {
2788                                 /* We can return any write requests */
2789                                 struct bio *wbi, *wbi2;
2790                                 pr_debug("Return write for disc %d\n", i);
2791                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2792                                         clear_bit(R5_UPTODATE, &dev->flags);
2793                                 wbi = dev->written;
2794                                 dev->written = NULL;
2795                                 while (wbi && wbi->bi_sector <
2796                                         dev->sector + STRIPE_SECTORS) {
2797                                         wbi2 = r5_next_bio(wbi, dev->sector);
2798                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2799                                                 md_write_end(conf->mddev);
2800                                                 wbi->bi_next = *return_bi;
2801                                                 *return_bi = wbi;
2802                                         }
2803                                         wbi = wbi2;
2804                                 }
2805                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2806                                                 STRIPE_SECTORS,
2807                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2808                                                 0);
2809                         }
2810                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2811                         clear_bit(R5_Discard, &sh->dev[i].flags);
2812
2813         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2814                 if (atomic_dec_and_test(&conf->pending_full_writes))
2815                         md_wakeup_thread(conf->mddev->thread);
2816 }
2817
2818 static void handle_stripe_dirtying(struct r5conf *conf,
2819                                    struct stripe_head *sh,
2820                                    struct stripe_head_state *s,
2821                                    int disks)
2822 {
2823         int rmw = 0, rcw = 0, i;
2824         sector_t recovery_cp = conf->mddev->recovery_cp;
2825
2826         /* RAID6 requires 'rcw' in current implementation.
2827          * Otherwise, check whether resync is now happening or should start.
2828          * If yes, then the array is dirty (after unclean shutdown or
2829          * initial creation), so parity in some stripes might be inconsistent.
2830          * In this case, we need to always do reconstruct-write, to ensure
2831          * that in case of drive failure or read-error correction, we
2832          * generate correct data from the parity.
2833          */
2834         if (conf->max_degraded == 2 ||
2835             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2836                 /* Calculate the real rcw later - for now make it
2837                  * look like rcw is cheaper
2838                  */
2839                 rcw = 1; rmw = 2;
2840                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2841                          conf->max_degraded, (unsigned long long)recovery_cp,
2842                          (unsigned long long)sh->sector);
2843         } else for (i = disks; i--; ) {
2844                 /* would I have to read this buffer for read_modify_write */
2845                 struct r5dev *dev = &sh->dev[i];
2846                 if ((dev->towrite || i == sh->pd_idx) &&
2847                     !test_bit(R5_LOCKED, &dev->flags) &&
2848                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2849                       test_bit(R5_Wantcompute, &dev->flags))) {
2850                         if (test_bit(R5_Insync, &dev->flags))
2851                                 rmw++;
2852                         else
2853                                 rmw += 2*disks;  /* cannot read it */
2854                 }
2855                 /* Would I have to read this buffer for reconstruct_write */
2856                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2857                     !test_bit(R5_LOCKED, &dev->flags) &&
2858                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2859                     test_bit(R5_Wantcompute, &dev->flags))) {
2860                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2861                         else
2862                                 rcw += 2*disks;
2863                 }
2864         }
2865         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2866                 (unsigned long long)sh->sector, rmw, rcw);
2867         set_bit(STRIPE_HANDLE, &sh->state);
2868         if (rmw < rcw && rmw > 0) {
2869                 /* prefer read-modify-write, but need to get some data */
2870                 blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2871                                   (unsigned long long)sh->sector, rmw);
2872                 for (i = disks; i--; ) {
2873                         struct r5dev *dev = &sh->dev[i];
2874                         if ((dev->towrite || i == sh->pd_idx) &&
2875                             !test_bit(R5_LOCKED, &dev->flags) &&
2876                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2877                             test_bit(R5_Wantcompute, &dev->flags)) &&
2878                             test_bit(R5_Insync, &dev->flags)) {
2879                                 if (
2880                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2881                                         pr_debug("Read_old block "
2882                                                  "%d for r-m-w\n", i);
2883                                         set_bit(R5_LOCKED, &dev->flags);
2884                                         set_bit(R5_Wantread, &dev->flags);
2885                                         s->locked++;
2886                                 } else {
2887                                         set_bit(STRIPE_DELAYED, &sh->state);
2888                                         set_bit(STRIPE_HANDLE, &sh->state);
2889                                 }
2890                         }
2891                 }
2892         }
2893         if (rcw <= rmw && rcw > 0) {
2894                 /* want reconstruct write, but need to get some data */
2895                 int qread =0;
2896                 rcw = 0;
2897                 for (i = disks; i--; ) {
2898                         struct r5dev *dev = &sh->dev[i];
2899                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2900                             i != sh->pd_idx && i != sh->qd_idx &&
2901                             !test_bit(R5_LOCKED, &dev->flags) &&
2902                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2903                               test_bit(R5_Wantcompute, &dev->flags))) {
2904                                 rcw++;
2905                                 if (!test_bit(R5_Insync, &dev->flags))
2906                                         continue; /* it's a failed drive */
2907                                 if (
2908                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2909                                         pr_debug("Read_old block "
2910                                                 "%d for Reconstruct\n", i);
2911                                         set_bit(R5_LOCKED, &dev->flags);
2912                                         set_bit(R5_Wantread, &dev->flags);
2913                                         s->locked++;
2914                                         qread++;
2915                                 } else {
2916                                         set_bit(STRIPE_DELAYED, &sh->state);
2917                                         set_bit(STRIPE_HANDLE, &sh->state);
2918                                 }
2919                         }
2920                 }
2921                 if (rcw)
2922                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2923                                           (unsigned long long)sh->sector,
2924                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2925         }
2926         /* now if nothing is locked, and if we have enough data,
2927          * we can start a write request
2928          */
2929         /* since handle_stripe can be called at any time we need to handle the
2930          * case where a compute block operation has been submitted and then a
2931          * subsequent call wants to start a write request.  raid_run_ops only
2932          * handles the case where compute block and reconstruct are requested
2933          * simultaneously.  If this is not the case then new writes need to be
2934          * held off until the compute completes.
2935          */
2936         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2937             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2938             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2939                 schedule_reconstruction(sh, s, rcw == 0, 0);
2940 }
2941
2942 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2943                                 struct stripe_head_state *s, int disks)
2944 {
2945         struct r5dev *dev = NULL;
2946
2947         set_bit(STRIPE_HANDLE, &sh->state);
2948
2949         switch (sh->check_state) {
2950         case check_state_idle:
2951                 /* start a new check operation if there are no failures */
2952                 if (s->failed == 0) {
2953                         BUG_ON(s->uptodate != disks);
2954                         sh->check_state = check_state_run;
2955                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2956                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2957                         s->uptodate--;
2958                         break;
2959                 }
2960                 dev = &sh->dev[s->failed_num[0]];
2961                 /* fall through */
2962         case check_state_compute_result:
2963                 sh->check_state = check_state_idle;
2964                 if (!dev)
2965                         dev = &sh->dev[sh->pd_idx];
2966
2967                 /* check that a write has not made the stripe insync */
2968                 if (test_bit(STRIPE_INSYNC, &sh->state))
2969                         break;
2970
2971                 /* either failed parity check, or recovery is happening */
2972                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2973                 BUG_ON(s->uptodate != disks);
2974
2975                 set_bit(R5_LOCKED, &dev->flags);
2976                 s->locked++;
2977                 set_bit(R5_Wantwrite, &dev->flags);
2978
2979                 clear_bit(STRIPE_DEGRADED, &sh->state);
2980                 set_bit(STRIPE_INSYNC, &sh->state);
2981                 break;
2982         case check_state_run:
2983                 break; /* we will be called again upon completion */
2984         case check_state_check_result:
2985                 sh->check_state = check_state_idle;
2986
2987                 /* if a failure occurred during the check operation, leave
2988                  * STRIPE_INSYNC not set and let the stripe be handled again
2989                  */
2990                 if (s->failed)
2991                         break;
2992
2993                 /* handle a successful check operation, if parity is correct
2994                  * we are done.  Otherwise update the mismatch count and repair
2995                  * parity if !MD_RECOVERY_CHECK
2996                  */
2997                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2998                         /* parity is correct (on disc,
2999                          * not in buffer any more)
3000                          */
3001                         set_bit(STRIPE_INSYNC, &sh->state);
3002                 else {
3003                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3004                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3005                                 /* don't try to repair!! */
3006                                 set_bit(STRIPE_INSYNC, &sh->state);
3007                         else {
3008                                 sh->check_state = check_state_compute_run;
3009                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3010                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3011                                 set_bit(R5_Wantcompute,
3012                                         &sh->dev[sh->pd_idx].flags);
3013                                 sh->ops.target = sh->pd_idx;
3014                                 sh->ops.target2 = -1;
3015                                 s->uptodate++;
3016                         }
3017                 }
3018                 break;
3019         case check_state_compute_run:
3020                 break;
3021         default:
3022                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3023                        __func__, sh->check_state,
3024                        (unsigned long long) sh->sector);
3025                 BUG();
3026         }
3027 }
3028
3029
3030 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3031                                   struct stripe_head_state *s,
3032                                   int disks)
3033 {
3034         int pd_idx = sh->pd_idx;
3035         int qd_idx = sh->qd_idx;
3036         struct r5dev *dev;
3037
3038         set_bit(STRIPE_HANDLE, &sh->state);
3039
3040         BUG_ON(s->failed > 2);
3041
3042         /* Want to check and possibly repair P and Q.
3043          * However there could be one 'failed' device, in which
3044          * case we can only check one of them, possibly using the
3045          * other to generate missing data
3046          */
3047
3048         switch (sh->check_state) {
3049         case check_state_idle:
3050                 /* start a new check operation if there are < 2 failures */
3051                 if (s->failed == s->q_failed) {
3052                         /* The only possible failed device holds Q, so it
3053                          * makes sense to check P (If anything else were failed,
3054                          * we would have used P to recreate it).
3055                          */
3056                         sh->check_state = check_state_run;
3057                 }
3058                 if (!s->q_failed && s->failed < 2) {
3059                         /* Q is not failed, and we didn't use it to generate
3060                          * anything, so it makes sense to check it
3061                          */
3062                         if (sh->check_state == check_state_run)
3063                                 sh->check_state = check_state_run_pq;
3064                         else
3065                                 sh->check_state = check_state_run_q;
3066                 }
3067
3068                 /* discard potentially stale zero_sum_result */
3069                 sh->ops.zero_sum_result = 0;
3070
3071                 if (sh->check_state == check_state_run) {
3072                         /* async_xor_zero_sum destroys the contents of P */
3073                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3074                         s->uptodate--;
3075                 }
3076                 if (sh->check_state >= check_state_run &&
3077                     sh->check_state <= check_state_run_pq) {
3078                         /* async_syndrome_zero_sum preserves P and Q, so
3079                          * no need to mark them !uptodate here
3080                          */
3081                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3082                         break;
3083                 }
3084
3085                 /* we have 2-disk failure */
3086                 BUG_ON(s->failed != 2);
3087                 /* fall through */
3088         case check_state_compute_result:
3089                 sh->check_state = check_state_idle;
3090
3091                 /* check that a write has not made the stripe insync */
3092                 if (test_bit(STRIPE_INSYNC, &sh->state))
3093                         break;
3094
3095                 /* now write out any block on a failed drive,
3096                  * or P or Q if they were recomputed
3097                  */
3098                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3099                 if (s->failed == 2) {
3100                         dev = &sh->dev[s->failed_num[1]];
3101                         s->locked++;
3102                         set_bit(R5_LOCKED, &dev->flags);
3103                         set_bit(R5_Wantwrite, &dev->flags);
3104                 }
3105                 if (s->failed >= 1) {
3106                         dev = &sh->dev[s->failed_num[0]];
3107                         s->locked++;
3108                         set_bit(R5_LOCKED, &dev->flags);
3109                         set_bit(R5_Wantwrite, &dev->flags);
3110                 }
3111                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3112                         dev = &sh->dev[pd_idx];
3113                         s->locked++;
3114                         set_bit(R5_LOCKED, &dev->flags);
3115                         set_bit(R5_Wantwrite, &dev->flags);
3116                 }
3117                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3118                         dev = &sh->dev[qd_idx];
3119                         s->locked++;
3120                         set_bit(R5_LOCKED, &dev->flags);
3121                         set_bit(R5_Wantwrite, &dev->flags);
3122                 }
3123                 clear_bit(STRIPE_DEGRADED, &sh->state);
3124
3125                 set_bit(STRIPE_INSYNC, &sh->state);
3126                 break;
3127         case check_state_run:
3128         case check_state_run_q:
3129         case check_state_run_pq:
3130                 break; /* we will be called again upon completion */
3131         case check_state_check_result:
3132                 sh->check_state = check_state_idle;
3133
3134                 /* handle a successful check operation, if parity is correct
3135                  * we are done.  Otherwise update the mismatch count and repair
3136                  * parity if !MD_RECOVERY_CHECK
3137                  */
3138                 if (sh->ops.zero_sum_result == 0) {
3139                         /* both parities are correct */
3140                         if (!s->failed)
3141                                 set_bit(STRIPE_INSYNC, &sh->state);
3142                         else {
3143                                 /* in contrast to the raid5 case we can validate
3144                                  * parity, but still have a failure to write
3145                                  * back
3146                                  */
3147                                 sh->check_state = check_state_compute_result;
3148                                 /* Returning at this point means that we may go
3149                                  * off and bring p and/or q uptodate again so
3150                                  * we make sure to check zero_sum_result again
3151                                  * to verify if p or q need writeback
3152                                  */
3153                         }
3154                 } else {
3155                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3156                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3157                                 /* don't try to repair!! */
3158                                 set_bit(STRIPE_INSYNC, &sh->state);
3159                         else {
3160                                 int *target = &sh->ops.target;
3161
3162                                 sh->ops.target = -1;
3163                                 sh->ops.target2 = -1;
3164                                 sh->check_state = check_state_compute_run;
3165                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3166                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3167                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3168                                         set_bit(R5_Wantcompute,
3169                                                 &sh->dev[pd_idx].flags);
3170                                         *target = pd_idx;
3171                                         target = &sh->ops.target2;
3172                                         s->uptodate++;
3173                                 }
3174                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3175                                         set_bit(R5_Wantcompute,
3176                                                 &sh->dev[qd_idx].flags);
3177                                         *target = qd_idx;
3178                                         s->uptodate++;
3179                                 }
3180                         }
3181                 }
3182                 break;
3183         case check_state_compute_run:
3184                 break;
3185         default:
3186                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3187                        __func__, sh->check_state,
3188                        (unsigned long long) sh->sector);
3189                 BUG();
3190         }
3191 }
3192
3193 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3194 {
3195         int i;
3196
3197         /* We have read all the blocks in this stripe and now we need to
3198          * copy some of them into a target stripe for expand.
3199          */
3200         struct dma_async_tx_descriptor *tx = NULL;
3201         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3202         for (i = 0; i < sh->disks; i++)
3203                 if (i != sh->pd_idx && i != sh->qd_idx) {
3204                         int dd_idx, j;
3205                         struct stripe_head *sh2;
3206                         struct async_submit_ctl submit;
3207
3208                         sector_t bn = compute_blocknr(sh, i, 1);
3209                         sector_t s = raid5_compute_sector(conf, bn, 0,
3210                                                           &dd_idx, NULL);
3211                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3212                         if (sh2 == NULL)
3213                                 /* so far only the early blocks of this stripe
3214                                  * have been requested.  When later blocks
3215                                  * get requested, we will try again
3216                                  */
3217                                 continue;
3218                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3219                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3220                                 /* must have already done this block */
3221                                 release_stripe(sh2);
3222                                 continue;
3223                         }
3224
3225                         /* place all the copies on one channel */
3226                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3227                         tx = async_memcpy(sh2->dev[dd_idx].page,
3228                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3229                                           &submit);
3230
3231                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3232                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3233                         for (j = 0; j < conf->raid_disks; j++)
3234                                 if (j != sh2->pd_idx &&
3235                                     j != sh2->qd_idx &&
3236                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3237                                         break;
3238                         if (j == conf->raid_disks) {
3239                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3240                                 set_bit(STRIPE_HANDLE, &sh2->state);
3241                         }
3242                         release_stripe(sh2);
3243
3244                 }
3245         /* done submitting copies, wait for them to complete */
3246         async_tx_quiesce(&tx);
3247 }
3248
3249 /*
3250  * handle_stripe - do things to a stripe.
3251  *
3252  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3253  * state of various bits to see what needs to be done.
3254  * Possible results:
3255  *    return some read requests which now have data
3256  *    return some write requests which are safely on storage
3257  *    schedule a read on some buffers
3258  *    schedule a write of some buffers
3259  *    return confirmation of parity correctness
3260  *
3261  */
3262
3263 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3264 {
3265         struct r5conf *conf = sh->raid_conf;
3266         int disks = sh->disks;
3267         struct r5dev *dev;
3268         int i;
3269         int do_recovery = 0;
3270
3271         memset(s, 0, sizeof(*s));
3272
3273         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3274         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3275         s->failed_num[0] = -1;
3276         s->failed_num[1] = -1;
3277
3278         /* Now to look around and see what can be done */
3279         rcu_read_lock();
3280         for (i=disks; i--; ) {
3281                 struct md_rdev *rdev;
3282                 sector_t first_bad;
3283                 int bad_sectors;
3284                 int is_bad = 0;
3285
3286                 dev = &sh->dev[i];
3287
3288                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3289                          i, dev->flags,
3290                          dev->toread, dev->towrite, dev->written);
3291                 /* maybe we can reply to a read
3292                  *
3293                  * new wantfill requests are only permitted while
3294                  * ops_complete_biofill is guaranteed to be inactive
3295                  */
3296                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3297                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3298                         set_bit(R5_Wantfill, &dev->flags);
3299
3300                 /* now count some things */
3301                 if (test_bit(R5_LOCKED, &dev->flags))
3302                         s->locked++;
3303                 if (test_bit(R5_UPTODATE, &dev->flags))
3304                         s->uptodate++;
3305                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3306                         s->compute++;
3307                         BUG_ON(s->compute > 2);
3308                 }
3309
3310                 if (test_bit(R5_Wantfill, &dev->flags))
3311                         s->to_fill++;
3312                 else if (dev->toread)
3313                         s->to_read++;
3314                 if (dev->towrite) {
3315                         s->to_write++;
3316                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3317                                 s->non_overwrite++;
3318                 }
3319                 if (dev->written)
3320                         s->written++;
3321                 /* Prefer to use the replacement for reads, but only
3322                  * if it is recovered enough and has no bad blocks.
3323                  */
3324                 rdev = rcu_dereference(conf->disks[i].replacement);
3325                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3326                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3327                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3328                                  &first_bad, &bad_sectors))
3329                         set_bit(R5_ReadRepl, &dev->flags);
3330                 else {
3331                         if (rdev)
3332                                 set_bit(R5_NeedReplace, &dev->flags);
3333                         rdev = rcu_dereference(conf->disks[i].rdev);
3334                         clear_bit(R5_ReadRepl, &dev->flags);
3335                 }
3336                 if (rdev && test_bit(Faulty, &rdev->flags))
3337                         rdev = NULL;
3338                 if (rdev) {
3339                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3340                                              &first_bad, &bad_sectors);
3341                         if (s->blocked_rdev == NULL
3342                             && (test_bit(Blocked, &rdev->flags)
3343                                 || is_bad < 0)) {
3344                                 if (is_bad < 0)
3345                                         set_bit(BlockedBadBlocks,
3346                                                 &rdev->flags);
3347                                 s->blocked_rdev = rdev;
3348                                 atomic_inc(&rdev->nr_pending);
3349                         }
3350                 }
3351                 clear_bit(R5_Insync, &dev->flags);
3352                 if (!rdev)
3353                         /* Not in-sync */;
3354                 else if (is_bad) {
3355                         /* also not in-sync */
3356                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3357                             test_bit(R5_UPTODATE, &dev->flags)) {
3358                                 /* treat as in-sync, but with a read error
3359                                  * which we can now try to correct
3360                                  */
3361                                 set_bit(R5_Insync, &dev->flags);
3362                                 set_bit(R5_ReadError, &dev->flags);
3363                         }
3364                 } else if (test_bit(In_sync, &rdev->flags))
3365                         set_bit(R5_Insync, &dev->flags);
3366                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3367                         /* in sync if before recovery_offset */
3368                         set_bit(R5_Insync, &dev->flags);
3369                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3370                          test_bit(R5_Expanded, &dev->flags))
3371                         /* If we've reshaped into here, we assume it is Insync.
3372                          * We will shortly update recovery_offset to make
3373                          * it official.
3374                          */
3375                         set_bit(R5_Insync, &dev->flags);
3376
3377                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3378                         /* This flag does not apply to '.replacement'
3379                          * only to .rdev, so make sure to check that*/
3380                         struct md_rdev *rdev2 = rcu_dereference(
3381                                 conf->disks[i].rdev);
3382                         if (rdev2 == rdev)
3383                                 clear_bit(R5_Insync, &dev->flags);
3384                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3385                                 s->handle_bad_blocks = 1;
3386                                 atomic_inc(&rdev2->nr_pending);
3387                         } else
3388                                 clear_bit(R5_WriteError, &dev->flags);
3389                 }
3390                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3391                         /* This flag does not apply to '.replacement'
3392                          * only to .rdev, so make sure to check that*/
3393                         struct md_rdev *rdev2 = rcu_dereference(
3394                                 conf->disks[i].rdev);
3395                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3396                                 s->handle_bad_blocks = 1;
3397                                 atomic_inc(&rdev2->nr_pending);
3398                         } else
3399                                 clear_bit(R5_MadeGood, &dev->flags);
3400                 }
3401                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3402                         struct md_rdev *rdev2 = rcu_dereference(
3403                                 conf->disks[i].replacement);
3404                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3405                                 s->handle_bad_blocks = 1;
3406                                 atomic_inc(&rdev2->nr_pending);
3407                         } else
3408                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3409                 }
3410                 if (!test_bit(R5_Insync, &dev->flags)) {
3411                         /* The ReadError flag will just be confusing now */
3412                         clear_bit(R5_ReadError, &dev->flags);
3413                         clear_bit(R5_ReWrite, &dev->flags);
3414                 }
3415                 if (test_bit(R5_ReadError, &dev->flags))
3416                         clear_bit(R5_Insync, &dev->flags);
3417                 if (!test_bit(R5_Insync, &dev->flags)) {
3418                         if (s->failed < 2)
3419                                 s->failed_num[s->failed] = i;
3420                         s->failed++;
3421                         if (rdev && !test_bit(Faulty, &rdev->flags))
3422                                 do_recovery = 1;
3423                 }
3424         }
3425         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3426                 /* If there is a failed device being replaced,
3427                  *     we must be recovering.
3428                  * else if we are after recovery_cp, we must be syncing
3429                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3430                  * else we can only be replacing
3431                  * sync and recovery both need to read all devices, and so
3432                  * use the same flag.
3433                  */
3434                 if (do_recovery ||
3435                     sh->sector >= conf->mddev->recovery_cp ||
3436                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3437                         s->syncing = 1;
3438                 else
3439                         s->replacing = 1;
3440         }
3441         rcu_read_unlock();
3442 }
3443
3444 static void handle_stripe(struct stripe_head *sh)
3445 {
3446         struct stripe_head_state s;
3447         struct r5conf *conf = sh->raid_conf;
3448         int i;
3449         int prexor;
3450         int disks = sh->disks;
3451         struct r5dev *pdev, *qdev;
3452
3453         clear_bit(STRIPE_HANDLE, &sh->state);
3454         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3455                 /* already being handled, ensure it gets handled
3456                  * again when current action finishes */
3457                 set_bit(STRIPE_HANDLE, &sh->state);
3458                 return;
3459         }
3460
3461         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3462                 set_bit(STRIPE_SYNCING, &sh->state);
3463                 clear_bit(STRIPE_INSYNC, &sh->state);
3464         }
3465         clear_bit(STRIPE_DELAYED, &sh->state);
3466
3467         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3468                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3469                (unsigned long long)sh->sector, sh->state,
3470                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3471                sh->check_state, sh->reconstruct_state);
3472
3473         analyse_stripe(sh, &s);
3474
3475         if (s.handle_bad_blocks) {
3476                 set_bit(STRIPE_HANDLE, &sh->state);
3477                 goto finish;
3478         }
3479
3480         if (unlikely(s.blocked_rdev)) {
3481                 if (s.syncing || s.expanding || s.expanded ||
3482                     s.replacing || s.to_write || s.written) {
3483                         set_bit(STRIPE_HANDLE, &sh->state);
3484                         goto finish;
3485                 }
3486                 /* There is nothing for the blocked_rdev to block */
3487                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3488                 s.blocked_rdev = NULL;
3489         }
3490
3491         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3492                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3493                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3494         }
3495
3496         pr_debug("locked=%d uptodate=%d to_read=%d"
3497                " to_write=%d failed=%d failed_num=%d,%d\n",
3498                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3499                s.failed_num[0], s.failed_num[1]);
3500         /* check if the array has lost more than max_degraded devices and,
3501          * if so, some requests might need to be failed.
3502          */
3503         if (s.failed > conf->max_degraded) {
3504                 sh->check_state = 0;
3505                 sh->reconstruct_state = 0;
3506                 if (s.to_read+s.to_write+s.written)
3507                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3508                 if (s.syncing + s.replacing)
3509                         handle_failed_sync(conf, sh, &s);
3510         }
3511
3512         /* Now we check to see if any write operations have recently
3513          * completed
3514          */
3515         prexor = 0;
3516         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3517                 prexor = 1;
3518         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3519             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3520                 sh->reconstruct_state = reconstruct_state_idle;
3521
3522                 /* All the 'written' buffers and the parity block are ready to
3523                  * be written back to disk
3524                  */
3525                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3526                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3527                 BUG_ON(sh->qd_idx >= 0 &&
3528                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3529                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3530                 for (i = disks; i--; ) {
3531                         struct r5dev *dev = &sh->dev[i];
3532                         if (test_bit(R5_LOCKED, &dev->flags) &&
3533                                 (i == sh->pd_idx || i == sh->qd_idx ||
3534                                  dev->written)) {
3535                                 pr_debug("Writing block %d\n", i);
3536                                 set_bit(R5_Wantwrite, &dev->flags);
3537                                 if (prexor)
3538                                         continue;
3539                                 if (!test_bit(R5_Insync, &dev->flags) ||
3540                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3541                                      s.failed == 0))
3542                                         set_bit(STRIPE_INSYNC, &sh->state);
3543                         }
3544                 }
3545                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3546                         s.dec_preread_active = 1;
3547         }
3548
3549         /*
3550          * might be able to return some write requests if the parity blocks
3551          * are safe, or on a failed drive
3552          */
3553         pdev = &sh->dev[sh->pd_idx];
3554         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3555                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3556         qdev = &sh->dev[sh->qd_idx];
3557         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3558                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3559                 || conf->level < 6;
3560
3561         if (s.written &&
3562             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3563                              && !test_bit(R5_LOCKED, &pdev->flags)
3564                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3565                                  test_bit(R5_Discard, &pdev->flags))))) &&
3566             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3567                              && !test_bit(R5_LOCKED, &qdev->flags)
3568                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3569                                  test_bit(R5_Discard, &qdev->flags))))))
3570                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3571
3572         /* Now we might consider reading some blocks, either to check/generate
3573          * parity, or to satisfy requests
3574          * or to load a block that is being partially written.
3575          */
3576         if (s.to_read || s.non_overwrite
3577             || (conf->level == 6 && s.to_write && s.failed)
3578             || (s.syncing && (s.uptodate + s.compute < disks))
3579             || s.replacing
3580             || s.expanding)
3581                 handle_stripe_fill(sh, &s, disks);
3582
3583         /* Now to consider new write requests and what else, if anything
3584          * should be read.  We do not handle new writes when:
3585          * 1/ A 'write' operation (copy+xor) is already in flight.
3586          * 2/ A 'check' operation is in flight, as it may clobber the parity
3587          *    block.
3588          */
3589         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3590                 handle_stripe_dirtying(conf, sh, &s, disks);
3591
3592         /* maybe we need to check and possibly fix the parity for this stripe
3593          * Any reads will already have been scheduled, so we just see if enough
3594          * data is available.  The parity check is held off while parity
3595          * dependent operations are in flight.
3596          */
3597         if (sh->check_state ||
3598             (s.syncing && s.locked == 0 &&
3599              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3600              !test_bit(STRIPE_INSYNC, &sh->state))) {
3601                 if (conf->level == 6)
3602                         handle_parity_checks6(conf, sh, &s, disks);
3603                 else
3604                         handle_parity_checks5(conf, sh, &s, disks);
3605         }
3606
3607         if (s.replacing && s.locked == 0
3608             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3609                 /* Write out to replacement devices where possible */
3610                 for (i = 0; i < conf->raid_disks; i++)
3611                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3612                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3613                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3614                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3615                                 s.locked++;
3616                         }
3617                 set_bit(STRIPE_INSYNC, &sh->state);
3618         }
3619         if ((s.syncing || s.replacing) && s.locked == 0 &&
3620             test_bit(STRIPE_INSYNC, &sh->state)) {
3621                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3622                 clear_bit(STRIPE_SYNCING, &sh->state);
3623         }
3624
3625         /* If the failed drives are just a ReadError, then we might need
3626          * to progress the repair/check process
3627          */
3628         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3629                 for (i = 0; i < s.failed; i++) {
3630                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3631                         if (test_bit(R5_ReadError, &dev->flags)
3632                             && !test_bit(R5_LOCKED, &dev->flags)
3633                             && test_bit(R5_UPTODATE, &dev->flags)
3634                                 ) {
3635                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3636                                         set_bit(R5_Wantwrite, &dev->flags);
3637                                         set_bit(R5_ReWrite, &dev->flags);
3638                                         set_bit(R5_LOCKED, &dev->flags);
3639                                         s.locked++;
3640                                 } else {
3641                                         /* let's read it back */
3642                                         set_bit(R5_Wantread, &dev->flags);
3643                                         set_bit(R5_LOCKED, &dev->flags);
3644                                         s.locked++;
3645                                 }
3646                         }
3647                 }
3648
3649
3650         /* Finish reconstruct operations initiated by the expansion process */
3651         if (sh->reconstruct_state == reconstruct_state_result) {
3652                 struct stripe_head *sh_src
3653                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3654                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3655                         /* sh cannot be written until sh_src has been read.
3656                          * so arrange for sh to be delayed a little
3657                          */
3658                         set_bit(STRIPE_DELAYED, &sh->state);
3659                         set_bit(STRIPE_HANDLE, &sh->state);
3660                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3661                                               &sh_src->state))
3662                                 atomic_inc(&conf->preread_active_stripes);
3663                         release_stripe(sh_src);
3664                         goto finish;
3665                 }
3666                 if (sh_src)
3667                         release_stripe(sh_src);
3668
3669                 sh->reconstruct_state = reconstruct_state_idle;
3670                 clear_bit(STRIPE_EXPANDING, &sh->state);
3671                 for (i = conf->raid_disks; i--; ) {
3672                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3673                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3674                         s.locked++;
3675                 }
3676         }
3677
3678         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3679             !sh->reconstruct_state) {
3680                 /* Need to write out all blocks after computing parity */
3681                 sh->disks = conf->raid_disks;
3682                 stripe_set_idx(sh->sector, conf, 0, sh);
3683                 schedule_reconstruction(sh, &s, 1, 1);
3684         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3685                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3686                 atomic_dec(&conf->reshape_stripes);
3687                 wake_up(&conf->wait_for_overlap);
3688                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3689         }
3690
3691         if (s.expanding && s.locked == 0 &&
3692             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3693                 handle_stripe_expansion(conf, sh);
3694
3695 finish:
3696         /* wait for this device to become unblocked */
3697         if (unlikely(s.blocked_rdev)) {
3698                 if (conf->mddev->external)
3699                         md_wait_for_blocked_rdev(s.blocked_rdev,
3700                                                  conf->mddev);
3701                 else
3702                         /* Internal metadata will immediately
3703                          * be written by raid5d, so we don't
3704                          * need to wait here.
3705                          */
3706                         rdev_dec_pending(s.blocked_rdev,
3707                                          conf->mddev);
3708         }
3709
3710         if (s.handle_bad_blocks)
3711                 for (i = disks; i--; ) {
3712                         struct md_rdev *rdev;
3713                         struct r5dev *dev = &sh->dev[i];
3714                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3715                                 /* We own a safe reference to the rdev */
3716                                 rdev = conf->disks[i].rdev;
3717                                 if (!rdev_set_badblocks(rdev, sh->sector,
3718                                                         STRIPE_SECTORS, 0))
3719                                         md_error(conf->mddev, rdev);
3720                                 rdev_dec_pending(rdev, conf->mddev);
3721                         }
3722                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3723                                 rdev = conf->disks[i].rdev;
3724                                 rdev_clear_badblocks(rdev, sh->sector,
3725                                                      STRIPE_SECTORS, 0);
3726                                 rdev_dec_pending(rdev, conf->mddev);
3727                         }
3728                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3729                                 rdev = conf->disks[i].replacement;
3730                                 if (!rdev)
3731                                         /* rdev have been moved down */
3732                                         rdev = conf->disks[i].rdev;
3733                                 rdev_clear_badblocks(rdev, sh->sector,
3734                                                      STRIPE_SECTORS, 0);
3735                                 rdev_dec_pending(rdev, conf->mddev);
3736                         }
3737                 }
3738
3739         if (s.ops_request)
3740                 raid_run_ops(sh, s.ops_request);
3741
3742         ops_run_io(sh, &s);
3743
3744         if (s.dec_preread_active) {
3745                 /* We delay this until after ops_run_io so that if make_request
3746                  * is waiting on a flush, it won't continue until the writes
3747                  * have actually been submitted.
3748                  */
3749                 atomic_dec(&conf->preread_active_stripes);
3750                 if (atomic_read(&conf->preread_active_stripes) <
3751                     IO_THRESHOLD)
3752                         md_wakeup_thread(conf->mddev->thread);
3753         }
3754
3755         return_io(s.return_bi);
3756
3757         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3758 }
3759
3760 static void raid5_activate_delayed(struct r5conf *conf)
3761 {
3762         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3763                 while (!list_empty(&conf->delayed_list)) {
3764                         struct list_head *l = conf->delayed_list.next;
3765                         struct stripe_head *sh;
3766                         sh = list_entry(l, struct stripe_head, lru);
3767                         list_del_init(l);
3768                         clear_bit(STRIPE_DELAYED, &sh->state);
3769                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3770                                 atomic_inc(&conf->preread_active_stripes);
3771                         list_add_tail(&sh->lru, &conf->hold_list);
3772                 }
3773         }
3774 }
3775
3776 static void activate_bit_delay(struct r5conf *conf)
3777 {
3778         /* device_lock is held */
3779         struct list_head head;
3780         list_add(&head, &conf->bitmap_list);
3781         list_del_init(&conf->bitmap_list);
3782         while (!list_empty(&head)) {
3783                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3784                 list_del_init(&sh->lru);
3785                 atomic_inc(&sh->count);
3786                 __release_stripe(conf, sh);
3787         }
3788 }
3789
3790 int md_raid5_congested(struct mddev *mddev, int bits)
3791 {
3792         struct r5conf *conf = mddev->private;
3793
3794         /* No difference between reads and writes.  Just check
3795          * how busy the stripe_cache is
3796          */
3797
3798         if (conf->inactive_blocked)
3799                 return 1;
3800         if (conf->quiesce)
3801                 return 1;
3802         if (list_empty_careful(&conf->inactive_list))
3803                 return 1;
3804
3805         return 0;
3806 }
3807 EXPORT_SYMBOL_GPL(md_raid5_congested);
3808
3809 static int raid5_congested(void *data, int bits)
3810 {
3811         struct mddev *mddev = data;
3812
3813         return mddev_congested(mddev, bits) ||
3814                 md_raid5_congested(mddev, bits);
3815 }
3816
3817 /* We want read requests to align with chunks where possible,
3818  * but write requests don't need to.
3819  */
3820 static int raid5_mergeable_bvec(struct request_queue *q,
3821                                 struct bvec_merge_data *bvm,
3822                                 struct bio_vec *biovec)
3823 {
3824         struct mddev *mddev = q->queuedata;
3825         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3826         int max;
3827         unsigned int chunk_sectors = mddev->chunk_sectors;
3828         unsigned int bio_sectors = bvm->bi_size >> 9;
3829
3830         if ((bvm->bi_rw & 1) == WRITE)
3831                 return biovec->bv_len; /* always allow writes to be mergeable */
3832
3833         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3834                 chunk_sectors = mddev->new_chunk_sectors;
3835         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3836         if (max < 0) max = 0;
3837         if (max <= biovec->bv_len && bio_sectors == 0)
3838                 return biovec->bv_len;
3839         else
3840                 return max;
3841 }
3842
3843
3844 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3845 {
3846         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3847         unsigned int chunk_sectors = mddev->chunk_sectors;
3848         unsigned int bio_sectors = bio->bi_size >> 9;
3849
3850         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3851                 chunk_sectors = mddev->new_chunk_sectors;
3852         return  chunk_sectors >=
3853                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3854 }
3855
3856 /*
3857  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3858  *  later sampled by raid5d.
3859  */
3860 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3861 {
3862         unsigned long flags;
3863
3864         spin_lock_irqsave(&conf->device_lock, flags);
3865
3866         bi->bi_next = conf->retry_read_aligned_list;
3867         conf->retry_read_aligned_list = bi;
3868
3869         spin_unlock_irqrestore(&conf->device_lock, flags);
3870         md_wakeup_thread(conf->mddev->thread);
3871 }
3872
3873
3874 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3875 {
3876         struct bio *bi;
3877
3878         bi = conf->retry_read_aligned;
3879         if (bi) {
3880                 conf->retry_read_aligned = NULL;
3881                 return bi;
3882         }
3883         bi = conf->retry_read_aligned_list;
3884         if(bi) {
3885                 conf->retry_read_aligned_list = bi->bi_next;
3886                 bi->bi_next = NULL;
3887                 /*
3888                  * this sets the active strip count to 1 and the processed
3889                  * strip count to zero (upper 8 bits)
3890                  */
3891                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3892         }
3893
3894         return bi;
3895 }
3896
3897
3898 /*
3899  *  The "raid5_align_endio" should check if the read succeeded and if it
3900  *  did, call bio_endio on the original bio (having bio_put the new bio
3901  *  first).
3902  *  If the read failed..
3903  */
3904 static void raid5_align_endio(struct bio *bi, int error)
3905 {
3906         struct bio* raid_bi  = bi->bi_private;
3907         struct mddev *mddev;
3908         struct r5conf *conf;
3909         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3910         struct md_rdev *rdev;
3911
3912         bio_put(bi);
3913
3914         rdev = (void*)raid_bi->bi_next;
3915         raid_bi->bi_next = NULL;
3916         mddev = rdev->mddev;
3917         conf = mddev->private;
3918
3919         rdev_dec_pending(rdev, conf->mddev);
3920
3921         if (!error && uptodate) {
3922                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3923                                          raid_bi, 0);
3924                 bio_endio(raid_bi, 0);
3925                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3926                         wake_up(&conf->wait_for_stripe);
3927                 return;
3928         }
3929
3930
3931         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3932
3933         add_bio_to_retry(raid_bi, conf);
3934 }
3935
3936 static int bio_fits_rdev(struct bio *bi)
3937 {
3938         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3939
3940         if ((bi->bi_size>>9) > queue_max_sectors(q))
3941                 return 0;
3942         blk_recount_segments(q, bi);
3943         if (bi->bi_phys_segments > queue_max_segments(q))
3944                 return 0;
3945
3946         if (q->merge_bvec_fn)
3947                 /* it's too hard to apply the merge_bvec_fn at this stage,
3948                  * just just give up
3949                  */
3950                 return 0;
3951
3952         return 1;
3953 }
3954
3955
3956 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3957 {
3958         struct r5conf *conf = mddev->private;
3959         int dd_idx;
3960         struct bio* align_bi;
3961         struct md_rdev *rdev;
3962         sector_t end_sector;
3963
3964         if (!in_chunk_boundary(mddev, raid_bio)) {
3965                 pr_debug("chunk_aligned_read : non aligned\n");
3966                 return 0;
3967         }
3968         /*
3969          * use bio_clone_mddev to make a copy of the bio
3970          */
3971         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3972         if (!align_bi)
3973                 return 0;
3974         /*
3975          *   set bi_end_io to a new function, and set bi_private to the
3976          *     original bio.
3977          */
3978         align_bi->bi_end_io  = raid5_align_endio;
3979         align_bi->bi_private = raid_bio;
3980         /*
3981          *      compute position
3982          */
3983         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3984                                                     0,
3985                                                     &dd_idx, NULL);
3986
3987         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3988         rcu_read_lock();
3989         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3990         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3991             rdev->recovery_offset < end_sector) {
3992                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3993                 if (rdev &&
3994                     (test_bit(Faulty, &rdev->flags) ||
3995                     !(test_bit(In_sync, &rdev->flags) ||
3996                       rdev->recovery_offset >= end_sector)))
3997                         rdev = NULL;
3998         }
3999         if (rdev) {
4000                 sector_t first_bad;
4001                 int bad_sectors;
4002
4003                 atomic_inc(&rdev->nr_pending);
4004                 rcu_read_unlock();
4005                 raid_bio->bi_next = (void*)rdev;
4006                 align_bi->bi_bdev =  rdev->bdev;
4007                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4008
4009                 if (!bio_fits_rdev(align_bi) ||
4010                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4011                                 &first_bad, &bad_sectors)) {
4012                         /* too big in some way, or has a known bad block */
4013                         bio_put(align_bi);
4014                         rdev_dec_pending(rdev, mddev);
4015                         return 0;
4016                 }
4017
4018                 /* No reshape active, so we can trust rdev->data_offset */
4019                 align_bi->bi_sector += rdev->data_offset;
4020
4021                 spin_lock_irq(&conf->device_lock);
4022                 wait_event_lock_irq(conf->wait_for_stripe,
4023                                     conf->quiesce == 0,
4024                                     conf->device_lock, /* nothing */);
4025                 atomic_inc(&conf->active_aligned_reads);
4026                 spin_unlock_irq(&conf->device_lock);
4027
4028                 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4029                                       align_bi, disk_devt(mddev->gendisk),
4030                                       raid_bio->bi_sector);
4031                 generic_make_request(align_bi);
4032                 return 1;
4033         } else {
4034                 rcu_read_unlock();
4035                 bio_put(align_bi);
4036                 return 0;
4037         }
4038 }
4039
4040 /* __get_priority_stripe - get the next stripe to process
4041  *
4042  * Full stripe writes are allowed to pass preread active stripes up until
4043  * the bypass_threshold is exceeded.  In general the bypass_count
4044  * increments when the handle_list is handled before the hold_list; however, it
4045  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4046  * stripe with in flight i/o.  The bypass_count will be reset when the
4047  * head of the hold_list has changed, i.e. the head was promoted to the
4048  * handle_list.
4049  */
4050 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4051 {
4052         struct stripe_head *sh;
4053
4054         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4055                   __func__,
4056                   list_empty(&conf->handle_list) ? "empty" : "busy",
4057                   list_empty(&conf->hold_list) ? "empty" : "busy",
4058                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4059
4060         if (!list_empty(&conf->handle_list)) {
4061                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4062
4063                 if (list_empty(&conf->hold_list))
4064                         conf->bypass_count = 0;
4065                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4066                         if (conf->hold_list.next == conf->last_hold)
4067                                 conf->bypass_count++;
4068                         else {
4069                                 conf->last_hold = conf->hold_list.next;
4070                                 conf->bypass_count -= conf->bypass_threshold;
4071                                 if (conf->bypass_count < 0)
4072                                         conf->bypass_count = 0;
4073                         }
4074                 }
4075         } else if (!list_empty(&conf->hold_list) &&
4076                    ((conf->bypass_threshold &&
4077                      conf->bypass_count > conf->bypass_threshold) ||
4078                     atomic_read(&conf->pending_full_writes) == 0)) {
4079                 sh = list_entry(conf->hold_list.next,
4080                                 typeof(*sh), lru);
4081                 conf->bypass_count -= conf->bypass_threshold;
4082                 if (conf->bypass_count < 0)
4083                         conf->bypass_count = 0;
4084         } else
4085                 return NULL;
4086
4087         list_del_init(&sh->lru);
4088         atomic_inc(&sh->count);
4089         BUG_ON(atomic_read(&sh->count) != 1);
4090         return sh;
4091 }
4092
4093 struct raid5_plug_cb {
4094         struct blk_plug_cb      cb;
4095         struct list_head        list;
4096 };
4097
4098 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4099 {
4100         struct raid5_plug_cb *cb = container_of(
4101                 blk_cb, struct raid5_plug_cb, cb);
4102         struct stripe_head *sh;
4103         struct mddev *mddev = cb->cb.data;
4104         struct r5conf *conf = mddev->private;
4105         int cnt = 0;
4106
4107         if (cb->list.next && !list_empty(&cb->list)) {
4108                 spin_lock_irq(&conf->device_lock);
4109                 while (!list_empty(&cb->list)) {
4110                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4111                         list_del_init(&sh->lru);
4112                         /*
4113                          * avoid race release_stripe_plug() sees
4114                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4115                          * is still in our list
4116                          */
4117                         smp_mb__before_clear_bit();
4118                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4119                         __release_stripe(conf, sh);
4120                         cnt++;
4121                 }
4122                 spin_unlock_irq(&conf->device_lock);
4123         }
4124         trace_block_unplug(mddev->queue, cnt, !from_schedule);
4125         kfree(cb);
4126 }
4127
4128 static void release_stripe_plug(struct mddev *mddev,
4129                                 struct stripe_head *sh)
4130 {
4131         struct blk_plug_cb *blk_cb = blk_check_plugged(
4132                 raid5_unplug, mddev,
4133                 sizeof(struct raid5_plug_cb));
4134         struct raid5_plug_cb *cb;
4135
4136         if (!blk_cb) {
4137                 release_stripe(sh);
4138                 return;
4139         }
4140
4141         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4142
4143         if (cb->list.next == NULL)
4144                 INIT_LIST_HEAD(&cb->list);
4145
4146         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4147                 list_add_tail(&sh->lru, &cb->list);
4148         else
4149                 release_stripe(sh);
4150 }
4151
4152 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4153 {
4154         struct r5conf *conf = mddev->private;
4155         sector_t logical_sector, last_sector;
4156         struct stripe_head *sh;
4157         int remaining;
4158         int stripe_sectors;
4159
4160         if (mddev->reshape_position != MaxSector)
4161                 /* Skip discard while reshape is happening */
4162                 return;
4163
4164         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4165         last_sector = bi->bi_sector + (bi->bi_size>>9);
4166
4167         bi->bi_next = NULL;
4168         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4169
4170         stripe_sectors = conf->chunk_sectors *
4171                 (conf->raid_disks - conf->max_degraded);
4172         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4173                                                stripe_sectors);
4174         sector_div(last_sector, stripe_sectors);
4175
4176         logical_sector *= conf->chunk_sectors;
4177         last_sector *= conf->chunk_sectors;
4178
4179         for (; logical_sector < last_sector;
4180              logical_sector += STRIPE_SECTORS) {
4181                 DEFINE_WAIT(w);
4182                 int d;
4183         again:
4184                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4185                 prepare_to_wait(&conf->wait_for_overlap, &w,
4186                                 TASK_UNINTERRUPTIBLE);
4187                 spin_lock_irq(&sh->stripe_lock);
4188                 for (d = 0; d < conf->raid_disks; d++) {
4189                         if (d == sh->pd_idx || d == sh->qd_idx)
4190                                 continue;
4191                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4192                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4193                                 spin_unlock_irq(&sh->stripe_lock);
4194                                 release_stripe(sh);
4195                                 schedule();
4196                                 goto again;
4197                         }
4198                 }
4199                 finish_wait(&conf->wait_for_overlap, &w);
4200                 for (d = 0; d < conf->raid_disks; d++) {
4201                         if (d == sh->pd_idx || d == sh->qd_idx)
4202                                 continue;
4203                         sh->dev[d].towrite = bi;
4204                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4205                         raid5_inc_bi_active_stripes(bi);
4206                 }
4207                 spin_unlock_irq(&sh->stripe_lock);
4208                 if (conf->mddev->bitmap) {
4209                         for (d = 0;
4210                              d < conf->raid_disks - conf->max_degraded;
4211                              d++)
4212                                 bitmap_startwrite(mddev->bitmap,
4213                                                   sh->sector,
4214                                                   STRIPE_SECTORS,
4215                                                   0);
4216                         sh->bm_seq = conf->seq_flush + 1;
4217                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4218                 }
4219
4220                 set_bit(STRIPE_HANDLE, &sh->state);
4221                 clear_bit(STRIPE_DELAYED, &sh->state);
4222                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4223                         atomic_inc(&conf->preread_active_stripes);
4224                 release_stripe_plug(mddev, sh);
4225         }
4226
4227         remaining = raid5_dec_bi_active_stripes(bi);
4228         if (remaining == 0) {
4229                 md_write_end(mddev);
4230                 bio_endio(bi, 0);
4231         }
4232 }
4233
4234 static void make_request(struct mddev *mddev, struct bio * bi)
4235 {
4236         struct r5conf *conf = mddev->private;
4237         int dd_idx;
4238         sector_t new_sector;
4239         sector_t logical_sector, last_sector;
4240         struct stripe_head *sh;
4241         const int rw = bio_data_dir(bi);
4242         int remaining;
4243
4244         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4245                 md_flush_request(mddev, bi);
4246                 return;
4247         }
4248
4249         md_write_start(mddev, bi);
4250
4251         if (rw == READ &&
4252              mddev->reshape_position == MaxSector &&
4253              chunk_aligned_read(mddev,bi))
4254                 return;
4255
4256         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4257                 make_discard_request(mddev, bi);
4258                 return;
4259         }
4260
4261         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4262         last_sector = bi->bi_sector + (bi->bi_size>>9);
4263         bi->bi_next = NULL;
4264         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4265
4266         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4267                 DEFINE_WAIT(w);
4268                 int previous;
4269
4270         retry:
4271                 previous = 0;
4272                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4273                 if (unlikely(conf->reshape_progress != MaxSector)) {
4274                         /* spinlock is needed as reshape_progress may be
4275                          * 64bit on a 32bit platform, and so it might be
4276                          * possible to see a half-updated value
4277                          * Of course reshape_progress could change after
4278                          * the lock is dropped, so once we get a reference
4279                          * to the stripe that we think it is, we will have
4280                          * to check again.
4281                          */
4282                         spin_lock_irq(&conf->device_lock);
4283                         if (mddev->reshape_backwards
4284                             ? logical_sector < conf->reshape_progress
4285                             : logical_sector >= conf->reshape_progress) {
4286                                 previous = 1;
4287                         } else {
4288                                 if (mddev->reshape_backwards
4289                                     ? logical_sector < conf->reshape_safe
4290                                     : logical_sector >= conf->reshape_safe) {
4291                                         spin_unlock_irq(&conf->device_lock);
4292                                         schedule();
4293                                         goto retry;
4294                                 }
4295                         }
4296                         spin_unlock_irq(&conf->device_lock);
4297                 }
4298
4299                 new_sector = raid5_compute_sector(conf, logical_sector,
4300                                                   previous,
4301                                                   &dd_idx, NULL);
4302                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4303                         (unsigned long long)new_sector, 
4304                         (unsigned long long)logical_sector);
4305
4306                 sh = get_active_stripe(conf, new_sector, previous,
4307                                        (bi->bi_rw&RWA_MASK), 0);
4308                 if (sh) {
4309                         if (unlikely(previous)) {
4310                                 /* expansion might have moved on while waiting for a
4311                                  * stripe, so we must do the range check again.
4312                                  * Expansion could still move past after this
4313                                  * test, but as we are holding a reference to
4314                                  * 'sh', we know that if that happens,
4315                                  *  STRIPE_EXPANDING will get set and the expansion
4316                                  * won't proceed until we finish with the stripe.
4317                                  */
4318                                 int must_retry = 0;
4319                                 spin_lock_irq(&conf->device_lock);
4320                                 if (mddev->reshape_backwards
4321                                     ? logical_sector >= conf->reshape_progress
4322                                     : logical_sector < conf->reshape_progress)
4323                                         /* mismatch, need to try again */
4324                                         must_retry = 1;
4325                                 spin_unlock_irq(&conf->device_lock);
4326                                 if (must_retry) {
4327                                         release_stripe(sh);
4328                                         schedule();
4329                                         goto retry;
4330                                 }
4331                         }
4332
4333                         if (rw == WRITE &&
4334                             logical_sector >= mddev->suspend_lo &&
4335                             logical_sector < mddev->suspend_hi) {
4336                                 release_stripe(sh);
4337                                 /* As the suspend_* range is controlled by
4338                                  * userspace, we want an interruptible
4339                                  * wait.
4340                                  */
4341                                 flush_signals(current);
4342                                 prepare_to_wait(&conf->wait_for_overlap,
4343                                                 &w, TASK_INTERRUPTIBLE);
4344                                 if (logical_sector >= mddev->suspend_lo &&
4345                                     logical_sector < mddev->suspend_hi)
4346                                         schedule();
4347                                 goto retry;
4348                         }
4349
4350                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4351                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4352                                 /* Stripe is busy expanding or
4353                                  * add failed due to overlap.  Flush everything
4354                                  * and wait a while
4355                                  */
4356                                 md_wakeup_thread(mddev->thread);
4357                                 release_stripe(sh);
4358                                 schedule();
4359                                 goto retry;
4360                         }
4361                         finish_wait(&conf->wait_for_overlap, &w);
4362                         set_bit(STRIPE_HANDLE, &sh->state);
4363                         clear_bit(STRIPE_DELAYED, &sh->state);
4364                         if ((bi->bi_rw & REQ_SYNC) &&
4365                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4366                                 atomic_inc(&conf->preread_active_stripes);
4367                         release_stripe_plug(mddev, sh);
4368                 } else {
4369                         /* cannot get stripe for read-ahead, just give-up */
4370                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4371                         finish_wait(&conf->wait_for_overlap, &w);
4372                         break;
4373                 }
4374         }
4375
4376         remaining = raid5_dec_bi_active_stripes(bi);
4377         if (remaining == 0) {
4378
4379                 if ( rw == WRITE )
4380                         md_write_end(mddev);
4381
4382                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4383                                          bi, 0);
4384                 bio_endio(bi, 0);
4385         }
4386 }
4387
4388 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4389
4390 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4391 {
4392         /* reshaping is quite different to recovery/resync so it is
4393          * handled quite separately ... here.
4394          *
4395          * On each call to sync_request, we gather one chunk worth of
4396          * destination stripes and flag them as expanding.
4397          * Then we find all the source stripes and request reads.
4398          * As the reads complete, handle_stripe will copy the data
4399          * into the destination stripe and release that stripe.
4400          */
4401         struct r5conf *conf = mddev->private;
4402         struct stripe_head *sh;
4403         sector_t first_sector, last_sector;
4404         int raid_disks = conf->previous_raid_disks;
4405         int data_disks = raid_disks - conf->max_degraded;
4406         int new_data_disks = conf->raid_disks - conf->max_degraded;
4407         int i;
4408         int dd_idx;
4409         sector_t writepos, readpos, safepos;
4410         sector_t stripe_addr;
4411         int reshape_sectors;
4412         struct list_head stripes;
4413
4414         if (sector_nr == 0) {
4415                 /* If restarting in the middle, skip the initial sectors */
4416                 if (mddev->reshape_backwards &&
4417                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4418                         sector_nr = raid5_size(mddev, 0, 0)
4419                                 - conf->reshape_progress;
4420                 } else if (!mddev->reshape_backwards &&
4421                            conf->reshape_progress > 0)
4422                         sector_nr = conf->reshape_progress;
4423                 sector_div(sector_nr, new_data_disks);
4424                 if (sector_nr) {
4425                         mddev->curr_resync_completed = sector_nr;
4426                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4427                         *skipped = 1;
4428                         return sector_nr;
4429                 }
4430         }
4431
4432         /* We need to process a full chunk at a time.
4433          * If old and new chunk sizes differ, we need to process the
4434          * largest of these
4435          */
4436         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4437                 reshape_sectors = mddev->new_chunk_sectors;
4438         else
4439                 reshape_sectors = mddev->chunk_sectors;
4440
4441         /* We update the metadata at least every 10 seconds, or when
4442          * the data about to be copied would over-write the source of
4443          * the data at the front of the range.  i.e. one new_stripe
4444          * along from reshape_progress new_maps to after where
4445          * reshape_safe old_maps to
4446          */
4447         writepos = conf->reshape_progress;
4448         sector_div(writepos, new_data_disks);
4449         readpos = conf->reshape_progress;
4450         sector_div(readpos, data_disks);
4451         safepos = conf->reshape_safe;
4452         sector_div(safepos, data_disks);
4453         if (mddev->reshape_backwards) {
4454                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4455                 readpos += reshape_sectors;
4456                 safepos += reshape_sectors;
4457         } else {
4458                 writepos += reshape_sectors;
4459                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4460                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4461         }
4462
4463         /* Having calculated the 'writepos' possibly use it
4464          * to set 'stripe_addr' which is where we will write to.
4465          */
4466         if (mddev->reshape_backwards) {
4467                 BUG_ON(conf->reshape_progress == 0);
4468                 stripe_addr = writepos;
4469                 BUG_ON((mddev->dev_sectors &
4470                         ~((sector_t)reshape_sectors - 1))
4471                        - reshape_sectors - stripe_addr
4472                        != sector_nr);
4473         } else {
4474                 BUG_ON(writepos != sector_nr + reshape_sectors);
4475                 stripe_addr = sector_nr;
4476         }
4477
4478         /* 'writepos' is the most advanced device address we might write.
4479          * 'readpos' is the least advanced device address we might read.
4480          * 'safepos' is the least address recorded in the metadata as having
4481          *     been reshaped.
4482          * If there is a min_offset_diff, these are adjusted either by
4483          * increasing the safepos/readpos if diff is negative, or
4484          * increasing writepos if diff is positive.
4485          * If 'readpos' is then behind 'writepos', there is no way that we can
4486          * ensure safety in the face of a crash - that must be done by userspace
4487          * making a backup of the data.  So in that case there is no particular
4488          * rush to update metadata.
4489          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4490          * update the metadata to advance 'safepos' to match 'readpos' so that
4491          * we can be safe in the event of a crash.
4492          * So we insist on updating metadata if safepos is behind writepos and
4493          * readpos is beyond writepos.
4494          * In any case, update the metadata every 10 seconds.
4495          * Maybe that number should be configurable, but I'm not sure it is
4496          * worth it.... maybe it could be a multiple of safemode_delay???
4497          */
4498         if (conf->min_offset_diff < 0) {
4499                 safepos += -conf->min_offset_diff;
4500                 readpos += -conf->min_offset_diff;
4501         } else
4502                 writepos += conf->min_offset_diff;
4503
4504         if ((mddev->reshape_backwards
4505              ? (safepos > writepos && readpos < writepos)
4506              : (safepos < writepos && readpos > writepos)) ||
4507             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4508                 /* Cannot proceed until we've updated the superblock... */
4509                 wait_event(conf->wait_for_overlap,
4510                            atomic_read(&conf->reshape_stripes)==0);
4511                 mddev->reshape_position = conf->reshape_progress;
4512                 mddev->curr_resync_completed = sector_nr;
4513                 conf->reshape_checkpoint = jiffies;
4514                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4515                 md_wakeup_thread(mddev->thread);
4516                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4517                            kthread_should_stop());
4518                 spin_lock_irq(&conf->device_lock);
4519                 conf->reshape_safe = mddev->reshape_position;
4520                 spin_unlock_irq(&conf->device_lock);
4521                 wake_up(&conf->wait_for_overlap);
4522                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4523         }
4524
4525         INIT_LIST_HEAD(&stripes);
4526         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4527                 int j;
4528                 int skipped_disk = 0;
4529                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4530                 set_bit(STRIPE_EXPANDING, &sh->state);
4531                 atomic_inc(&conf->reshape_stripes);
4532                 /* If any of this stripe is beyond the end of the old
4533                  * array, then we need to zero those blocks
4534                  */
4535                 for (j=sh->disks; j--;) {
4536                         sector_t s;
4537                         if (j == sh->pd_idx)
4538                                 continue;
4539                         if (conf->level == 6 &&
4540                             j == sh->qd_idx)
4541                                 continue;
4542                         s = compute_blocknr(sh, j, 0);
4543                         if (s < raid5_size(mddev, 0, 0)) {
4544                                 skipped_disk = 1;
4545                                 continue;
4546                         }
4547                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4548                         set_bit(R5_Expanded, &sh->dev[j].flags);
4549                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4550                 }
4551                 if (!skipped_disk) {
4552                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4553                         set_bit(STRIPE_HANDLE, &sh->state);
4554                 }
4555                 list_add(&sh->lru, &stripes);
4556         }
4557         spin_lock_irq(&conf->device_lock);
4558         if (mddev->reshape_backwards)
4559                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4560         else
4561                 conf->reshape_progress += reshape_sectors * new_data_disks;
4562         spin_unlock_irq(&conf->device_lock);
4563         /* Ok, those stripe are ready. We can start scheduling
4564          * reads on the source stripes.
4565          * The source stripes are determined by mapping the first and last
4566          * block on the destination stripes.
4567          */
4568         first_sector =
4569                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4570                                      1, &dd_idx, NULL);
4571         last_sector =
4572                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4573                                             * new_data_disks - 1),
4574                                      1, &dd_idx, NULL);
4575         if (last_sector >= mddev->dev_sectors)
4576                 last_sector = mddev->dev_sectors - 1;
4577         while (first_sector <= last_sector) {
4578                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4579                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4580                 set_bit(STRIPE_HANDLE, &sh->state);
4581                 release_stripe(sh);
4582                 first_sector += STRIPE_SECTORS;
4583         }
4584         /* Now that the sources are clearly marked, we can release
4585          * the destination stripes
4586          */
4587         while (!list_empty(&stripes)) {
4588                 sh = list_entry(stripes.next, struct stripe_head, lru);
4589                 list_del_init(&sh->lru);
4590                 release_stripe(sh);
4591         }
4592         /* If this takes us to the resync_max point where we have to pause,
4593          * then we need to write out the superblock.
4594          */
4595         sector_nr += reshape_sectors;
4596         if ((sector_nr - mddev->curr_resync_completed) * 2
4597             >= mddev->resync_max - mddev->curr_resync_completed) {
4598                 /* Cannot proceed until we've updated the superblock... */
4599                 wait_event(conf->wait_for_overlap,
4600                            atomic_read(&conf->reshape_stripes) == 0);
4601                 mddev->reshape_position = conf->reshape_progress;
4602                 mddev->curr_resync_completed = sector_nr;
4603                 conf->reshape_checkpoint = jiffies;
4604                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4605                 md_wakeup_thread(mddev->thread);
4606                 wait_event(mddev->sb_wait,
4607                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4608                            || kthread_should_stop());
4609                 spin_lock_irq(&conf->device_lock);
4610                 conf->reshape_safe = mddev->reshape_position;
4611                 spin_unlock_irq(&conf->device_lock);
4612                 wake_up(&conf->wait_for_overlap);
4613                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4614         }
4615         return reshape_sectors;
4616 }
4617
4618 /* FIXME go_faster isn't used */
4619 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4620 {
4621         struct r5conf *conf = mddev->private;
4622         struct stripe_head *sh;
4623         sector_t max_sector = mddev->dev_sectors;
4624         sector_t sync_blocks;
4625         int still_degraded = 0;
4626         int i;
4627
4628         if (sector_nr >= max_sector) {
4629                 /* just being told to finish up .. nothing much to do */
4630
4631                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4632                         end_reshape(conf);
4633                         return 0;
4634                 }
4635
4636                 if (mddev->curr_resync < max_sector) /* aborted */
4637                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4638                                         &sync_blocks, 1);
4639                 else /* completed sync */
4640                         conf->fullsync = 0;
4641                 bitmap_close_sync(mddev->bitmap);
4642
4643                 return 0;
4644         }
4645
4646         /* Allow raid5_quiesce to complete */
4647         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4648
4649         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4650                 return reshape_request(mddev, sector_nr, skipped);
4651
4652         /* No need to check resync_max as we never do more than one
4653          * stripe, and as resync_max will always be on a chunk boundary,
4654          * if the check in md_do_sync didn't fire, there is no chance
4655          * of overstepping resync_max here
4656          */
4657
4658         /* if there is too many failed drives and we are trying
4659          * to resync, then assert that we are finished, because there is
4660          * nothing we can do.
4661          */
4662         if (mddev->degraded >= conf->max_degraded &&
4663             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4664                 sector_t rv = mddev->dev_sectors - sector_nr;
4665                 *skipped = 1;
4666                 return rv;
4667         }
4668         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4669             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4670             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4671                 /* we can skip this block, and probably more */
4672                 sync_blocks /= STRIPE_SECTORS;
4673                 *skipped = 1;
4674                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4675         }
4676
4677         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4678
4679         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4680         if (sh == NULL) {
4681                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4682                 /* make sure we don't swamp the stripe cache if someone else
4683                  * is trying to get access
4684                  */
4685                 schedule_timeout_uninterruptible(1);
4686         }
4687         /* Need to check if array will still be degraded after recovery/resync
4688          * We don't need to check the 'failed' flag as when that gets set,
4689          * recovery aborts.
4690          */
4691         for (i = 0; i < conf->raid_disks; i++)
4692                 if (conf->disks[i].rdev == NULL)
4693                         still_degraded = 1;
4694
4695         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4696
4697         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4698
4699         handle_stripe(sh);
4700         release_stripe(sh);
4701
4702         return STRIPE_SECTORS;
4703 }
4704
4705 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4706 {
4707         /* We may not be able to submit a whole bio at once as there
4708          * may not be enough stripe_heads available.
4709          * We cannot pre-allocate enough stripe_heads as we may need
4710          * more than exist in the cache (if we allow ever large chunks).
4711          * So we do one stripe head at a time and record in
4712          * ->bi_hw_segments how many have been done.
4713          *
4714          * We *know* that this entire raid_bio is in one chunk, so
4715          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4716          */
4717         struct stripe_head *sh;
4718         int dd_idx;
4719         sector_t sector, logical_sector, last_sector;
4720         int scnt = 0;
4721         int remaining;
4722         int handled = 0;
4723
4724         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4725         sector = raid5_compute_sector(conf, logical_sector,
4726                                       0, &dd_idx, NULL);
4727         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4728
4729         for (; logical_sector < last_sector;
4730              logical_sector += STRIPE_SECTORS,
4731                      sector += STRIPE_SECTORS,
4732                      scnt++) {
4733
4734                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4735                         /* already done this stripe */
4736                         continue;
4737
4738                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4739
4740                 if (!sh) {
4741                         /* failed to get a stripe - must wait */
4742                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4743                         conf->retry_read_aligned = raid_bio;
4744                         return handled;
4745                 }
4746
4747                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4748                         release_stripe(sh);
4749                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4750                         conf->retry_read_aligned = raid_bio;
4751                         return handled;
4752                 }
4753
4754                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4755                 handle_stripe(sh);
4756                 release_stripe(sh);
4757                 handled++;
4758         }
4759         remaining = raid5_dec_bi_active_stripes(raid_bio);
4760         if (remaining == 0) {
4761                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4762                                          raid_bio, 0);
4763                 bio_endio(raid_bio, 0);
4764         }
4765         if (atomic_dec_and_test(&conf->active_aligned_reads))
4766                 wake_up(&conf->wait_for_stripe);
4767         return handled;
4768 }
4769
4770 #define MAX_STRIPE_BATCH 8
4771 static int handle_active_stripes(struct r5conf *conf)
4772 {
4773         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4774         int i, batch_size = 0;
4775
4776         while (batch_size < MAX_STRIPE_BATCH &&
4777                         (sh = __get_priority_stripe(conf)) != NULL)
4778                 batch[batch_size++] = sh;
4779
4780         if (batch_size == 0)
4781                 return batch_size;
4782         spin_unlock_irq(&conf->device_lock);
4783
4784         for (i = 0; i < batch_size; i++)
4785                 handle_stripe(batch[i]);
4786
4787         cond_resched();
4788
4789         spin_lock_irq(&conf->device_lock);
4790         for (i = 0; i < batch_size; i++)
4791                 __release_stripe(conf, batch[i]);
4792         return batch_size;
4793 }
4794
4795 /*
4796  * This is our raid5 kernel thread.
4797  *
4798  * We scan the hash table for stripes which can be handled now.
4799  * During the scan, completed stripes are saved for us by the interrupt
4800  * handler, so that they will not have to wait for our next wakeup.
4801  */
4802 static void raid5d(struct md_thread *thread)
4803 {
4804         struct mddev *mddev = thread->mddev;
4805         struct r5conf *conf = mddev->private;
4806         int handled;
4807         struct blk_plug plug;
4808
4809         pr_debug("+++ raid5d active\n");
4810
4811         md_check_recovery(mddev);
4812
4813         blk_start_plug(&plug);
4814         handled = 0;
4815         spin_lock_irq(&conf->device_lock);
4816         while (1) {
4817                 struct bio *bio;
4818                 int batch_size;
4819
4820                 if (
4821                     !list_empty(&conf->bitmap_list)) {
4822                         /* Now is a good time to flush some bitmap updates */
4823                         conf->seq_flush++;
4824                         spin_unlock_irq(&conf->device_lock);
4825                         bitmap_unplug(mddev->bitmap);
4826                         spin_lock_irq(&conf->device_lock);
4827                         conf->seq_write = conf->seq_flush;
4828                         activate_bit_delay(conf);
4829                 }
4830                 raid5_activate_delayed(conf);
4831
4832                 while ((bio = remove_bio_from_retry(conf))) {
4833                         int ok;
4834                         spin_unlock_irq(&conf->device_lock);
4835                         ok = retry_aligned_read(conf, bio);
4836                         spin_lock_irq(&conf->device_lock);
4837                         if (!ok)
4838                                 break;
4839                         handled++;
4840                 }
4841
4842                 batch_size = handle_active_stripes(conf);
4843                 if (!batch_size)
4844                         break;
4845                 handled += batch_size;
4846
4847                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4848                         spin_unlock_irq(&conf->device_lock);
4849                         md_check_recovery(mddev);
4850                         spin_lock_irq(&conf->device_lock);
4851                 }
4852         }
4853         pr_debug("%d stripes handled\n", handled);
4854
4855         spin_unlock_irq(&conf->device_lock);
4856
4857         async_tx_issue_pending_all();
4858         blk_finish_plug(&plug);
4859
4860         pr_debug("--- raid5d inactive\n");
4861 }
4862
4863 static ssize_t
4864 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4865 {
4866         struct r5conf *conf = mddev->private;
4867         if (conf)
4868                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4869         else
4870                 return 0;
4871 }
4872
4873 int
4874 raid5_set_cache_size(struct mddev *mddev, int size)
4875 {
4876         struct r5conf *conf = mddev->private;
4877         int err;
4878
4879         if (size <= 16 || size > 32768)
4880                 return -EINVAL;
4881         while (size < conf->max_nr_stripes) {
4882                 if (drop_one_stripe(conf))
4883                         conf->max_nr_stripes--;
4884                 else
4885                         break;
4886         }
4887         err = md_allow_write(mddev);
4888         if (err)
4889                 return err;
4890         while (size > conf->max_nr_stripes) {
4891                 if (grow_one_stripe(conf))
4892                         conf->max_nr_stripes++;
4893                 else break;
4894         }
4895         return 0;
4896 }
4897 EXPORT_SYMBOL(raid5_set_cache_size);
4898
4899 static ssize_t
4900 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4901 {
4902         struct r5conf *conf = mddev->private;
4903         unsigned long new;
4904         int err;
4905
4906         if (len >= PAGE_SIZE)
4907                 return -EINVAL;
4908         if (!conf)
4909                 return -ENODEV;
4910
4911         if (strict_strtoul(page, 10, &new))
4912                 return -EINVAL;
4913         err = raid5_set_cache_size(mddev, new);
4914         if (err)
4915                 return err;
4916         return len;
4917 }
4918
4919 static struct md_sysfs_entry
4920 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4921                                 raid5_show_stripe_cache_size,
4922                                 raid5_store_stripe_cache_size);
4923
4924 static ssize_t
4925 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4926 {
4927         struct r5conf *conf = mddev->private;
4928         if (conf)
4929                 return sprintf(page, "%d\n", conf->bypass_threshold);
4930         else
4931                 return 0;
4932 }
4933
4934 static ssize_t
4935 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4936 {
4937         struct r5conf *conf = mddev->private;
4938         unsigned long new;
4939         if (len >= PAGE_SIZE)
4940                 return -EINVAL;
4941         if (!conf)
4942                 return -ENODEV;
4943
4944         if (strict_strtoul(page, 10, &new))
4945                 return -EINVAL;
4946         if (new > conf->max_nr_stripes)
4947                 return -EINVAL;
4948         conf->bypass_threshold = new;
4949         return len;
4950 }
4951
4952 static struct md_sysfs_entry
4953 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4954                                         S_IRUGO | S_IWUSR,
4955                                         raid5_show_preread_threshold,
4956                                         raid5_store_preread_threshold);
4957
4958 static ssize_t
4959 stripe_cache_active_show(struct mddev *mddev, char *page)
4960 {
4961         struct r5conf *conf = mddev->private;
4962         if (conf)
4963                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4964         else
4965                 return 0;
4966 }
4967
4968 static struct md_sysfs_entry
4969 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4970
4971 static struct attribute *raid5_attrs[] =  {
4972         &raid5_stripecache_size.attr,
4973         &raid5_stripecache_active.attr,
4974         &raid5_preread_bypass_threshold.attr,
4975         NULL,
4976 };
4977 static struct attribute_group raid5_attrs_group = {
4978         .name = NULL,
4979         .attrs = raid5_attrs,
4980 };
4981
4982 static sector_t
4983 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4984 {
4985         struct r5conf *conf = mddev->private;
4986
4987         if (!sectors)
4988                 sectors = mddev->dev_sectors;
4989         if (!raid_disks)
4990                 /* size is defined by the smallest of previous and new size */
4991                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4992
4993         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4994         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4995         return sectors * (raid_disks - conf->max_degraded);
4996 }
4997
4998 static void raid5_free_percpu(struct r5conf *conf)
4999 {
5000         struct raid5_percpu *percpu;
5001         unsigned long cpu;
5002
5003         if (!conf->percpu)
5004                 return;
5005
5006         get_online_cpus();
5007         for_each_possible_cpu(cpu) {
5008                 percpu = per_cpu_ptr(conf->percpu, cpu);
5009                 safe_put_page(percpu->spare_page);
5010                 kfree(percpu->scribble);
5011         }
5012 #ifdef CONFIG_HOTPLUG_CPU
5013         unregister_cpu_notifier(&conf->cpu_notify);
5014 #endif
5015         put_online_cpus();
5016
5017         free_percpu(conf->percpu);
5018 }
5019
5020 static void free_conf(struct r5conf *conf)
5021 {
5022         shrink_stripes(conf);
5023         raid5_free_percpu(conf);
5024         kfree(conf->disks);
5025         kfree(conf->stripe_hashtbl);
5026         kfree(conf);
5027 }
5028
5029 #ifdef CONFIG_HOTPLUG_CPU
5030 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5031                               void *hcpu)
5032 {
5033         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5034         long cpu = (long)hcpu;
5035         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5036
5037         switch (action) {
5038         case CPU_UP_PREPARE:
5039         case CPU_UP_PREPARE_FROZEN:
5040                 if (conf->level == 6 && !percpu->spare_page)
5041                         percpu->spare_page = alloc_page(GFP_KERNEL);
5042                 if (!percpu->scribble)
5043                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5044
5045                 if (!percpu->scribble ||
5046                     (conf->level == 6 && !percpu->spare_page)) {
5047                         safe_put_page(percpu->spare_page);
5048                         kfree(percpu->scribble);
5049                         pr_err("%s: failed memory allocation for cpu%ld\n",
5050                                __func__, cpu);
5051                         return notifier_from_errno(-ENOMEM);
5052                 }
5053                 break;
5054         case CPU_DEAD:
5055         case CPU_DEAD_FROZEN:
5056                 safe_put_page(percpu->spare_page);
5057                 kfree(percpu->scribble);
5058                 percpu->spare_page = NULL;
5059                 percpu->scribble = NULL;
5060                 break;
5061         default:
5062                 break;
5063         }
5064         return NOTIFY_OK;
5065 }
5066 #endif
5067
5068 static int raid5_alloc_percpu(struct r5conf *conf)
5069 {
5070         unsigned long cpu;
5071         struct page *spare_page;
5072         struct raid5_percpu __percpu *allcpus;
5073         void *scribble;
5074         int err;
5075
5076         allcpus = alloc_percpu(struct raid5_percpu);
5077         if (!allcpus)
5078                 return -ENOMEM;
5079         conf->percpu = allcpus;
5080
5081         get_online_cpus();
5082         err = 0;
5083         for_each_present_cpu(cpu) {
5084                 if (conf->level == 6) {
5085                         spare_page = alloc_page(GFP_KERNEL);
5086                         if (!spare_page) {
5087                                 err = -ENOMEM;
5088                                 break;
5089                         }
5090                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5091                 }
5092                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5093                 if (!scribble) {
5094                         err = -ENOMEM;
5095                         break;
5096                 }
5097                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5098         }
5099 #ifdef CONFIG_HOTPLUG_CPU
5100         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5101         conf->cpu_notify.priority = 0;
5102         if (err == 0)
5103                 err = register_cpu_notifier(&conf->cpu_notify);
5104 #endif
5105         put_online_cpus();
5106
5107         return err;
5108 }
5109
5110 static struct r5conf *setup_conf(struct mddev *mddev)
5111 {
5112         struct r5conf *conf;
5113         int raid_disk, memory, max_disks;
5114         struct md_rdev *rdev;
5115         struct disk_info *disk;
5116         char pers_name[6];
5117
5118         if (mddev->new_level != 5
5119             && mddev->new_level != 4
5120             && mddev->new_level != 6) {
5121                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5122                        mdname(mddev), mddev->new_level);
5123                 return ERR_PTR(-EIO);
5124         }
5125         if ((mddev->new_level == 5
5126              && !algorithm_valid_raid5(mddev->new_layout)) ||
5127             (mddev->new_level == 6
5128              && !algorithm_valid_raid6(mddev->new_layout))) {
5129                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5130                        mdname(mddev), mddev->new_layout);
5131                 return ERR_PTR(-EIO);
5132         }
5133         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5134                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5135                        mdname(mddev), mddev->raid_disks);
5136                 return ERR_PTR(-EINVAL);
5137         }
5138
5139         if (!mddev->new_chunk_sectors ||
5140             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5141             !is_power_of_2(mddev->new_chunk_sectors)) {
5142                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5143                        mdname(mddev), mddev->new_chunk_sectors << 9);
5144                 return ERR_PTR(-EINVAL);
5145         }
5146
5147         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5148         if (conf == NULL)
5149                 goto abort;
5150         spin_lock_init(&conf->device_lock);
5151         init_waitqueue_head(&conf->wait_for_stripe);
5152         init_waitqueue_head(&conf->wait_for_overlap);
5153         INIT_LIST_HEAD(&conf->handle_list);
5154         INIT_LIST_HEAD(&conf->hold_list);
5155         INIT_LIST_HEAD(&conf->delayed_list);
5156         INIT_LIST_HEAD(&conf->bitmap_list);
5157         INIT_LIST_HEAD(&conf->inactive_list);
5158         atomic_set(&conf->active_stripes, 0);
5159         atomic_set(&conf->preread_active_stripes, 0);
5160         atomic_set(&conf->active_aligned_reads, 0);
5161         conf->bypass_threshold = BYPASS_THRESHOLD;
5162         conf->recovery_disabled = mddev->recovery_disabled - 1;
5163
5164         conf->raid_disks = mddev->raid_disks;
5165         if (mddev->reshape_position == MaxSector)
5166                 conf->previous_raid_disks = mddev->raid_disks;
5167         else
5168                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5169         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5170         conf->scribble_len = scribble_len(max_disks);
5171
5172         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5173                               GFP_KERNEL);
5174         if (!conf->disks)
5175                 goto abort;
5176
5177         conf->mddev = mddev;
5178
5179         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5180                 goto abort;
5181
5182         conf->level = mddev->new_level;
5183         if (raid5_alloc_percpu(conf) != 0)
5184                 goto abort;
5185
5186         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5187
5188         rdev_for_each(rdev, mddev) {
5189                 raid_disk = rdev->raid_disk;
5190                 if (raid_disk >= max_disks
5191                     || raid_disk < 0)
5192                         continue;
5193                 disk = conf->disks + raid_disk;
5194
5195                 if (test_bit(Replacement, &rdev->flags)) {
5196                         if (disk->replacement)
5197                                 goto abort;
5198                         disk->replacement = rdev;
5199                 } else {
5200                         if (disk->rdev)
5201                                 goto abort;
5202                         disk->rdev = rdev;
5203                 }
5204
5205                 if (test_bit(In_sync, &rdev->flags)) {
5206                         char b[BDEVNAME_SIZE];
5207                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5208                                " disk %d\n",
5209                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5210                 } else if (rdev->saved_raid_disk != raid_disk)
5211                         /* Cannot rely on bitmap to complete recovery */
5212                         conf->fullsync = 1;
5213         }
5214
5215         conf->chunk_sectors = mddev->new_chunk_sectors;
5216         conf->level = mddev->new_level;
5217         if (conf->level == 6)
5218                 conf->max_degraded = 2;
5219         else
5220                 conf->max_degraded = 1;
5221         conf->algorithm = mddev->new_layout;
5222         conf->max_nr_stripes = NR_STRIPES;
5223         conf->reshape_progress = mddev->reshape_position;
5224         if (conf->reshape_progress != MaxSector) {
5225                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5226                 conf->prev_algo = mddev->layout;
5227         }
5228
5229         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5230                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5231         if (grow_stripes(conf, conf->max_nr_stripes)) {
5232                 printk(KERN_ERR
5233                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5234                        mdname(mddev), memory);
5235                 goto abort;
5236         } else
5237                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5238                        mdname(mddev), memory);
5239
5240         sprintf(pers_name, "raid%d", mddev->new_level);
5241         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5242         if (!conf->thread) {
5243                 printk(KERN_ERR
5244                        "md/raid:%s: couldn't allocate thread.\n",
5245                        mdname(mddev));
5246                 goto abort;
5247         }
5248
5249         return conf;
5250
5251  abort:
5252         if (conf) {
5253                 free_conf(conf);
5254                 return ERR_PTR(-EIO);
5255         } else
5256                 return ERR_PTR(-ENOMEM);
5257 }
5258
5259
5260 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5261 {
5262         switch (algo) {
5263         case ALGORITHM_PARITY_0:
5264                 if (raid_disk < max_degraded)
5265                         return 1;
5266                 break;
5267         case ALGORITHM_PARITY_N:
5268                 if (raid_disk >= raid_disks - max_degraded)
5269                         return 1;
5270                 break;
5271         case ALGORITHM_PARITY_0_6:
5272                 if (raid_disk == 0 || 
5273                     raid_disk == raid_disks - 1)
5274                         return 1;
5275                 break;
5276         case ALGORITHM_LEFT_ASYMMETRIC_6:
5277         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5278         case ALGORITHM_LEFT_SYMMETRIC_6:
5279         case ALGORITHM_RIGHT_SYMMETRIC_6:
5280                 if (raid_disk == raid_disks - 1)
5281                         return 1;
5282         }
5283         return 0;
5284 }
5285
5286 static int run(struct mddev *mddev)
5287 {
5288         struct r5conf *conf;
5289         int working_disks = 0;
5290         int dirty_parity_disks = 0;
5291         struct md_rdev *rdev;
5292         sector_t reshape_offset = 0;
5293         int i;
5294         long long min_offset_diff = 0;
5295         int first = 1;
5296
5297         if (mddev->recovery_cp != MaxSector)
5298                 printk(KERN_NOTICE "md/raid:%s: not clean"
5299                        " -- starting background reconstruction\n",
5300                        mdname(mddev));
5301
5302         rdev_for_each(rdev, mddev) {
5303                 long long diff;
5304                 if (rdev->raid_disk < 0)
5305                         continue;
5306                 diff = (rdev->new_data_offset - rdev->data_offset);
5307                 if (first) {
5308                         min_offset_diff = diff;
5309                         first = 0;
5310                 } else if (mddev->reshape_backwards &&
5311                          diff < min_offset_diff)
5312                         min_offset_diff = diff;
5313                 else if (!mddev->reshape_backwards &&
5314                          diff > min_offset_diff)
5315                         min_offset_diff = diff;
5316         }
5317
5318         if (mddev->reshape_position != MaxSector) {
5319                 /* Check that we can continue the reshape.
5320                  * Difficulties arise if the stripe we would write to
5321                  * next is at or after the stripe we would read from next.
5322                  * For a reshape that changes the number of devices, this
5323                  * is only possible for a very short time, and mdadm makes
5324                  * sure that time appears to have past before assembling
5325                  * the array.  So we fail if that time hasn't passed.
5326                  * For a reshape that keeps the number of devices the same
5327                  * mdadm must be monitoring the reshape can keeping the
5328                  * critical areas read-only and backed up.  It will start
5329                  * the array in read-only mode, so we check for that.
5330                  */
5331                 sector_t here_new, here_old;
5332                 int old_disks;
5333                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5334
5335                 if (mddev->new_level != mddev->level) {
5336                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5337                                "required - aborting.\n",
5338                                mdname(mddev));
5339                         return -EINVAL;
5340                 }
5341                 old_disks = mddev->raid_disks - mddev->delta_disks;
5342                 /* reshape_position must be on a new-stripe boundary, and one
5343                  * further up in new geometry must map after here in old
5344                  * geometry.
5345                  */
5346                 here_new = mddev->reshape_position;
5347                 if (sector_div(here_new, mddev->new_chunk_sectors *
5348                                (mddev->raid_disks - max_degraded))) {
5349                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5350                                "on a stripe boundary\n", mdname(mddev));
5351                         return -EINVAL;
5352                 }
5353                 reshape_offset = here_new * mddev->new_chunk_sectors;
5354                 /* here_new is the stripe we will write to */
5355                 here_old = mddev->reshape_position;
5356                 sector_div(here_old, mddev->chunk_sectors *
5357                            (old_disks-max_degraded));
5358                 /* here_old is the first stripe that we might need to read
5359                  * from */
5360                 if (mddev->delta_disks == 0) {
5361                         if ((here_new * mddev->new_chunk_sectors !=
5362                              here_old * mddev->chunk_sectors)) {
5363                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5364                                        " confused - aborting\n", mdname(mddev));
5365                                 return -EINVAL;
5366                         }
5367                         /* We cannot be sure it is safe to start an in-place
5368                          * reshape.  It is only safe if user-space is monitoring
5369                          * and taking constant backups.
5370                          * mdadm always starts a situation like this in
5371                          * readonly mode so it can take control before
5372                          * allowing any writes.  So just check for that.
5373                          */
5374                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5375                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5376                                 /* not really in-place - so OK */;
5377                         else if (mddev->ro == 0) {
5378                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5379                                        "must be started in read-only mode "
5380                                        "- aborting\n",
5381                                        mdname(mddev));
5382                                 return -EINVAL;
5383                         }
5384                 } else if (mddev->reshape_backwards
5385                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5386                        here_old * mddev->chunk_sectors)
5387                     : (here_new * mddev->new_chunk_sectors >=
5388                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5389                         /* Reading from the same stripe as writing to - bad */
5390                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5391                                "auto-recovery - aborting.\n",
5392                                mdname(mddev));
5393                         return -EINVAL;
5394                 }
5395                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5396                        mdname(mddev));
5397                 /* OK, we should be able to continue; */
5398         } else {
5399                 BUG_ON(mddev->level != mddev->new_level);
5400                 BUG_ON(mddev->layout != mddev->new_layout);
5401                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5402                 BUG_ON(mddev->delta_disks != 0);
5403         }
5404
5405         if (mddev->private == NULL)
5406                 conf = setup_conf(mddev);
5407         else
5408                 conf = mddev->private;
5409
5410         if (IS_ERR(conf))
5411                 return PTR_ERR(conf);
5412
5413         conf->min_offset_diff = min_offset_diff;
5414         mddev->thread = conf->thread;
5415         conf->thread = NULL;
5416         mddev->private = conf;
5417
5418         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5419              i++) {
5420                 rdev = conf->disks[i].rdev;
5421                 if (!rdev && conf->disks[i].replacement) {
5422                         /* The replacement is all we have yet */
5423                         rdev = conf->disks[i].replacement;
5424                         conf->disks[i].replacement = NULL;
5425                         clear_bit(Replacement, &rdev->flags);
5426                         conf->disks[i].rdev = rdev;
5427                 }
5428                 if (!rdev)
5429                         continue;
5430                 if (conf->disks[i].replacement &&
5431                     conf->reshape_progress != MaxSector) {
5432                         /* replacements and reshape simply do not mix. */
5433                         printk(KERN_ERR "md: cannot handle concurrent "
5434                                "replacement and reshape.\n");
5435                         goto abort;
5436                 }
5437                 if (test_bit(In_sync, &rdev->flags)) {
5438                         working_disks++;
5439                         continue;
5440                 }
5441                 /* This disc is not fully in-sync.  However if it
5442                  * just stored parity (beyond the recovery_offset),
5443                  * when we don't need to be concerned about the
5444                  * array being dirty.
5445                  * When reshape goes 'backwards', we never have
5446                  * partially completed devices, so we only need
5447                  * to worry about reshape going forwards.
5448                  */
5449                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5450                 if (mddev->major_version == 0 &&
5451                     mddev->minor_version > 90)
5452                         rdev->recovery_offset = reshape_offset;
5453                         
5454                 if (rdev->recovery_offset < reshape_offset) {
5455                         /* We need to check old and new layout */
5456                         if (!only_parity(rdev->raid_disk,
5457                                          conf->algorithm,
5458                                          conf->raid_disks,
5459                                          conf->max_degraded))
5460                                 continue;
5461                 }
5462                 if (!only_parity(rdev->raid_disk,
5463                                  conf->prev_algo,
5464                                  conf->previous_raid_disks,
5465                                  conf->max_degraded))
5466                         continue;
5467                 dirty_parity_disks++;
5468         }
5469
5470         /*
5471          * 0 for a fully functional array, 1 or 2 for a degraded array.
5472          */
5473         mddev->degraded = calc_degraded(conf);
5474
5475         if (has_failed(conf)) {
5476                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5477                         " (%d/%d failed)\n",
5478                         mdname(mddev), mddev->degraded, conf->raid_disks);
5479                 goto abort;
5480         }
5481
5482         /* device size must be a multiple of chunk size */
5483         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5484         mddev->resync_max_sectors = mddev->dev_sectors;
5485
5486         if (mddev->degraded > dirty_parity_disks &&
5487             mddev->recovery_cp != MaxSector) {
5488                 if (mddev->ok_start_degraded)
5489                         printk(KERN_WARNING
5490                                "md/raid:%s: starting dirty degraded array"
5491                                " - data corruption possible.\n",
5492                                mdname(mddev));
5493                 else {
5494                         printk(KERN_ERR
5495                                "md/raid:%s: cannot start dirty degraded array.\n",
5496                                mdname(mddev));
5497                         goto abort;
5498                 }
5499         }
5500
5501         if (mddev->degraded == 0)
5502                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5503                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5504                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5505                        mddev->new_layout);
5506         else
5507                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5508                        " out of %d devices, algorithm %d\n",
5509                        mdname(mddev), conf->level,
5510                        mddev->raid_disks - mddev->degraded,
5511                        mddev->raid_disks, mddev->new_layout);
5512
5513         print_raid5_conf(conf);
5514
5515         if (conf->reshape_progress != MaxSector) {
5516                 conf->reshape_safe = conf->reshape_progress;
5517                 atomic_set(&conf->reshape_stripes, 0);
5518                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5519                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5520                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5521                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5522                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5523                                                         "reshape");
5524         }
5525
5526
5527         /* Ok, everything is just fine now */
5528         if (mddev->to_remove == &raid5_attrs_group)
5529                 mddev->to_remove = NULL;
5530         else if (mddev->kobj.sd &&
5531             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5532                 printk(KERN_WARNING
5533                        "raid5: failed to create sysfs attributes for %s\n",
5534                        mdname(mddev));
5535         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5536
5537         if (mddev->queue) {
5538                 int chunk_size;
5539                 bool discard_supported = true;
5540                 /* read-ahead size must cover two whole stripes, which
5541                  * is 2 * (datadisks) * chunksize where 'n' is the
5542                  * number of raid devices
5543                  */
5544                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5545                 int stripe = data_disks *
5546                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5547                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5548                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5549
5550                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5551
5552                 mddev->queue->backing_dev_info.congested_data = mddev;
5553                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5554
5555                 chunk_size = mddev->chunk_sectors << 9;
5556                 blk_queue_io_min(mddev->queue, chunk_size);
5557                 blk_queue_io_opt(mddev->queue, chunk_size *
5558                                  (conf->raid_disks - conf->max_degraded));
5559                 /*
5560                  * We can only discard a whole stripe. It doesn't make sense to
5561                  * discard data disk but write parity disk
5562                  */
5563                 stripe = stripe * PAGE_SIZE;
5564                 /* Round up to power of 2, as discard handling
5565                  * currently assumes that */
5566                 while ((stripe-1) & stripe)
5567                         stripe = (stripe | (stripe-1)) + 1;
5568                 mddev->queue->limits.discard_alignment = stripe;
5569                 mddev->queue->limits.discard_granularity = stripe;
5570                 /*
5571                  * unaligned part of discard request will be ignored, so can't
5572                  * guarantee discard_zerors_data
5573                  */
5574                 mddev->queue->limits.discard_zeroes_data = 0;
5575
5576                 rdev_for_each(rdev, mddev) {
5577                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5578                                           rdev->data_offset << 9);
5579                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5580                                           rdev->new_data_offset << 9);
5581                         /*
5582                          * discard_zeroes_data is required, otherwise data
5583                          * could be lost. Consider a scenario: discard a stripe
5584                          * (the stripe could be inconsistent if
5585                          * discard_zeroes_data is 0); write one disk of the
5586                          * stripe (the stripe could be inconsistent again
5587                          * depending on which disks are used to calculate
5588                          * parity); the disk is broken; The stripe data of this
5589                          * disk is lost.
5590                          */
5591                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5592                             !bdev_get_queue(rdev->bdev)->
5593                                                 limits.discard_zeroes_data)
5594                                 discard_supported = false;
5595                 }
5596
5597                 if (discard_supported &&
5598                    mddev->queue->limits.max_discard_sectors >= stripe &&
5599                    mddev->queue->limits.discard_granularity >= stripe)
5600                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5601                                                 mddev->queue);
5602                 else
5603                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5604                                                 mddev->queue);
5605         }
5606
5607         return 0;
5608 abort:
5609         md_unregister_thread(&mddev->thread);
5610         print_raid5_conf(conf);
5611         free_conf(conf);
5612         mddev->private = NULL;
5613         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5614         return -EIO;
5615 }
5616
5617 static int stop(struct mddev *mddev)
5618 {
5619         struct r5conf *conf = mddev->private;
5620
5621         md_unregister_thread(&mddev->thread);
5622         if (mddev->queue)
5623                 mddev->queue->backing_dev_info.congested_fn = NULL;
5624         free_conf(conf);
5625         mddev->private = NULL;
5626         mddev->to_remove = &raid5_attrs_group;
5627         return 0;
5628 }
5629
5630 static void status(struct seq_file *seq, struct mddev *mddev)
5631 {
5632         struct r5conf *conf = mddev->private;
5633         int i;
5634
5635         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5636                 mddev->chunk_sectors / 2, mddev->layout);
5637         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5638         for (i = 0; i < conf->raid_disks; i++)
5639                 seq_printf (seq, "%s",
5640                                conf->disks[i].rdev &&
5641                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5642         seq_printf (seq, "]");
5643 }
5644
5645 static void print_raid5_conf (struct r5conf *conf)
5646 {
5647         int i;
5648         struct disk_info *tmp;
5649
5650         printk(KERN_DEBUG "RAID conf printout:\n");
5651         if (!conf) {
5652                 printk("(conf==NULL)\n");
5653                 return;
5654         }
5655         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5656                conf->raid_disks,
5657                conf->raid_disks - conf->mddev->degraded);
5658
5659         for (i = 0; i < conf->raid_disks; i++) {
5660                 char b[BDEVNAME_SIZE];
5661                 tmp = conf->disks + i;
5662                 if (tmp->rdev)
5663                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5664                                i, !test_bit(Faulty, &tmp->rdev->flags),
5665                                bdevname(tmp->rdev->bdev, b));
5666         }
5667 }
5668
5669 static int raid5_spare_active(struct mddev *mddev)
5670 {
5671         int i;
5672         struct r5conf *conf = mddev->private;
5673         struct disk_info *tmp;
5674         int count = 0;
5675         unsigned long flags;
5676
5677         for (i = 0; i < conf->raid_disks; i++) {
5678                 tmp = conf->disks + i;
5679                 if (tmp->replacement
5680                     && tmp->replacement->recovery_offset == MaxSector
5681                     && !test_bit(Faulty, &tmp->replacement->flags)
5682                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5683                         /* Replacement has just become active. */
5684                         if (!tmp->rdev
5685                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5686                                 count++;
5687                         if (tmp->rdev) {
5688                                 /* Replaced device not technically faulty,
5689                                  * but we need to be sure it gets removed
5690                                  * and never re-added.
5691                                  */
5692                                 set_bit(Faulty, &tmp->rdev->flags);
5693                                 sysfs_notify_dirent_safe(
5694                                         tmp->rdev->sysfs_state);
5695                         }
5696                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5697                 } else if (tmp->rdev
5698                     && tmp->rdev->recovery_offset == MaxSector
5699                     && !test_bit(Faulty, &tmp->rdev->flags)
5700                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5701                         count++;
5702                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5703                 }
5704         }
5705         spin_lock_irqsave(&conf->device_lock, flags);
5706         mddev->degraded = calc_degraded(conf);
5707         spin_unlock_irqrestore(&conf->device_lock, flags);
5708         print_raid5_conf(conf);
5709         return count;
5710 }
5711
5712 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5713 {
5714         struct r5conf *conf = mddev->private;
5715         int err = 0;
5716         int number = rdev->raid_disk;
5717         struct md_rdev **rdevp;
5718         struct disk_info *p = conf->disks + number;
5719
5720         print_raid5_conf(conf);
5721         if (rdev == p->rdev)
5722                 rdevp = &p->rdev;
5723         else if (rdev == p->replacement)
5724                 rdevp = &p->replacement;
5725         else
5726                 return 0;
5727
5728         if (number >= conf->raid_disks &&
5729             conf->reshape_progress == MaxSector)
5730                 clear_bit(In_sync, &rdev->flags);
5731
5732         if (test_bit(In_sync, &rdev->flags) ||
5733             atomic_read(&rdev->nr_pending)) {
5734                 err = -EBUSY;
5735                 goto abort;
5736         }
5737         /* Only remove non-faulty devices if recovery
5738          * isn't possible.
5739          */
5740         if (!test_bit(Faulty, &rdev->flags) &&
5741             mddev->recovery_disabled != conf->recovery_disabled &&
5742             !has_failed(conf) &&
5743             (!p->replacement || p->replacement == rdev) &&
5744             number < conf->raid_disks) {
5745                 err = -EBUSY;
5746                 goto abort;
5747         }
5748         *rdevp = NULL;
5749         synchronize_rcu();
5750         if (atomic_read(&rdev->nr_pending)) {
5751                 /* lost the race, try later */
5752                 err = -EBUSY;
5753                 *rdevp = rdev;
5754         } else if (p->replacement) {
5755                 /* We must have just cleared 'rdev' */
5756                 p->rdev = p->replacement;
5757                 clear_bit(Replacement, &p->replacement->flags);
5758                 smp_mb(); /* Make sure other CPUs may see both as identical
5759                            * but will never see neither - if they are careful
5760                            */
5761                 p->replacement = NULL;
5762                 clear_bit(WantReplacement, &rdev->flags);
5763         } else
5764                 /* We might have just removed the Replacement as faulty-
5765                  * clear the bit just in case
5766                  */
5767                 clear_bit(WantReplacement, &rdev->flags);
5768 abort:
5769
5770         print_raid5_conf(conf);
5771         return err;
5772 }
5773
5774 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5775 {
5776         struct r5conf *conf = mddev->private;
5777         int err = -EEXIST;
5778         int disk;
5779         struct disk_info *p;
5780         int first = 0;
5781         int last = conf->raid_disks - 1;
5782
5783         if (mddev->recovery_disabled == conf->recovery_disabled)
5784                 return -EBUSY;
5785
5786         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5787                 /* no point adding a device */
5788                 return -EINVAL;
5789
5790         if (rdev->raid_disk >= 0)
5791                 first = last = rdev->raid_disk;
5792
5793         /*
5794          * find the disk ... but prefer rdev->saved_raid_disk
5795          * if possible.
5796          */
5797         if (rdev->saved_raid_disk >= 0 &&
5798             rdev->saved_raid_disk >= first &&
5799             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5800                 first = rdev->saved_raid_disk;
5801
5802         for (disk = first; disk <= last; disk++) {
5803                 p = conf->disks + disk;
5804                 if (p->rdev == NULL) {
5805                         clear_bit(In_sync, &rdev->flags);
5806                         rdev->raid_disk = disk;
5807                         err = 0;
5808                         if (rdev->saved_raid_disk != disk)
5809                                 conf->fullsync = 1;
5810                         rcu_assign_pointer(p->rdev, rdev);
5811                         goto out;
5812                 }
5813         }
5814         for (disk = first; disk <= last; disk++) {
5815                 p = conf->disks + disk;
5816                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5817                     p->replacement == NULL) {
5818                         clear_bit(In_sync, &rdev->flags);
5819                         set_bit(Replacement, &rdev->flags);
5820                         rdev->raid_disk = disk;
5821                         err = 0;
5822                         conf->fullsync = 1;
5823                         rcu_assign_pointer(p->replacement, rdev);
5824                         break;
5825                 }
5826         }
5827 out:
5828         print_raid5_conf(conf);
5829         return err;
5830 }
5831
5832 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5833 {
5834         /* no resync is happening, and there is enough space
5835          * on all devices, so we can resize.
5836          * We need to make sure resync covers any new space.
5837          * If the array is shrinking we should possibly wait until
5838          * any io in the removed space completes, but it hardly seems
5839          * worth it.
5840          */
5841         sector_t newsize;
5842         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5843         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5844         if (mddev->external_size &&
5845             mddev->array_sectors > newsize)
5846                 return -EINVAL;
5847         if (mddev->bitmap) {
5848                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5849                 if (ret)
5850                         return ret;
5851         }
5852         md_set_array_sectors(mddev, newsize);
5853         set_capacity(mddev->gendisk, mddev->array_sectors);
5854         revalidate_disk(mddev->gendisk);
5855         if (sectors > mddev->dev_sectors &&
5856             mddev->recovery_cp > mddev->dev_sectors) {
5857                 mddev->recovery_cp = mddev->dev_sectors;
5858                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5859         }
5860         mddev->dev_sectors = sectors;
5861         mddev->resync_max_sectors = sectors;
5862         return 0;
5863 }
5864
5865 static int check_stripe_cache(struct mddev *mddev)
5866 {
5867         /* Can only proceed if there are plenty of stripe_heads.
5868          * We need a minimum of one full stripe,, and for sensible progress
5869          * it is best to have about 4 times that.
5870          * If we require 4 times, then the default 256 4K stripe_heads will
5871          * allow for chunk sizes up to 256K, which is probably OK.
5872          * If the chunk size is greater, user-space should request more
5873          * stripe_heads first.
5874          */
5875         struct r5conf *conf = mddev->private;
5876         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5877             > conf->max_nr_stripes ||
5878             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5879             > conf->max_nr_stripes) {
5880                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5881                        mdname(mddev),
5882                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5883                         / STRIPE_SIZE)*4);
5884                 return 0;
5885         }
5886         return 1;
5887 }
5888
5889 static int check_reshape(struct mddev *mddev)
5890 {
5891         struct r5conf *conf = mddev->private;
5892
5893         if (mddev->delta_disks == 0 &&
5894             mddev->new_layout == mddev->layout &&
5895             mddev->new_chunk_sectors == mddev->chunk_sectors)
5896                 return 0; /* nothing to do */
5897         if (has_failed(conf))
5898                 return -EINVAL;
5899         if (mddev->delta_disks < 0) {
5900                 /* We might be able to shrink, but the devices must
5901                  * be made bigger first.
5902                  * For raid6, 4 is the minimum size.
5903                  * Otherwise 2 is the minimum
5904                  */
5905                 int min = 2;
5906                 if (mddev->level == 6)
5907                         min = 4;
5908                 if (mddev->raid_disks + mddev->delta_disks < min)
5909                         return -EINVAL;
5910         }
5911
5912         if (!check_stripe_cache(mddev))
5913                 return -ENOSPC;
5914
5915         return resize_stripes(conf, (conf->previous_raid_disks
5916                                      + mddev->delta_disks));
5917 }
5918
5919 static int raid5_start_reshape(struct mddev *mddev)
5920 {
5921         struct r5conf *conf = mddev->private;
5922         struct md_rdev *rdev;
5923         int spares = 0;
5924         unsigned long flags;
5925
5926         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5927                 return -EBUSY;
5928
5929         if (!check_stripe_cache(mddev))
5930                 return -ENOSPC;
5931
5932         if (has_failed(conf))
5933                 return -EINVAL;
5934
5935         rdev_for_each(rdev, mddev) {
5936                 if (!test_bit(In_sync, &rdev->flags)
5937                     && !test_bit(Faulty, &rdev->flags))
5938                         spares++;
5939         }
5940
5941         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5942                 /* Not enough devices even to make a degraded array
5943                  * of that size
5944                  */
5945                 return -EINVAL;
5946
5947         /* Refuse to reduce size of the array.  Any reductions in
5948          * array size must be through explicit setting of array_size
5949          * attribute.
5950          */
5951         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5952             < mddev->array_sectors) {
5953                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5954                        "before number of disks\n", mdname(mddev));
5955                 return -EINVAL;
5956         }
5957
5958         atomic_set(&conf->reshape_stripes, 0);
5959         spin_lock_irq(&conf->device_lock);
5960         conf->previous_raid_disks = conf->raid_disks;
5961         conf->raid_disks += mddev->delta_disks;
5962         conf->prev_chunk_sectors = conf->chunk_sectors;
5963         conf->chunk_sectors = mddev->new_chunk_sectors;
5964         conf->prev_algo = conf->algorithm;
5965         conf->algorithm = mddev->new_layout;
5966         conf->generation++;
5967         /* Code that selects data_offset needs to see the generation update
5968          * if reshape_progress has been set - so a memory barrier needed.
5969          */
5970         smp_mb();
5971         if (mddev->reshape_backwards)
5972                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5973         else
5974                 conf->reshape_progress = 0;
5975         conf->reshape_safe = conf->reshape_progress;
5976         spin_unlock_irq(&conf->device_lock);
5977
5978         /* Add some new drives, as many as will fit.
5979          * We know there are enough to make the newly sized array work.
5980          * Don't add devices if we are reducing the number of
5981          * devices in the array.  This is because it is not possible
5982          * to correctly record the "partially reconstructed" state of
5983          * such devices during the reshape and confusion could result.
5984          */
5985         if (mddev->delta_disks >= 0) {
5986                 rdev_for_each(rdev, mddev)
5987                         if (rdev->raid_disk < 0 &&
5988                             !test_bit(Faulty, &rdev->flags)) {
5989                                 if (raid5_add_disk(mddev, rdev) == 0) {
5990                                         if (rdev->raid_disk
5991                                             >= conf->previous_raid_disks)
5992                                                 set_bit(In_sync, &rdev->flags);
5993                                         else
5994                                                 rdev->recovery_offset = 0;
5995
5996                                         if (sysfs_link_rdev(mddev, rdev))
5997                                                 /* Failure here is OK */;
5998                                 }
5999                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6000                                    && !test_bit(Faulty, &rdev->flags)) {
6001                                 /* This is a spare that was manually added */
6002                                 set_bit(In_sync, &rdev->flags);
6003                         }
6004
6005                 /* When a reshape changes the number of devices,
6006                  * ->degraded is measured against the larger of the
6007                  * pre and post number of devices.
6008                  */
6009                 spin_lock_irqsave(&conf->device_lock, flags);
6010                 mddev->degraded = calc_degraded(conf);
6011                 spin_unlock_irqrestore(&conf->device_lock, flags);
6012         }
6013         mddev->raid_disks = conf->raid_disks;
6014         mddev->reshape_position = conf->reshape_progress;
6015         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6016
6017         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6018         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6019         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6020         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6021         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6022                                                 "reshape");
6023         if (!mddev->sync_thread) {
6024                 mddev->recovery = 0;
6025                 spin_lock_irq(&conf->device_lock);
6026                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6027                 rdev_for_each(rdev, mddev)
6028                         rdev->new_data_offset = rdev->data_offset;
6029                 smp_wmb();
6030                 conf->reshape_progress = MaxSector;
6031                 mddev->reshape_position = MaxSector;
6032                 spin_unlock_irq(&conf->device_lock);
6033                 return -EAGAIN;
6034         }
6035         conf->reshape_checkpoint = jiffies;
6036         md_wakeup_thread(mddev->sync_thread);
6037         md_new_event(mddev);
6038         return 0;
6039 }
6040
6041 /* This is called from the reshape thread and should make any
6042  * changes needed in 'conf'
6043  */
6044 static void end_reshape(struct r5conf *conf)
6045 {
6046
6047         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6048                 struct md_rdev *rdev;
6049
6050                 spin_lock_irq(&conf->device_lock);
6051                 conf->previous_raid_disks = conf->raid_disks;
6052                 rdev_for_each(rdev, conf->mddev)
6053                         rdev->data_offset = rdev->new_data_offset;
6054                 smp_wmb();
6055                 conf->reshape_progress = MaxSector;
6056                 spin_unlock_irq(&conf->device_lock);
6057                 wake_up(&conf->wait_for_overlap);
6058
6059                 /* read-ahead size must cover two whole stripes, which is
6060                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6061                  */
6062                 if (conf->mddev->queue) {
6063                         int data_disks = conf->raid_disks - conf->max_degraded;
6064                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6065                                                    / PAGE_SIZE);
6066                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6067                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6068                 }
6069         }
6070 }
6071
6072 /* This is called from the raid5d thread with mddev_lock held.
6073  * It makes config changes to the device.
6074  */
6075 static void raid5_finish_reshape(struct mddev *mddev)
6076 {
6077         struct r5conf *conf = mddev->private;
6078
6079         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6080
6081                 if (mddev->delta_disks > 0) {
6082                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6083                         set_capacity(mddev->gendisk, mddev->array_sectors);
6084                         revalidate_disk(mddev->gendisk);
6085                 } else {
6086                         int d;
6087                         spin_lock_irq(&conf->device_lock);
6088                         mddev->degraded = calc_degraded(conf);
6089                         spin_unlock_irq(&conf->device_lock);
6090                         for (d = conf->raid_disks ;
6091                              d < conf->raid_disks - mddev->delta_disks;
6092                              d++) {
6093                                 struct md_rdev *rdev = conf->disks[d].rdev;
6094                                 if (rdev)
6095                                         clear_bit(In_sync, &rdev->flags);
6096                                 rdev = conf->disks[d].replacement;
6097                                 if (rdev)
6098                                         clear_bit(In_sync, &rdev->flags);
6099                         }
6100                 }
6101                 mddev->layout = conf->algorithm;
6102                 mddev->chunk_sectors = conf->chunk_sectors;
6103                 mddev->reshape_position = MaxSector;
6104                 mddev->delta_disks = 0;
6105                 mddev->reshape_backwards = 0;
6106         }
6107 }
6108
6109 static void raid5_quiesce(struct mddev *mddev, int state)
6110 {
6111         struct r5conf *conf = mddev->private;
6112
6113         switch(state) {
6114         case 2: /* resume for a suspend */
6115                 wake_up(&conf->wait_for_overlap);
6116                 break;
6117
6118         case 1: /* stop all writes */
6119                 spin_lock_irq(&conf->device_lock);
6120                 /* '2' tells resync/reshape to pause so that all
6121                  * active stripes can drain
6122                  */
6123                 conf->quiesce = 2;
6124                 wait_event_lock_irq(conf->wait_for_stripe,
6125                                     atomic_read(&conf->active_stripes) == 0 &&
6126                                     atomic_read(&conf->active_aligned_reads) == 0,
6127                                     conf->device_lock, /* nothing */);
6128                 conf->quiesce = 1;
6129                 spin_unlock_irq(&conf->device_lock);
6130                 /* allow reshape to continue */
6131                 wake_up(&conf->wait_for_overlap);
6132                 break;
6133
6134         case 0: /* re-enable writes */
6135                 spin_lock_irq(&conf->device_lock);
6136                 conf->quiesce = 0;
6137                 wake_up(&conf->wait_for_stripe);
6138                 wake_up(&conf->wait_for_overlap);
6139                 spin_unlock_irq(&conf->device_lock);
6140                 break;
6141         }
6142 }
6143
6144
6145 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6146 {
6147         struct r0conf *raid0_conf = mddev->private;
6148         sector_t sectors;
6149
6150         /* for raid0 takeover only one zone is supported */
6151         if (raid0_conf->nr_strip_zones > 1) {
6152                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6153                        mdname(mddev));
6154                 return ERR_PTR(-EINVAL);
6155         }
6156
6157         sectors = raid0_conf->strip_zone[0].zone_end;
6158         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6159         mddev->dev_sectors = sectors;
6160         mddev->new_level = level;
6161         mddev->new_layout = ALGORITHM_PARITY_N;
6162         mddev->new_chunk_sectors = mddev->chunk_sectors;
6163         mddev->raid_disks += 1;
6164         mddev->delta_disks = 1;
6165         /* make sure it will be not marked as dirty */
6166         mddev->recovery_cp = MaxSector;
6167
6168         return setup_conf(mddev);
6169 }
6170
6171
6172 static void *raid5_takeover_raid1(struct mddev *mddev)
6173 {
6174         int chunksect;
6175
6176         if (mddev->raid_disks != 2 ||
6177             mddev->degraded > 1)
6178                 return ERR_PTR(-EINVAL);
6179
6180         /* Should check if there are write-behind devices? */
6181
6182         chunksect = 64*2; /* 64K by default */
6183
6184         /* The array must be an exact multiple of chunksize */
6185         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6186                 chunksect >>= 1;
6187
6188         if ((chunksect<<9) < STRIPE_SIZE)
6189                 /* array size does not allow a suitable chunk size */
6190                 return ERR_PTR(-EINVAL);
6191
6192         mddev->new_level = 5;
6193         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6194         mddev->new_chunk_sectors = chunksect;
6195
6196         return setup_conf(mddev);
6197 }
6198
6199 static void *raid5_takeover_raid6(struct mddev *mddev)
6200 {
6201         int new_layout;
6202
6203         switch (mddev->layout) {
6204         case ALGORITHM_LEFT_ASYMMETRIC_6:
6205                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6206                 break;
6207         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6208                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6209                 break;
6210         case ALGORITHM_LEFT_SYMMETRIC_6:
6211                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6212                 break;
6213         case ALGORITHM_RIGHT_SYMMETRIC_6:
6214                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6215                 break;
6216         case ALGORITHM_PARITY_0_6:
6217                 new_layout = ALGORITHM_PARITY_0;
6218                 break;
6219         case ALGORITHM_PARITY_N:
6220                 new_layout = ALGORITHM_PARITY_N;
6221                 break;
6222         default:
6223                 return ERR_PTR(-EINVAL);
6224         }
6225         mddev->new_level = 5;
6226         mddev->new_layout = new_layout;
6227         mddev->delta_disks = -1;
6228         mddev->raid_disks -= 1;
6229         return setup_conf(mddev);
6230 }
6231
6232
6233 static int raid5_check_reshape(struct mddev *mddev)
6234 {
6235         /* For a 2-drive array, the layout and chunk size can be changed
6236          * immediately as not restriping is needed.
6237          * For larger arrays we record the new value - after validation
6238          * to be used by a reshape pass.
6239          */
6240         struct r5conf *conf = mddev->private;
6241         int new_chunk = mddev->new_chunk_sectors;
6242
6243         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6244                 return -EINVAL;
6245         if (new_chunk > 0) {
6246                 if (!is_power_of_2(new_chunk))
6247                         return -EINVAL;
6248                 if (new_chunk < (PAGE_SIZE>>9))
6249                         return -EINVAL;
6250                 if (mddev->array_sectors & (new_chunk-1))
6251                         /* not factor of array size */
6252                         return -EINVAL;
6253         }
6254
6255         /* They look valid */
6256
6257         if (mddev->raid_disks == 2) {
6258                 /* can make the change immediately */
6259                 if (mddev->new_layout >= 0) {
6260                         conf->algorithm = mddev->new_layout;
6261                         mddev->layout = mddev->new_layout;
6262                 }
6263                 if (new_chunk > 0) {
6264                         conf->chunk_sectors = new_chunk ;
6265                         mddev->chunk_sectors = new_chunk;
6266                 }
6267                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6268                 md_wakeup_thread(mddev->thread);
6269         }
6270         return check_reshape(mddev);
6271 }
6272
6273 static int raid6_check_reshape(struct mddev *mddev)
6274 {
6275         int new_chunk = mddev->new_chunk_sectors;
6276
6277         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6278                 return -EINVAL;
6279         if (new_chunk > 0) {
6280                 if (!is_power_of_2(new_chunk))
6281                         return -EINVAL;
6282                 if (new_chunk < (PAGE_SIZE >> 9))
6283                         return -EINVAL;
6284                 if (mddev->array_sectors & (new_chunk-1))
6285                         /* not factor of array size */
6286                         return -EINVAL;
6287         }
6288
6289         /* They look valid */
6290         return check_reshape(mddev);
6291 }
6292
6293 static void *raid5_takeover(struct mddev *mddev)
6294 {
6295         /* raid5 can take over:
6296          *  raid0 - if there is only one strip zone - make it a raid4 layout
6297          *  raid1 - if there are two drives.  We need to know the chunk size
6298          *  raid4 - trivial - just use a raid4 layout.
6299          *  raid6 - Providing it is a *_6 layout
6300          */
6301         if (mddev->level == 0)
6302                 return raid45_takeover_raid0(mddev, 5);
6303         if (mddev->level == 1)
6304                 return raid5_takeover_raid1(mddev);
6305         if (mddev->level == 4) {
6306                 mddev->new_layout = ALGORITHM_PARITY_N;
6307                 mddev->new_level = 5;
6308                 return setup_conf(mddev);
6309         }
6310         if (mddev->level == 6)
6311                 return raid5_takeover_raid6(mddev);
6312
6313         return ERR_PTR(-EINVAL);
6314 }
6315
6316 static void *raid4_takeover(struct mddev *mddev)
6317 {
6318         /* raid4 can take over:
6319          *  raid0 - if there is only one strip zone
6320          *  raid5 - if layout is right
6321          */
6322         if (mddev->level == 0)
6323                 return raid45_takeover_raid0(mddev, 4);
6324         if (mddev->level == 5 &&
6325             mddev->layout == ALGORITHM_PARITY_N) {
6326                 mddev->new_layout = 0;
6327                 mddev->new_level = 4;
6328                 return setup_conf(mddev);
6329         }
6330         return ERR_PTR(-EINVAL);
6331 }
6332
6333 static struct md_personality raid5_personality;
6334
6335 static void *raid6_takeover(struct mddev *mddev)
6336 {
6337         /* Currently can only take over a raid5.  We map the
6338          * personality to an equivalent raid6 personality
6339          * with the Q block at the end.
6340          */
6341         int new_layout;
6342
6343         if (mddev->pers != &raid5_personality)
6344                 return ERR_PTR(-EINVAL);
6345         if (mddev->degraded > 1)
6346                 return ERR_PTR(-EINVAL);
6347         if (mddev->raid_disks > 253)
6348                 return ERR_PTR(-EINVAL);
6349         if (mddev->raid_disks < 3)
6350                 return ERR_PTR(-EINVAL);
6351
6352         switch (mddev->layout) {
6353         case ALGORITHM_LEFT_ASYMMETRIC:
6354                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6355                 break;
6356         case ALGORITHM_RIGHT_ASYMMETRIC:
6357                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6358                 break;
6359         case ALGORITHM_LEFT_SYMMETRIC:
6360                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6361                 break;
6362         case ALGORITHM_RIGHT_SYMMETRIC:
6363                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6364                 break;
6365         case ALGORITHM_PARITY_0:
6366                 new_layout = ALGORITHM_PARITY_0_6;
6367                 break;
6368         case ALGORITHM_PARITY_N:
6369                 new_layout = ALGORITHM_PARITY_N;
6370                 break;
6371         default:
6372                 return ERR_PTR(-EINVAL);
6373         }
6374         mddev->new_level = 6;
6375         mddev->new_layout = new_layout;
6376         mddev->delta_disks = 1;
6377         mddev->raid_disks += 1;
6378         return setup_conf(mddev);
6379 }
6380
6381
6382 static struct md_personality raid6_personality =
6383 {
6384         .name           = "raid6",
6385         .level          = 6,
6386         .owner          = THIS_MODULE,
6387         .make_request   = make_request,
6388         .run            = run,
6389         .stop           = stop,
6390         .status         = status,
6391         .error_handler  = error,
6392         .hot_add_disk   = raid5_add_disk,
6393         .hot_remove_disk= raid5_remove_disk,
6394         .spare_active   = raid5_spare_active,
6395         .sync_request   = sync_request,
6396         .resize         = raid5_resize,
6397         .size           = raid5_size,
6398         .check_reshape  = raid6_check_reshape,
6399         .start_reshape  = raid5_start_reshape,
6400         .finish_reshape = raid5_finish_reshape,
6401         .quiesce        = raid5_quiesce,
6402         .takeover       = raid6_takeover,
6403 };
6404 static struct md_personality raid5_personality =
6405 {
6406         .name           = "raid5",
6407         .level          = 5,
6408         .owner          = THIS_MODULE,
6409         .make_request   = make_request,
6410         .run            = run,
6411         .stop           = stop,
6412         .status         = status,
6413         .error_handler  = error,
6414         .hot_add_disk   = raid5_add_disk,
6415         .hot_remove_disk= raid5_remove_disk,
6416         .spare_active   = raid5_spare_active,
6417         .sync_request   = sync_request,
6418         .resize         = raid5_resize,
6419         .size           = raid5_size,
6420         .check_reshape  = raid5_check_reshape,
6421         .start_reshape  = raid5_start_reshape,
6422         .finish_reshape = raid5_finish_reshape,
6423         .quiesce        = raid5_quiesce,
6424         .takeover       = raid5_takeover,
6425 };
6426
6427 static struct md_personality raid4_personality =
6428 {
6429         .name           = "raid4",
6430         .level          = 4,
6431         .owner          = THIS_MODULE,
6432         .make_request   = make_request,
6433         .run            = run,
6434         .stop           = stop,
6435         .status         = status,
6436         .error_handler  = error,
6437         .hot_add_disk   = raid5_add_disk,
6438         .hot_remove_disk= raid5_remove_disk,
6439         .spare_active   = raid5_spare_active,
6440         .sync_request   = sync_request,
6441         .resize         = raid5_resize,
6442         .size           = raid5_size,
6443         .check_reshape  = raid5_check_reshape,
6444         .start_reshape  = raid5_start_reshape,
6445         .finish_reshape = raid5_finish_reshape,
6446         .quiesce        = raid5_quiesce,
6447         .takeover       = raid4_takeover,
6448 };
6449
6450 static int __init raid5_init(void)
6451 {
6452         register_md_personality(&raid6_personality);
6453         register_md_personality(&raid5_personality);
6454         register_md_personality(&raid4_personality);
6455         return 0;
6456 }
6457
6458 static void raid5_exit(void)
6459 {
6460         unregister_md_personality(&raid6_personality);
6461         unregister_md_personality(&raid5_personality);
6462         unregister_md_personality(&raid4_personality);
6463 }
6464
6465 module_init(raid5_init);
6466 module_exit(raid5_exit);
6467 MODULE_LICENSE("GPL");
6468 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6469 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6470 MODULE_ALIAS("md-raid5");
6471 MODULE_ALIAS("md-raid4");
6472 MODULE_ALIAS("md-level-5");
6473 MODULE_ALIAS("md-level-4");
6474 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6475 MODULE_ALIAS("md-raid6");
6476 MODULE_ALIAS("md-level-6");
6477
6478 /* This used to be two separate modules, they were: */
6479 MODULE_ALIAS("raid5");
6480 MODULE_ALIAS("raid6");