]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: move more code into common handle_stripe
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock_irq(&sh->raid_conf->device_lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         #ifdef CONFIG_MULTICORE_RAID456
1324         init_waitqueue_head(&sh->ops.wait_for_ops);
1325         #endif
1326
1327         if (grow_buffers(sh)) {
1328                 shrink_buffers(sh);
1329                 kmem_cache_free(conf->slab_cache, sh);
1330                 return 0;
1331         }
1332         /* we just created an active stripe so... */
1333         atomic_set(&sh->count, 1);
1334         atomic_inc(&conf->active_stripes);
1335         INIT_LIST_HEAD(&sh->lru);
1336         release_stripe(sh);
1337         return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342         struct kmem_cache *sc;
1343         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345         if (conf->mddev->gendisk)
1346                 sprintf(conf->cache_name[0],
1347                         "raid%d-%s", conf->level, mdname(conf->mddev));
1348         else
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%p", conf->level, conf->mddev);
1351         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353         conf->active_name = 0;
1354         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356                                0, 0, NULL);
1357         if (!sc)
1358                 return 1;
1359         conf->slab_cache = sc;
1360         conf->pool_size = devs;
1361         while (num--)
1362                 if (!grow_one_stripe(conf))
1363                         return 1;
1364         return 0;
1365 }
1366
1367 /**
1368  * scribble_len - return the required size of the scribble region
1369  * @num - total number of disks in the array
1370  *
1371  * The size must be enough to contain:
1372  * 1/ a struct page pointer for each device in the array +2
1373  * 2/ room to convert each entry in (1) to its corresponding dma
1374  *    (dma_map_page()) or page (page_address()) address.
1375  *
1376  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377  * calculate over all devices (not just the data blocks), using zeros in place
1378  * of the P and Q blocks.
1379  */
1380 static size_t scribble_len(int num)
1381 {
1382         size_t len;
1383
1384         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386         return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391         /* Make all the stripes able to hold 'newsize' devices.
1392          * New slots in each stripe get 'page' set to a new page.
1393          *
1394          * This happens in stages:
1395          * 1/ create a new kmem_cache and allocate the required number of
1396          *    stripe_heads.
1397          * 2/ gather all the old stripe_heads and tranfer the pages across
1398          *    to the new stripe_heads.  This will have the side effect of
1399          *    freezing the array as once all stripe_heads have been collected,
1400          *    no IO will be possible.  Old stripe heads are freed once their
1401          *    pages have been transferred over, and the old kmem_cache is
1402          *    freed when all stripes are done.
1403          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1404          *    we simple return a failre status - no need to clean anything up.
1405          * 4/ allocate new pages for the new slots in the new stripe_heads.
1406          *    If this fails, we don't bother trying the shrink the
1407          *    stripe_heads down again, we just leave them as they are.
1408          *    As each stripe_head is processed the new one is released into
1409          *    active service.
1410          *
1411          * Once step2 is started, we cannot afford to wait for a write,
1412          * so we use GFP_NOIO allocations.
1413          */
1414         struct stripe_head *osh, *nsh;
1415         LIST_HEAD(newstripes);
1416         struct disk_info *ndisks;
1417         unsigned long cpu;
1418         int err;
1419         struct kmem_cache *sc;
1420         int i;
1421
1422         if (newsize <= conf->pool_size)
1423                 return 0; /* never bother to shrink */
1424
1425         err = md_allow_write(conf->mddev);
1426         if (err)
1427                 return err;
1428
1429         /* Step 1 */
1430         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432                                0, 0, NULL);
1433         if (!sc)
1434                 return -ENOMEM;
1435
1436         for (i = conf->max_nr_stripes; i; i--) {
1437                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438                 if (!nsh)
1439                         break;
1440
1441                 nsh->raid_conf = conf;
1442                 #ifdef CONFIG_MULTICORE_RAID456
1443                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444                 #endif
1445
1446                 list_add(&nsh->lru, &newstripes);
1447         }
1448         if (i) {
1449                 /* didn't get enough, give up */
1450                 while (!list_empty(&newstripes)) {
1451                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452                         list_del(&nsh->lru);
1453                         kmem_cache_free(sc, nsh);
1454                 }
1455                 kmem_cache_destroy(sc);
1456                 return -ENOMEM;
1457         }
1458         /* Step 2 - Must use GFP_NOIO now.
1459          * OK, we have enough stripes, start collecting inactive
1460          * stripes and copying them over
1461          */
1462         list_for_each_entry(nsh, &newstripes, lru) {
1463                 spin_lock_irq(&conf->device_lock);
1464                 wait_event_lock_irq(conf->wait_for_stripe,
1465                                     !list_empty(&conf->inactive_list),
1466                                     conf->device_lock,
1467                                     );
1468                 osh = get_free_stripe(conf);
1469                 spin_unlock_irq(&conf->device_lock);
1470                 atomic_set(&nsh->count, 1);
1471                 for(i=0; i<conf->pool_size; i++)
1472                         nsh->dev[i].page = osh->dev[i].page;
1473                 for( ; i<newsize; i++)
1474                         nsh->dev[i].page = NULL;
1475                 kmem_cache_free(conf->slab_cache, osh);
1476         }
1477         kmem_cache_destroy(conf->slab_cache);
1478
1479         /* Step 3.
1480          * At this point, we are holding all the stripes so the array
1481          * is completely stalled, so now is a good time to resize
1482          * conf->disks and the scribble region
1483          */
1484         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485         if (ndisks) {
1486                 for (i=0; i<conf->raid_disks; i++)
1487                         ndisks[i] = conf->disks[i];
1488                 kfree(conf->disks);
1489                 conf->disks = ndisks;
1490         } else
1491                 err = -ENOMEM;
1492
1493         get_online_cpus();
1494         conf->scribble_len = scribble_len(newsize);
1495         for_each_present_cpu(cpu) {
1496                 struct raid5_percpu *percpu;
1497                 void *scribble;
1498
1499                 percpu = per_cpu_ptr(conf->percpu, cpu);
1500                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502                 if (scribble) {
1503                         kfree(percpu->scribble);
1504                         percpu->scribble = scribble;
1505                 } else {
1506                         err = -ENOMEM;
1507                         break;
1508                 }
1509         }
1510         put_online_cpus();
1511
1512         /* Step 4, return new stripes to service */
1513         while(!list_empty(&newstripes)) {
1514                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515                 list_del_init(&nsh->lru);
1516
1517                 for (i=conf->raid_disks; i < newsize; i++)
1518                         if (nsh->dev[i].page == NULL) {
1519                                 struct page *p = alloc_page(GFP_NOIO);
1520                                 nsh->dev[i].page = p;
1521                                 if (!p)
1522                                         err = -ENOMEM;
1523                         }
1524                 release_stripe(nsh);
1525         }
1526         /* critical section pass, GFP_NOIO no longer needed */
1527
1528         conf->slab_cache = sc;
1529         conf->active_name = 1-conf->active_name;
1530         conf->pool_size = newsize;
1531         return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536         struct stripe_head *sh;
1537
1538         spin_lock_irq(&conf->device_lock);
1539         sh = get_free_stripe(conf);
1540         spin_unlock_irq(&conf->device_lock);
1541         if (!sh)
1542                 return 0;
1543         BUG_ON(atomic_read(&sh->count));
1544         shrink_buffers(sh);
1545         kmem_cache_free(conf->slab_cache, sh);
1546         atomic_dec(&conf->active_stripes);
1547         return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552         while (drop_one_stripe(conf))
1553                 ;
1554
1555         if (conf->slab_cache)
1556                 kmem_cache_destroy(conf->slab_cache);
1557         conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562         struct stripe_head *sh = bi->bi_private;
1563         raid5_conf_t *conf = sh->raid_conf;
1564         int disks = sh->disks, i;
1565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566         char b[BDEVNAME_SIZE];
1567         mdk_rdev_t *rdev;
1568
1569
1570         for (i=0 ; i<disks; i++)
1571                 if (bi == &sh->dev[i].req)
1572                         break;
1573
1574         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576                 uptodate);
1577         if (i == disks) {
1578                 BUG();
1579                 return;
1580         }
1581
1582         if (uptodate) {
1583                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585                         rdev = conf->disks[i].rdev;
1586                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587                                   " (%lu sectors at %llu on %s)\n",
1588                                   mdname(conf->mddev), STRIPE_SECTORS,
1589                                   (unsigned long long)(sh->sector
1590                                                        + rdev->data_offset),
1591                                   bdevname(rdev->bdev, b));
1592                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1593                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594                 }
1595                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597         } else {
1598                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599                 int retry = 0;
1600                 rdev = conf->disks[i].rdev;
1601
1602                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 atomic_inc(&rdev->read_errors);
1604                 if (conf->mddev->degraded >= conf->max_degraded)
1605                         printk_rl(KERN_WARNING
1606                                   "md/raid:%s: read error not correctable "
1607                                   "(sector %llu on %s).\n",
1608                                   mdname(conf->mddev),
1609                                   (unsigned long long)(sh->sector
1610                                                        + rdev->data_offset),
1611                                   bdn);
1612                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613                         /* Oh, no!!! */
1614                         printk_rl(KERN_WARNING
1615                                   "md/raid:%s: read error NOT corrected!! "
1616                                   "(sector %llu on %s).\n",
1617                                   mdname(conf->mddev),
1618                                   (unsigned long long)(sh->sector
1619                                                        + rdev->data_offset),
1620                                   bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = ~0;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304         }
2305
2306         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307                 if (atomic_dec_and_test(&conf->pending_full_writes))
2308                         md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block5 - checks the given member device to see if its data needs
2312  * to be read or computed to satisfy a request.
2313  *
2314  * Returns 1 when no more member devices need to be checked, otherwise returns
2315  * 0 to tell the loop in handle_stripe_fill5 to continue
2316  */
2317 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2318                         int disk_idx, int disks)
2319 {
2320         struct r5dev *dev = &sh->dev[disk_idx];
2321         struct r5dev *failed_dev = &sh->dev[s->failed_num[0]];
2322
2323         /* is the data in this block needed, and can we get it? */
2324         if (!test_bit(R5_LOCKED, &dev->flags) &&
2325             !test_bit(R5_UPTODATE, &dev->flags) &&
2326             (dev->toread ||
2327              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2328              s->syncing || s->expanding ||
2329              (s->failed &&
2330               (failed_dev->toread ||
2331                (failed_dev->towrite &&
2332                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2333                 /* We would like to get this block, possibly by computing it,
2334                  * otherwise read it if the backing disk is insync
2335                  */
2336                 if ((s->uptodate == disks - 1) &&
2337                     (s->failed && disk_idx == s->failed_num[0])) {
2338                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2339                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2340                         set_bit(R5_Wantcompute, &dev->flags);
2341                         sh->ops.target = disk_idx;
2342                         sh->ops.target2 = -1;
2343                         s->req_compute = 1;
2344                         /* Careful: from this point on 'uptodate' is in the eye
2345                          * of raid_run_ops which services 'compute' operations
2346                          * before writes. R5_Wantcompute flags a block that will
2347                          * be R5_UPTODATE by the time it is needed for a
2348                          * subsequent operation.
2349                          */
2350                         s->uptodate++;
2351                         return 1; /* uptodate + compute == disks */
2352                 } else if (test_bit(R5_Insync, &dev->flags)) {
2353                         set_bit(R5_LOCKED, &dev->flags);
2354                         set_bit(R5_Wantread, &dev->flags);
2355                         s->locked++;
2356                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2357                                 s->syncing);
2358                 }
2359         }
2360
2361         return 0;
2362 }
2363
2364 /**
2365  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2366  */
2367 static void handle_stripe_fill5(struct stripe_head *sh,
2368                         struct stripe_head_state *s, int disks)
2369 {
2370         int i;
2371
2372         /* look for blocks to read/compute, skip this if a compute
2373          * is already in flight, or if the stripe contents are in the
2374          * midst of changing due to a write
2375          */
2376         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2377             !sh->reconstruct_state)
2378                 for (i = disks; i--; )
2379                         if (fetch_block5(sh, s, i, disks))
2380                                 break;
2381         set_bit(STRIPE_HANDLE, &sh->state);
2382 }
2383
2384 /* fetch_block6 - checks the given member device to see if its data needs
2385  * to be read or computed to satisfy a request.
2386  *
2387  * Returns 1 when no more member devices need to be checked, otherwise returns
2388  * 0 to tell the loop in handle_stripe_fill6 to continue
2389  */
2390 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2391                         int disk_idx, int disks)
2392 {
2393         struct r5dev *dev = &sh->dev[disk_idx];
2394         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2395                                   &sh->dev[s->failed_num[1]] };
2396
2397         if (!test_bit(R5_LOCKED, &dev->flags) &&
2398             !test_bit(R5_UPTODATE, &dev->flags) &&
2399             (dev->toread ||
2400              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2401              s->syncing || s->expanding ||
2402              (s->failed >= 1 &&
2403               (fdev[0]->toread || s->to_write)) ||
2404              (s->failed >= 2 &&
2405               (fdev[1]->toread || s->to_write)))) {
2406                 /* we would like to get this block, possibly by computing it,
2407                  * otherwise read it if the backing disk is insync
2408                  */
2409                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2410                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2411                 if ((s->uptodate == disks - 1) &&
2412                     (s->failed && (disk_idx == s->failed_num[0] ||
2413                                    disk_idx == s->failed_num[1]))) {
2414                         /* have disk failed, and we're requested to fetch it;
2415                          * do compute it
2416                          */
2417                         pr_debug("Computing stripe %llu block %d\n",
2418                                (unsigned long long)sh->sector, disk_idx);
2419                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2420                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2421                         set_bit(R5_Wantcompute, &dev->flags);
2422                         sh->ops.target = disk_idx;
2423                         sh->ops.target2 = -1; /* no 2nd target */
2424                         s->req_compute = 1;
2425                         s->uptodate++;
2426                         return 1;
2427                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2428                         /* Computing 2-failure is *very* expensive; only
2429                          * do it if failed >= 2
2430                          */
2431                         int other;
2432                         for (other = disks; other--; ) {
2433                                 if (other == disk_idx)
2434                                         continue;
2435                                 if (!test_bit(R5_UPTODATE,
2436                                       &sh->dev[other].flags))
2437                                         break;
2438                         }
2439                         BUG_ON(other < 0);
2440                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2441                                (unsigned long long)sh->sector,
2442                                disk_idx, other);
2443                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2444                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2445                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2446                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2447                         sh->ops.target = disk_idx;
2448                         sh->ops.target2 = other;
2449                         s->uptodate += 2;
2450                         s->req_compute = 1;
2451                         return 1;
2452                 } else if (test_bit(R5_Insync, &dev->flags)) {
2453                         set_bit(R5_LOCKED, &dev->flags);
2454                         set_bit(R5_Wantread, &dev->flags);
2455                         s->locked++;
2456                         pr_debug("Reading block %d (sync=%d)\n",
2457                                 disk_idx, s->syncing);
2458                 }
2459         }
2460
2461         return 0;
2462 }
2463
2464 /**
2465  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2466  */
2467 static void handle_stripe_fill6(struct stripe_head *sh,
2468                         struct stripe_head_state *s,
2469                         int disks)
2470 {
2471         int i;
2472
2473         /* look for blocks to read/compute, skip this if a compute
2474          * is already in flight, or if the stripe contents are in the
2475          * midst of changing due to a write
2476          */
2477         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2478             !sh->reconstruct_state)
2479                 for (i = disks; i--; )
2480                         if (fetch_block6(sh, s, i, disks))
2481                                 break;
2482         set_bit(STRIPE_HANDLE, &sh->state);
2483 }
2484
2485
2486 /* handle_stripe_clean_event
2487  * any written block on an uptodate or failed drive can be returned.
2488  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2489  * never LOCKED, so we don't need to test 'failed' directly.
2490  */
2491 static void handle_stripe_clean_event(raid5_conf_t *conf,
2492         struct stripe_head *sh, int disks, struct bio **return_bi)
2493 {
2494         int i;
2495         struct r5dev *dev;
2496
2497         for (i = disks; i--; )
2498                 if (sh->dev[i].written) {
2499                         dev = &sh->dev[i];
2500                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2501                                 test_bit(R5_UPTODATE, &dev->flags)) {
2502                                 /* We can return any write requests */
2503                                 struct bio *wbi, *wbi2;
2504                                 int bitmap_end = 0;
2505                                 pr_debug("Return write for disc %d\n", i);
2506                                 spin_lock_irq(&conf->device_lock);
2507                                 wbi = dev->written;
2508                                 dev->written = NULL;
2509                                 while (wbi && wbi->bi_sector <
2510                                         dev->sector + STRIPE_SECTORS) {
2511                                         wbi2 = r5_next_bio(wbi, dev->sector);
2512                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2513                                                 md_write_end(conf->mddev);
2514                                                 wbi->bi_next = *return_bi;
2515                                                 *return_bi = wbi;
2516                                         }
2517                                         wbi = wbi2;
2518                                 }
2519                                 if (dev->towrite == NULL)
2520                                         bitmap_end = 1;
2521                                 spin_unlock_irq(&conf->device_lock);
2522                                 if (bitmap_end)
2523                                         bitmap_endwrite(conf->mddev->bitmap,
2524                                                         sh->sector,
2525                                                         STRIPE_SECTORS,
2526                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2527                                                         0);
2528                         }
2529                 }
2530
2531         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2532                 if (atomic_dec_and_test(&conf->pending_full_writes))
2533                         md_wakeup_thread(conf->mddev->thread);
2534 }
2535
2536 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2537                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2538 {
2539         int rmw = 0, rcw = 0, i;
2540         for (i = disks; i--; ) {
2541                 /* would I have to read this buffer for read_modify_write */
2542                 struct r5dev *dev = &sh->dev[i];
2543                 if ((dev->towrite || i == sh->pd_idx) &&
2544                     !test_bit(R5_LOCKED, &dev->flags) &&
2545                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2546                       test_bit(R5_Wantcompute, &dev->flags))) {
2547                         if (test_bit(R5_Insync, &dev->flags))
2548                                 rmw++;
2549                         else
2550                                 rmw += 2*disks;  /* cannot read it */
2551                 }
2552                 /* Would I have to read this buffer for reconstruct_write */
2553                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2554                     !test_bit(R5_LOCKED, &dev->flags) &&
2555                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2556                     test_bit(R5_Wantcompute, &dev->flags))) {
2557                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2558                         else
2559                                 rcw += 2*disks;
2560                 }
2561         }
2562         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2563                 (unsigned long long)sh->sector, rmw, rcw);
2564         set_bit(STRIPE_HANDLE, &sh->state);
2565         if (rmw < rcw && rmw > 0)
2566                 /* prefer read-modify-write, but need to get some data */
2567                 for (i = disks; i--; ) {
2568                         struct r5dev *dev = &sh->dev[i];
2569                         if ((dev->towrite || i == sh->pd_idx) &&
2570                             !test_bit(R5_LOCKED, &dev->flags) &&
2571                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2572                             test_bit(R5_Wantcompute, &dev->flags)) &&
2573                             test_bit(R5_Insync, &dev->flags)) {
2574                                 if (
2575                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2576                                         pr_debug("Read_old block "
2577                                                 "%d for r-m-w\n", i);
2578                                         set_bit(R5_LOCKED, &dev->flags);
2579                                         set_bit(R5_Wantread, &dev->flags);
2580                                         s->locked++;
2581                                 } else {
2582                                         set_bit(STRIPE_DELAYED, &sh->state);
2583                                         set_bit(STRIPE_HANDLE, &sh->state);
2584                                 }
2585                         }
2586                 }
2587         if (rcw <= rmw && rcw > 0)
2588                 /* want reconstruct write, but need to get some data */
2589                 for (i = disks; i--; ) {
2590                         struct r5dev *dev = &sh->dev[i];
2591                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2592                             i != sh->pd_idx &&
2593                             !test_bit(R5_LOCKED, &dev->flags) &&
2594                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2595                             test_bit(R5_Wantcompute, &dev->flags)) &&
2596                             test_bit(R5_Insync, &dev->flags)) {
2597                                 if (
2598                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2599                                         pr_debug("Read_old block "
2600                                                 "%d for Reconstruct\n", i);
2601                                         set_bit(R5_LOCKED, &dev->flags);
2602                                         set_bit(R5_Wantread, &dev->flags);
2603                                         s->locked++;
2604                                 } else {
2605                                         set_bit(STRIPE_DELAYED, &sh->state);
2606                                         set_bit(STRIPE_HANDLE, &sh->state);
2607                                 }
2608                         }
2609                 }
2610         /* now if nothing is locked, and if we have enough data,
2611          * we can start a write request
2612          */
2613         /* since handle_stripe can be called at any time we need to handle the
2614          * case where a compute block operation has been submitted and then a
2615          * subsequent call wants to start a write request.  raid_run_ops only
2616          * handles the case where compute block and reconstruct are requested
2617          * simultaneously.  If this is not the case then new writes need to be
2618          * held off until the compute completes.
2619          */
2620         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2621             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2622             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2623                 schedule_reconstruction(sh, s, rcw == 0, 0);
2624 }
2625
2626 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2627                 struct stripe_head *sh, struct stripe_head_state *s,
2628                 int disks)
2629 {
2630         int rcw = 0, pd_idx = sh->pd_idx, i;
2631         int qd_idx = sh->qd_idx;
2632
2633         set_bit(STRIPE_HANDLE, &sh->state);
2634         for (i = disks; i--; ) {
2635                 struct r5dev *dev = &sh->dev[i];
2636                 /* check if we haven't enough data */
2637                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2638                     i != pd_idx && i != qd_idx &&
2639                     !test_bit(R5_LOCKED, &dev->flags) &&
2640                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2641                       test_bit(R5_Wantcompute, &dev->flags))) {
2642                         rcw++;
2643                         if (!test_bit(R5_Insync, &dev->flags))
2644                                 continue; /* it's a failed drive */
2645
2646                         if (
2647                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2648                                 pr_debug("Read_old stripe %llu "
2649                                         "block %d for Reconstruct\n",
2650                                      (unsigned long long)sh->sector, i);
2651                                 set_bit(R5_LOCKED, &dev->flags);
2652                                 set_bit(R5_Wantread, &dev->flags);
2653                                 s->locked++;
2654                         } else {
2655                                 pr_debug("Request delayed stripe %llu "
2656                                         "block %d for Reconstruct\n",
2657                                      (unsigned long long)sh->sector, i);
2658                                 set_bit(STRIPE_DELAYED, &sh->state);
2659                                 set_bit(STRIPE_HANDLE, &sh->state);
2660                         }
2661                 }
2662         }
2663         /* now if nothing is locked, and if we have enough data, we can start a
2664          * write request
2665          */
2666         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2667             s->locked == 0 && rcw == 0 &&
2668             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2669                 schedule_reconstruction(sh, s, 1, 0);
2670         }
2671 }
2672
2673 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2674                                 struct stripe_head_state *s, int disks)
2675 {
2676         struct r5dev *dev = NULL;
2677
2678         set_bit(STRIPE_HANDLE, &sh->state);
2679
2680         switch (sh->check_state) {
2681         case check_state_idle:
2682                 /* start a new check operation if there are no failures */
2683                 if (s->failed == 0) {
2684                         BUG_ON(s->uptodate != disks);
2685                         sh->check_state = check_state_run;
2686                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2687                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2688                         s->uptodate--;
2689                         break;
2690                 }
2691                 dev = &sh->dev[s->failed_num[0]];
2692                 /* fall through */
2693         case check_state_compute_result:
2694                 sh->check_state = check_state_idle;
2695                 if (!dev)
2696                         dev = &sh->dev[sh->pd_idx];
2697
2698                 /* check that a write has not made the stripe insync */
2699                 if (test_bit(STRIPE_INSYNC, &sh->state))
2700                         break;
2701
2702                 /* either failed parity check, or recovery is happening */
2703                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2704                 BUG_ON(s->uptodate != disks);
2705
2706                 set_bit(R5_LOCKED, &dev->flags);
2707                 s->locked++;
2708                 set_bit(R5_Wantwrite, &dev->flags);
2709
2710                 clear_bit(STRIPE_DEGRADED, &sh->state);
2711                 set_bit(STRIPE_INSYNC, &sh->state);
2712                 break;
2713         case check_state_run:
2714                 break; /* we will be called again upon completion */
2715         case check_state_check_result:
2716                 sh->check_state = check_state_idle;
2717
2718                 /* if a failure occurred during the check operation, leave
2719                  * STRIPE_INSYNC not set and let the stripe be handled again
2720                  */
2721                 if (s->failed)
2722                         break;
2723
2724                 /* handle a successful check operation, if parity is correct
2725                  * we are done.  Otherwise update the mismatch count and repair
2726                  * parity if !MD_RECOVERY_CHECK
2727                  */
2728                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2729                         /* parity is correct (on disc,
2730                          * not in buffer any more)
2731                          */
2732                         set_bit(STRIPE_INSYNC, &sh->state);
2733                 else {
2734                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2735                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2736                                 /* don't try to repair!! */
2737                                 set_bit(STRIPE_INSYNC, &sh->state);
2738                         else {
2739                                 sh->check_state = check_state_compute_run;
2740                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2741                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2742                                 set_bit(R5_Wantcompute,
2743                                         &sh->dev[sh->pd_idx].flags);
2744                                 sh->ops.target = sh->pd_idx;
2745                                 sh->ops.target2 = -1;
2746                                 s->uptodate++;
2747                         }
2748                 }
2749                 break;
2750         case check_state_compute_run:
2751                 break;
2752         default:
2753                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2754                        __func__, sh->check_state,
2755                        (unsigned long long) sh->sector);
2756                 BUG();
2757         }
2758 }
2759
2760
2761 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2762                                   struct stripe_head_state *s,
2763                                   int disks)
2764 {
2765         int pd_idx = sh->pd_idx;
2766         int qd_idx = sh->qd_idx;
2767         struct r5dev *dev;
2768
2769         set_bit(STRIPE_HANDLE, &sh->state);
2770
2771         BUG_ON(s->failed > 2);
2772
2773         /* Want to check and possibly repair P and Q.
2774          * However there could be one 'failed' device, in which
2775          * case we can only check one of them, possibly using the
2776          * other to generate missing data
2777          */
2778
2779         switch (sh->check_state) {
2780         case check_state_idle:
2781                 /* start a new check operation if there are < 2 failures */
2782                 if (s->failed == s->q_failed) {
2783                         /* The only possible failed device holds Q, so it
2784                          * makes sense to check P (If anything else were failed,
2785                          * we would have used P to recreate it).
2786                          */
2787                         sh->check_state = check_state_run;
2788                 }
2789                 if (!s->q_failed && s->failed < 2) {
2790                         /* Q is not failed, and we didn't use it to generate
2791                          * anything, so it makes sense to check it
2792                          */
2793                         if (sh->check_state == check_state_run)
2794                                 sh->check_state = check_state_run_pq;
2795                         else
2796                                 sh->check_state = check_state_run_q;
2797                 }
2798
2799                 /* discard potentially stale zero_sum_result */
2800                 sh->ops.zero_sum_result = 0;
2801
2802                 if (sh->check_state == check_state_run) {
2803                         /* async_xor_zero_sum destroys the contents of P */
2804                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2805                         s->uptodate--;
2806                 }
2807                 if (sh->check_state >= check_state_run &&
2808                     sh->check_state <= check_state_run_pq) {
2809                         /* async_syndrome_zero_sum preserves P and Q, so
2810                          * no need to mark them !uptodate here
2811                          */
2812                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2813                         break;
2814                 }
2815
2816                 /* we have 2-disk failure */
2817                 BUG_ON(s->failed != 2);
2818                 /* fall through */
2819         case check_state_compute_result:
2820                 sh->check_state = check_state_idle;
2821
2822                 /* check that a write has not made the stripe insync */
2823                 if (test_bit(STRIPE_INSYNC, &sh->state))
2824                         break;
2825
2826                 /* now write out any block on a failed drive,
2827                  * or P or Q if they were recomputed
2828                  */
2829                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2830                 if (s->failed == 2) {
2831                         dev = &sh->dev[s->failed_num[1]];
2832                         s->locked++;
2833                         set_bit(R5_LOCKED, &dev->flags);
2834                         set_bit(R5_Wantwrite, &dev->flags);
2835                 }
2836                 if (s->failed >= 1) {
2837                         dev = &sh->dev[s->failed_num[0]];
2838                         s->locked++;
2839                         set_bit(R5_LOCKED, &dev->flags);
2840                         set_bit(R5_Wantwrite, &dev->flags);
2841                 }
2842                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2843                         dev = &sh->dev[pd_idx];
2844                         s->locked++;
2845                         set_bit(R5_LOCKED, &dev->flags);
2846                         set_bit(R5_Wantwrite, &dev->flags);
2847                 }
2848                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2849                         dev = &sh->dev[qd_idx];
2850                         s->locked++;
2851                         set_bit(R5_LOCKED, &dev->flags);
2852                         set_bit(R5_Wantwrite, &dev->flags);
2853                 }
2854                 clear_bit(STRIPE_DEGRADED, &sh->state);
2855
2856                 set_bit(STRIPE_INSYNC, &sh->state);
2857                 break;
2858         case check_state_run:
2859         case check_state_run_q:
2860         case check_state_run_pq:
2861                 break; /* we will be called again upon completion */
2862         case check_state_check_result:
2863                 sh->check_state = check_state_idle;
2864
2865                 /* handle a successful check operation, if parity is correct
2866                  * we are done.  Otherwise update the mismatch count and repair
2867                  * parity if !MD_RECOVERY_CHECK
2868                  */
2869                 if (sh->ops.zero_sum_result == 0) {
2870                         /* both parities are correct */
2871                         if (!s->failed)
2872                                 set_bit(STRIPE_INSYNC, &sh->state);
2873                         else {
2874                                 /* in contrast to the raid5 case we can validate
2875                                  * parity, but still have a failure to write
2876                                  * back
2877                                  */
2878                                 sh->check_state = check_state_compute_result;
2879                                 /* Returning at this point means that we may go
2880                                  * off and bring p and/or q uptodate again so
2881                                  * we make sure to check zero_sum_result again
2882                                  * to verify if p or q need writeback
2883                                  */
2884                         }
2885                 } else {
2886                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2887                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2888                                 /* don't try to repair!! */
2889                                 set_bit(STRIPE_INSYNC, &sh->state);
2890                         else {
2891                                 int *target = &sh->ops.target;
2892
2893                                 sh->ops.target = -1;
2894                                 sh->ops.target2 = -1;
2895                                 sh->check_state = check_state_compute_run;
2896                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2897                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2898                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2899                                         set_bit(R5_Wantcompute,
2900                                                 &sh->dev[pd_idx].flags);
2901                                         *target = pd_idx;
2902                                         target = &sh->ops.target2;
2903                                         s->uptodate++;
2904                                 }
2905                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2906                                         set_bit(R5_Wantcompute,
2907                                                 &sh->dev[qd_idx].flags);
2908                                         *target = qd_idx;
2909                                         s->uptodate++;
2910                                 }
2911                         }
2912                 }
2913                 break;
2914         case check_state_compute_run:
2915                 break;
2916         default:
2917                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2918                        __func__, sh->check_state,
2919                        (unsigned long long) sh->sector);
2920                 BUG();
2921         }
2922 }
2923
2924 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2925 {
2926         int i;
2927
2928         /* We have read all the blocks in this stripe and now we need to
2929          * copy some of them into a target stripe for expand.
2930          */
2931         struct dma_async_tx_descriptor *tx = NULL;
2932         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2933         for (i = 0; i < sh->disks; i++)
2934                 if (i != sh->pd_idx && i != sh->qd_idx) {
2935                         int dd_idx, j;
2936                         struct stripe_head *sh2;
2937                         struct async_submit_ctl submit;
2938
2939                         sector_t bn = compute_blocknr(sh, i, 1);
2940                         sector_t s = raid5_compute_sector(conf, bn, 0,
2941                                                           &dd_idx, NULL);
2942                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2943                         if (sh2 == NULL)
2944                                 /* so far only the early blocks of this stripe
2945                                  * have been requested.  When later blocks
2946                                  * get requested, we will try again
2947                                  */
2948                                 continue;
2949                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2950                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2951                                 /* must have already done this block */
2952                                 release_stripe(sh2);
2953                                 continue;
2954                         }
2955
2956                         /* place all the copies on one channel */
2957                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2958                         tx = async_memcpy(sh2->dev[dd_idx].page,
2959                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2960                                           &submit);
2961
2962                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2963                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2964                         for (j = 0; j < conf->raid_disks; j++)
2965                                 if (j != sh2->pd_idx &&
2966                                     j != sh2->qd_idx &&
2967                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2968                                         break;
2969                         if (j == conf->raid_disks) {
2970                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2971                                 set_bit(STRIPE_HANDLE, &sh2->state);
2972                         }
2973                         release_stripe(sh2);
2974
2975                 }
2976         /* done submitting copies, wait for them to complete */
2977         if (tx) {
2978                 async_tx_ack(tx);
2979                 dma_wait_for_async_tx(tx);
2980         }
2981 }
2982
2983
2984 /*
2985  * handle_stripe - do things to a stripe.
2986  *
2987  * We lock the stripe and then examine the state of various bits
2988  * to see what needs to be done.
2989  * Possible results:
2990  *    return some read request which now have data
2991  *    return some write requests which are safely on disc
2992  *    schedule a read on some buffers
2993  *    schedule a write of some buffers
2994  *    return confirmation of parity correctness
2995  *
2996  * buffers are taken off read_list or write_list, and bh_cache buffers
2997  * get BH_Lock set before the stripe lock is released.
2998  *
2999  */
3000
3001 static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
3002 {
3003         raid5_conf_t *conf = sh->raid_conf;
3004         int disks = sh->disks, i;
3005         struct r5dev *dev;
3006         int prexor;
3007
3008         /* Now to look around and see what can be done */
3009         rcu_read_lock();
3010         spin_lock_irq(&conf->device_lock);
3011         for (i=disks; i--; ) {
3012                 mdk_rdev_t *rdev;
3013
3014                 dev = &sh->dev[i];
3015
3016                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3017                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3018                         dev->towrite, dev->written);
3019
3020                 /* maybe we can request a biofill operation
3021                  *
3022                  * new wantfill requests are only permitted while
3023                  * ops_complete_biofill is guaranteed to be inactive
3024                  */
3025                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3026                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3027                         set_bit(R5_Wantfill, &dev->flags);
3028
3029                 /* now count some things */
3030                 if (test_bit(R5_LOCKED, &dev->flags))
3031                         s->locked++;
3032                 if (test_bit(R5_UPTODATE, &dev->flags))
3033                         s->uptodate++;
3034                 if (test_bit(R5_Wantcompute, &dev->flags))
3035                         s->compute++;
3036
3037                 if (test_bit(R5_Wantfill, &dev->flags))
3038                         s->to_fill++;
3039                 else if (dev->toread)
3040                         s->to_read++;
3041                 if (dev->towrite) {
3042                         s->to_write++;
3043                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3044                                 s->non_overwrite++;
3045                 }
3046                 if (dev->written)
3047                         s->written++;
3048                 rdev = rcu_dereference(conf->disks[i].rdev);
3049                 if (s->blocked_rdev == NULL &&
3050                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3051                         s->blocked_rdev = rdev;
3052                         atomic_inc(&rdev->nr_pending);
3053                 }
3054                 clear_bit(R5_Insync, &dev->flags);
3055                 if (!rdev)
3056                         /* Not in-sync */;
3057                 else if (test_bit(In_sync, &rdev->flags))
3058                         set_bit(R5_Insync, &dev->flags);
3059                 else {
3060                         /* could be in-sync depending on recovery/reshape status */
3061                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3062                                 set_bit(R5_Insync, &dev->flags);
3063                 }
3064                 if (!test_bit(R5_Insync, &dev->flags)) {
3065                         /* The ReadError flag will just be confusing now */
3066                         clear_bit(R5_ReadError, &dev->flags);
3067                         clear_bit(R5_ReWrite, &dev->flags);
3068                 }
3069                 if (test_bit(R5_ReadError, &dev->flags))
3070                         clear_bit(R5_Insync, &dev->flags);
3071                 if (!test_bit(R5_Insync, &dev->flags)) {
3072                         s->failed++;
3073                         s->failed_num[0] = i;
3074                 }
3075         }
3076         spin_unlock_irq(&conf->device_lock);
3077         rcu_read_unlock();
3078
3079         if (unlikely(s->blocked_rdev)) {
3080                 if (s->syncing || s->expanding || s->expanded ||
3081                     s->to_write || s->written) {
3082                         set_bit(STRIPE_HANDLE, &sh->state);
3083                         return 1;
3084                 }
3085                 /* There is nothing for the blocked_rdev to block */
3086                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3087                 s->blocked_rdev = NULL;
3088         }
3089
3090         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3091                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3092                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3093         }
3094
3095         pr_debug("locked=%d uptodate=%d to_read=%d"
3096                 " to_write=%d failed=%d failed_num=%d\n",
3097                 s->locked, s->uptodate, s->to_read, s->to_write,
3098                 s->failed, s->failed_num[0]);
3099         /* check if the array has lost two devices and, if so, some requests might
3100          * need to be failed
3101          */
3102         if (s->failed > 1 && s->to_read+s->to_write+s->written)
3103                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3104         if (s->failed > 1 && s->syncing) {
3105                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3106                 clear_bit(STRIPE_SYNCING, &sh->state);
3107                 s->syncing = 0;
3108         }
3109
3110         /* might be able to return some write requests if the parity block
3111          * is safe, or on a failed drive
3112          */
3113         dev = &sh->dev[sh->pd_idx];
3114         if (s->written &&
3115             ((test_bit(R5_Insync, &dev->flags) &&
3116               !test_bit(R5_LOCKED, &dev->flags) &&
3117               test_bit(R5_UPTODATE, &dev->flags)) ||
3118              (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
3119                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3120
3121         /* Now we might consider reading some blocks, either to check/generate
3122          * parity, or to satisfy requests
3123          * or to load a block that is being partially written.
3124          */
3125         if (s->to_read || s->non_overwrite ||
3126             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3127                 handle_stripe_fill5(sh, s, disks);
3128
3129         /* Now we check to see if any write operations have recently
3130          * completed
3131          */
3132         prexor = 0;
3133         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3134                 prexor = 1;
3135         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3136             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3137                 sh->reconstruct_state = reconstruct_state_idle;
3138
3139                 /* All the 'written' buffers and the parity block are ready to
3140                  * be written back to disk
3141                  */
3142                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3143                 for (i = disks; i--; ) {
3144                         dev = &sh->dev[i];
3145                         if (test_bit(R5_LOCKED, &dev->flags) &&
3146                                 (i == sh->pd_idx || dev->written)) {
3147                                 pr_debug("Writing block %d\n", i);
3148                                 set_bit(R5_Wantwrite, &dev->flags);
3149                                 if (prexor)
3150                                         continue;
3151                                 if (!test_bit(R5_Insync, &dev->flags) ||
3152                                     (i == sh->pd_idx && s->failed == 0))
3153                                         set_bit(STRIPE_INSYNC, &sh->state);
3154                         }
3155                 }
3156                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3157                         s->dec_preread_active = 1;
3158         }
3159
3160         /* Now to consider new write requests and what else, if anything
3161          * should be read.  We do not handle new writes when:
3162          * 1/ A 'write' operation (copy+xor) is already in flight.
3163          * 2/ A 'check' operation is in flight, as it may clobber the parity
3164          *    block.
3165          */
3166         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3167                 handle_stripe_dirtying5(conf, sh, s, disks);
3168
3169         /* maybe we need to check and possibly fix the parity for this stripe
3170          * Any reads will already have been scheduled, so we just see if enough
3171          * data is available.  The parity check is held off while parity
3172          * dependent operations are in flight.
3173          */
3174         if (sh->check_state ||
3175             (s->syncing && s->locked == 0 &&
3176              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3177              !test_bit(STRIPE_INSYNC, &sh->state)))
3178                 handle_parity_checks5(conf, sh, s, disks);
3179         return 0;
3180 }
3181
3182 static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
3183 {
3184         raid5_conf_t *conf = sh->raid_conf;
3185         int disks = sh->disks;
3186         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3187         struct r5dev *dev, *pdev, *qdev;
3188
3189         /* Now to look around and see what can be done */
3190
3191         rcu_read_lock();
3192         spin_lock_irq(&conf->device_lock);
3193         for (i=disks; i--; ) {
3194                 mdk_rdev_t *rdev;
3195                 dev = &sh->dev[i];
3196
3197                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3198                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3199                 /* maybe we can reply to a read
3200                  *
3201                  * new wantfill requests are only permitted while
3202                  * ops_complete_biofill is guaranteed to be inactive
3203                  */
3204                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3205                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3206                         set_bit(R5_Wantfill, &dev->flags);
3207
3208                 /* now count some things */
3209                 if (test_bit(R5_LOCKED, &dev->flags))
3210                         s->locked++;
3211                 if (test_bit(R5_UPTODATE, &dev->flags))
3212                         s->uptodate++;
3213                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3214                         s->compute++;
3215                         BUG_ON(s->compute > 2);
3216                 }
3217
3218                 if (test_bit(R5_Wantfill, &dev->flags)) {
3219                         s->to_fill++;
3220                 } else if (dev->toread)
3221                         s->to_read++;
3222                 if (dev->towrite) {
3223                         s->to_write++;
3224                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3225                                 s->non_overwrite++;
3226                 }
3227                 if (dev->written)
3228                         s->written++;
3229                 rdev = rcu_dereference(conf->disks[i].rdev);
3230                 if (s->blocked_rdev == NULL &&
3231                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3232                         s->blocked_rdev = rdev;
3233                         atomic_inc(&rdev->nr_pending);
3234                 }
3235                 clear_bit(R5_Insync, &dev->flags);
3236                 if (!rdev)
3237                         /* Not in-sync */;
3238                 else if (test_bit(In_sync, &rdev->flags))
3239                         set_bit(R5_Insync, &dev->flags);
3240                 else {
3241                         /* in sync if before recovery_offset */
3242                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3243                                 set_bit(R5_Insync, &dev->flags);
3244                 }
3245                 if (!test_bit(R5_Insync, &dev->flags)) {
3246                         /* The ReadError flag will just be confusing now */
3247                         clear_bit(R5_ReadError, &dev->flags);
3248                         clear_bit(R5_ReWrite, &dev->flags);
3249                 }
3250                 if (test_bit(R5_ReadError, &dev->flags))
3251                         clear_bit(R5_Insync, &dev->flags);
3252                 if (!test_bit(R5_Insync, &dev->flags)) {
3253                         if (s->failed < 2)
3254                                 s->failed_num[s->failed] = i;
3255                         s->failed++;
3256                 }
3257         }
3258         spin_unlock_irq(&conf->device_lock);
3259         rcu_read_unlock();
3260
3261         if (unlikely(s->blocked_rdev)) {
3262                 if (s->syncing || s->expanding || s->expanded ||
3263                     s->to_write || s->written) {
3264                         set_bit(STRIPE_HANDLE, &sh->state);
3265                         return 1;
3266                 }
3267                 /* There is nothing for the blocked_rdev to block */
3268                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3269                 s->blocked_rdev = NULL;
3270         }
3271
3272         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3273                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3274                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3275         }
3276
3277         pr_debug("locked=%d uptodate=%d to_read=%d"
3278                " to_write=%d failed=%d failed_num=%d,%d\n",
3279                s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
3280                s->failed_num[0], s->failed_num[1]);
3281         /* check if the array has lost >2 devices and, if so, some requests
3282          * might need to be failed
3283          */
3284         if (s->failed > 2 && s->to_read+s->to_write+s->written)
3285                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3286         if (s->failed > 2 && s->syncing) {
3287                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3288                 clear_bit(STRIPE_SYNCING, &sh->state);
3289                 s->syncing = 0;
3290         }
3291
3292         /*
3293          * might be able to return some write requests if the parity blocks
3294          * are safe, or on a failed drive
3295          */
3296         pdev = &sh->dev[pd_idx];
3297         s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
3298                 || (s->failed >= 2 && s->failed_num[1] == pd_idx);
3299         qdev = &sh->dev[qd_idx];
3300         s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
3301                 || (s->failed >= 2 && s->failed_num[1] == qd_idx);
3302
3303         if (s->written &&
3304             (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3305                              && !test_bit(R5_LOCKED, &pdev->flags)
3306                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3307             (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3308                              && !test_bit(R5_LOCKED, &qdev->flags)
3309                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3310                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3311
3312         /* Now we might consider reading some blocks, either to check/generate
3313          * parity, or to satisfy requests
3314          * or to load a block that is being partially written.
3315          */
3316         if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
3317             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3318                 handle_stripe_fill6(sh, s, disks);
3319
3320         /* Now we check to see if any write operations have recently
3321          * completed
3322          */
3323         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3324
3325                 sh->reconstruct_state = reconstruct_state_idle;
3326                 /* All the 'written' buffers and the parity blocks are ready to
3327                  * be written back to disk
3328                  */
3329                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3330                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3331                 for (i = disks; i--; ) {
3332                         dev = &sh->dev[i];
3333                         if (test_bit(R5_LOCKED, &dev->flags) &&
3334                             (i == sh->pd_idx || i == qd_idx ||
3335                              dev->written)) {
3336                                 pr_debug("Writing block %d\n", i);
3337                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3338                                 set_bit(R5_Wantwrite, &dev->flags);
3339                                 if (!test_bit(R5_Insync, &dev->flags) ||
3340                                     ((i == sh->pd_idx || i == qd_idx) &&
3341                                       s->failed == 0))
3342                                         set_bit(STRIPE_INSYNC, &sh->state);
3343                         }
3344                 }
3345                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3346                         s->dec_preread_active = 1;
3347         }
3348
3349         /* Now to consider new write requests and what else, if anything
3350          * should be read.  We do not handle new writes when:
3351          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3352          * 2/ A 'check' operation is in flight, as it may clobber the parity
3353          *    block.
3354          */
3355         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3356                 handle_stripe_dirtying6(conf, sh, s, disks);
3357
3358         /* maybe we need to check and possibly fix the parity for this stripe
3359          * Any reads will already have been scheduled, so we just see if enough
3360          * data is available.  The parity check is held off while parity
3361          * dependent operations are in flight.
3362          */
3363         if (sh->check_state ||
3364             (s->syncing && s->locked == 0 &&
3365              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3366              !test_bit(STRIPE_INSYNC, &sh->state)))
3367                 handle_parity_checks6(conf, sh, s, disks);
3368         return 0;
3369 }
3370
3371 static void handle_stripe(struct stripe_head *sh)
3372 {
3373         struct stripe_head_state s;
3374         int done;
3375         int i;
3376         raid5_conf_t *conf = sh->raid_conf;
3377
3378         clear_bit(STRIPE_HANDLE, &sh->state);
3379         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3380                 /* already being handled, ensure it gets handled
3381                  * again when current action finishes */
3382                 set_bit(STRIPE_HANDLE, &sh->state);
3383                 return;
3384         }
3385
3386         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3387                 set_bit(STRIPE_SYNCING, &sh->state);
3388                 clear_bit(STRIPE_INSYNC, &sh->state);
3389         }
3390         clear_bit(STRIPE_DELAYED, &sh->state);
3391
3392         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3393                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3394                (unsigned long long)sh->sector, sh->state,
3395                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3396                sh->check_state, sh->reconstruct_state);
3397         memset(&s, 0, sizeof(s));
3398
3399         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3400         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3401         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3402
3403         if (conf->level == 6)
3404                 done = handle_stripe6(sh, &s);
3405         else
3406                 done = handle_stripe5(sh, &s);
3407
3408         if (done)
3409                 goto finish;
3410
3411
3412         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3413                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3414                 clear_bit(STRIPE_SYNCING, &sh->state);
3415         }
3416
3417         /* If the failed drives are just a ReadError, then we might need
3418          * to progress the repair/check process
3419          */
3420         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3421                 for (i = 0; i < s.failed; i++) {
3422                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3423                         if (test_bit(R5_ReadError, &dev->flags)
3424                             && !test_bit(R5_LOCKED, &dev->flags)
3425                             && test_bit(R5_UPTODATE, &dev->flags)
3426                                 ) {
3427                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3428                                         set_bit(R5_Wantwrite, &dev->flags);
3429                                         set_bit(R5_ReWrite, &dev->flags);
3430                                         set_bit(R5_LOCKED, &dev->flags);
3431                                         s.locked++;
3432                                 } else {
3433                                         /* let's read it back */
3434                                         set_bit(R5_Wantread, &dev->flags);
3435                                         set_bit(R5_LOCKED, &dev->flags);
3436                                         s.locked++;
3437                                 }
3438                         }
3439                 }
3440
3441
3442         /* Finish reconstruct operations initiated by the expansion process */
3443         if (sh->reconstruct_state == reconstruct_state_result) {
3444                 struct stripe_head *sh_src
3445                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3446                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3447                         /* sh cannot be written until sh_src has been read.
3448                          * so arrange for sh to be delayed a little
3449                          */
3450                         set_bit(STRIPE_DELAYED, &sh->state);
3451                         set_bit(STRIPE_HANDLE, &sh->state);
3452                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3453                                               &sh_src->state))
3454                                 atomic_inc(&conf->preread_active_stripes);
3455                         release_stripe(sh_src);
3456                         goto finish;
3457                 }
3458                 if (sh_src)
3459                         release_stripe(sh_src);
3460
3461                 sh->reconstruct_state = reconstruct_state_idle;
3462                 clear_bit(STRIPE_EXPANDING, &sh->state);
3463                 for (i = conf->raid_disks; i--; ) {
3464                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3465                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3466                         s.locked++;
3467                 }
3468         }
3469
3470         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3471             !sh->reconstruct_state) {
3472                 /* Need to write out all blocks after computing parity */
3473                 sh->disks = conf->raid_disks;
3474                 stripe_set_idx(sh->sector, conf, 0, sh);
3475                 schedule_reconstruction(sh, &s, 1, 1);
3476         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3477                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3478                 atomic_dec(&conf->reshape_stripes);
3479                 wake_up(&conf->wait_for_overlap);
3480                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3481         }
3482
3483         if (s.expanding && s.locked == 0 &&
3484             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3485                 handle_stripe_expansion(conf, sh);
3486
3487 finish:
3488         /* wait for this device to become unblocked */
3489         if (unlikely(s.blocked_rdev))
3490                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3491
3492         if (s.ops_request)
3493                 raid_run_ops(sh, s.ops_request);
3494
3495         ops_run_io(sh, &s);
3496
3497
3498         if (s.dec_preread_active) {
3499                 /* We delay this until after ops_run_io so that if make_request
3500                  * is waiting on a flush, it won't continue until the writes
3501                  * have actually been submitted.
3502                  */
3503                 atomic_dec(&conf->preread_active_stripes);
3504                 if (atomic_read(&conf->preread_active_stripes) <
3505                     IO_THRESHOLD)
3506                         md_wakeup_thread(conf->mddev->thread);
3507         }
3508
3509         return_io(s.return_bi);
3510
3511         clear_bit(STRIPE_ACTIVE, &sh->state);
3512 }
3513
3514 static void raid5_activate_delayed(raid5_conf_t *conf)
3515 {
3516         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3517                 while (!list_empty(&conf->delayed_list)) {
3518                         struct list_head *l = conf->delayed_list.next;
3519                         struct stripe_head *sh;
3520                         sh = list_entry(l, struct stripe_head, lru);
3521                         list_del_init(l);
3522                         clear_bit(STRIPE_DELAYED, &sh->state);
3523                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3524                                 atomic_inc(&conf->preread_active_stripes);
3525                         list_add_tail(&sh->lru, &conf->hold_list);
3526                 }
3527         }
3528 }
3529
3530 static void activate_bit_delay(raid5_conf_t *conf)
3531 {
3532         /* device_lock is held */
3533         struct list_head head;
3534         list_add(&head, &conf->bitmap_list);
3535         list_del_init(&conf->bitmap_list);
3536         while (!list_empty(&head)) {
3537                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3538                 list_del_init(&sh->lru);
3539                 atomic_inc(&sh->count);
3540                 __release_stripe(conf, sh);
3541         }
3542 }
3543
3544 int md_raid5_congested(mddev_t *mddev, int bits)
3545 {
3546         raid5_conf_t *conf = mddev->private;
3547
3548         /* No difference between reads and writes.  Just check
3549          * how busy the stripe_cache is
3550          */
3551
3552         if (conf->inactive_blocked)
3553                 return 1;
3554         if (conf->quiesce)
3555                 return 1;
3556         if (list_empty_careful(&conf->inactive_list))
3557                 return 1;
3558
3559         return 0;
3560 }
3561 EXPORT_SYMBOL_GPL(md_raid5_congested);
3562
3563 static int raid5_congested(void *data, int bits)
3564 {
3565         mddev_t *mddev = data;
3566
3567         return mddev_congested(mddev, bits) ||
3568                 md_raid5_congested(mddev, bits);
3569 }
3570
3571 /* We want read requests to align with chunks where possible,
3572  * but write requests don't need to.
3573  */
3574 static int raid5_mergeable_bvec(struct request_queue *q,
3575                                 struct bvec_merge_data *bvm,
3576                                 struct bio_vec *biovec)
3577 {
3578         mddev_t *mddev = q->queuedata;
3579         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3580         int max;
3581         unsigned int chunk_sectors = mddev->chunk_sectors;
3582         unsigned int bio_sectors = bvm->bi_size >> 9;
3583
3584         if ((bvm->bi_rw & 1) == WRITE)
3585                 return biovec->bv_len; /* always allow writes to be mergeable */
3586
3587         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3588                 chunk_sectors = mddev->new_chunk_sectors;
3589         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3590         if (max < 0) max = 0;
3591         if (max <= biovec->bv_len && bio_sectors == 0)
3592                 return biovec->bv_len;
3593         else
3594                 return max;
3595 }
3596
3597
3598 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3599 {
3600         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3601         unsigned int chunk_sectors = mddev->chunk_sectors;
3602         unsigned int bio_sectors = bio->bi_size >> 9;
3603
3604         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3605                 chunk_sectors = mddev->new_chunk_sectors;
3606         return  chunk_sectors >=
3607                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3608 }
3609
3610 /*
3611  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3612  *  later sampled by raid5d.
3613  */
3614 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3615 {
3616         unsigned long flags;
3617
3618         spin_lock_irqsave(&conf->device_lock, flags);
3619
3620         bi->bi_next = conf->retry_read_aligned_list;
3621         conf->retry_read_aligned_list = bi;
3622
3623         spin_unlock_irqrestore(&conf->device_lock, flags);
3624         md_wakeup_thread(conf->mddev->thread);
3625 }
3626
3627
3628 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3629 {
3630         struct bio *bi;
3631
3632         bi = conf->retry_read_aligned;
3633         if (bi) {
3634                 conf->retry_read_aligned = NULL;
3635                 return bi;
3636         }
3637         bi = conf->retry_read_aligned_list;
3638         if(bi) {
3639                 conf->retry_read_aligned_list = bi->bi_next;
3640                 bi->bi_next = NULL;
3641                 /*
3642                  * this sets the active strip count to 1 and the processed
3643                  * strip count to zero (upper 8 bits)
3644                  */
3645                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3646         }
3647
3648         return bi;
3649 }
3650
3651
3652 /*
3653  *  The "raid5_align_endio" should check if the read succeeded and if it
3654  *  did, call bio_endio on the original bio (having bio_put the new bio
3655  *  first).
3656  *  If the read failed..
3657  */
3658 static void raid5_align_endio(struct bio *bi, int error)
3659 {
3660         struct bio* raid_bi  = bi->bi_private;
3661         mddev_t *mddev;
3662         raid5_conf_t *conf;
3663         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3664         mdk_rdev_t *rdev;
3665
3666         bio_put(bi);
3667
3668         rdev = (void*)raid_bi->bi_next;
3669         raid_bi->bi_next = NULL;
3670         mddev = rdev->mddev;
3671         conf = mddev->private;
3672
3673         rdev_dec_pending(rdev, conf->mddev);
3674
3675         if (!error && uptodate) {
3676                 bio_endio(raid_bi, 0);
3677                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3678                         wake_up(&conf->wait_for_stripe);
3679                 return;
3680         }
3681
3682
3683         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3684
3685         add_bio_to_retry(raid_bi, conf);
3686 }
3687
3688 static int bio_fits_rdev(struct bio *bi)
3689 {
3690         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3691
3692         if ((bi->bi_size>>9) > queue_max_sectors(q))
3693                 return 0;
3694         blk_recount_segments(q, bi);
3695         if (bi->bi_phys_segments > queue_max_segments(q))
3696                 return 0;
3697
3698         if (q->merge_bvec_fn)
3699                 /* it's too hard to apply the merge_bvec_fn at this stage,
3700                  * just just give up
3701                  */
3702                 return 0;
3703
3704         return 1;
3705 }
3706
3707
3708 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3709 {
3710         raid5_conf_t *conf = mddev->private;
3711         int dd_idx;
3712         struct bio* align_bi;
3713         mdk_rdev_t *rdev;
3714
3715         if (!in_chunk_boundary(mddev, raid_bio)) {
3716                 pr_debug("chunk_aligned_read : non aligned\n");
3717                 return 0;
3718         }
3719         /*
3720          * use bio_clone_mddev to make a copy of the bio
3721          */
3722         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3723         if (!align_bi)
3724                 return 0;
3725         /*
3726          *   set bi_end_io to a new function, and set bi_private to the
3727          *     original bio.
3728          */
3729         align_bi->bi_end_io  = raid5_align_endio;
3730         align_bi->bi_private = raid_bio;
3731         /*
3732          *      compute position
3733          */
3734         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3735                                                     0,
3736                                                     &dd_idx, NULL);
3737
3738         rcu_read_lock();
3739         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3740         if (rdev && test_bit(In_sync, &rdev->flags)) {
3741                 atomic_inc(&rdev->nr_pending);
3742                 rcu_read_unlock();
3743                 raid_bio->bi_next = (void*)rdev;
3744                 align_bi->bi_bdev =  rdev->bdev;
3745                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3746                 align_bi->bi_sector += rdev->data_offset;
3747
3748                 if (!bio_fits_rdev(align_bi)) {
3749                         /* too big in some way */
3750                         bio_put(align_bi);
3751                         rdev_dec_pending(rdev, mddev);
3752                         return 0;
3753                 }
3754
3755                 spin_lock_irq(&conf->device_lock);
3756                 wait_event_lock_irq(conf->wait_for_stripe,
3757                                     conf->quiesce == 0,
3758                                     conf->device_lock, /* nothing */);
3759                 atomic_inc(&conf->active_aligned_reads);
3760                 spin_unlock_irq(&conf->device_lock);
3761
3762                 generic_make_request(align_bi);
3763                 return 1;
3764         } else {
3765                 rcu_read_unlock();
3766                 bio_put(align_bi);
3767                 return 0;
3768         }
3769 }
3770
3771 /* __get_priority_stripe - get the next stripe to process
3772  *
3773  * Full stripe writes are allowed to pass preread active stripes up until
3774  * the bypass_threshold is exceeded.  In general the bypass_count
3775  * increments when the handle_list is handled before the hold_list; however, it
3776  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3777  * stripe with in flight i/o.  The bypass_count will be reset when the
3778  * head of the hold_list has changed, i.e. the head was promoted to the
3779  * handle_list.
3780  */
3781 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3782 {
3783         struct stripe_head *sh;
3784
3785         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3786                   __func__,
3787                   list_empty(&conf->handle_list) ? "empty" : "busy",
3788                   list_empty(&conf->hold_list) ? "empty" : "busy",
3789                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3790
3791         if (!list_empty(&conf->handle_list)) {
3792                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3793
3794                 if (list_empty(&conf->hold_list))
3795                         conf->bypass_count = 0;
3796                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3797                         if (conf->hold_list.next == conf->last_hold)
3798                                 conf->bypass_count++;
3799                         else {
3800                                 conf->last_hold = conf->hold_list.next;
3801                                 conf->bypass_count -= conf->bypass_threshold;
3802                                 if (conf->bypass_count < 0)
3803                                         conf->bypass_count = 0;
3804                         }
3805                 }
3806         } else if (!list_empty(&conf->hold_list) &&
3807                    ((conf->bypass_threshold &&
3808                      conf->bypass_count > conf->bypass_threshold) ||
3809                     atomic_read(&conf->pending_full_writes) == 0)) {
3810                 sh = list_entry(conf->hold_list.next,
3811                                 typeof(*sh), lru);
3812                 conf->bypass_count -= conf->bypass_threshold;
3813                 if (conf->bypass_count < 0)
3814                         conf->bypass_count = 0;
3815         } else
3816                 return NULL;
3817
3818         list_del_init(&sh->lru);
3819         atomic_inc(&sh->count);
3820         BUG_ON(atomic_read(&sh->count) != 1);
3821         return sh;
3822 }
3823
3824 static int make_request(mddev_t *mddev, struct bio * bi)
3825 {
3826         raid5_conf_t *conf = mddev->private;
3827         int dd_idx;
3828         sector_t new_sector;
3829         sector_t logical_sector, last_sector;
3830         struct stripe_head *sh;
3831         const int rw = bio_data_dir(bi);
3832         int remaining;
3833         int plugged;
3834
3835         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3836                 md_flush_request(mddev, bi);
3837                 return 0;
3838         }
3839
3840         md_write_start(mddev, bi);
3841
3842         if (rw == READ &&
3843              mddev->reshape_position == MaxSector &&
3844              chunk_aligned_read(mddev,bi))
3845                 return 0;
3846
3847         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3848         last_sector = bi->bi_sector + (bi->bi_size>>9);
3849         bi->bi_next = NULL;
3850         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3851
3852         plugged = mddev_check_plugged(mddev);
3853         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3854                 DEFINE_WAIT(w);
3855                 int disks, data_disks;
3856                 int previous;
3857
3858         retry:
3859                 previous = 0;
3860                 disks = conf->raid_disks;
3861                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3862                 if (unlikely(conf->reshape_progress != MaxSector)) {
3863                         /* spinlock is needed as reshape_progress may be
3864                          * 64bit on a 32bit platform, and so it might be
3865                          * possible to see a half-updated value
3866                          * Of course reshape_progress could change after
3867                          * the lock is dropped, so once we get a reference
3868                          * to the stripe that we think it is, we will have
3869                          * to check again.
3870                          */
3871                         spin_lock_irq(&conf->device_lock);
3872                         if (mddev->delta_disks < 0
3873                             ? logical_sector < conf->reshape_progress
3874                             : logical_sector >= conf->reshape_progress) {
3875                                 disks = conf->previous_raid_disks;
3876                                 previous = 1;
3877                         } else {
3878                                 if (mddev->delta_disks < 0
3879                                     ? logical_sector < conf->reshape_safe
3880                                     : logical_sector >= conf->reshape_safe) {
3881                                         spin_unlock_irq(&conf->device_lock);
3882                                         schedule();
3883                                         goto retry;
3884                                 }
3885                         }
3886                         spin_unlock_irq(&conf->device_lock);
3887                 }
3888                 data_disks = disks - conf->max_degraded;
3889
3890                 new_sector = raid5_compute_sector(conf, logical_sector,
3891                                                   previous,
3892                                                   &dd_idx, NULL);
3893                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3894                         (unsigned long long)new_sector, 
3895                         (unsigned long long)logical_sector);
3896
3897                 sh = get_active_stripe(conf, new_sector, previous,
3898                                        (bi->bi_rw&RWA_MASK), 0);
3899                 if (sh) {
3900                         if (unlikely(previous)) {
3901                                 /* expansion might have moved on while waiting for a
3902                                  * stripe, so we must do the range check again.
3903                                  * Expansion could still move past after this
3904                                  * test, but as we are holding a reference to
3905                                  * 'sh', we know that if that happens,
3906                                  *  STRIPE_EXPANDING will get set and the expansion
3907                                  * won't proceed until we finish with the stripe.
3908                                  */
3909                                 int must_retry = 0;
3910                                 spin_lock_irq(&conf->device_lock);
3911                                 if (mddev->delta_disks < 0
3912                                     ? logical_sector >= conf->reshape_progress
3913                                     : logical_sector < conf->reshape_progress)
3914                                         /* mismatch, need to try again */
3915                                         must_retry = 1;
3916                                 spin_unlock_irq(&conf->device_lock);
3917                                 if (must_retry) {
3918                                         release_stripe(sh);
3919                                         schedule();
3920                                         goto retry;
3921                                 }
3922                         }
3923
3924                         if (rw == WRITE &&
3925                             logical_sector >= mddev->suspend_lo &&
3926                             logical_sector < mddev->suspend_hi) {
3927                                 release_stripe(sh);
3928                                 /* As the suspend_* range is controlled by
3929                                  * userspace, we want an interruptible
3930                                  * wait.
3931                                  */
3932                                 flush_signals(current);
3933                                 prepare_to_wait(&conf->wait_for_overlap,
3934                                                 &w, TASK_INTERRUPTIBLE);
3935                                 if (logical_sector >= mddev->suspend_lo &&
3936                                     logical_sector < mddev->suspend_hi)
3937                                         schedule();
3938                                 goto retry;
3939                         }
3940
3941                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3942                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3943                                 /* Stripe is busy expanding or
3944                                  * add failed due to overlap.  Flush everything
3945                                  * and wait a while
3946                                  */
3947                                 md_wakeup_thread(mddev->thread);
3948                                 release_stripe(sh);
3949                                 schedule();
3950                                 goto retry;
3951                         }
3952                         finish_wait(&conf->wait_for_overlap, &w);
3953                         set_bit(STRIPE_HANDLE, &sh->state);
3954                         clear_bit(STRIPE_DELAYED, &sh->state);
3955                         if ((bi->bi_rw & REQ_SYNC) &&
3956                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3957                                 atomic_inc(&conf->preread_active_stripes);
3958                         release_stripe(sh);
3959                 } else {
3960                         /* cannot get stripe for read-ahead, just give-up */
3961                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3962                         finish_wait(&conf->wait_for_overlap, &w);
3963                         break;
3964                 }
3965                         
3966         }
3967         if (!plugged)
3968                 md_wakeup_thread(mddev->thread);
3969
3970         spin_lock_irq(&conf->device_lock);
3971         remaining = raid5_dec_bi_phys_segments(bi);
3972         spin_unlock_irq(&conf->device_lock);
3973         if (remaining == 0) {
3974
3975                 if ( rw == WRITE )
3976                         md_write_end(mddev);
3977
3978                 bio_endio(bi, 0);
3979         }
3980
3981         return 0;
3982 }
3983
3984 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3985
3986 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3987 {
3988         /* reshaping is quite different to recovery/resync so it is
3989          * handled quite separately ... here.
3990          *
3991          * On each call to sync_request, we gather one chunk worth of
3992          * destination stripes and flag them as expanding.
3993          * Then we find all the source stripes and request reads.
3994          * As the reads complete, handle_stripe will copy the data
3995          * into the destination stripe and release that stripe.
3996          */
3997         raid5_conf_t *conf = mddev->private;
3998         struct stripe_head *sh;
3999         sector_t first_sector, last_sector;
4000         int raid_disks = conf->previous_raid_disks;
4001         int data_disks = raid_disks - conf->max_degraded;
4002         int new_data_disks = conf->raid_disks - conf->max_degraded;
4003         int i;
4004         int dd_idx;
4005         sector_t writepos, readpos, safepos;
4006         sector_t stripe_addr;
4007         int reshape_sectors;
4008         struct list_head stripes;
4009
4010         if (sector_nr == 0) {
4011                 /* If restarting in the middle, skip the initial sectors */
4012                 if (mddev->delta_disks < 0 &&
4013                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4014                         sector_nr = raid5_size(mddev, 0, 0)
4015                                 - conf->reshape_progress;
4016                 } else if (mddev->delta_disks >= 0 &&
4017                            conf->reshape_progress > 0)
4018                         sector_nr = conf->reshape_progress;
4019                 sector_div(sector_nr, new_data_disks);
4020                 if (sector_nr) {
4021                         mddev->curr_resync_completed = sector_nr;
4022                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4023                         *skipped = 1;
4024                         return sector_nr;
4025                 }
4026         }
4027
4028         /* We need to process a full chunk at a time.
4029          * If old and new chunk sizes differ, we need to process the
4030          * largest of these
4031          */
4032         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4033                 reshape_sectors = mddev->new_chunk_sectors;
4034         else
4035                 reshape_sectors = mddev->chunk_sectors;
4036
4037         /* we update the metadata when there is more than 3Meg
4038          * in the block range (that is rather arbitrary, should
4039          * probably be time based) or when the data about to be
4040          * copied would over-write the source of the data at
4041          * the front of the range.
4042          * i.e. one new_stripe along from reshape_progress new_maps
4043          * to after where reshape_safe old_maps to
4044          */
4045         writepos = conf->reshape_progress;
4046         sector_div(writepos, new_data_disks);
4047         readpos = conf->reshape_progress;
4048         sector_div(readpos, data_disks);
4049         safepos = conf->reshape_safe;
4050         sector_div(safepos, data_disks);
4051         if (mddev->delta_disks < 0) {
4052                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4053                 readpos += reshape_sectors;
4054                 safepos += reshape_sectors;
4055         } else {
4056                 writepos += reshape_sectors;
4057                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4058                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4059         }
4060
4061         /* 'writepos' is the most advanced device address we might write.
4062          * 'readpos' is the least advanced device address we might read.
4063          * 'safepos' is the least address recorded in the metadata as having
4064          *     been reshaped.
4065          * If 'readpos' is behind 'writepos', then there is no way that we can
4066          * ensure safety in the face of a crash - that must be done by userspace
4067          * making a backup of the data.  So in that case there is no particular
4068          * rush to update metadata.
4069          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4070          * update the metadata to advance 'safepos' to match 'readpos' so that
4071          * we can be safe in the event of a crash.
4072          * So we insist on updating metadata if safepos is behind writepos and
4073          * readpos is beyond writepos.
4074          * In any case, update the metadata every 10 seconds.
4075          * Maybe that number should be configurable, but I'm not sure it is
4076          * worth it.... maybe it could be a multiple of safemode_delay???
4077          */
4078         if ((mddev->delta_disks < 0
4079              ? (safepos > writepos && readpos < writepos)
4080              : (safepos < writepos && readpos > writepos)) ||
4081             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4082                 /* Cannot proceed until we've updated the superblock... */
4083                 wait_event(conf->wait_for_overlap,
4084                            atomic_read(&conf->reshape_stripes)==0);
4085                 mddev->reshape_position = conf->reshape_progress;
4086                 mddev->curr_resync_completed = sector_nr;
4087                 conf->reshape_checkpoint = jiffies;
4088                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4089                 md_wakeup_thread(mddev->thread);
4090                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4091                            kthread_should_stop());
4092                 spin_lock_irq(&conf->device_lock);
4093                 conf->reshape_safe = mddev->reshape_position;
4094                 spin_unlock_irq(&conf->device_lock);
4095                 wake_up(&conf->wait_for_overlap);
4096                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4097         }
4098
4099         if (mddev->delta_disks < 0) {
4100                 BUG_ON(conf->reshape_progress == 0);
4101                 stripe_addr = writepos;
4102                 BUG_ON((mddev->dev_sectors &
4103                         ~((sector_t)reshape_sectors - 1))
4104                        - reshape_sectors - stripe_addr
4105                        != sector_nr);
4106         } else {
4107                 BUG_ON(writepos != sector_nr + reshape_sectors);
4108                 stripe_addr = sector_nr;
4109         }
4110         INIT_LIST_HEAD(&stripes);
4111         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4112                 int j;
4113                 int skipped_disk = 0;
4114                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4115                 set_bit(STRIPE_EXPANDING, &sh->state);
4116                 atomic_inc(&conf->reshape_stripes);
4117                 /* If any of this stripe is beyond the end of the old
4118                  * array, then we need to zero those blocks
4119                  */
4120                 for (j=sh->disks; j--;) {
4121                         sector_t s;
4122                         if (j == sh->pd_idx)
4123                                 continue;
4124                         if (conf->level == 6 &&
4125                             j == sh->qd_idx)
4126                                 continue;
4127                         s = compute_blocknr(sh, j, 0);
4128                         if (s < raid5_size(mddev, 0, 0)) {
4129                                 skipped_disk = 1;
4130                                 continue;
4131                         }
4132                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4133                         set_bit(R5_Expanded, &sh->dev[j].flags);
4134                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4135                 }
4136                 if (!skipped_disk) {
4137                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4138                         set_bit(STRIPE_HANDLE, &sh->state);
4139                 }
4140                 list_add(&sh->lru, &stripes);
4141         }
4142         spin_lock_irq(&conf->device_lock);
4143         if (mddev->delta_disks < 0)
4144                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4145         else
4146                 conf->reshape_progress += reshape_sectors * new_data_disks;
4147         spin_unlock_irq(&conf->device_lock);
4148         /* Ok, those stripe are ready. We can start scheduling
4149          * reads on the source stripes.
4150          * The source stripes are determined by mapping the first and last
4151          * block on the destination stripes.
4152          */
4153         first_sector =
4154                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4155                                      1, &dd_idx, NULL);
4156         last_sector =
4157                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4158                                             * new_data_disks - 1),
4159                                      1, &dd_idx, NULL);
4160         if (last_sector >= mddev->dev_sectors)
4161                 last_sector = mddev->dev_sectors - 1;
4162         while (first_sector <= last_sector) {
4163                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4164                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4165                 set_bit(STRIPE_HANDLE, &sh->state);
4166                 release_stripe(sh);
4167                 first_sector += STRIPE_SECTORS;
4168         }
4169         /* Now that the sources are clearly marked, we can release
4170          * the destination stripes
4171          */
4172         while (!list_empty(&stripes)) {
4173                 sh = list_entry(stripes.next, struct stripe_head, lru);
4174                 list_del_init(&sh->lru);
4175                 release_stripe(sh);
4176         }
4177         /* If this takes us to the resync_max point where we have to pause,
4178          * then we need to write out the superblock.
4179          */
4180         sector_nr += reshape_sectors;
4181         if ((sector_nr - mddev->curr_resync_completed) * 2
4182             >= mddev->resync_max - mddev->curr_resync_completed) {
4183                 /* Cannot proceed until we've updated the superblock... */
4184                 wait_event(conf->wait_for_overlap,
4185                            atomic_read(&conf->reshape_stripes) == 0);
4186                 mddev->reshape_position = conf->reshape_progress;
4187                 mddev->curr_resync_completed = sector_nr;
4188                 conf->reshape_checkpoint = jiffies;
4189                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4190                 md_wakeup_thread(mddev->thread);
4191                 wait_event(mddev->sb_wait,
4192                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4193                            || kthread_should_stop());
4194                 spin_lock_irq(&conf->device_lock);
4195                 conf->reshape_safe = mddev->reshape_position;
4196                 spin_unlock_irq(&conf->device_lock);
4197                 wake_up(&conf->wait_for_overlap);
4198                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4199         }
4200         return reshape_sectors;
4201 }
4202
4203 /* FIXME go_faster isn't used */
4204 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4205 {
4206         raid5_conf_t *conf = mddev->private;
4207         struct stripe_head *sh;
4208         sector_t max_sector = mddev->dev_sectors;
4209         sector_t sync_blocks;
4210         int still_degraded = 0;
4211         int i;
4212
4213         if (sector_nr >= max_sector) {
4214                 /* just being told to finish up .. nothing much to do */
4215
4216                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4217                         end_reshape(conf);
4218                         return 0;
4219                 }
4220
4221                 if (mddev->curr_resync < max_sector) /* aborted */
4222                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4223                                         &sync_blocks, 1);
4224                 else /* completed sync */
4225                         conf->fullsync = 0;
4226                 bitmap_close_sync(mddev->bitmap);
4227
4228                 return 0;
4229         }
4230
4231         /* Allow raid5_quiesce to complete */
4232         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4233
4234         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4235                 return reshape_request(mddev, sector_nr, skipped);
4236
4237         /* No need to check resync_max as we never do more than one
4238          * stripe, and as resync_max will always be on a chunk boundary,
4239          * if the check in md_do_sync didn't fire, there is no chance
4240          * of overstepping resync_max here
4241          */
4242
4243         /* if there is too many failed drives and we are trying
4244          * to resync, then assert that we are finished, because there is
4245          * nothing we can do.
4246          */
4247         if (mddev->degraded >= conf->max_degraded &&
4248             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4249                 sector_t rv = mddev->dev_sectors - sector_nr;
4250                 *skipped = 1;
4251                 return rv;
4252         }
4253         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4254             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4255             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4256                 /* we can skip this block, and probably more */
4257                 sync_blocks /= STRIPE_SECTORS;
4258                 *skipped = 1;
4259                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4260         }
4261
4262
4263         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4264
4265         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4266         if (sh == NULL) {
4267                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4268                 /* make sure we don't swamp the stripe cache if someone else
4269                  * is trying to get access
4270                  */
4271                 schedule_timeout_uninterruptible(1);
4272         }
4273         /* Need to check if array will still be degraded after recovery/resync
4274          * We don't need to check the 'failed' flag as when that gets set,
4275          * recovery aborts.
4276          */
4277         for (i = 0; i < conf->raid_disks; i++)
4278                 if (conf->disks[i].rdev == NULL)
4279                         still_degraded = 1;
4280
4281         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4282
4283         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4284
4285         handle_stripe(sh);
4286         release_stripe(sh);
4287
4288         return STRIPE_SECTORS;
4289 }
4290
4291 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4292 {
4293         /* We may not be able to submit a whole bio at once as there
4294          * may not be enough stripe_heads available.
4295          * We cannot pre-allocate enough stripe_heads as we may need
4296          * more than exist in the cache (if we allow ever large chunks).
4297          * So we do one stripe head at a time and record in
4298          * ->bi_hw_segments how many have been done.
4299          *
4300          * We *know* that this entire raid_bio is in one chunk, so
4301          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4302          */
4303         struct stripe_head *sh;
4304         int dd_idx;
4305         sector_t sector, logical_sector, last_sector;
4306         int scnt = 0;
4307         int remaining;
4308         int handled = 0;
4309
4310         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4311         sector = raid5_compute_sector(conf, logical_sector,
4312                                       0, &dd_idx, NULL);
4313         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4314
4315         for (; logical_sector < last_sector;
4316              logical_sector += STRIPE_SECTORS,
4317                      sector += STRIPE_SECTORS,
4318                      scnt++) {
4319
4320                 if (scnt < raid5_bi_hw_segments(raid_bio))
4321                         /* already done this stripe */
4322                         continue;
4323
4324                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4325
4326                 if (!sh) {
4327                         /* failed to get a stripe - must wait */
4328                         raid5_set_bi_hw_segments(raid_bio, scnt);
4329                         conf->retry_read_aligned = raid_bio;
4330                         return handled;
4331                 }
4332
4333                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4334                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4335                         release_stripe(sh);
4336                         raid5_set_bi_hw_segments(raid_bio, scnt);
4337                         conf->retry_read_aligned = raid_bio;
4338                         return handled;
4339                 }
4340
4341                 handle_stripe(sh);
4342                 release_stripe(sh);
4343                 handled++;
4344         }
4345         spin_lock_irq(&conf->device_lock);
4346         remaining = raid5_dec_bi_phys_segments(raid_bio);
4347         spin_unlock_irq(&conf->device_lock);
4348         if (remaining == 0)
4349                 bio_endio(raid_bio, 0);
4350         if (atomic_dec_and_test(&conf->active_aligned_reads))
4351                 wake_up(&conf->wait_for_stripe);
4352         return handled;
4353 }
4354
4355
4356 /*
4357  * This is our raid5 kernel thread.
4358  *
4359  * We scan the hash table for stripes which can be handled now.
4360  * During the scan, completed stripes are saved for us by the interrupt
4361  * handler, so that they will not have to wait for our next wakeup.
4362  */
4363 static void raid5d(mddev_t *mddev)
4364 {
4365         struct stripe_head *sh;
4366         raid5_conf_t *conf = mddev->private;
4367         int handled;
4368         struct blk_plug plug;
4369
4370         pr_debug("+++ raid5d active\n");
4371
4372         md_check_recovery(mddev);
4373
4374         blk_start_plug(&plug);
4375         handled = 0;
4376         spin_lock_irq(&conf->device_lock);
4377         while (1) {
4378                 struct bio *bio;
4379
4380                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4381                     !list_empty(&conf->bitmap_list)) {
4382                         /* Now is a good time to flush some bitmap updates */
4383                         conf->seq_flush++;
4384                         spin_unlock_irq(&conf->device_lock);
4385                         bitmap_unplug(mddev->bitmap);
4386                         spin_lock_irq(&conf->device_lock);
4387                         conf->seq_write = conf->seq_flush;
4388                         activate_bit_delay(conf);
4389                 }
4390                 if (atomic_read(&mddev->plug_cnt) == 0)
4391                         raid5_activate_delayed(conf);
4392
4393                 while ((bio = remove_bio_from_retry(conf))) {
4394                         int ok;
4395                         spin_unlock_irq(&conf->device_lock);
4396                         ok = retry_aligned_read(conf, bio);
4397                         spin_lock_irq(&conf->device_lock);
4398                         if (!ok)
4399                                 break;
4400                         handled++;
4401                 }
4402
4403                 sh = __get_priority_stripe(conf);
4404
4405                 if (!sh)
4406                         break;
4407                 spin_unlock_irq(&conf->device_lock);
4408                 
4409                 handled++;
4410                 handle_stripe(sh);
4411                 release_stripe(sh);
4412                 cond_resched();
4413
4414                 spin_lock_irq(&conf->device_lock);
4415         }
4416         pr_debug("%d stripes handled\n", handled);
4417
4418         spin_unlock_irq(&conf->device_lock);
4419
4420         async_tx_issue_pending_all();
4421         blk_finish_plug(&plug);
4422
4423         pr_debug("--- raid5d inactive\n");
4424 }
4425
4426 static ssize_t
4427 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4428 {
4429         raid5_conf_t *conf = mddev->private;
4430         if (conf)
4431                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4432         else
4433                 return 0;
4434 }
4435
4436 int
4437 raid5_set_cache_size(mddev_t *mddev, int size)
4438 {
4439         raid5_conf_t *conf = mddev->private;
4440         int err;
4441
4442         if (size <= 16 || size > 32768)
4443                 return -EINVAL;
4444         while (size < conf->max_nr_stripes) {
4445                 if (drop_one_stripe(conf))
4446                         conf->max_nr_stripes--;
4447                 else
4448                         break;
4449         }
4450         err = md_allow_write(mddev);
4451         if (err)
4452                 return err;
4453         while (size > conf->max_nr_stripes) {
4454                 if (grow_one_stripe(conf))
4455                         conf->max_nr_stripes++;
4456                 else break;
4457         }
4458         return 0;
4459 }
4460 EXPORT_SYMBOL(raid5_set_cache_size);
4461
4462 static ssize_t
4463 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4464 {
4465         raid5_conf_t *conf = mddev->private;
4466         unsigned long new;
4467         int err;
4468
4469         if (len >= PAGE_SIZE)
4470                 return -EINVAL;
4471         if (!conf)
4472                 return -ENODEV;
4473
4474         if (strict_strtoul(page, 10, &new))
4475                 return -EINVAL;
4476         err = raid5_set_cache_size(mddev, new);
4477         if (err)
4478                 return err;
4479         return len;
4480 }
4481
4482 static struct md_sysfs_entry
4483 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4484                                 raid5_show_stripe_cache_size,
4485                                 raid5_store_stripe_cache_size);
4486
4487 static ssize_t
4488 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4489 {
4490         raid5_conf_t *conf = mddev->private;
4491         if (conf)
4492                 return sprintf(page, "%d\n", conf->bypass_threshold);
4493         else
4494                 return 0;
4495 }
4496
4497 static ssize_t
4498 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4499 {
4500         raid5_conf_t *conf = mddev->private;
4501         unsigned long new;
4502         if (len >= PAGE_SIZE)
4503                 return -EINVAL;
4504         if (!conf)
4505                 return -ENODEV;
4506
4507         if (strict_strtoul(page, 10, &new))
4508                 return -EINVAL;
4509         if (new > conf->max_nr_stripes)
4510                 return -EINVAL;
4511         conf->bypass_threshold = new;
4512         return len;
4513 }
4514
4515 static struct md_sysfs_entry
4516 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4517                                         S_IRUGO | S_IWUSR,
4518                                         raid5_show_preread_threshold,
4519                                         raid5_store_preread_threshold);
4520
4521 static ssize_t
4522 stripe_cache_active_show(mddev_t *mddev, char *page)
4523 {
4524         raid5_conf_t *conf = mddev->private;
4525         if (conf)
4526                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4527         else
4528                 return 0;
4529 }
4530
4531 static struct md_sysfs_entry
4532 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4533
4534 static struct attribute *raid5_attrs[] =  {
4535         &raid5_stripecache_size.attr,
4536         &raid5_stripecache_active.attr,
4537         &raid5_preread_bypass_threshold.attr,
4538         NULL,
4539 };
4540 static struct attribute_group raid5_attrs_group = {
4541         .name = NULL,
4542         .attrs = raid5_attrs,
4543 };
4544
4545 static sector_t
4546 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4547 {
4548         raid5_conf_t *conf = mddev->private;
4549
4550         if (!sectors)
4551                 sectors = mddev->dev_sectors;
4552         if (!raid_disks)
4553                 /* size is defined by the smallest of previous and new size */
4554                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4555
4556         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4557         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4558         return sectors * (raid_disks - conf->max_degraded);
4559 }
4560
4561 static void raid5_free_percpu(raid5_conf_t *conf)
4562 {
4563         struct raid5_percpu *percpu;
4564         unsigned long cpu;
4565
4566         if (!conf->percpu)
4567                 return;
4568
4569         get_online_cpus();
4570         for_each_possible_cpu(cpu) {
4571                 percpu = per_cpu_ptr(conf->percpu, cpu);
4572                 safe_put_page(percpu->spare_page);
4573                 kfree(percpu->scribble);
4574         }
4575 #ifdef CONFIG_HOTPLUG_CPU
4576         unregister_cpu_notifier(&conf->cpu_notify);
4577 #endif
4578         put_online_cpus();
4579
4580         free_percpu(conf->percpu);
4581 }
4582
4583 static void free_conf(raid5_conf_t *conf)
4584 {
4585         shrink_stripes(conf);
4586         raid5_free_percpu(conf);
4587         kfree(conf->disks);
4588         kfree(conf->stripe_hashtbl);
4589         kfree(conf);
4590 }
4591
4592 #ifdef CONFIG_HOTPLUG_CPU
4593 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4594                               void *hcpu)
4595 {
4596         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4597         long cpu = (long)hcpu;
4598         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4599
4600         switch (action) {
4601         case CPU_UP_PREPARE:
4602         case CPU_UP_PREPARE_FROZEN:
4603                 if (conf->level == 6 && !percpu->spare_page)
4604                         percpu->spare_page = alloc_page(GFP_KERNEL);
4605                 if (!percpu->scribble)
4606                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4607
4608                 if (!percpu->scribble ||
4609                     (conf->level == 6 && !percpu->spare_page)) {
4610                         safe_put_page(percpu->spare_page);
4611                         kfree(percpu->scribble);
4612                         pr_err("%s: failed memory allocation for cpu%ld\n",
4613                                __func__, cpu);
4614                         return notifier_from_errno(-ENOMEM);
4615                 }
4616                 break;
4617         case CPU_DEAD:
4618         case CPU_DEAD_FROZEN:
4619                 safe_put_page(percpu->spare_page);
4620                 kfree(percpu->scribble);
4621                 percpu->spare_page = NULL;
4622                 percpu->scribble = NULL;
4623                 break;
4624         default:
4625                 break;
4626         }
4627         return NOTIFY_OK;
4628 }
4629 #endif
4630
4631 static int raid5_alloc_percpu(raid5_conf_t *conf)
4632 {
4633         unsigned long cpu;
4634         struct page *spare_page;
4635         struct raid5_percpu __percpu *allcpus;
4636         void *scribble;
4637         int err;
4638
4639         allcpus = alloc_percpu(struct raid5_percpu);
4640         if (!allcpus)
4641                 return -ENOMEM;
4642         conf->percpu = allcpus;
4643
4644         get_online_cpus();
4645         err = 0;
4646         for_each_present_cpu(cpu) {
4647                 if (conf->level == 6) {
4648                         spare_page = alloc_page(GFP_KERNEL);
4649                         if (!spare_page) {
4650                                 err = -ENOMEM;
4651                                 break;
4652                         }
4653                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4654                 }
4655                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4656                 if (!scribble) {
4657                         err = -ENOMEM;
4658                         break;
4659                 }
4660                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4661         }
4662 #ifdef CONFIG_HOTPLUG_CPU
4663         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4664         conf->cpu_notify.priority = 0;
4665         if (err == 0)
4666                 err = register_cpu_notifier(&conf->cpu_notify);
4667 #endif
4668         put_online_cpus();
4669
4670         return err;
4671 }
4672
4673 static raid5_conf_t *setup_conf(mddev_t *mddev)
4674 {
4675         raid5_conf_t *conf;
4676         int raid_disk, memory, max_disks;
4677         mdk_rdev_t *rdev;
4678         struct disk_info *disk;
4679
4680         if (mddev->new_level != 5
4681             && mddev->new_level != 4
4682             && mddev->new_level != 6) {
4683                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4684                        mdname(mddev), mddev->new_level);
4685                 return ERR_PTR(-EIO);
4686         }
4687         if ((mddev->new_level == 5
4688              && !algorithm_valid_raid5(mddev->new_layout)) ||
4689             (mddev->new_level == 6
4690              && !algorithm_valid_raid6(mddev->new_layout))) {
4691                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4692                        mdname(mddev), mddev->new_layout);
4693                 return ERR_PTR(-EIO);
4694         }
4695         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4696                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4697                        mdname(mddev), mddev->raid_disks);
4698                 return ERR_PTR(-EINVAL);
4699         }
4700
4701         if (!mddev->new_chunk_sectors ||
4702             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4703             !is_power_of_2(mddev->new_chunk_sectors)) {
4704                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4705                        mdname(mddev), mddev->new_chunk_sectors << 9);
4706                 return ERR_PTR(-EINVAL);
4707         }
4708
4709         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4710         if (conf == NULL)
4711                 goto abort;
4712         spin_lock_init(&conf->device_lock);
4713         init_waitqueue_head(&conf->wait_for_stripe);
4714         init_waitqueue_head(&conf->wait_for_overlap);
4715         INIT_LIST_HEAD(&conf->handle_list);
4716         INIT_LIST_HEAD(&conf->hold_list);
4717         INIT_LIST_HEAD(&conf->delayed_list);
4718         INIT_LIST_HEAD(&conf->bitmap_list);
4719         INIT_LIST_HEAD(&conf->inactive_list);
4720         atomic_set(&conf->active_stripes, 0);
4721         atomic_set(&conf->preread_active_stripes, 0);
4722         atomic_set(&conf->active_aligned_reads, 0);
4723         conf->bypass_threshold = BYPASS_THRESHOLD;
4724
4725         conf->raid_disks = mddev->raid_disks;
4726         if (mddev->reshape_position == MaxSector)
4727                 conf->previous_raid_disks = mddev->raid_disks;
4728         else
4729                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4730         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4731         conf->scribble_len = scribble_len(max_disks);
4732
4733         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4734                               GFP_KERNEL);
4735         if (!conf->disks)
4736                 goto abort;
4737
4738         conf->mddev = mddev;
4739
4740         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4741                 goto abort;
4742
4743         conf->level = mddev->new_level;
4744         if (raid5_alloc_percpu(conf) != 0)
4745                 goto abort;
4746
4747         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4748
4749         list_for_each_entry(rdev, &mddev->disks, same_set) {
4750                 raid_disk = rdev->raid_disk;
4751                 if (raid_disk >= max_disks
4752                     || raid_disk < 0)
4753                         continue;
4754                 disk = conf->disks + raid_disk;
4755
4756                 disk->rdev = rdev;
4757
4758                 if (test_bit(In_sync, &rdev->flags)) {
4759                         char b[BDEVNAME_SIZE];
4760                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4761                                " disk %d\n",
4762                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4763                 } else if (rdev->saved_raid_disk != raid_disk)
4764                         /* Cannot rely on bitmap to complete recovery */
4765                         conf->fullsync = 1;
4766         }
4767
4768         conf->chunk_sectors = mddev->new_chunk_sectors;
4769         conf->level = mddev->new_level;
4770         if (conf->level == 6)
4771                 conf->max_degraded = 2;
4772         else
4773                 conf->max_degraded = 1;
4774         conf->algorithm = mddev->new_layout;
4775         conf->max_nr_stripes = NR_STRIPES;
4776         conf->reshape_progress = mddev->reshape_position;
4777         if (conf->reshape_progress != MaxSector) {
4778                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4779                 conf->prev_algo = mddev->layout;
4780         }
4781
4782         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4783                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4784         if (grow_stripes(conf, conf->max_nr_stripes)) {
4785                 printk(KERN_ERR
4786                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4787                        mdname(mddev), memory);
4788                 goto abort;
4789         } else
4790                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4791                        mdname(mddev), memory);
4792
4793         conf->thread = md_register_thread(raid5d, mddev, NULL);
4794         if (!conf->thread) {
4795                 printk(KERN_ERR
4796                        "md/raid:%s: couldn't allocate thread.\n",
4797                        mdname(mddev));
4798                 goto abort;
4799         }
4800
4801         return conf;
4802
4803  abort:
4804         if (conf) {
4805                 free_conf(conf);
4806                 return ERR_PTR(-EIO);
4807         } else
4808                 return ERR_PTR(-ENOMEM);
4809 }
4810
4811
4812 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4813 {
4814         switch (algo) {
4815         case ALGORITHM_PARITY_0:
4816                 if (raid_disk < max_degraded)
4817                         return 1;
4818                 break;
4819         case ALGORITHM_PARITY_N:
4820                 if (raid_disk >= raid_disks - max_degraded)
4821                         return 1;
4822                 break;
4823         case ALGORITHM_PARITY_0_6:
4824                 if (raid_disk == 0 || 
4825                     raid_disk == raid_disks - 1)
4826                         return 1;
4827                 break;
4828         case ALGORITHM_LEFT_ASYMMETRIC_6:
4829         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4830         case ALGORITHM_LEFT_SYMMETRIC_6:
4831         case ALGORITHM_RIGHT_SYMMETRIC_6:
4832                 if (raid_disk == raid_disks - 1)
4833                         return 1;
4834         }
4835         return 0;
4836 }
4837
4838 static int run(mddev_t *mddev)
4839 {
4840         raid5_conf_t *conf;
4841         int working_disks = 0;
4842         int dirty_parity_disks = 0;
4843         mdk_rdev_t *rdev;
4844         sector_t reshape_offset = 0;
4845
4846         if (mddev->recovery_cp != MaxSector)
4847                 printk(KERN_NOTICE "md/raid:%s: not clean"
4848                        " -- starting background reconstruction\n",
4849                        mdname(mddev));
4850         if (mddev->reshape_position != MaxSector) {
4851                 /* Check that we can continue the reshape.
4852                  * Currently only disks can change, it must
4853                  * increase, and we must be past the point where
4854                  * a stripe over-writes itself
4855                  */
4856                 sector_t here_new, here_old;
4857                 int old_disks;
4858                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4859
4860                 if (mddev->new_level != mddev->level) {
4861                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4862                                "required - aborting.\n",
4863                                mdname(mddev));
4864                         return -EINVAL;
4865                 }
4866                 old_disks = mddev->raid_disks - mddev->delta_disks;
4867                 /* reshape_position must be on a new-stripe boundary, and one
4868                  * further up in new geometry must map after here in old
4869                  * geometry.
4870                  */
4871                 here_new = mddev->reshape_position;
4872                 if (sector_div(here_new, mddev->new_chunk_sectors *
4873                                (mddev->raid_disks - max_degraded))) {
4874                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4875                                "on a stripe boundary\n", mdname(mddev));
4876                         return -EINVAL;
4877                 }
4878                 reshape_offset = here_new * mddev->new_chunk_sectors;
4879                 /* here_new is the stripe we will write to */
4880                 here_old = mddev->reshape_position;
4881                 sector_div(here_old, mddev->chunk_sectors *
4882                            (old_disks-max_degraded));
4883                 /* here_old is the first stripe that we might need to read
4884                  * from */
4885                 if (mddev->delta_disks == 0) {
4886                         /* We cannot be sure it is safe to start an in-place
4887                          * reshape.  It is only safe if user-space if monitoring
4888                          * and taking constant backups.
4889                          * mdadm always starts a situation like this in
4890                          * readonly mode so it can take control before
4891                          * allowing any writes.  So just check for that.
4892                          */
4893                         if ((here_new * mddev->new_chunk_sectors != 
4894                              here_old * mddev->chunk_sectors) ||
4895                             mddev->ro == 0) {
4896                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4897                                        " in read-only mode - aborting\n",
4898                                        mdname(mddev));
4899                                 return -EINVAL;
4900                         }
4901                 } else if (mddev->delta_disks < 0
4902                     ? (here_new * mddev->new_chunk_sectors <=
4903                        here_old * mddev->chunk_sectors)
4904                     : (here_new * mddev->new_chunk_sectors >=
4905                        here_old * mddev->chunk_sectors)) {
4906                         /* Reading from the same stripe as writing to - bad */
4907                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4908                                "auto-recovery - aborting.\n",
4909                                mdname(mddev));
4910                         return -EINVAL;
4911                 }
4912                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4913                        mdname(mddev));
4914                 /* OK, we should be able to continue; */
4915         } else {
4916                 BUG_ON(mddev->level != mddev->new_level);
4917                 BUG_ON(mddev->layout != mddev->new_layout);
4918                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4919                 BUG_ON(mddev->delta_disks != 0);
4920         }
4921
4922         if (mddev->private == NULL)
4923                 conf = setup_conf(mddev);
4924         else
4925                 conf = mddev->private;
4926
4927         if (IS_ERR(conf))
4928                 return PTR_ERR(conf);
4929
4930         mddev->thread = conf->thread;
4931         conf->thread = NULL;
4932         mddev->private = conf;
4933
4934         /*
4935          * 0 for a fully functional array, 1 or 2 for a degraded array.
4936          */
4937         list_for_each_entry(rdev, &mddev->disks, same_set) {
4938                 if (rdev->raid_disk < 0)
4939                         continue;
4940                 if (test_bit(In_sync, &rdev->flags)) {
4941                         working_disks++;
4942                         continue;
4943                 }
4944                 /* This disc is not fully in-sync.  However if it
4945                  * just stored parity (beyond the recovery_offset),
4946                  * when we don't need to be concerned about the
4947                  * array being dirty.
4948                  * When reshape goes 'backwards', we never have
4949                  * partially completed devices, so we only need
4950                  * to worry about reshape going forwards.
4951                  */
4952                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4953                 if (mddev->major_version == 0 &&
4954                     mddev->minor_version > 90)
4955                         rdev->recovery_offset = reshape_offset;
4956                         
4957                 if (rdev->recovery_offset < reshape_offset) {
4958                         /* We need to check old and new layout */
4959                         if (!only_parity(rdev->raid_disk,
4960                                          conf->algorithm,
4961                                          conf->raid_disks,
4962                                          conf->max_degraded))
4963                                 continue;
4964                 }
4965                 if (!only_parity(rdev->raid_disk,
4966                                  conf->prev_algo,
4967                                  conf->previous_raid_disks,
4968                                  conf->max_degraded))
4969                         continue;
4970                 dirty_parity_disks++;
4971         }
4972
4973         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4974                            - working_disks);
4975
4976         if (has_failed(conf)) {
4977                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4978                         " (%d/%d failed)\n",
4979                         mdname(mddev), mddev->degraded, conf->raid_disks);
4980                 goto abort;
4981         }
4982
4983         /* device size must be a multiple of chunk size */
4984         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4985         mddev->resync_max_sectors = mddev->dev_sectors;
4986
4987         if (mddev->degraded > dirty_parity_disks &&
4988             mddev->recovery_cp != MaxSector) {
4989                 if (mddev->ok_start_degraded)
4990                         printk(KERN_WARNING
4991                                "md/raid:%s: starting dirty degraded array"
4992                                " - data corruption possible.\n",
4993                                mdname(mddev));
4994                 else {
4995                         printk(KERN_ERR
4996                                "md/raid:%s: cannot start dirty degraded array.\n",
4997                                mdname(mddev));
4998                         goto abort;
4999                 }
5000         }
5001
5002         if (mddev->degraded == 0)
5003                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5004                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5005                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5006                        mddev->new_layout);
5007         else
5008                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5009                        " out of %d devices, algorithm %d\n",
5010                        mdname(mddev), conf->level,
5011                        mddev->raid_disks - mddev->degraded,
5012                        mddev->raid_disks, mddev->new_layout);
5013
5014         print_raid5_conf(conf);
5015
5016         if (conf->reshape_progress != MaxSector) {
5017                 conf->reshape_safe = conf->reshape_progress;
5018                 atomic_set(&conf->reshape_stripes, 0);
5019                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5020                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5021                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5022                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5023                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5024                                                         "reshape");
5025         }
5026
5027
5028         /* Ok, everything is just fine now */
5029         if (mddev->to_remove == &raid5_attrs_group)
5030                 mddev->to_remove = NULL;
5031         else if (mddev->kobj.sd &&
5032             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5033                 printk(KERN_WARNING
5034                        "raid5: failed to create sysfs attributes for %s\n",
5035                        mdname(mddev));
5036         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5037
5038         if (mddev->queue) {
5039                 int chunk_size;
5040                 /* read-ahead size must cover two whole stripes, which
5041                  * is 2 * (datadisks) * chunksize where 'n' is the
5042                  * number of raid devices
5043                  */
5044                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5045                 int stripe = data_disks *
5046                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5047                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5048                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5049
5050                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5051
5052                 mddev->queue->backing_dev_info.congested_data = mddev;
5053                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5054
5055                 chunk_size = mddev->chunk_sectors << 9;
5056                 blk_queue_io_min(mddev->queue, chunk_size);
5057                 blk_queue_io_opt(mddev->queue, chunk_size *
5058                                  (conf->raid_disks - conf->max_degraded));
5059
5060                 list_for_each_entry(rdev, &mddev->disks, same_set)
5061                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5062                                           rdev->data_offset << 9);
5063         }
5064
5065         return 0;
5066 abort:
5067         md_unregister_thread(mddev->thread);
5068         mddev->thread = NULL;
5069         if (conf) {
5070                 print_raid5_conf(conf);
5071                 free_conf(conf);
5072         }
5073         mddev->private = NULL;
5074         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5075         return -EIO;
5076 }
5077
5078 static int stop(mddev_t *mddev)
5079 {
5080         raid5_conf_t *conf = mddev->private;
5081
5082         md_unregister_thread(mddev->thread);
5083         mddev->thread = NULL;
5084         if (mddev->queue)
5085                 mddev->queue->backing_dev_info.congested_fn = NULL;
5086         free_conf(conf);
5087         mddev->private = NULL;
5088         mddev->to_remove = &raid5_attrs_group;
5089         return 0;
5090 }
5091
5092 #ifdef DEBUG
5093 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5094 {
5095         int i;
5096
5097         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5098                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5099         seq_printf(seq, "sh %llu,  count %d.\n",
5100                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5101         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5102         for (i = 0; i < sh->disks; i++) {
5103                 seq_printf(seq, "(cache%d: %p %ld) ",
5104                            i, sh->dev[i].page, sh->dev[i].flags);
5105         }
5106         seq_printf(seq, "\n");
5107 }
5108
5109 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5110 {
5111         struct stripe_head *sh;
5112         struct hlist_node *hn;
5113         int i;
5114
5115         spin_lock_irq(&conf->device_lock);
5116         for (i = 0; i < NR_HASH; i++) {
5117                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5118                         if (sh->raid_conf != conf)
5119                                 continue;
5120                         print_sh(seq, sh);
5121                 }
5122         }
5123         spin_unlock_irq(&conf->device_lock);
5124 }
5125 #endif
5126
5127 static void status(struct seq_file *seq, mddev_t *mddev)
5128 {
5129         raid5_conf_t *conf = mddev->private;
5130         int i;
5131
5132         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5133                 mddev->chunk_sectors / 2, mddev->layout);
5134         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5135         for (i = 0; i < conf->raid_disks; i++)
5136                 seq_printf (seq, "%s",
5137                                conf->disks[i].rdev &&
5138                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5139         seq_printf (seq, "]");
5140 #ifdef DEBUG
5141         seq_printf (seq, "\n");
5142         printall(seq, conf);
5143 #endif
5144 }
5145
5146 static void print_raid5_conf (raid5_conf_t *conf)
5147 {
5148         int i;
5149         struct disk_info *tmp;
5150
5151         printk(KERN_DEBUG "RAID conf printout:\n");
5152         if (!conf) {
5153                 printk("(conf==NULL)\n");
5154                 return;
5155         }
5156         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5157                conf->raid_disks,
5158                conf->raid_disks - conf->mddev->degraded);
5159
5160         for (i = 0; i < conf->raid_disks; i++) {
5161                 char b[BDEVNAME_SIZE];
5162                 tmp = conf->disks + i;
5163                 if (tmp->rdev)
5164                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5165                                i, !test_bit(Faulty, &tmp->rdev->flags),
5166                                bdevname(tmp->rdev->bdev, b));
5167         }
5168 }
5169
5170 static int raid5_spare_active(mddev_t *mddev)
5171 {
5172         int i;
5173         raid5_conf_t *conf = mddev->private;
5174         struct disk_info *tmp;
5175         int count = 0;
5176         unsigned long flags;
5177
5178         for (i = 0; i < conf->raid_disks; i++) {
5179                 tmp = conf->disks + i;
5180                 if (tmp->rdev
5181                     && tmp->rdev->recovery_offset == MaxSector
5182                     && !test_bit(Faulty, &tmp->rdev->flags)
5183                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5184                         count++;
5185                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5186                 }
5187         }
5188         spin_lock_irqsave(&conf->device_lock, flags);
5189         mddev->degraded -= count;
5190         spin_unlock_irqrestore(&conf->device_lock, flags);
5191         print_raid5_conf(conf);
5192         return count;
5193 }
5194
5195 static int raid5_remove_disk(mddev_t *mddev, int number)
5196 {
5197         raid5_conf_t *conf = mddev->private;
5198         int err = 0;
5199         mdk_rdev_t *rdev;
5200         struct disk_info *p = conf->disks + number;
5201
5202         print_raid5_conf(conf);
5203         rdev = p->rdev;
5204         if (rdev) {
5205                 if (number >= conf->raid_disks &&
5206                     conf->reshape_progress == MaxSector)
5207                         clear_bit(In_sync, &rdev->flags);
5208
5209                 if (test_bit(In_sync, &rdev->flags) ||
5210                     atomic_read(&rdev->nr_pending)) {
5211                         err = -EBUSY;
5212                         goto abort;
5213                 }
5214                 /* Only remove non-faulty devices if recovery
5215                  * isn't possible.
5216                  */
5217                 if (!test_bit(Faulty, &rdev->flags) &&
5218                     !has_failed(conf) &&
5219                     number < conf->raid_disks) {
5220                         err = -EBUSY;
5221                         goto abort;
5222                 }
5223                 p->rdev = NULL;
5224                 synchronize_rcu();
5225                 if (atomic_read(&rdev->nr_pending)) {
5226                         /* lost the race, try later */
5227                         err = -EBUSY;
5228                         p->rdev = rdev;
5229                 }
5230         }
5231 abort:
5232
5233         print_raid5_conf(conf);
5234         return err;
5235 }
5236
5237 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5238 {
5239         raid5_conf_t *conf = mddev->private;
5240         int err = -EEXIST;
5241         int disk;
5242         struct disk_info *p;
5243         int first = 0;
5244         int last = conf->raid_disks - 1;
5245
5246         if (has_failed(conf))
5247                 /* no point adding a device */
5248                 return -EINVAL;
5249
5250         if (rdev->raid_disk >= 0)
5251                 first = last = rdev->raid_disk;
5252
5253         /*
5254          * find the disk ... but prefer rdev->saved_raid_disk
5255          * if possible.
5256          */
5257         if (rdev->saved_raid_disk >= 0 &&
5258             rdev->saved_raid_disk >= first &&
5259             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5260                 disk = rdev->saved_raid_disk;
5261         else
5262                 disk = first;
5263         for ( ; disk <= last ; disk++)
5264                 if ((p=conf->disks + disk)->rdev == NULL) {
5265                         clear_bit(In_sync, &rdev->flags);
5266                         rdev->raid_disk = disk;
5267                         err = 0;
5268                         if (rdev->saved_raid_disk != disk)
5269                                 conf->fullsync = 1;
5270                         rcu_assign_pointer(p->rdev, rdev);
5271                         break;
5272                 }
5273         print_raid5_conf(conf);
5274         return err;
5275 }
5276
5277 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5278 {
5279         /* no resync is happening, and there is enough space
5280          * on all devices, so we can resize.
5281          * We need to make sure resync covers any new space.
5282          * If the array is shrinking we should possibly wait until
5283          * any io in the removed space completes, but it hardly seems
5284          * worth it.
5285          */
5286         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5287         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5288                                                mddev->raid_disks));
5289         if (mddev->array_sectors >
5290             raid5_size(mddev, sectors, mddev->raid_disks))
5291                 return -EINVAL;
5292         set_capacity(mddev->gendisk, mddev->array_sectors);
5293         revalidate_disk(mddev->gendisk);
5294         if (sectors > mddev->dev_sectors &&
5295             mddev->recovery_cp > mddev->dev_sectors) {
5296                 mddev->recovery_cp = mddev->dev_sectors;
5297                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5298         }
5299         mddev->dev_sectors = sectors;
5300         mddev->resync_max_sectors = sectors;
5301         return 0;
5302 }
5303
5304 static int check_stripe_cache(mddev_t *mddev)
5305 {
5306         /* Can only proceed if there are plenty of stripe_heads.
5307          * We need a minimum of one full stripe,, and for sensible progress
5308          * it is best to have about 4 times that.
5309          * If we require 4 times, then the default 256 4K stripe_heads will
5310          * allow for chunk sizes up to 256K, which is probably OK.
5311          * If the chunk size is greater, user-space should request more
5312          * stripe_heads first.
5313          */
5314         raid5_conf_t *conf = mddev->private;
5315         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5316             > conf->max_nr_stripes ||
5317             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5318             > conf->max_nr_stripes) {
5319                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5320                        mdname(mddev),
5321                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5322                         / STRIPE_SIZE)*4);
5323                 return 0;
5324         }
5325         return 1;
5326 }
5327
5328 static int check_reshape(mddev_t *mddev)
5329 {
5330         raid5_conf_t *conf = mddev->private;
5331
5332         if (mddev->delta_disks == 0 &&
5333             mddev->new_layout == mddev->layout &&
5334             mddev->new_chunk_sectors == mddev->chunk_sectors)
5335                 return 0; /* nothing to do */
5336         if (mddev->bitmap)
5337                 /* Cannot grow a bitmap yet */
5338                 return -EBUSY;
5339         if (has_failed(conf))
5340                 return -EINVAL;
5341         if (mddev->delta_disks < 0) {
5342                 /* We might be able to shrink, but the devices must
5343                  * be made bigger first.
5344                  * For raid6, 4 is the minimum size.
5345                  * Otherwise 2 is the minimum
5346                  */
5347                 int min = 2;
5348                 if (mddev->level == 6)
5349                         min = 4;
5350                 if (mddev->raid_disks + mddev->delta_disks < min)
5351                         return -EINVAL;
5352         }
5353
5354         if (!check_stripe_cache(mddev))
5355                 return -ENOSPC;
5356
5357         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5358 }
5359
5360 static int raid5_start_reshape(mddev_t *mddev)
5361 {
5362         raid5_conf_t *conf = mddev->private;
5363         mdk_rdev_t *rdev;
5364         int spares = 0;
5365         unsigned long flags;
5366
5367         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5368                 return -EBUSY;
5369
5370         if (!check_stripe_cache(mddev))
5371                 return -ENOSPC;
5372
5373         list_for_each_entry(rdev, &mddev->disks, same_set)
5374                 if (!test_bit(In_sync, &rdev->flags)
5375                     && !test_bit(Faulty, &rdev->flags))
5376                         spares++;
5377
5378         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5379                 /* Not enough devices even to make a degraded array
5380                  * of that size
5381                  */
5382                 return -EINVAL;
5383
5384         /* Refuse to reduce size of the array.  Any reductions in
5385          * array size must be through explicit setting of array_size
5386          * attribute.
5387          */
5388         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5389             < mddev->array_sectors) {
5390                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5391                        "before number of disks\n", mdname(mddev));
5392                 return -EINVAL;
5393         }
5394
5395         atomic_set(&conf->reshape_stripes, 0);
5396         spin_lock_irq(&conf->device_lock);
5397         conf->previous_raid_disks = conf->raid_disks;
5398         conf->raid_disks += mddev->delta_disks;
5399         conf->prev_chunk_sectors = conf->chunk_sectors;
5400         conf->chunk_sectors = mddev->new_chunk_sectors;
5401         conf->prev_algo = conf->algorithm;
5402         conf->algorithm = mddev->new_layout;
5403         if (mddev->delta_disks < 0)
5404                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5405         else
5406                 conf->reshape_progress = 0;
5407         conf->reshape_safe = conf->reshape_progress;
5408         conf->generation++;
5409         spin_unlock_irq(&conf->device_lock);
5410
5411         /* Add some new drives, as many as will fit.
5412          * We know there are enough to make the newly sized array work.
5413          * Don't add devices if we are reducing the number of
5414          * devices in the array.  This is because it is not possible
5415          * to correctly record the "partially reconstructed" state of
5416          * such devices during the reshape and confusion could result.
5417          */
5418         if (mddev->delta_disks >= 0) {
5419                 int added_devices = 0;
5420                 list_for_each_entry(rdev, &mddev->disks, same_set)
5421                         if (rdev->raid_disk < 0 &&
5422                             !test_bit(Faulty, &rdev->flags)) {
5423                                 if (raid5_add_disk(mddev, rdev) == 0) {
5424                                         char nm[20];
5425                                         if (rdev->raid_disk
5426                                             >= conf->previous_raid_disks) {
5427                                                 set_bit(In_sync, &rdev->flags);
5428                                                 added_devices++;
5429                                         } else
5430                                                 rdev->recovery_offset = 0;
5431                                         sprintf(nm, "rd%d", rdev->raid_disk);
5432                                         if (sysfs_create_link(&mddev->kobj,
5433                                                               &rdev->kobj, nm))
5434                                                 /* Failure here is OK */;
5435                                 }
5436                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5437                                    && !test_bit(Faulty, &rdev->flags)) {
5438                                 /* This is a spare that was manually added */
5439                                 set_bit(In_sync, &rdev->flags);
5440                                 added_devices++;
5441                         }
5442
5443                 /* When a reshape changes the number of devices,
5444                  * ->degraded is measured against the larger of the
5445                  * pre and post number of devices.
5446                  */
5447                 spin_lock_irqsave(&conf->device_lock, flags);
5448                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5449                         - added_devices;
5450                 spin_unlock_irqrestore(&conf->device_lock, flags);
5451         }
5452         mddev->raid_disks = conf->raid_disks;
5453         mddev->reshape_position = conf->reshape_progress;
5454         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5455
5456         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5457         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5458         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5459         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5460         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5461                                                 "reshape");
5462         if (!mddev->sync_thread) {
5463                 mddev->recovery = 0;
5464                 spin_lock_irq(&conf->device_lock);
5465                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5466                 conf->reshape_progress = MaxSector;
5467                 spin_unlock_irq(&conf->device_lock);
5468                 return -EAGAIN;
5469         }
5470         conf->reshape_checkpoint = jiffies;
5471         md_wakeup_thread(mddev->sync_thread);
5472         md_new_event(mddev);
5473         return 0;
5474 }
5475
5476 /* This is called from the reshape thread and should make any
5477  * changes needed in 'conf'
5478  */
5479 static void end_reshape(raid5_conf_t *conf)
5480 {
5481
5482         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5483
5484                 spin_lock_irq(&conf->device_lock);
5485                 conf->previous_raid_disks = conf->raid_disks;
5486                 conf->reshape_progress = MaxSector;
5487                 spin_unlock_irq(&conf->device_lock);
5488                 wake_up(&conf->wait_for_overlap);
5489
5490                 /* read-ahead size must cover two whole stripes, which is
5491                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5492                  */
5493                 if (conf->mddev->queue) {
5494                         int data_disks = conf->raid_disks - conf->max_degraded;
5495                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5496                                                    / PAGE_SIZE);
5497                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5498                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5499                 }
5500         }
5501 }
5502
5503 /* This is called from the raid5d thread with mddev_lock held.
5504  * It makes config changes to the device.
5505  */
5506 static void raid5_finish_reshape(mddev_t *mddev)
5507 {
5508         raid5_conf_t *conf = mddev->private;
5509
5510         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5511
5512                 if (mddev->delta_disks > 0) {
5513                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5514                         set_capacity(mddev->gendisk, mddev->array_sectors);
5515                         revalidate_disk(mddev->gendisk);
5516                 } else {
5517                         int d;
5518                         mddev->degraded = conf->raid_disks;
5519                         for (d = 0; d < conf->raid_disks ; d++)
5520                                 if (conf->disks[d].rdev &&
5521                                     test_bit(In_sync,
5522                                              &conf->disks[d].rdev->flags))
5523                                         mddev->degraded--;
5524                         for (d = conf->raid_disks ;
5525                              d < conf->raid_disks - mddev->delta_disks;
5526                              d++) {
5527                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5528                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5529                                         char nm[20];
5530                                         sprintf(nm, "rd%d", rdev->raid_disk);
5531                                         sysfs_remove_link(&mddev->kobj, nm);
5532                                         rdev->raid_disk = -1;
5533                                 }
5534                         }
5535                 }
5536                 mddev->layout = conf->algorithm;
5537                 mddev->chunk_sectors = conf->chunk_sectors;
5538                 mddev->reshape_position = MaxSector;
5539                 mddev->delta_disks = 0;
5540         }
5541 }
5542
5543 static void raid5_quiesce(mddev_t *mddev, int state)
5544 {
5545         raid5_conf_t *conf = mddev->private;
5546
5547         switch(state) {
5548         case 2: /* resume for a suspend */
5549                 wake_up(&conf->wait_for_overlap);
5550                 break;
5551
5552         case 1: /* stop all writes */
5553                 spin_lock_irq(&conf->device_lock);
5554                 /* '2' tells resync/reshape to pause so that all
5555                  * active stripes can drain
5556                  */
5557                 conf->quiesce = 2;
5558                 wait_event_lock_irq(conf->wait_for_stripe,
5559                                     atomic_read(&conf->active_stripes) == 0 &&
5560                                     atomic_read(&conf->active_aligned_reads) == 0,
5561                                     conf->device_lock, /* nothing */);
5562                 conf->quiesce = 1;
5563                 spin_unlock_irq(&conf->device_lock);
5564                 /* allow reshape to continue */
5565                 wake_up(&conf->wait_for_overlap);
5566                 break;
5567
5568         case 0: /* re-enable writes */
5569                 spin_lock_irq(&conf->device_lock);
5570                 conf->quiesce = 0;
5571                 wake_up(&conf->wait_for_stripe);
5572                 wake_up(&conf->wait_for_overlap);
5573                 spin_unlock_irq(&conf->device_lock);
5574                 break;
5575         }
5576 }
5577
5578
5579 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5580 {
5581         struct raid0_private_data *raid0_priv = mddev->private;
5582         sector_t sectors;
5583
5584         /* for raid0 takeover only one zone is supported */
5585         if (raid0_priv->nr_strip_zones > 1) {
5586                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5587                        mdname(mddev));
5588                 return ERR_PTR(-EINVAL);
5589         }
5590
5591         sectors = raid0_priv->strip_zone[0].zone_end;
5592         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5593         mddev->dev_sectors = sectors;
5594         mddev->new_level = level;
5595         mddev->new_layout = ALGORITHM_PARITY_N;
5596         mddev->new_chunk_sectors = mddev->chunk_sectors;
5597         mddev->raid_disks += 1;
5598         mddev->delta_disks = 1;
5599         /* make sure it will be not marked as dirty */
5600         mddev->recovery_cp = MaxSector;
5601
5602         return setup_conf(mddev);
5603 }
5604
5605
5606 static void *raid5_takeover_raid1(mddev_t *mddev)
5607 {
5608         int chunksect;
5609
5610         if (mddev->raid_disks != 2 ||
5611             mddev->degraded > 1)
5612                 return ERR_PTR(-EINVAL);
5613
5614         /* Should check if there are write-behind devices? */
5615
5616         chunksect = 64*2; /* 64K by default */
5617
5618         /* The array must be an exact multiple of chunksize */
5619         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5620                 chunksect >>= 1;
5621
5622         if ((chunksect<<9) < STRIPE_SIZE)
5623                 /* array size does not allow a suitable chunk size */
5624                 return ERR_PTR(-EINVAL);
5625
5626         mddev->new_level = 5;
5627         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5628         mddev->new_chunk_sectors = chunksect;
5629
5630         return setup_conf(mddev);
5631 }
5632
5633 static void *raid5_takeover_raid6(mddev_t *mddev)
5634 {
5635         int new_layout;
5636
5637         switch (mddev->layout) {
5638         case ALGORITHM_LEFT_ASYMMETRIC_6:
5639                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5640                 break;
5641         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5642                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5643                 break;
5644         case ALGORITHM_LEFT_SYMMETRIC_6:
5645                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5646                 break;
5647         case ALGORITHM_RIGHT_SYMMETRIC_6:
5648                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5649                 break;
5650         case ALGORITHM_PARITY_0_6:
5651                 new_layout = ALGORITHM_PARITY_0;
5652                 break;
5653         case ALGORITHM_PARITY_N:
5654                 new_layout = ALGORITHM_PARITY_N;
5655                 break;
5656         default:
5657                 return ERR_PTR(-EINVAL);
5658         }
5659         mddev->new_level = 5;
5660         mddev->new_layout = new_layout;
5661         mddev->delta_disks = -1;
5662         mddev->raid_disks -= 1;
5663         return setup_conf(mddev);
5664 }
5665
5666
5667 static int raid5_check_reshape(mddev_t *mddev)
5668 {
5669         /* For a 2-drive array, the layout and chunk size can be changed
5670          * immediately as not restriping is needed.
5671          * For larger arrays we record the new value - after validation
5672          * to be used by a reshape pass.
5673          */
5674         raid5_conf_t *conf = mddev->private;
5675         int new_chunk = mddev->new_chunk_sectors;
5676
5677         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5678                 return -EINVAL;
5679         if (new_chunk > 0) {
5680                 if (!is_power_of_2(new_chunk))
5681                         return -EINVAL;
5682                 if (new_chunk < (PAGE_SIZE>>9))
5683                         return -EINVAL;
5684                 if (mddev->array_sectors & (new_chunk-1))
5685                         /* not factor of array size */
5686                         return -EINVAL;
5687         }
5688
5689         /* They look valid */
5690
5691         if (mddev->raid_disks == 2) {
5692                 /* can make the change immediately */
5693                 if (mddev->new_layout >= 0) {
5694                         conf->algorithm = mddev->new_layout;
5695                         mddev->layout = mddev->new_layout;
5696                 }
5697                 if (new_chunk > 0) {
5698                         conf->chunk_sectors = new_chunk ;
5699                         mddev->chunk_sectors = new_chunk;
5700                 }
5701                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5702                 md_wakeup_thread(mddev->thread);
5703         }
5704         return check_reshape(mddev);
5705 }
5706
5707 static int raid6_check_reshape(mddev_t *mddev)
5708 {
5709         int new_chunk = mddev->new_chunk_sectors;
5710
5711         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5712                 return -EINVAL;
5713         if (new_chunk > 0) {
5714                 if (!is_power_of_2(new_chunk))
5715                         return -EINVAL;
5716                 if (new_chunk < (PAGE_SIZE >> 9))
5717                         return -EINVAL;
5718                 if (mddev->array_sectors & (new_chunk-1))
5719                         /* not factor of array size */
5720                         return -EINVAL;
5721         }
5722
5723         /* They look valid */
5724         return check_reshape(mddev);
5725 }
5726
5727 static void *raid5_takeover(mddev_t *mddev)
5728 {
5729         /* raid5 can take over:
5730          *  raid0 - if there is only one strip zone - make it a raid4 layout
5731          *  raid1 - if there are two drives.  We need to know the chunk size
5732          *  raid4 - trivial - just use a raid4 layout.
5733          *  raid6 - Providing it is a *_6 layout
5734          */
5735         if (mddev->level == 0)
5736                 return raid45_takeover_raid0(mddev, 5);
5737         if (mddev->level == 1)
5738                 return raid5_takeover_raid1(mddev);
5739         if (mddev->level == 4) {
5740                 mddev->new_layout = ALGORITHM_PARITY_N;
5741                 mddev->new_level = 5;
5742                 return setup_conf(mddev);
5743         }
5744         if (mddev->level == 6)
5745                 return raid5_takeover_raid6(mddev);
5746
5747         return ERR_PTR(-EINVAL);
5748 }
5749
5750 static void *raid4_takeover(mddev_t *mddev)
5751 {
5752         /* raid4 can take over:
5753          *  raid0 - if there is only one strip zone
5754          *  raid5 - if layout is right
5755          */
5756         if (mddev->level == 0)
5757                 return raid45_takeover_raid0(mddev, 4);
5758         if (mddev->level == 5 &&
5759             mddev->layout == ALGORITHM_PARITY_N) {
5760                 mddev->new_layout = 0;
5761                 mddev->new_level = 4;
5762                 return setup_conf(mddev);
5763         }
5764         return ERR_PTR(-EINVAL);
5765 }
5766
5767 static struct mdk_personality raid5_personality;
5768
5769 static void *raid6_takeover(mddev_t *mddev)
5770 {
5771         /* Currently can only take over a raid5.  We map the
5772          * personality to an equivalent raid6 personality
5773          * with the Q block at the end.
5774          */
5775         int new_layout;
5776
5777         if (mddev->pers != &raid5_personality)
5778                 return ERR_PTR(-EINVAL);
5779         if (mddev->degraded > 1)
5780                 return ERR_PTR(-EINVAL);
5781         if (mddev->raid_disks > 253)
5782                 return ERR_PTR(-EINVAL);
5783         if (mddev->raid_disks < 3)
5784                 return ERR_PTR(-EINVAL);
5785
5786         switch (mddev->layout) {
5787         case ALGORITHM_LEFT_ASYMMETRIC:
5788                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5789                 break;
5790         case ALGORITHM_RIGHT_ASYMMETRIC:
5791                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5792                 break;
5793         case ALGORITHM_LEFT_SYMMETRIC:
5794                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5795                 break;
5796         case ALGORITHM_RIGHT_SYMMETRIC:
5797                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5798                 break;
5799         case ALGORITHM_PARITY_0:
5800                 new_layout = ALGORITHM_PARITY_0_6;
5801                 break;
5802         case ALGORITHM_PARITY_N:
5803                 new_layout = ALGORITHM_PARITY_N;
5804                 break;
5805         default:
5806                 return ERR_PTR(-EINVAL);
5807         }
5808         mddev->new_level = 6;
5809         mddev->new_layout = new_layout;
5810         mddev->delta_disks = 1;
5811         mddev->raid_disks += 1;
5812         return setup_conf(mddev);
5813 }
5814
5815
5816 static struct mdk_personality raid6_personality =
5817 {
5818         .name           = "raid6",
5819         .level          = 6,
5820         .owner          = THIS_MODULE,
5821         .make_request   = make_request,
5822         .run            = run,
5823         .stop           = stop,
5824         .status         = status,
5825         .error_handler  = error,
5826         .hot_add_disk   = raid5_add_disk,
5827         .hot_remove_disk= raid5_remove_disk,
5828         .spare_active   = raid5_spare_active,
5829         .sync_request   = sync_request,
5830         .resize         = raid5_resize,
5831         .size           = raid5_size,
5832         .check_reshape  = raid6_check_reshape,
5833         .start_reshape  = raid5_start_reshape,
5834         .finish_reshape = raid5_finish_reshape,
5835         .quiesce        = raid5_quiesce,
5836         .takeover       = raid6_takeover,
5837 };
5838 static struct mdk_personality raid5_personality =
5839 {
5840         .name           = "raid5",
5841         .level          = 5,
5842         .owner          = THIS_MODULE,
5843         .make_request   = make_request,
5844         .run            = run,
5845         .stop           = stop,
5846         .status         = status,
5847         .error_handler  = error,
5848         .hot_add_disk   = raid5_add_disk,
5849         .hot_remove_disk= raid5_remove_disk,
5850         .spare_active   = raid5_spare_active,
5851         .sync_request   = sync_request,
5852         .resize         = raid5_resize,
5853         .size           = raid5_size,
5854         .check_reshape  = raid5_check_reshape,
5855         .start_reshape  = raid5_start_reshape,
5856         .finish_reshape = raid5_finish_reshape,
5857         .quiesce        = raid5_quiesce,
5858         .takeover       = raid5_takeover,
5859 };
5860
5861 static struct mdk_personality raid4_personality =
5862 {
5863         .name           = "raid4",
5864         .level          = 4,
5865         .owner          = THIS_MODULE,
5866         .make_request   = make_request,
5867         .run            = run,
5868         .stop           = stop,
5869         .status         = status,
5870         .error_handler  = error,
5871         .hot_add_disk   = raid5_add_disk,
5872         .hot_remove_disk= raid5_remove_disk,
5873         .spare_active   = raid5_spare_active,
5874         .sync_request   = sync_request,
5875         .resize         = raid5_resize,
5876         .size           = raid5_size,
5877         .check_reshape  = raid5_check_reshape,
5878         .start_reshape  = raid5_start_reshape,
5879         .finish_reshape = raid5_finish_reshape,
5880         .quiesce        = raid5_quiesce,
5881         .takeover       = raid4_takeover,
5882 };
5883
5884 static int __init raid5_init(void)
5885 {
5886         register_md_personality(&raid6_personality);
5887         register_md_personality(&raid5_personality);
5888         register_md_personality(&raid4_personality);
5889         return 0;
5890 }
5891
5892 static void raid5_exit(void)
5893 {
5894         unregister_md_personality(&raid6_personality);
5895         unregister_md_personality(&raid5_personality);
5896         unregister_md_personality(&raid4_personality);
5897 }
5898
5899 module_init(raid5_init);
5900 module_exit(raid5_exit);
5901 MODULE_LICENSE("GPL");
5902 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5903 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5904 MODULE_ALIAS("md-raid5");
5905 MODULE_ALIAS("md-raid4");
5906 MODULE_ALIAS("md-level-5");
5907 MODULE_ALIAS("md-level-4");
5908 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5909 MODULE_ALIAS("md-raid6");
5910 MODULE_ALIAS("md-level-6");
5911
5912 /* This used to be two separate modules, they were: */
5913 MODULE_ALIAS("raid5");
5914 MODULE_ALIAS("raid6");