]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: unite handle_stripe_dirtying5 and handle_stripe_dirtying6
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock_irq(&sh->raid_conf->device_lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         #ifdef CONFIG_MULTICORE_RAID456
1324         init_waitqueue_head(&sh->ops.wait_for_ops);
1325         #endif
1326
1327         if (grow_buffers(sh)) {
1328                 shrink_buffers(sh);
1329                 kmem_cache_free(conf->slab_cache, sh);
1330                 return 0;
1331         }
1332         /* we just created an active stripe so... */
1333         atomic_set(&sh->count, 1);
1334         atomic_inc(&conf->active_stripes);
1335         INIT_LIST_HEAD(&sh->lru);
1336         release_stripe(sh);
1337         return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342         struct kmem_cache *sc;
1343         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345         if (conf->mddev->gendisk)
1346                 sprintf(conf->cache_name[0],
1347                         "raid%d-%s", conf->level, mdname(conf->mddev));
1348         else
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%p", conf->level, conf->mddev);
1351         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353         conf->active_name = 0;
1354         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356                                0, 0, NULL);
1357         if (!sc)
1358                 return 1;
1359         conf->slab_cache = sc;
1360         conf->pool_size = devs;
1361         while (num--)
1362                 if (!grow_one_stripe(conf))
1363                         return 1;
1364         return 0;
1365 }
1366
1367 /**
1368  * scribble_len - return the required size of the scribble region
1369  * @num - total number of disks in the array
1370  *
1371  * The size must be enough to contain:
1372  * 1/ a struct page pointer for each device in the array +2
1373  * 2/ room to convert each entry in (1) to its corresponding dma
1374  *    (dma_map_page()) or page (page_address()) address.
1375  *
1376  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377  * calculate over all devices (not just the data blocks), using zeros in place
1378  * of the P and Q blocks.
1379  */
1380 static size_t scribble_len(int num)
1381 {
1382         size_t len;
1383
1384         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386         return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391         /* Make all the stripes able to hold 'newsize' devices.
1392          * New slots in each stripe get 'page' set to a new page.
1393          *
1394          * This happens in stages:
1395          * 1/ create a new kmem_cache and allocate the required number of
1396          *    stripe_heads.
1397          * 2/ gather all the old stripe_heads and tranfer the pages across
1398          *    to the new stripe_heads.  This will have the side effect of
1399          *    freezing the array as once all stripe_heads have been collected,
1400          *    no IO will be possible.  Old stripe heads are freed once their
1401          *    pages have been transferred over, and the old kmem_cache is
1402          *    freed when all stripes are done.
1403          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1404          *    we simple return a failre status - no need to clean anything up.
1405          * 4/ allocate new pages for the new slots in the new stripe_heads.
1406          *    If this fails, we don't bother trying the shrink the
1407          *    stripe_heads down again, we just leave them as they are.
1408          *    As each stripe_head is processed the new one is released into
1409          *    active service.
1410          *
1411          * Once step2 is started, we cannot afford to wait for a write,
1412          * so we use GFP_NOIO allocations.
1413          */
1414         struct stripe_head *osh, *nsh;
1415         LIST_HEAD(newstripes);
1416         struct disk_info *ndisks;
1417         unsigned long cpu;
1418         int err;
1419         struct kmem_cache *sc;
1420         int i;
1421
1422         if (newsize <= conf->pool_size)
1423                 return 0; /* never bother to shrink */
1424
1425         err = md_allow_write(conf->mddev);
1426         if (err)
1427                 return err;
1428
1429         /* Step 1 */
1430         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432                                0, 0, NULL);
1433         if (!sc)
1434                 return -ENOMEM;
1435
1436         for (i = conf->max_nr_stripes; i; i--) {
1437                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438                 if (!nsh)
1439                         break;
1440
1441                 nsh->raid_conf = conf;
1442                 #ifdef CONFIG_MULTICORE_RAID456
1443                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444                 #endif
1445
1446                 list_add(&nsh->lru, &newstripes);
1447         }
1448         if (i) {
1449                 /* didn't get enough, give up */
1450                 while (!list_empty(&newstripes)) {
1451                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452                         list_del(&nsh->lru);
1453                         kmem_cache_free(sc, nsh);
1454                 }
1455                 kmem_cache_destroy(sc);
1456                 return -ENOMEM;
1457         }
1458         /* Step 2 - Must use GFP_NOIO now.
1459          * OK, we have enough stripes, start collecting inactive
1460          * stripes and copying them over
1461          */
1462         list_for_each_entry(nsh, &newstripes, lru) {
1463                 spin_lock_irq(&conf->device_lock);
1464                 wait_event_lock_irq(conf->wait_for_stripe,
1465                                     !list_empty(&conf->inactive_list),
1466                                     conf->device_lock,
1467                                     );
1468                 osh = get_free_stripe(conf);
1469                 spin_unlock_irq(&conf->device_lock);
1470                 atomic_set(&nsh->count, 1);
1471                 for(i=0; i<conf->pool_size; i++)
1472                         nsh->dev[i].page = osh->dev[i].page;
1473                 for( ; i<newsize; i++)
1474                         nsh->dev[i].page = NULL;
1475                 kmem_cache_free(conf->slab_cache, osh);
1476         }
1477         kmem_cache_destroy(conf->slab_cache);
1478
1479         /* Step 3.
1480          * At this point, we are holding all the stripes so the array
1481          * is completely stalled, so now is a good time to resize
1482          * conf->disks and the scribble region
1483          */
1484         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485         if (ndisks) {
1486                 for (i=0; i<conf->raid_disks; i++)
1487                         ndisks[i] = conf->disks[i];
1488                 kfree(conf->disks);
1489                 conf->disks = ndisks;
1490         } else
1491                 err = -ENOMEM;
1492
1493         get_online_cpus();
1494         conf->scribble_len = scribble_len(newsize);
1495         for_each_present_cpu(cpu) {
1496                 struct raid5_percpu *percpu;
1497                 void *scribble;
1498
1499                 percpu = per_cpu_ptr(conf->percpu, cpu);
1500                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502                 if (scribble) {
1503                         kfree(percpu->scribble);
1504                         percpu->scribble = scribble;
1505                 } else {
1506                         err = -ENOMEM;
1507                         break;
1508                 }
1509         }
1510         put_online_cpus();
1511
1512         /* Step 4, return new stripes to service */
1513         while(!list_empty(&newstripes)) {
1514                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515                 list_del_init(&nsh->lru);
1516
1517                 for (i=conf->raid_disks; i < newsize; i++)
1518                         if (nsh->dev[i].page == NULL) {
1519                                 struct page *p = alloc_page(GFP_NOIO);
1520                                 nsh->dev[i].page = p;
1521                                 if (!p)
1522                                         err = -ENOMEM;
1523                         }
1524                 release_stripe(nsh);
1525         }
1526         /* critical section pass, GFP_NOIO no longer needed */
1527
1528         conf->slab_cache = sc;
1529         conf->active_name = 1-conf->active_name;
1530         conf->pool_size = newsize;
1531         return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536         struct stripe_head *sh;
1537
1538         spin_lock_irq(&conf->device_lock);
1539         sh = get_free_stripe(conf);
1540         spin_unlock_irq(&conf->device_lock);
1541         if (!sh)
1542                 return 0;
1543         BUG_ON(atomic_read(&sh->count));
1544         shrink_buffers(sh);
1545         kmem_cache_free(conf->slab_cache, sh);
1546         atomic_dec(&conf->active_stripes);
1547         return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552         while (drop_one_stripe(conf))
1553                 ;
1554
1555         if (conf->slab_cache)
1556                 kmem_cache_destroy(conf->slab_cache);
1557         conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562         struct stripe_head *sh = bi->bi_private;
1563         raid5_conf_t *conf = sh->raid_conf;
1564         int disks = sh->disks, i;
1565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566         char b[BDEVNAME_SIZE];
1567         mdk_rdev_t *rdev;
1568
1569
1570         for (i=0 ; i<disks; i++)
1571                 if (bi == &sh->dev[i].req)
1572                         break;
1573
1574         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576                 uptodate);
1577         if (i == disks) {
1578                 BUG();
1579                 return;
1580         }
1581
1582         if (uptodate) {
1583                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585                         rdev = conf->disks[i].rdev;
1586                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587                                   " (%lu sectors at %llu on %s)\n",
1588                                   mdname(conf->mddev), STRIPE_SECTORS,
1589                                   (unsigned long long)(sh->sector
1590                                                        + rdev->data_offset),
1591                                   bdevname(rdev->bdev, b));
1592                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1593                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594                 }
1595                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597         } else {
1598                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599                 int retry = 0;
1600                 rdev = conf->disks[i].rdev;
1601
1602                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 atomic_inc(&rdev->read_errors);
1604                 if (conf->mddev->degraded >= conf->max_degraded)
1605                         printk_rl(KERN_WARNING
1606                                   "md/raid:%s: read error not correctable "
1607                                   "(sector %llu on %s).\n",
1608                                   mdname(conf->mddev),
1609                                   (unsigned long long)(sh->sector
1610                                                        + rdev->data_offset),
1611                                   bdn);
1612                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613                         /* Oh, no!!! */
1614                         printk_rl(KERN_WARNING
1615                                   "md/raid:%s: read error NOT corrected!! "
1616                                   "(sector %llu on %s).\n",
1617                                   mdname(conf->mddev),
1618                                   (unsigned long long)(sh->sector
1619                                                        + rdev->data_offset),
1620                                   bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = ~0;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304         }
2305
2306         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307                 if (atomic_dec_and_test(&conf->pending_full_writes))
2308                         md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block - checks the given member device to see if its data needs
2312  * to be read or computed to satisfy a request.
2313  *
2314  * Returns 1 when no more member devices need to be checked, otherwise returns
2315  * 0 to tell the loop in handle_stripe_fill to continue
2316  */
2317 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2318                        int disk_idx, int disks)
2319 {
2320         struct r5dev *dev = &sh->dev[disk_idx];
2321         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2322                                   &sh->dev[s->failed_num[1]] };
2323
2324         /* is the data in this block needed, and can we get it? */
2325         if (!test_bit(R5_LOCKED, &dev->flags) &&
2326             !test_bit(R5_UPTODATE, &dev->flags) &&
2327             (dev->toread ||
2328              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329              s->syncing || s->expanding ||
2330              (s->failed >= 1 && fdev[0]->toread) ||
2331              (s->failed >= 2 && fdev[1]->toread) ||
2332              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2333               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2334              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2335                 /* we would like to get this block, possibly by computing it,
2336                  * otherwise read it if the backing disk is insync
2337                  */
2338                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2339                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2340                 if ((s->uptodate == disks - 1) &&
2341                     (s->failed && (disk_idx == s->failed_num[0] ||
2342                                    disk_idx == s->failed_num[1]))) {
2343                         /* have disk failed, and we're requested to fetch it;
2344                          * do compute it
2345                          */
2346                         pr_debug("Computing stripe %llu block %d\n",
2347                                (unsigned long long)sh->sector, disk_idx);
2348                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2349                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2350                         set_bit(R5_Wantcompute, &dev->flags);
2351                         sh->ops.target = disk_idx;
2352                         sh->ops.target2 = -1; /* no 2nd target */
2353                         s->req_compute = 1;
2354                         /* Careful: from this point on 'uptodate' is in the eye
2355                          * of raid_run_ops which services 'compute' operations
2356                          * before writes. R5_Wantcompute flags a block that will
2357                          * be R5_UPTODATE by the time it is needed for a
2358                          * subsequent operation.
2359                          */
2360                         s->uptodate++;
2361                         return 1;
2362                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363                         /* Computing 2-failure is *very* expensive; only
2364                          * do it if failed >= 2
2365                          */
2366                         int other;
2367                         for (other = disks; other--; ) {
2368                                 if (other == disk_idx)
2369                                         continue;
2370                                 if (!test_bit(R5_UPTODATE,
2371                                       &sh->dev[other].flags))
2372                                         break;
2373                         }
2374                         BUG_ON(other < 0);
2375                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2376                                (unsigned long long)sh->sector,
2377                                disk_idx, other);
2378                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382                         sh->ops.target = disk_idx;
2383                         sh->ops.target2 = other;
2384                         s->uptodate += 2;
2385                         s->req_compute = 1;
2386                         return 1;
2387                 } else if (test_bit(R5_Insync, &dev->flags)) {
2388                         set_bit(R5_LOCKED, &dev->flags);
2389                         set_bit(R5_Wantread, &dev->flags);
2390                         s->locked++;
2391                         pr_debug("Reading block %d (sync=%d)\n",
2392                                 disk_idx, s->syncing);
2393                 }
2394         }
2395
2396         return 0;
2397 }
2398
2399 /**
2400  * handle_stripe_fill - read or compute data to satisfy pending requests.
2401  */
2402 static void handle_stripe_fill(struct stripe_head *sh,
2403                                struct stripe_head_state *s,
2404                                int disks)
2405 {
2406         int i;
2407
2408         /* look for blocks to read/compute, skip this if a compute
2409          * is already in flight, or if the stripe contents are in the
2410          * midst of changing due to a write
2411          */
2412         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413             !sh->reconstruct_state)
2414                 for (i = disks; i--; )
2415                         if (fetch_block(sh, s, i, disks))
2416                                 break;
2417         set_bit(STRIPE_HANDLE, &sh->state);
2418 }
2419
2420
2421 /* handle_stripe_clean_event
2422  * any written block on an uptodate or failed drive can be returned.
2423  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424  * never LOCKED, so we don't need to test 'failed' directly.
2425  */
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427         struct stripe_head *sh, int disks, struct bio **return_bi)
2428 {
2429         int i;
2430         struct r5dev *dev;
2431
2432         for (i = disks; i--; )
2433                 if (sh->dev[i].written) {
2434                         dev = &sh->dev[i];
2435                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2436                                 test_bit(R5_UPTODATE, &dev->flags)) {
2437                                 /* We can return any write requests */
2438                                 struct bio *wbi, *wbi2;
2439                                 int bitmap_end = 0;
2440                                 pr_debug("Return write for disc %d\n", i);
2441                                 spin_lock_irq(&conf->device_lock);
2442                                 wbi = dev->written;
2443                                 dev->written = NULL;
2444                                 while (wbi && wbi->bi_sector <
2445                                         dev->sector + STRIPE_SECTORS) {
2446                                         wbi2 = r5_next_bio(wbi, dev->sector);
2447                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2448                                                 md_write_end(conf->mddev);
2449                                                 wbi->bi_next = *return_bi;
2450                                                 *return_bi = wbi;
2451                                         }
2452                                         wbi = wbi2;
2453                                 }
2454                                 if (dev->towrite == NULL)
2455                                         bitmap_end = 1;
2456                                 spin_unlock_irq(&conf->device_lock);
2457                                 if (bitmap_end)
2458                                         bitmap_endwrite(conf->mddev->bitmap,
2459                                                         sh->sector,
2460                                                         STRIPE_SECTORS,
2461                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2462                                                         0);
2463                         }
2464                 }
2465
2466         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467                 if (atomic_dec_and_test(&conf->pending_full_writes))
2468                         md_wakeup_thread(conf->mddev->thread);
2469 }
2470
2471 static void handle_stripe_dirtying(raid5_conf_t *conf,
2472                                    struct stripe_head *sh,
2473                                    struct stripe_head_state *s,
2474                                    int disks)
2475 {
2476         int rmw = 0, rcw = 0, i;
2477         if (conf->max_degraded == 2) {
2478                 /* RAID6 requires 'rcw' in current implementation
2479                  * Calculate the real rcw later - for now fake it
2480                  * look like rcw is cheaper
2481                  */
2482                 rcw = 1; rmw = 2;
2483         } else for (i = disks; i--; ) {
2484                 /* would I have to read this buffer for read_modify_write */
2485                 struct r5dev *dev = &sh->dev[i];
2486                 if ((dev->towrite || i == sh->pd_idx) &&
2487                     !test_bit(R5_LOCKED, &dev->flags) &&
2488                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2489                       test_bit(R5_Wantcompute, &dev->flags))) {
2490                         if (test_bit(R5_Insync, &dev->flags))
2491                                 rmw++;
2492                         else
2493                                 rmw += 2*disks;  /* cannot read it */
2494                 }
2495                 /* Would I have to read this buffer for reconstruct_write */
2496                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2497                     !test_bit(R5_LOCKED, &dev->flags) &&
2498                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2499                     test_bit(R5_Wantcompute, &dev->flags))) {
2500                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2501                         else
2502                                 rcw += 2*disks;
2503                 }
2504         }
2505         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2506                 (unsigned long long)sh->sector, rmw, rcw);
2507         set_bit(STRIPE_HANDLE, &sh->state);
2508         if (rmw < rcw && rmw > 0)
2509                 /* prefer read-modify-write, but need to get some data */
2510                 for (i = disks; i--; ) {
2511                         struct r5dev *dev = &sh->dev[i];
2512                         if ((dev->towrite || i == sh->pd_idx) &&
2513                             !test_bit(R5_LOCKED, &dev->flags) &&
2514                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2515                             test_bit(R5_Wantcompute, &dev->flags)) &&
2516                             test_bit(R5_Insync, &dev->flags)) {
2517                                 if (
2518                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2519                                         pr_debug("Read_old block "
2520                                                 "%d for r-m-w\n", i);
2521                                         set_bit(R5_LOCKED, &dev->flags);
2522                                         set_bit(R5_Wantread, &dev->flags);
2523                                         s->locked++;
2524                                 } else {
2525                                         set_bit(STRIPE_DELAYED, &sh->state);
2526                                         set_bit(STRIPE_HANDLE, &sh->state);
2527                                 }
2528                         }
2529                 }
2530         if (rcw <= rmw && rcw > 0) {
2531                 /* want reconstruct write, but need to get some data */
2532                 rcw = 0;
2533                 for (i = disks; i--; ) {
2534                         struct r5dev *dev = &sh->dev[i];
2535                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2536                             i != sh->pd_idx && i != sh->qd_idx &&
2537                             !test_bit(R5_LOCKED, &dev->flags) &&
2538                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2539                               test_bit(R5_Wantcompute, &dev->flags))) {
2540                                 rcw++;
2541                                 if (!test_bit(R5_Insync, &dev->flags))
2542                                         continue; /* it's a failed drive */
2543                                 if (
2544                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2545                                         pr_debug("Read_old block "
2546                                                 "%d for Reconstruct\n", i);
2547                                         set_bit(R5_LOCKED, &dev->flags);
2548                                         set_bit(R5_Wantread, &dev->flags);
2549                                         s->locked++;
2550                                 } else {
2551                                         set_bit(STRIPE_DELAYED, &sh->state);
2552                                         set_bit(STRIPE_HANDLE, &sh->state);
2553                                 }
2554                         }
2555                 }
2556         }
2557         /* now if nothing is locked, and if we have enough data,
2558          * we can start a write request
2559          */
2560         /* since handle_stripe can be called at any time we need to handle the
2561          * case where a compute block operation has been submitted and then a
2562          * subsequent call wants to start a write request.  raid_run_ops only
2563          * handles the case where compute block and reconstruct are requested
2564          * simultaneously.  If this is not the case then new writes need to be
2565          * held off until the compute completes.
2566          */
2567         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2568             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2569             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2570                 schedule_reconstruction(sh, s, rcw == 0, 0);
2571 }
2572
2573 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2574                                 struct stripe_head_state *s, int disks)
2575 {
2576         struct r5dev *dev = NULL;
2577
2578         set_bit(STRIPE_HANDLE, &sh->state);
2579
2580         switch (sh->check_state) {
2581         case check_state_idle:
2582                 /* start a new check operation if there are no failures */
2583                 if (s->failed == 0) {
2584                         BUG_ON(s->uptodate != disks);
2585                         sh->check_state = check_state_run;
2586                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2587                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2588                         s->uptodate--;
2589                         break;
2590                 }
2591                 dev = &sh->dev[s->failed_num[0]];
2592                 /* fall through */
2593         case check_state_compute_result:
2594                 sh->check_state = check_state_idle;
2595                 if (!dev)
2596                         dev = &sh->dev[sh->pd_idx];
2597
2598                 /* check that a write has not made the stripe insync */
2599                 if (test_bit(STRIPE_INSYNC, &sh->state))
2600                         break;
2601
2602                 /* either failed parity check, or recovery is happening */
2603                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2604                 BUG_ON(s->uptodate != disks);
2605
2606                 set_bit(R5_LOCKED, &dev->flags);
2607                 s->locked++;
2608                 set_bit(R5_Wantwrite, &dev->flags);
2609
2610                 clear_bit(STRIPE_DEGRADED, &sh->state);
2611                 set_bit(STRIPE_INSYNC, &sh->state);
2612                 break;
2613         case check_state_run:
2614                 break; /* we will be called again upon completion */
2615         case check_state_check_result:
2616                 sh->check_state = check_state_idle;
2617
2618                 /* if a failure occurred during the check operation, leave
2619                  * STRIPE_INSYNC not set and let the stripe be handled again
2620                  */
2621                 if (s->failed)
2622                         break;
2623
2624                 /* handle a successful check operation, if parity is correct
2625                  * we are done.  Otherwise update the mismatch count and repair
2626                  * parity if !MD_RECOVERY_CHECK
2627                  */
2628                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2629                         /* parity is correct (on disc,
2630                          * not in buffer any more)
2631                          */
2632                         set_bit(STRIPE_INSYNC, &sh->state);
2633                 else {
2634                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2635                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2636                                 /* don't try to repair!! */
2637                                 set_bit(STRIPE_INSYNC, &sh->state);
2638                         else {
2639                                 sh->check_state = check_state_compute_run;
2640                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2641                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2642                                 set_bit(R5_Wantcompute,
2643                                         &sh->dev[sh->pd_idx].flags);
2644                                 sh->ops.target = sh->pd_idx;
2645                                 sh->ops.target2 = -1;
2646                                 s->uptodate++;
2647                         }
2648                 }
2649                 break;
2650         case check_state_compute_run:
2651                 break;
2652         default:
2653                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2654                        __func__, sh->check_state,
2655                        (unsigned long long) sh->sector);
2656                 BUG();
2657         }
2658 }
2659
2660
2661 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2662                                   struct stripe_head_state *s,
2663                                   int disks)
2664 {
2665         int pd_idx = sh->pd_idx;
2666         int qd_idx = sh->qd_idx;
2667         struct r5dev *dev;
2668
2669         set_bit(STRIPE_HANDLE, &sh->state);
2670
2671         BUG_ON(s->failed > 2);
2672
2673         /* Want to check and possibly repair P and Q.
2674          * However there could be one 'failed' device, in which
2675          * case we can only check one of them, possibly using the
2676          * other to generate missing data
2677          */
2678
2679         switch (sh->check_state) {
2680         case check_state_idle:
2681                 /* start a new check operation if there are < 2 failures */
2682                 if (s->failed == s->q_failed) {
2683                         /* The only possible failed device holds Q, so it
2684                          * makes sense to check P (If anything else were failed,
2685                          * we would have used P to recreate it).
2686                          */
2687                         sh->check_state = check_state_run;
2688                 }
2689                 if (!s->q_failed && s->failed < 2) {
2690                         /* Q is not failed, and we didn't use it to generate
2691                          * anything, so it makes sense to check it
2692                          */
2693                         if (sh->check_state == check_state_run)
2694                                 sh->check_state = check_state_run_pq;
2695                         else
2696                                 sh->check_state = check_state_run_q;
2697                 }
2698
2699                 /* discard potentially stale zero_sum_result */
2700                 sh->ops.zero_sum_result = 0;
2701
2702                 if (sh->check_state == check_state_run) {
2703                         /* async_xor_zero_sum destroys the contents of P */
2704                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2705                         s->uptodate--;
2706                 }
2707                 if (sh->check_state >= check_state_run &&
2708                     sh->check_state <= check_state_run_pq) {
2709                         /* async_syndrome_zero_sum preserves P and Q, so
2710                          * no need to mark them !uptodate here
2711                          */
2712                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2713                         break;
2714                 }
2715
2716                 /* we have 2-disk failure */
2717                 BUG_ON(s->failed != 2);
2718                 /* fall through */
2719         case check_state_compute_result:
2720                 sh->check_state = check_state_idle;
2721
2722                 /* check that a write has not made the stripe insync */
2723                 if (test_bit(STRIPE_INSYNC, &sh->state))
2724                         break;
2725
2726                 /* now write out any block on a failed drive,
2727                  * or P or Q if they were recomputed
2728                  */
2729                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2730                 if (s->failed == 2) {
2731                         dev = &sh->dev[s->failed_num[1]];
2732                         s->locked++;
2733                         set_bit(R5_LOCKED, &dev->flags);
2734                         set_bit(R5_Wantwrite, &dev->flags);
2735                 }
2736                 if (s->failed >= 1) {
2737                         dev = &sh->dev[s->failed_num[0]];
2738                         s->locked++;
2739                         set_bit(R5_LOCKED, &dev->flags);
2740                         set_bit(R5_Wantwrite, &dev->flags);
2741                 }
2742                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2743                         dev = &sh->dev[pd_idx];
2744                         s->locked++;
2745                         set_bit(R5_LOCKED, &dev->flags);
2746                         set_bit(R5_Wantwrite, &dev->flags);
2747                 }
2748                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2749                         dev = &sh->dev[qd_idx];
2750                         s->locked++;
2751                         set_bit(R5_LOCKED, &dev->flags);
2752                         set_bit(R5_Wantwrite, &dev->flags);
2753                 }
2754                 clear_bit(STRIPE_DEGRADED, &sh->state);
2755
2756                 set_bit(STRIPE_INSYNC, &sh->state);
2757                 break;
2758         case check_state_run:
2759         case check_state_run_q:
2760         case check_state_run_pq:
2761                 break; /* we will be called again upon completion */
2762         case check_state_check_result:
2763                 sh->check_state = check_state_idle;
2764
2765                 /* handle a successful check operation, if parity is correct
2766                  * we are done.  Otherwise update the mismatch count and repair
2767                  * parity if !MD_RECOVERY_CHECK
2768                  */
2769                 if (sh->ops.zero_sum_result == 0) {
2770                         /* both parities are correct */
2771                         if (!s->failed)
2772                                 set_bit(STRIPE_INSYNC, &sh->state);
2773                         else {
2774                                 /* in contrast to the raid5 case we can validate
2775                                  * parity, but still have a failure to write
2776                                  * back
2777                                  */
2778                                 sh->check_state = check_state_compute_result;
2779                                 /* Returning at this point means that we may go
2780                                  * off and bring p and/or q uptodate again so
2781                                  * we make sure to check zero_sum_result again
2782                                  * to verify if p or q need writeback
2783                                  */
2784                         }
2785                 } else {
2786                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2787                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2788                                 /* don't try to repair!! */
2789                                 set_bit(STRIPE_INSYNC, &sh->state);
2790                         else {
2791                                 int *target = &sh->ops.target;
2792
2793                                 sh->ops.target = -1;
2794                                 sh->ops.target2 = -1;
2795                                 sh->check_state = check_state_compute_run;
2796                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2797                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2798                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2799                                         set_bit(R5_Wantcompute,
2800                                                 &sh->dev[pd_idx].flags);
2801                                         *target = pd_idx;
2802                                         target = &sh->ops.target2;
2803                                         s->uptodate++;
2804                                 }
2805                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2806                                         set_bit(R5_Wantcompute,
2807                                                 &sh->dev[qd_idx].flags);
2808                                         *target = qd_idx;
2809                                         s->uptodate++;
2810                                 }
2811                         }
2812                 }
2813                 break;
2814         case check_state_compute_run:
2815                 break;
2816         default:
2817                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2818                        __func__, sh->check_state,
2819                        (unsigned long long) sh->sector);
2820                 BUG();
2821         }
2822 }
2823
2824 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2825 {
2826         int i;
2827
2828         /* We have read all the blocks in this stripe and now we need to
2829          * copy some of them into a target stripe for expand.
2830          */
2831         struct dma_async_tx_descriptor *tx = NULL;
2832         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2833         for (i = 0; i < sh->disks; i++)
2834                 if (i != sh->pd_idx && i != sh->qd_idx) {
2835                         int dd_idx, j;
2836                         struct stripe_head *sh2;
2837                         struct async_submit_ctl submit;
2838
2839                         sector_t bn = compute_blocknr(sh, i, 1);
2840                         sector_t s = raid5_compute_sector(conf, bn, 0,
2841                                                           &dd_idx, NULL);
2842                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2843                         if (sh2 == NULL)
2844                                 /* so far only the early blocks of this stripe
2845                                  * have been requested.  When later blocks
2846                                  * get requested, we will try again
2847                                  */
2848                                 continue;
2849                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2850                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2851                                 /* must have already done this block */
2852                                 release_stripe(sh2);
2853                                 continue;
2854                         }
2855
2856                         /* place all the copies on one channel */
2857                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2858                         tx = async_memcpy(sh2->dev[dd_idx].page,
2859                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2860                                           &submit);
2861
2862                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2863                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2864                         for (j = 0; j < conf->raid_disks; j++)
2865                                 if (j != sh2->pd_idx &&
2866                                     j != sh2->qd_idx &&
2867                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2868                                         break;
2869                         if (j == conf->raid_disks) {
2870                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2871                                 set_bit(STRIPE_HANDLE, &sh2->state);
2872                         }
2873                         release_stripe(sh2);
2874
2875                 }
2876         /* done submitting copies, wait for them to complete */
2877         if (tx) {
2878                 async_tx_ack(tx);
2879                 dma_wait_for_async_tx(tx);
2880         }
2881 }
2882
2883
2884 /*
2885  * handle_stripe - do things to a stripe.
2886  *
2887  * We lock the stripe and then examine the state of various bits
2888  * to see what needs to be done.
2889  * Possible results:
2890  *    return some read request which now have data
2891  *    return some write requests which are safely on disc
2892  *    schedule a read on some buffers
2893  *    schedule a write of some buffers
2894  *    return confirmation of parity correctness
2895  *
2896  * buffers are taken off read_list or write_list, and bh_cache buffers
2897  * get BH_Lock set before the stripe lock is released.
2898  *
2899  */
2900
2901 static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
2902 {
2903         raid5_conf_t *conf = sh->raid_conf;
2904         int disks = sh->disks, i;
2905         struct r5dev *dev;
2906         int prexor;
2907
2908         /* Now to look around and see what can be done */
2909         rcu_read_lock();
2910         spin_lock_irq(&conf->device_lock);
2911         for (i=disks; i--; ) {
2912                 mdk_rdev_t *rdev;
2913
2914                 dev = &sh->dev[i];
2915
2916                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2917                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2918                         dev->towrite, dev->written);
2919
2920                 /* maybe we can request a biofill operation
2921                  *
2922                  * new wantfill requests are only permitted while
2923                  * ops_complete_biofill is guaranteed to be inactive
2924                  */
2925                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2926                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2927                         set_bit(R5_Wantfill, &dev->flags);
2928
2929                 /* now count some things */
2930                 if (test_bit(R5_LOCKED, &dev->flags))
2931                         s->locked++;
2932                 if (test_bit(R5_UPTODATE, &dev->flags))
2933                         s->uptodate++;
2934                 if (test_bit(R5_Wantcompute, &dev->flags))
2935                         s->compute++;
2936
2937                 if (test_bit(R5_Wantfill, &dev->flags))
2938                         s->to_fill++;
2939                 else if (dev->toread)
2940                         s->to_read++;
2941                 if (dev->towrite) {
2942                         s->to_write++;
2943                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2944                                 s->non_overwrite++;
2945                 }
2946                 if (dev->written)
2947                         s->written++;
2948                 rdev = rcu_dereference(conf->disks[i].rdev);
2949                 if (s->blocked_rdev == NULL &&
2950                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2951                         s->blocked_rdev = rdev;
2952                         atomic_inc(&rdev->nr_pending);
2953                 }
2954                 clear_bit(R5_Insync, &dev->flags);
2955                 if (!rdev)
2956                         /* Not in-sync */;
2957                 else if (test_bit(In_sync, &rdev->flags))
2958                         set_bit(R5_Insync, &dev->flags);
2959                 else {
2960                         /* could be in-sync depending on recovery/reshape status */
2961                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2962                                 set_bit(R5_Insync, &dev->flags);
2963                 }
2964                 if (!test_bit(R5_Insync, &dev->flags)) {
2965                         /* The ReadError flag will just be confusing now */
2966                         clear_bit(R5_ReadError, &dev->flags);
2967                         clear_bit(R5_ReWrite, &dev->flags);
2968                 }
2969                 if (test_bit(R5_ReadError, &dev->flags))
2970                         clear_bit(R5_Insync, &dev->flags);
2971                 if (!test_bit(R5_Insync, &dev->flags)) {
2972                         s->failed++;
2973                         s->failed_num[0] = i;
2974                 }
2975         }
2976         spin_unlock_irq(&conf->device_lock);
2977         rcu_read_unlock();
2978
2979         if (unlikely(s->blocked_rdev)) {
2980                 if (s->syncing || s->expanding || s->expanded ||
2981                     s->to_write || s->written) {
2982                         set_bit(STRIPE_HANDLE, &sh->state);
2983                         return 1;
2984                 }
2985                 /* There is nothing for the blocked_rdev to block */
2986                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
2987                 s->blocked_rdev = NULL;
2988         }
2989
2990         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2991                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
2992                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2993         }
2994
2995         pr_debug("locked=%d uptodate=%d to_read=%d"
2996                 " to_write=%d failed=%d failed_num=%d\n",
2997                 s->locked, s->uptodate, s->to_read, s->to_write,
2998                 s->failed, s->failed_num[0]);
2999         /* check if the array has lost two devices and, if so, some requests might
3000          * need to be failed
3001          */
3002         if (s->failed > 1 && s->to_read+s->to_write+s->written)
3003                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3004         if (s->failed > 1 && s->syncing) {
3005                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3006                 clear_bit(STRIPE_SYNCING, &sh->state);
3007                 s->syncing = 0;
3008         }
3009
3010         /* might be able to return some write requests if the parity block
3011          * is safe, or on a failed drive
3012          */
3013         dev = &sh->dev[sh->pd_idx];
3014         if (s->written &&
3015             ((test_bit(R5_Insync, &dev->flags) &&
3016               !test_bit(R5_LOCKED, &dev->flags) &&
3017               test_bit(R5_UPTODATE, &dev->flags)) ||
3018              (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
3019                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3020
3021         /* Now we might consider reading some blocks, either to check/generate
3022          * parity, or to satisfy requests
3023          * or to load a block that is being partially written.
3024          */
3025         if (s->to_read || s->non_overwrite ||
3026             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3027                 handle_stripe_fill(sh, s, disks);
3028
3029         /* Now we check to see if any write operations have recently
3030          * completed
3031          */
3032         prexor = 0;
3033         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3034                 prexor = 1;
3035         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3036             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3037                 sh->reconstruct_state = reconstruct_state_idle;
3038
3039                 /* All the 'written' buffers and the parity block are ready to
3040                  * be written back to disk
3041                  */
3042                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3043                 for (i = disks; i--; ) {
3044                         dev = &sh->dev[i];
3045                         if (test_bit(R5_LOCKED, &dev->flags) &&
3046                                 (i == sh->pd_idx || dev->written)) {
3047                                 pr_debug("Writing block %d\n", i);
3048                                 set_bit(R5_Wantwrite, &dev->flags);
3049                                 if (prexor)
3050                                         continue;
3051                                 if (!test_bit(R5_Insync, &dev->flags) ||
3052                                     (i == sh->pd_idx && s->failed == 0))
3053                                         set_bit(STRIPE_INSYNC, &sh->state);
3054                         }
3055                 }
3056                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3057                         s->dec_preread_active = 1;
3058         }
3059
3060         /* Now to consider new write requests and what else, if anything
3061          * should be read.  We do not handle new writes when:
3062          * 1/ A 'write' operation (copy+xor) is already in flight.
3063          * 2/ A 'check' operation is in flight, as it may clobber the parity
3064          *    block.
3065          */
3066         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3067                 handle_stripe_dirtying(conf, sh, s, disks);
3068
3069         /* maybe we need to check and possibly fix the parity for this stripe
3070          * Any reads will already have been scheduled, so we just see if enough
3071          * data is available.  The parity check is held off while parity
3072          * dependent operations are in flight.
3073          */
3074         if (sh->check_state ||
3075             (s->syncing && s->locked == 0 &&
3076              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3077              !test_bit(STRIPE_INSYNC, &sh->state)))
3078                 handle_parity_checks5(conf, sh, s, disks);
3079         return 0;
3080 }
3081
3082 static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
3083 {
3084         raid5_conf_t *conf = sh->raid_conf;
3085         int disks = sh->disks;
3086         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3087         struct r5dev *dev, *pdev, *qdev;
3088
3089         /* Now to look around and see what can be done */
3090
3091         rcu_read_lock();
3092         spin_lock_irq(&conf->device_lock);
3093         for (i=disks; i--; ) {
3094                 mdk_rdev_t *rdev;
3095                 dev = &sh->dev[i];
3096
3097                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3098                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3099                 /* maybe we can reply to a read
3100                  *
3101                  * new wantfill requests are only permitted while
3102                  * ops_complete_biofill is guaranteed to be inactive
3103                  */
3104                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3105                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3106                         set_bit(R5_Wantfill, &dev->flags);
3107
3108                 /* now count some things */
3109                 if (test_bit(R5_LOCKED, &dev->flags))
3110                         s->locked++;
3111                 if (test_bit(R5_UPTODATE, &dev->flags))
3112                         s->uptodate++;
3113                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3114                         s->compute++;
3115                         BUG_ON(s->compute > 2);
3116                 }
3117
3118                 if (test_bit(R5_Wantfill, &dev->flags)) {
3119                         s->to_fill++;
3120                 } else if (dev->toread)
3121                         s->to_read++;
3122                 if (dev->towrite) {
3123                         s->to_write++;
3124                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3125                                 s->non_overwrite++;
3126                 }
3127                 if (dev->written)
3128                         s->written++;
3129                 rdev = rcu_dereference(conf->disks[i].rdev);
3130                 if (s->blocked_rdev == NULL &&
3131                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3132                         s->blocked_rdev = rdev;
3133                         atomic_inc(&rdev->nr_pending);
3134                 }
3135                 clear_bit(R5_Insync, &dev->flags);
3136                 if (!rdev)
3137                         /* Not in-sync */;
3138                 else if (test_bit(In_sync, &rdev->flags))
3139                         set_bit(R5_Insync, &dev->flags);
3140                 else {
3141                         /* in sync if before recovery_offset */
3142                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3143                                 set_bit(R5_Insync, &dev->flags);
3144                 }
3145                 if (!test_bit(R5_Insync, &dev->flags)) {
3146                         /* The ReadError flag will just be confusing now */
3147                         clear_bit(R5_ReadError, &dev->flags);
3148                         clear_bit(R5_ReWrite, &dev->flags);
3149                 }
3150                 if (test_bit(R5_ReadError, &dev->flags))
3151                         clear_bit(R5_Insync, &dev->flags);
3152                 if (!test_bit(R5_Insync, &dev->flags)) {
3153                         if (s->failed < 2)
3154                                 s->failed_num[s->failed] = i;
3155                         s->failed++;
3156                 }
3157         }
3158         spin_unlock_irq(&conf->device_lock);
3159         rcu_read_unlock();
3160
3161         if (unlikely(s->blocked_rdev)) {
3162                 if (s->syncing || s->expanding || s->expanded ||
3163                     s->to_write || s->written) {
3164                         set_bit(STRIPE_HANDLE, &sh->state);
3165                         return 1;
3166                 }
3167                 /* There is nothing for the blocked_rdev to block */
3168                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3169                 s->blocked_rdev = NULL;
3170         }
3171
3172         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3173                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3174                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3175         }
3176
3177         pr_debug("locked=%d uptodate=%d to_read=%d"
3178                " to_write=%d failed=%d failed_num=%d,%d\n",
3179                s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
3180                s->failed_num[0], s->failed_num[1]);
3181         /* check if the array has lost >2 devices and, if so, some requests
3182          * might need to be failed
3183          */
3184         if (s->failed > 2 && s->to_read+s->to_write+s->written)
3185                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3186         if (s->failed > 2 && s->syncing) {
3187                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3188                 clear_bit(STRIPE_SYNCING, &sh->state);
3189                 s->syncing = 0;
3190         }
3191
3192         /*
3193          * might be able to return some write requests if the parity blocks
3194          * are safe, or on a failed drive
3195          */
3196         pdev = &sh->dev[pd_idx];
3197         s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
3198                 || (s->failed >= 2 && s->failed_num[1] == pd_idx);
3199         qdev = &sh->dev[qd_idx];
3200         s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
3201                 || (s->failed >= 2 && s->failed_num[1] == qd_idx);
3202
3203         if (s->written &&
3204             (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3205                              && !test_bit(R5_LOCKED, &pdev->flags)
3206                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3207             (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3208                              && !test_bit(R5_LOCKED, &qdev->flags)
3209                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3210                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3211
3212         /* Now we might consider reading some blocks, either to check/generate
3213          * parity, or to satisfy requests
3214          * or to load a block that is being partially written.
3215          */
3216         if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
3217             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3218                 handle_stripe_fill(sh, s, disks);
3219
3220         /* Now we check to see if any write operations have recently
3221          * completed
3222          */
3223         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3224
3225                 sh->reconstruct_state = reconstruct_state_idle;
3226                 /* All the 'written' buffers and the parity blocks are ready to
3227                  * be written back to disk
3228                  */
3229                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3230                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3231                 for (i = disks; i--; ) {
3232                         dev = &sh->dev[i];
3233                         if (test_bit(R5_LOCKED, &dev->flags) &&
3234                             (i == sh->pd_idx || i == qd_idx ||
3235                              dev->written)) {
3236                                 pr_debug("Writing block %d\n", i);
3237                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3238                                 set_bit(R5_Wantwrite, &dev->flags);
3239                                 if (!test_bit(R5_Insync, &dev->flags) ||
3240                                     ((i == sh->pd_idx || i == qd_idx) &&
3241                                       s->failed == 0))
3242                                         set_bit(STRIPE_INSYNC, &sh->state);
3243                         }
3244                 }
3245                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3246                         s->dec_preread_active = 1;
3247         }
3248
3249         /* Now to consider new write requests and what else, if anything
3250          * should be read.  We do not handle new writes when:
3251          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3252          * 2/ A 'check' operation is in flight, as it may clobber the parity
3253          *    block.
3254          */
3255         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3256                 handle_stripe_dirtying(conf, sh, s, disks);
3257
3258         /* maybe we need to check and possibly fix the parity for this stripe
3259          * Any reads will already have been scheduled, so we just see if enough
3260          * data is available.  The parity check is held off while parity
3261          * dependent operations are in flight.
3262          */
3263         if (sh->check_state ||
3264             (s->syncing && s->locked == 0 &&
3265              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3266              !test_bit(STRIPE_INSYNC, &sh->state)))
3267                 handle_parity_checks6(conf, sh, s, disks);
3268         return 0;
3269 }
3270
3271 static void handle_stripe(struct stripe_head *sh)
3272 {
3273         struct stripe_head_state s;
3274         int done;
3275         int i;
3276         raid5_conf_t *conf = sh->raid_conf;
3277
3278         clear_bit(STRIPE_HANDLE, &sh->state);
3279         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3280                 /* already being handled, ensure it gets handled
3281                  * again when current action finishes */
3282                 set_bit(STRIPE_HANDLE, &sh->state);
3283                 return;
3284         }
3285
3286         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3287                 set_bit(STRIPE_SYNCING, &sh->state);
3288                 clear_bit(STRIPE_INSYNC, &sh->state);
3289         }
3290         clear_bit(STRIPE_DELAYED, &sh->state);
3291
3292         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3293                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3294                (unsigned long long)sh->sector, sh->state,
3295                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3296                sh->check_state, sh->reconstruct_state);
3297         memset(&s, 0, sizeof(s));
3298
3299         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3300         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3301         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3302         s.failed_num[0] = -1;
3303         s.failed_num[1] = -1;
3304
3305         if (conf->level == 6)
3306                 done = handle_stripe6(sh, &s);
3307         else
3308                 done = handle_stripe5(sh, &s);
3309
3310         if (done)
3311                 goto finish;
3312
3313
3314         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3315                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3316                 clear_bit(STRIPE_SYNCING, &sh->state);
3317         }
3318
3319         /* If the failed drives are just a ReadError, then we might need
3320          * to progress the repair/check process
3321          */
3322         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3323                 for (i = 0; i < s.failed; i++) {
3324                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3325                         if (test_bit(R5_ReadError, &dev->flags)
3326                             && !test_bit(R5_LOCKED, &dev->flags)
3327                             && test_bit(R5_UPTODATE, &dev->flags)
3328                                 ) {
3329                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3330                                         set_bit(R5_Wantwrite, &dev->flags);
3331                                         set_bit(R5_ReWrite, &dev->flags);
3332                                         set_bit(R5_LOCKED, &dev->flags);
3333                                         s.locked++;
3334                                 } else {
3335                                         /* let's read it back */
3336                                         set_bit(R5_Wantread, &dev->flags);
3337                                         set_bit(R5_LOCKED, &dev->flags);
3338                                         s.locked++;
3339                                 }
3340                         }
3341                 }
3342
3343
3344         /* Finish reconstruct operations initiated by the expansion process */
3345         if (sh->reconstruct_state == reconstruct_state_result) {
3346                 struct stripe_head *sh_src
3347                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3348                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3349                         /* sh cannot be written until sh_src has been read.
3350                          * so arrange for sh to be delayed a little
3351                          */
3352                         set_bit(STRIPE_DELAYED, &sh->state);
3353                         set_bit(STRIPE_HANDLE, &sh->state);
3354                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3355                                               &sh_src->state))
3356                                 atomic_inc(&conf->preread_active_stripes);
3357                         release_stripe(sh_src);
3358                         goto finish;
3359                 }
3360                 if (sh_src)
3361                         release_stripe(sh_src);
3362
3363                 sh->reconstruct_state = reconstruct_state_idle;
3364                 clear_bit(STRIPE_EXPANDING, &sh->state);
3365                 for (i = conf->raid_disks; i--; ) {
3366                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3367                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3368                         s.locked++;
3369                 }
3370         }
3371
3372         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3373             !sh->reconstruct_state) {
3374                 /* Need to write out all blocks after computing parity */
3375                 sh->disks = conf->raid_disks;
3376                 stripe_set_idx(sh->sector, conf, 0, sh);
3377                 schedule_reconstruction(sh, &s, 1, 1);
3378         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3379                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3380                 atomic_dec(&conf->reshape_stripes);
3381                 wake_up(&conf->wait_for_overlap);
3382                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3383         }
3384
3385         if (s.expanding && s.locked == 0 &&
3386             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3387                 handle_stripe_expansion(conf, sh);
3388
3389 finish:
3390         /* wait for this device to become unblocked */
3391         if (unlikely(s.blocked_rdev))
3392                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3393
3394         if (s.ops_request)
3395                 raid_run_ops(sh, s.ops_request);
3396
3397         ops_run_io(sh, &s);
3398
3399
3400         if (s.dec_preread_active) {
3401                 /* We delay this until after ops_run_io so that if make_request
3402                  * is waiting on a flush, it won't continue until the writes
3403                  * have actually been submitted.
3404                  */
3405                 atomic_dec(&conf->preread_active_stripes);
3406                 if (atomic_read(&conf->preread_active_stripes) <
3407                     IO_THRESHOLD)
3408                         md_wakeup_thread(conf->mddev->thread);
3409         }
3410
3411         return_io(s.return_bi);
3412
3413         clear_bit(STRIPE_ACTIVE, &sh->state);
3414 }
3415
3416 static void raid5_activate_delayed(raid5_conf_t *conf)
3417 {
3418         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3419                 while (!list_empty(&conf->delayed_list)) {
3420                         struct list_head *l = conf->delayed_list.next;
3421                         struct stripe_head *sh;
3422                         sh = list_entry(l, struct stripe_head, lru);
3423                         list_del_init(l);
3424                         clear_bit(STRIPE_DELAYED, &sh->state);
3425                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3426                                 atomic_inc(&conf->preread_active_stripes);
3427                         list_add_tail(&sh->lru, &conf->hold_list);
3428                 }
3429         }
3430 }
3431
3432 static void activate_bit_delay(raid5_conf_t *conf)
3433 {
3434         /* device_lock is held */
3435         struct list_head head;
3436         list_add(&head, &conf->bitmap_list);
3437         list_del_init(&conf->bitmap_list);
3438         while (!list_empty(&head)) {
3439                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3440                 list_del_init(&sh->lru);
3441                 atomic_inc(&sh->count);
3442                 __release_stripe(conf, sh);
3443         }
3444 }
3445
3446 int md_raid5_congested(mddev_t *mddev, int bits)
3447 {
3448         raid5_conf_t *conf = mddev->private;
3449
3450         /* No difference between reads and writes.  Just check
3451          * how busy the stripe_cache is
3452          */
3453
3454         if (conf->inactive_blocked)
3455                 return 1;
3456         if (conf->quiesce)
3457                 return 1;
3458         if (list_empty_careful(&conf->inactive_list))
3459                 return 1;
3460
3461         return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(md_raid5_congested);
3464
3465 static int raid5_congested(void *data, int bits)
3466 {
3467         mddev_t *mddev = data;
3468
3469         return mddev_congested(mddev, bits) ||
3470                 md_raid5_congested(mddev, bits);
3471 }
3472
3473 /* We want read requests to align with chunks where possible,
3474  * but write requests don't need to.
3475  */
3476 static int raid5_mergeable_bvec(struct request_queue *q,
3477                                 struct bvec_merge_data *bvm,
3478                                 struct bio_vec *biovec)
3479 {
3480         mddev_t *mddev = q->queuedata;
3481         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3482         int max;
3483         unsigned int chunk_sectors = mddev->chunk_sectors;
3484         unsigned int bio_sectors = bvm->bi_size >> 9;
3485
3486         if ((bvm->bi_rw & 1) == WRITE)
3487                 return biovec->bv_len; /* always allow writes to be mergeable */
3488
3489         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3490                 chunk_sectors = mddev->new_chunk_sectors;
3491         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3492         if (max < 0) max = 0;
3493         if (max <= biovec->bv_len && bio_sectors == 0)
3494                 return biovec->bv_len;
3495         else
3496                 return max;
3497 }
3498
3499
3500 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3501 {
3502         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3503         unsigned int chunk_sectors = mddev->chunk_sectors;
3504         unsigned int bio_sectors = bio->bi_size >> 9;
3505
3506         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3507                 chunk_sectors = mddev->new_chunk_sectors;
3508         return  chunk_sectors >=
3509                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3510 }
3511
3512 /*
3513  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3514  *  later sampled by raid5d.
3515  */
3516 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3517 {
3518         unsigned long flags;
3519
3520         spin_lock_irqsave(&conf->device_lock, flags);
3521
3522         bi->bi_next = conf->retry_read_aligned_list;
3523         conf->retry_read_aligned_list = bi;
3524
3525         spin_unlock_irqrestore(&conf->device_lock, flags);
3526         md_wakeup_thread(conf->mddev->thread);
3527 }
3528
3529
3530 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3531 {
3532         struct bio *bi;
3533
3534         bi = conf->retry_read_aligned;
3535         if (bi) {
3536                 conf->retry_read_aligned = NULL;
3537                 return bi;
3538         }
3539         bi = conf->retry_read_aligned_list;
3540         if(bi) {
3541                 conf->retry_read_aligned_list = bi->bi_next;
3542                 bi->bi_next = NULL;
3543                 /*
3544                  * this sets the active strip count to 1 and the processed
3545                  * strip count to zero (upper 8 bits)
3546                  */
3547                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3548         }
3549
3550         return bi;
3551 }
3552
3553
3554 /*
3555  *  The "raid5_align_endio" should check if the read succeeded and if it
3556  *  did, call bio_endio on the original bio (having bio_put the new bio
3557  *  first).
3558  *  If the read failed..
3559  */
3560 static void raid5_align_endio(struct bio *bi, int error)
3561 {
3562         struct bio* raid_bi  = bi->bi_private;
3563         mddev_t *mddev;
3564         raid5_conf_t *conf;
3565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3566         mdk_rdev_t *rdev;
3567
3568         bio_put(bi);
3569
3570         rdev = (void*)raid_bi->bi_next;
3571         raid_bi->bi_next = NULL;
3572         mddev = rdev->mddev;
3573         conf = mddev->private;
3574
3575         rdev_dec_pending(rdev, conf->mddev);
3576
3577         if (!error && uptodate) {
3578                 bio_endio(raid_bi, 0);
3579                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3580                         wake_up(&conf->wait_for_stripe);
3581                 return;
3582         }
3583
3584
3585         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3586
3587         add_bio_to_retry(raid_bi, conf);
3588 }
3589
3590 static int bio_fits_rdev(struct bio *bi)
3591 {
3592         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3593
3594         if ((bi->bi_size>>9) > queue_max_sectors(q))
3595                 return 0;
3596         blk_recount_segments(q, bi);
3597         if (bi->bi_phys_segments > queue_max_segments(q))
3598                 return 0;
3599
3600         if (q->merge_bvec_fn)
3601                 /* it's too hard to apply the merge_bvec_fn at this stage,
3602                  * just just give up
3603                  */
3604                 return 0;
3605
3606         return 1;
3607 }
3608
3609
3610 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3611 {
3612         raid5_conf_t *conf = mddev->private;
3613         int dd_idx;
3614         struct bio* align_bi;
3615         mdk_rdev_t *rdev;
3616
3617         if (!in_chunk_boundary(mddev, raid_bio)) {
3618                 pr_debug("chunk_aligned_read : non aligned\n");
3619                 return 0;
3620         }
3621         /*
3622          * use bio_clone_mddev to make a copy of the bio
3623          */
3624         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3625         if (!align_bi)
3626                 return 0;
3627         /*
3628          *   set bi_end_io to a new function, and set bi_private to the
3629          *     original bio.
3630          */
3631         align_bi->bi_end_io  = raid5_align_endio;
3632         align_bi->bi_private = raid_bio;
3633         /*
3634          *      compute position
3635          */
3636         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3637                                                     0,
3638                                                     &dd_idx, NULL);
3639
3640         rcu_read_lock();
3641         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3642         if (rdev && test_bit(In_sync, &rdev->flags)) {
3643                 atomic_inc(&rdev->nr_pending);
3644                 rcu_read_unlock();
3645                 raid_bio->bi_next = (void*)rdev;
3646                 align_bi->bi_bdev =  rdev->bdev;
3647                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3648                 align_bi->bi_sector += rdev->data_offset;
3649
3650                 if (!bio_fits_rdev(align_bi)) {
3651                         /* too big in some way */
3652                         bio_put(align_bi);
3653                         rdev_dec_pending(rdev, mddev);
3654                         return 0;
3655                 }
3656
3657                 spin_lock_irq(&conf->device_lock);
3658                 wait_event_lock_irq(conf->wait_for_stripe,
3659                                     conf->quiesce == 0,
3660                                     conf->device_lock, /* nothing */);
3661                 atomic_inc(&conf->active_aligned_reads);
3662                 spin_unlock_irq(&conf->device_lock);
3663
3664                 generic_make_request(align_bi);
3665                 return 1;
3666         } else {
3667                 rcu_read_unlock();
3668                 bio_put(align_bi);
3669                 return 0;
3670         }
3671 }
3672
3673 /* __get_priority_stripe - get the next stripe to process
3674  *
3675  * Full stripe writes are allowed to pass preread active stripes up until
3676  * the bypass_threshold is exceeded.  In general the bypass_count
3677  * increments when the handle_list is handled before the hold_list; however, it
3678  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3679  * stripe with in flight i/o.  The bypass_count will be reset when the
3680  * head of the hold_list has changed, i.e. the head was promoted to the
3681  * handle_list.
3682  */
3683 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3684 {
3685         struct stripe_head *sh;
3686
3687         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3688                   __func__,
3689                   list_empty(&conf->handle_list) ? "empty" : "busy",
3690                   list_empty(&conf->hold_list) ? "empty" : "busy",
3691                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3692
3693         if (!list_empty(&conf->handle_list)) {
3694                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3695
3696                 if (list_empty(&conf->hold_list))
3697                         conf->bypass_count = 0;
3698                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3699                         if (conf->hold_list.next == conf->last_hold)
3700                                 conf->bypass_count++;
3701                         else {
3702                                 conf->last_hold = conf->hold_list.next;
3703                                 conf->bypass_count -= conf->bypass_threshold;
3704                                 if (conf->bypass_count < 0)
3705                                         conf->bypass_count = 0;
3706                         }
3707                 }
3708         } else if (!list_empty(&conf->hold_list) &&
3709                    ((conf->bypass_threshold &&
3710                      conf->bypass_count > conf->bypass_threshold) ||
3711                     atomic_read(&conf->pending_full_writes) == 0)) {
3712                 sh = list_entry(conf->hold_list.next,
3713                                 typeof(*sh), lru);
3714                 conf->bypass_count -= conf->bypass_threshold;
3715                 if (conf->bypass_count < 0)
3716                         conf->bypass_count = 0;
3717         } else
3718                 return NULL;
3719
3720         list_del_init(&sh->lru);
3721         atomic_inc(&sh->count);
3722         BUG_ON(atomic_read(&sh->count) != 1);
3723         return sh;
3724 }
3725
3726 static int make_request(mddev_t *mddev, struct bio * bi)
3727 {
3728         raid5_conf_t *conf = mddev->private;
3729         int dd_idx;
3730         sector_t new_sector;
3731         sector_t logical_sector, last_sector;
3732         struct stripe_head *sh;
3733         const int rw = bio_data_dir(bi);
3734         int remaining;
3735         int plugged;
3736
3737         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3738                 md_flush_request(mddev, bi);
3739                 return 0;
3740         }
3741
3742         md_write_start(mddev, bi);
3743
3744         if (rw == READ &&
3745              mddev->reshape_position == MaxSector &&
3746              chunk_aligned_read(mddev,bi))
3747                 return 0;
3748
3749         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3750         last_sector = bi->bi_sector + (bi->bi_size>>9);
3751         bi->bi_next = NULL;
3752         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3753
3754         plugged = mddev_check_plugged(mddev);
3755         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3756                 DEFINE_WAIT(w);
3757                 int disks, data_disks;
3758                 int previous;
3759
3760         retry:
3761                 previous = 0;
3762                 disks = conf->raid_disks;
3763                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3764                 if (unlikely(conf->reshape_progress != MaxSector)) {
3765                         /* spinlock is needed as reshape_progress may be
3766                          * 64bit on a 32bit platform, and so it might be
3767                          * possible to see a half-updated value
3768                          * Of course reshape_progress could change after
3769                          * the lock is dropped, so once we get a reference
3770                          * to the stripe that we think it is, we will have
3771                          * to check again.
3772                          */
3773                         spin_lock_irq(&conf->device_lock);
3774                         if (mddev->delta_disks < 0
3775                             ? logical_sector < conf->reshape_progress
3776                             : logical_sector >= conf->reshape_progress) {
3777                                 disks = conf->previous_raid_disks;
3778                                 previous = 1;
3779                         } else {
3780                                 if (mddev->delta_disks < 0
3781                                     ? logical_sector < conf->reshape_safe
3782                                     : logical_sector >= conf->reshape_safe) {
3783                                         spin_unlock_irq(&conf->device_lock);
3784                                         schedule();
3785                                         goto retry;
3786                                 }
3787                         }
3788                         spin_unlock_irq(&conf->device_lock);
3789                 }
3790                 data_disks = disks - conf->max_degraded;
3791
3792                 new_sector = raid5_compute_sector(conf, logical_sector,
3793                                                   previous,
3794                                                   &dd_idx, NULL);
3795                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3796                         (unsigned long long)new_sector, 
3797                         (unsigned long long)logical_sector);
3798
3799                 sh = get_active_stripe(conf, new_sector, previous,
3800                                        (bi->bi_rw&RWA_MASK), 0);
3801                 if (sh) {
3802                         if (unlikely(previous)) {
3803                                 /* expansion might have moved on while waiting for a
3804                                  * stripe, so we must do the range check again.
3805                                  * Expansion could still move past after this
3806                                  * test, but as we are holding a reference to
3807                                  * 'sh', we know that if that happens,
3808                                  *  STRIPE_EXPANDING will get set and the expansion
3809                                  * won't proceed until we finish with the stripe.
3810                                  */
3811                                 int must_retry = 0;
3812                                 spin_lock_irq(&conf->device_lock);
3813                                 if (mddev->delta_disks < 0
3814                                     ? logical_sector >= conf->reshape_progress
3815                                     : logical_sector < conf->reshape_progress)
3816                                         /* mismatch, need to try again */
3817                                         must_retry = 1;
3818                                 spin_unlock_irq(&conf->device_lock);
3819                                 if (must_retry) {
3820                                         release_stripe(sh);
3821                                         schedule();
3822                                         goto retry;
3823                                 }
3824                         }
3825
3826                         if (rw == WRITE &&
3827                             logical_sector >= mddev->suspend_lo &&
3828                             logical_sector < mddev->suspend_hi) {
3829                                 release_stripe(sh);
3830                                 /* As the suspend_* range is controlled by
3831                                  * userspace, we want an interruptible
3832                                  * wait.
3833                                  */
3834                                 flush_signals(current);
3835                                 prepare_to_wait(&conf->wait_for_overlap,
3836                                                 &w, TASK_INTERRUPTIBLE);
3837                                 if (logical_sector >= mddev->suspend_lo &&
3838                                     logical_sector < mddev->suspend_hi)
3839                                         schedule();
3840                                 goto retry;
3841                         }
3842
3843                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3844                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3845                                 /* Stripe is busy expanding or
3846                                  * add failed due to overlap.  Flush everything
3847                                  * and wait a while
3848                                  */
3849                                 md_wakeup_thread(mddev->thread);
3850                                 release_stripe(sh);
3851                                 schedule();
3852                                 goto retry;
3853                         }
3854                         finish_wait(&conf->wait_for_overlap, &w);
3855                         set_bit(STRIPE_HANDLE, &sh->state);
3856                         clear_bit(STRIPE_DELAYED, &sh->state);
3857                         if ((bi->bi_rw & REQ_SYNC) &&
3858                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3859                                 atomic_inc(&conf->preread_active_stripes);
3860                         release_stripe(sh);
3861                 } else {
3862                         /* cannot get stripe for read-ahead, just give-up */
3863                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3864                         finish_wait(&conf->wait_for_overlap, &w);
3865                         break;
3866                 }
3867                         
3868         }
3869         if (!plugged)
3870                 md_wakeup_thread(mddev->thread);
3871
3872         spin_lock_irq(&conf->device_lock);
3873         remaining = raid5_dec_bi_phys_segments(bi);
3874         spin_unlock_irq(&conf->device_lock);
3875         if (remaining == 0) {
3876
3877                 if ( rw == WRITE )
3878                         md_write_end(mddev);
3879
3880                 bio_endio(bi, 0);
3881         }
3882
3883         return 0;
3884 }
3885
3886 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3887
3888 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3889 {
3890         /* reshaping is quite different to recovery/resync so it is
3891          * handled quite separately ... here.
3892          *
3893          * On each call to sync_request, we gather one chunk worth of
3894          * destination stripes and flag them as expanding.
3895          * Then we find all the source stripes and request reads.
3896          * As the reads complete, handle_stripe will copy the data
3897          * into the destination stripe and release that stripe.
3898          */
3899         raid5_conf_t *conf = mddev->private;
3900         struct stripe_head *sh;
3901         sector_t first_sector, last_sector;
3902         int raid_disks = conf->previous_raid_disks;
3903         int data_disks = raid_disks - conf->max_degraded;
3904         int new_data_disks = conf->raid_disks - conf->max_degraded;
3905         int i;
3906         int dd_idx;
3907         sector_t writepos, readpos, safepos;
3908         sector_t stripe_addr;
3909         int reshape_sectors;
3910         struct list_head stripes;
3911
3912         if (sector_nr == 0) {
3913                 /* If restarting in the middle, skip the initial sectors */
3914                 if (mddev->delta_disks < 0 &&
3915                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3916                         sector_nr = raid5_size(mddev, 0, 0)
3917                                 - conf->reshape_progress;
3918                 } else if (mddev->delta_disks >= 0 &&
3919                            conf->reshape_progress > 0)
3920                         sector_nr = conf->reshape_progress;
3921                 sector_div(sector_nr, new_data_disks);
3922                 if (sector_nr) {
3923                         mddev->curr_resync_completed = sector_nr;
3924                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3925                         *skipped = 1;
3926                         return sector_nr;
3927                 }
3928         }
3929
3930         /* We need to process a full chunk at a time.
3931          * If old and new chunk sizes differ, we need to process the
3932          * largest of these
3933          */
3934         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3935                 reshape_sectors = mddev->new_chunk_sectors;
3936         else
3937                 reshape_sectors = mddev->chunk_sectors;
3938
3939         /* we update the metadata when there is more than 3Meg
3940          * in the block range (that is rather arbitrary, should
3941          * probably be time based) or when the data about to be
3942          * copied would over-write the source of the data at
3943          * the front of the range.
3944          * i.e. one new_stripe along from reshape_progress new_maps
3945          * to after where reshape_safe old_maps to
3946          */
3947         writepos = conf->reshape_progress;
3948         sector_div(writepos, new_data_disks);
3949         readpos = conf->reshape_progress;
3950         sector_div(readpos, data_disks);
3951         safepos = conf->reshape_safe;
3952         sector_div(safepos, data_disks);
3953         if (mddev->delta_disks < 0) {
3954                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3955                 readpos += reshape_sectors;
3956                 safepos += reshape_sectors;
3957         } else {
3958                 writepos += reshape_sectors;
3959                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3960                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3961         }
3962
3963         /* 'writepos' is the most advanced device address we might write.
3964          * 'readpos' is the least advanced device address we might read.
3965          * 'safepos' is the least address recorded in the metadata as having
3966          *     been reshaped.
3967          * If 'readpos' is behind 'writepos', then there is no way that we can
3968          * ensure safety in the face of a crash - that must be done by userspace
3969          * making a backup of the data.  So in that case there is no particular
3970          * rush to update metadata.
3971          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3972          * update the metadata to advance 'safepos' to match 'readpos' so that
3973          * we can be safe in the event of a crash.
3974          * So we insist on updating metadata if safepos is behind writepos and
3975          * readpos is beyond writepos.
3976          * In any case, update the metadata every 10 seconds.
3977          * Maybe that number should be configurable, but I'm not sure it is
3978          * worth it.... maybe it could be a multiple of safemode_delay???
3979          */
3980         if ((mddev->delta_disks < 0
3981              ? (safepos > writepos && readpos < writepos)
3982              : (safepos < writepos && readpos > writepos)) ||
3983             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3984                 /* Cannot proceed until we've updated the superblock... */
3985                 wait_event(conf->wait_for_overlap,
3986                            atomic_read(&conf->reshape_stripes)==0);
3987                 mddev->reshape_position = conf->reshape_progress;
3988                 mddev->curr_resync_completed = sector_nr;
3989                 conf->reshape_checkpoint = jiffies;
3990                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3991                 md_wakeup_thread(mddev->thread);
3992                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3993                            kthread_should_stop());
3994                 spin_lock_irq(&conf->device_lock);
3995                 conf->reshape_safe = mddev->reshape_position;
3996                 spin_unlock_irq(&conf->device_lock);
3997                 wake_up(&conf->wait_for_overlap);
3998                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3999         }
4000
4001         if (mddev->delta_disks < 0) {
4002                 BUG_ON(conf->reshape_progress == 0);
4003                 stripe_addr = writepos;
4004                 BUG_ON((mddev->dev_sectors &
4005                         ~((sector_t)reshape_sectors - 1))
4006                        - reshape_sectors - stripe_addr
4007                        != sector_nr);
4008         } else {
4009                 BUG_ON(writepos != sector_nr + reshape_sectors);
4010                 stripe_addr = sector_nr;
4011         }
4012         INIT_LIST_HEAD(&stripes);
4013         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4014                 int j;
4015                 int skipped_disk = 0;
4016                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4017                 set_bit(STRIPE_EXPANDING, &sh->state);
4018                 atomic_inc(&conf->reshape_stripes);
4019                 /* If any of this stripe is beyond the end of the old
4020                  * array, then we need to zero those blocks
4021                  */
4022                 for (j=sh->disks; j--;) {
4023                         sector_t s;
4024                         if (j == sh->pd_idx)
4025                                 continue;
4026                         if (conf->level == 6 &&
4027                             j == sh->qd_idx)
4028                                 continue;
4029                         s = compute_blocknr(sh, j, 0);
4030                         if (s < raid5_size(mddev, 0, 0)) {
4031                                 skipped_disk = 1;
4032                                 continue;
4033                         }
4034                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4035                         set_bit(R5_Expanded, &sh->dev[j].flags);
4036                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4037                 }
4038                 if (!skipped_disk) {
4039                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4040                         set_bit(STRIPE_HANDLE, &sh->state);
4041                 }
4042                 list_add(&sh->lru, &stripes);
4043         }
4044         spin_lock_irq(&conf->device_lock);
4045         if (mddev->delta_disks < 0)
4046                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4047         else
4048                 conf->reshape_progress += reshape_sectors * new_data_disks;
4049         spin_unlock_irq(&conf->device_lock);
4050         /* Ok, those stripe are ready. We can start scheduling
4051          * reads on the source stripes.
4052          * The source stripes are determined by mapping the first and last
4053          * block on the destination stripes.
4054          */
4055         first_sector =
4056                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4057                                      1, &dd_idx, NULL);
4058         last_sector =
4059                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4060                                             * new_data_disks - 1),
4061                                      1, &dd_idx, NULL);
4062         if (last_sector >= mddev->dev_sectors)
4063                 last_sector = mddev->dev_sectors - 1;
4064         while (first_sector <= last_sector) {
4065                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4066                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4067                 set_bit(STRIPE_HANDLE, &sh->state);
4068                 release_stripe(sh);
4069                 first_sector += STRIPE_SECTORS;
4070         }
4071         /* Now that the sources are clearly marked, we can release
4072          * the destination stripes
4073          */
4074         while (!list_empty(&stripes)) {
4075                 sh = list_entry(stripes.next, struct stripe_head, lru);
4076                 list_del_init(&sh->lru);
4077                 release_stripe(sh);
4078         }
4079         /* If this takes us to the resync_max point where we have to pause,
4080          * then we need to write out the superblock.
4081          */
4082         sector_nr += reshape_sectors;
4083         if ((sector_nr - mddev->curr_resync_completed) * 2
4084             >= mddev->resync_max - mddev->curr_resync_completed) {
4085                 /* Cannot proceed until we've updated the superblock... */
4086                 wait_event(conf->wait_for_overlap,
4087                            atomic_read(&conf->reshape_stripes) == 0);
4088                 mddev->reshape_position = conf->reshape_progress;
4089                 mddev->curr_resync_completed = sector_nr;
4090                 conf->reshape_checkpoint = jiffies;
4091                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4092                 md_wakeup_thread(mddev->thread);
4093                 wait_event(mddev->sb_wait,
4094                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4095                            || kthread_should_stop());
4096                 spin_lock_irq(&conf->device_lock);
4097                 conf->reshape_safe = mddev->reshape_position;
4098                 spin_unlock_irq(&conf->device_lock);
4099                 wake_up(&conf->wait_for_overlap);
4100                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4101         }
4102         return reshape_sectors;
4103 }
4104
4105 /* FIXME go_faster isn't used */
4106 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4107 {
4108         raid5_conf_t *conf = mddev->private;
4109         struct stripe_head *sh;
4110         sector_t max_sector = mddev->dev_sectors;
4111         sector_t sync_blocks;
4112         int still_degraded = 0;
4113         int i;
4114
4115         if (sector_nr >= max_sector) {
4116                 /* just being told to finish up .. nothing much to do */
4117
4118                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4119                         end_reshape(conf);
4120                         return 0;
4121                 }
4122
4123                 if (mddev->curr_resync < max_sector) /* aborted */
4124                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4125                                         &sync_blocks, 1);
4126                 else /* completed sync */
4127                         conf->fullsync = 0;
4128                 bitmap_close_sync(mddev->bitmap);
4129
4130                 return 0;
4131         }
4132
4133         /* Allow raid5_quiesce to complete */
4134         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4135
4136         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4137                 return reshape_request(mddev, sector_nr, skipped);
4138
4139         /* No need to check resync_max as we never do more than one
4140          * stripe, and as resync_max will always be on a chunk boundary,
4141          * if the check in md_do_sync didn't fire, there is no chance
4142          * of overstepping resync_max here
4143          */
4144
4145         /* if there is too many failed drives and we are trying
4146          * to resync, then assert that we are finished, because there is
4147          * nothing we can do.
4148          */
4149         if (mddev->degraded >= conf->max_degraded &&
4150             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4151                 sector_t rv = mddev->dev_sectors - sector_nr;
4152                 *skipped = 1;
4153                 return rv;
4154         }
4155         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4156             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4157             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4158                 /* we can skip this block, and probably more */
4159                 sync_blocks /= STRIPE_SECTORS;
4160                 *skipped = 1;
4161                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4162         }
4163
4164
4165         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4166
4167         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4168         if (sh == NULL) {
4169                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4170                 /* make sure we don't swamp the stripe cache if someone else
4171                  * is trying to get access
4172                  */
4173                 schedule_timeout_uninterruptible(1);
4174         }
4175         /* Need to check if array will still be degraded after recovery/resync
4176          * We don't need to check the 'failed' flag as when that gets set,
4177          * recovery aborts.
4178          */
4179         for (i = 0; i < conf->raid_disks; i++)
4180                 if (conf->disks[i].rdev == NULL)
4181                         still_degraded = 1;
4182
4183         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4184
4185         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4186
4187         handle_stripe(sh);
4188         release_stripe(sh);
4189
4190         return STRIPE_SECTORS;
4191 }
4192
4193 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4194 {
4195         /* We may not be able to submit a whole bio at once as there
4196          * may not be enough stripe_heads available.
4197          * We cannot pre-allocate enough stripe_heads as we may need
4198          * more than exist in the cache (if we allow ever large chunks).
4199          * So we do one stripe head at a time and record in
4200          * ->bi_hw_segments how many have been done.
4201          *
4202          * We *know* that this entire raid_bio is in one chunk, so
4203          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4204          */
4205         struct stripe_head *sh;
4206         int dd_idx;
4207         sector_t sector, logical_sector, last_sector;
4208         int scnt = 0;
4209         int remaining;
4210         int handled = 0;
4211
4212         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4213         sector = raid5_compute_sector(conf, logical_sector,
4214                                       0, &dd_idx, NULL);
4215         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4216
4217         for (; logical_sector < last_sector;
4218              logical_sector += STRIPE_SECTORS,
4219                      sector += STRIPE_SECTORS,
4220                      scnt++) {
4221
4222                 if (scnt < raid5_bi_hw_segments(raid_bio))
4223                         /* already done this stripe */
4224                         continue;
4225
4226                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4227
4228                 if (!sh) {
4229                         /* failed to get a stripe - must wait */
4230                         raid5_set_bi_hw_segments(raid_bio, scnt);
4231                         conf->retry_read_aligned = raid_bio;
4232                         return handled;
4233                 }
4234
4235                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4236                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4237                         release_stripe(sh);
4238                         raid5_set_bi_hw_segments(raid_bio, scnt);
4239                         conf->retry_read_aligned = raid_bio;
4240                         return handled;
4241                 }
4242
4243                 handle_stripe(sh);
4244                 release_stripe(sh);
4245                 handled++;
4246         }
4247         spin_lock_irq(&conf->device_lock);
4248         remaining = raid5_dec_bi_phys_segments(raid_bio);
4249         spin_unlock_irq(&conf->device_lock);
4250         if (remaining == 0)
4251                 bio_endio(raid_bio, 0);
4252         if (atomic_dec_and_test(&conf->active_aligned_reads))
4253                 wake_up(&conf->wait_for_stripe);
4254         return handled;
4255 }
4256
4257
4258 /*
4259  * This is our raid5 kernel thread.
4260  *
4261  * We scan the hash table for stripes which can be handled now.
4262  * During the scan, completed stripes are saved for us by the interrupt
4263  * handler, so that they will not have to wait for our next wakeup.
4264  */
4265 static void raid5d(mddev_t *mddev)
4266 {
4267         struct stripe_head *sh;
4268         raid5_conf_t *conf = mddev->private;
4269         int handled;
4270         struct blk_plug plug;
4271
4272         pr_debug("+++ raid5d active\n");
4273
4274         md_check_recovery(mddev);
4275
4276         blk_start_plug(&plug);
4277         handled = 0;
4278         spin_lock_irq(&conf->device_lock);
4279         while (1) {
4280                 struct bio *bio;
4281
4282                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4283                     !list_empty(&conf->bitmap_list)) {
4284                         /* Now is a good time to flush some bitmap updates */
4285                         conf->seq_flush++;
4286                         spin_unlock_irq(&conf->device_lock);
4287                         bitmap_unplug(mddev->bitmap);
4288                         spin_lock_irq(&conf->device_lock);
4289                         conf->seq_write = conf->seq_flush;
4290                         activate_bit_delay(conf);
4291                 }
4292                 if (atomic_read(&mddev->plug_cnt) == 0)
4293                         raid5_activate_delayed(conf);
4294
4295                 while ((bio = remove_bio_from_retry(conf))) {
4296                         int ok;
4297                         spin_unlock_irq(&conf->device_lock);
4298                         ok = retry_aligned_read(conf, bio);
4299                         spin_lock_irq(&conf->device_lock);
4300                         if (!ok)
4301                                 break;
4302                         handled++;
4303                 }
4304
4305                 sh = __get_priority_stripe(conf);
4306
4307                 if (!sh)
4308                         break;
4309                 spin_unlock_irq(&conf->device_lock);
4310                 
4311                 handled++;
4312                 handle_stripe(sh);
4313                 release_stripe(sh);
4314                 cond_resched();
4315
4316                 spin_lock_irq(&conf->device_lock);
4317         }
4318         pr_debug("%d stripes handled\n", handled);
4319
4320         spin_unlock_irq(&conf->device_lock);
4321
4322         async_tx_issue_pending_all();
4323         blk_finish_plug(&plug);
4324
4325         pr_debug("--- raid5d inactive\n");
4326 }
4327
4328 static ssize_t
4329 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4330 {
4331         raid5_conf_t *conf = mddev->private;
4332         if (conf)
4333                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4334         else
4335                 return 0;
4336 }
4337
4338 int
4339 raid5_set_cache_size(mddev_t *mddev, int size)
4340 {
4341         raid5_conf_t *conf = mddev->private;
4342         int err;
4343
4344         if (size <= 16 || size > 32768)
4345                 return -EINVAL;
4346         while (size < conf->max_nr_stripes) {
4347                 if (drop_one_stripe(conf))
4348                         conf->max_nr_stripes--;
4349                 else
4350                         break;
4351         }
4352         err = md_allow_write(mddev);
4353         if (err)
4354                 return err;
4355         while (size > conf->max_nr_stripes) {
4356                 if (grow_one_stripe(conf))
4357                         conf->max_nr_stripes++;
4358                 else break;
4359         }
4360         return 0;
4361 }
4362 EXPORT_SYMBOL(raid5_set_cache_size);
4363
4364 static ssize_t
4365 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4366 {
4367         raid5_conf_t *conf = mddev->private;
4368         unsigned long new;
4369         int err;
4370
4371         if (len >= PAGE_SIZE)
4372                 return -EINVAL;
4373         if (!conf)
4374                 return -ENODEV;
4375
4376         if (strict_strtoul(page, 10, &new))
4377                 return -EINVAL;
4378         err = raid5_set_cache_size(mddev, new);
4379         if (err)
4380                 return err;
4381         return len;
4382 }
4383
4384 static struct md_sysfs_entry
4385 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4386                                 raid5_show_stripe_cache_size,
4387                                 raid5_store_stripe_cache_size);
4388
4389 static ssize_t
4390 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4391 {
4392         raid5_conf_t *conf = mddev->private;
4393         if (conf)
4394                 return sprintf(page, "%d\n", conf->bypass_threshold);
4395         else
4396                 return 0;
4397 }
4398
4399 static ssize_t
4400 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4401 {
4402         raid5_conf_t *conf = mddev->private;
4403         unsigned long new;
4404         if (len >= PAGE_SIZE)
4405                 return -EINVAL;
4406         if (!conf)
4407                 return -ENODEV;
4408
4409         if (strict_strtoul(page, 10, &new))
4410                 return -EINVAL;
4411         if (new > conf->max_nr_stripes)
4412                 return -EINVAL;
4413         conf->bypass_threshold = new;
4414         return len;
4415 }
4416
4417 static struct md_sysfs_entry
4418 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4419                                         S_IRUGO | S_IWUSR,
4420                                         raid5_show_preread_threshold,
4421                                         raid5_store_preread_threshold);
4422
4423 static ssize_t
4424 stripe_cache_active_show(mddev_t *mddev, char *page)
4425 {
4426         raid5_conf_t *conf = mddev->private;
4427         if (conf)
4428                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4429         else
4430                 return 0;
4431 }
4432
4433 static struct md_sysfs_entry
4434 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4435
4436 static struct attribute *raid5_attrs[] =  {
4437         &raid5_stripecache_size.attr,
4438         &raid5_stripecache_active.attr,
4439         &raid5_preread_bypass_threshold.attr,
4440         NULL,
4441 };
4442 static struct attribute_group raid5_attrs_group = {
4443         .name = NULL,
4444         .attrs = raid5_attrs,
4445 };
4446
4447 static sector_t
4448 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4449 {
4450         raid5_conf_t *conf = mddev->private;
4451
4452         if (!sectors)
4453                 sectors = mddev->dev_sectors;
4454         if (!raid_disks)
4455                 /* size is defined by the smallest of previous and new size */
4456                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4457
4458         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4459         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4460         return sectors * (raid_disks - conf->max_degraded);
4461 }
4462
4463 static void raid5_free_percpu(raid5_conf_t *conf)
4464 {
4465         struct raid5_percpu *percpu;
4466         unsigned long cpu;
4467
4468         if (!conf->percpu)
4469                 return;
4470
4471         get_online_cpus();
4472         for_each_possible_cpu(cpu) {
4473                 percpu = per_cpu_ptr(conf->percpu, cpu);
4474                 safe_put_page(percpu->spare_page);
4475                 kfree(percpu->scribble);
4476         }
4477 #ifdef CONFIG_HOTPLUG_CPU
4478         unregister_cpu_notifier(&conf->cpu_notify);
4479 #endif
4480         put_online_cpus();
4481
4482         free_percpu(conf->percpu);
4483 }
4484
4485 static void free_conf(raid5_conf_t *conf)
4486 {
4487         shrink_stripes(conf);
4488         raid5_free_percpu(conf);
4489         kfree(conf->disks);
4490         kfree(conf->stripe_hashtbl);
4491         kfree(conf);
4492 }
4493
4494 #ifdef CONFIG_HOTPLUG_CPU
4495 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4496                               void *hcpu)
4497 {
4498         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4499         long cpu = (long)hcpu;
4500         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4501
4502         switch (action) {
4503         case CPU_UP_PREPARE:
4504         case CPU_UP_PREPARE_FROZEN:
4505                 if (conf->level == 6 && !percpu->spare_page)
4506                         percpu->spare_page = alloc_page(GFP_KERNEL);
4507                 if (!percpu->scribble)
4508                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4509
4510                 if (!percpu->scribble ||
4511                     (conf->level == 6 && !percpu->spare_page)) {
4512                         safe_put_page(percpu->spare_page);
4513                         kfree(percpu->scribble);
4514                         pr_err("%s: failed memory allocation for cpu%ld\n",
4515                                __func__, cpu);
4516                         return notifier_from_errno(-ENOMEM);
4517                 }
4518                 break;
4519         case CPU_DEAD:
4520         case CPU_DEAD_FROZEN:
4521                 safe_put_page(percpu->spare_page);
4522                 kfree(percpu->scribble);
4523                 percpu->spare_page = NULL;
4524                 percpu->scribble = NULL;
4525                 break;
4526         default:
4527                 break;
4528         }
4529         return NOTIFY_OK;
4530 }
4531 #endif
4532
4533 static int raid5_alloc_percpu(raid5_conf_t *conf)
4534 {
4535         unsigned long cpu;
4536         struct page *spare_page;
4537         struct raid5_percpu __percpu *allcpus;
4538         void *scribble;
4539         int err;
4540
4541         allcpus = alloc_percpu(struct raid5_percpu);
4542         if (!allcpus)
4543                 return -ENOMEM;
4544         conf->percpu = allcpus;
4545
4546         get_online_cpus();
4547         err = 0;
4548         for_each_present_cpu(cpu) {
4549                 if (conf->level == 6) {
4550                         spare_page = alloc_page(GFP_KERNEL);
4551                         if (!spare_page) {
4552                                 err = -ENOMEM;
4553                                 break;
4554                         }
4555                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4556                 }
4557                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4558                 if (!scribble) {
4559                         err = -ENOMEM;
4560                         break;
4561                 }
4562                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4563         }
4564 #ifdef CONFIG_HOTPLUG_CPU
4565         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4566         conf->cpu_notify.priority = 0;
4567         if (err == 0)
4568                 err = register_cpu_notifier(&conf->cpu_notify);
4569 #endif
4570         put_online_cpus();
4571
4572         return err;
4573 }
4574
4575 static raid5_conf_t *setup_conf(mddev_t *mddev)
4576 {
4577         raid5_conf_t *conf;
4578         int raid_disk, memory, max_disks;
4579         mdk_rdev_t *rdev;
4580         struct disk_info *disk;
4581
4582         if (mddev->new_level != 5
4583             && mddev->new_level != 4
4584             && mddev->new_level != 6) {
4585                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4586                        mdname(mddev), mddev->new_level);
4587                 return ERR_PTR(-EIO);
4588         }
4589         if ((mddev->new_level == 5
4590              && !algorithm_valid_raid5(mddev->new_layout)) ||
4591             (mddev->new_level == 6
4592              && !algorithm_valid_raid6(mddev->new_layout))) {
4593                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4594                        mdname(mddev), mddev->new_layout);
4595                 return ERR_PTR(-EIO);
4596         }
4597         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4598                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4599                        mdname(mddev), mddev->raid_disks);
4600                 return ERR_PTR(-EINVAL);
4601         }
4602
4603         if (!mddev->new_chunk_sectors ||
4604             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4605             !is_power_of_2(mddev->new_chunk_sectors)) {
4606                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4607                        mdname(mddev), mddev->new_chunk_sectors << 9);
4608                 return ERR_PTR(-EINVAL);
4609         }
4610
4611         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4612         if (conf == NULL)
4613                 goto abort;
4614         spin_lock_init(&conf->device_lock);
4615         init_waitqueue_head(&conf->wait_for_stripe);
4616         init_waitqueue_head(&conf->wait_for_overlap);
4617         INIT_LIST_HEAD(&conf->handle_list);
4618         INIT_LIST_HEAD(&conf->hold_list);
4619         INIT_LIST_HEAD(&conf->delayed_list);
4620         INIT_LIST_HEAD(&conf->bitmap_list);
4621         INIT_LIST_HEAD(&conf->inactive_list);
4622         atomic_set(&conf->active_stripes, 0);
4623         atomic_set(&conf->preread_active_stripes, 0);
4624         atomic_set(&conf->active_aligned_reads, 0);
4625         conf->bypass_threshold = BYPASS_THRESHOLD;
4626
4627         conf->raid_disks = mddev->raid_disks;
4628         if (mddev->reshape_position == MaxSector)
4629                 conf->previous_raid_disks = mddev->raid_disks;
4630         else
4631                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4632         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4633         conf->scribble_len = scribble_len(max_disks);
4634
4635         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4636                               GFP_KERNEL);
4637         if (!conf->disks)
4638                 goto abort;
4639
4640         conf->mddev = mddev;
4641
4642         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4643                 goto abort;
4644
4645         conf->level = mddev->new_level;
4646         if (raid5_alloc_percpu(conf) != 0)
4647                 goto abort;
4648
4649         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4650
4651         list_for_each_entry(rdev, &mddev->disks, same_set) {
4652                 raid_disk = rdev->raid_disk;
4653                 if (raid_disk >= max_disks
4654                     || raid_disk < 0)
4655                         continue;
4656                 disk = conf->disks + raid_disk;
4657
4658                 disk->rdev = rdev;
4659
4660                 if (test_bit(In_sync, &rdev->flags)) {
4661                         char b[BDEVNAME_SIZE];
4662                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4663                                " disk %d\n",
4664                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4665                 } else if (rdev->saved_raid_disk != raid_disk)
4666                         /* Cannot rely on bitmap to complete recovery */
4667                         conf->fullsync = 1;
4668         }
4669
4670         conf->chunk_sectors = mddev->new_chunk_sectors;
4671         conf->level = mddev->new_level;
4672         if (conf->level == 6)
4673                 conf->max_degraded = 2;
4674         else
4675                 conf->max_degraded = 1;
4676         conf->algorithm = mddev->new_layout;
4677         conf->max_nr_stripes = NR_STRIPES;
4678         conf->reshape_progress = mddev->reshape_position;
4679         if (conf->reshape_progress != MaxSector) {
4680                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4681                 conf->prev_algo = mddev->layout;
4682         }
4683
4684         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4685                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4686         if (grow_stripes(conf, conf->max_nr_stripes)) {
4687                 printk(KERN_ERR
4688                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4689                        mdname(mddev), memory);
4690                 goto abort;
4691         } else
4692                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4693                        mdname(mddev), memory);
4694
4695         conf->thread = md_register_thread(raid5d, mddev, NULL);
4696         if (!conf->thread) {
4697                 printk(KERN_ERR
4698                        "md/raid:%s: couldn't allocate thread.\n",
4699                        mdname(mddev));
4700                 goto abort;
4701         }
4702
4703         return conf;
4704
4705  abort:
4706         if (conf) {
4707                 free_conf(conf);
4708                 return ERR_PTR(-EIO);
4709         } else
4710                 return ERR_PTR(-ENOMEM);
4711 }
4712
4713
4714 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4715 {
4716         switch (algo) {
4717         case ALGORITHM_PARITY_0:
4718                 if (raid_disk < max_degraded)
4719                         return 1;
4720                 break;
4721         case ALGORITHM_PARITY_N:
4722                 if (raid_disk >= raid_disks - max_degraded)
4723                         return 1;
4724                 break;
4725         case ALGORITHM_PARITY_0_6:
4726                 if (raid_disk == 0 || 
4727                     raid_disk == raid_disks - 1)
4728                         return 1;
4729                 break;
4730         case ALGORITHM_LEFT_ASYMMETRIC_6:
4731         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4732         case ALGORITHM_LEFT_SYMMETRIC_6:
4733         case ALGORITHM_RIGHT_SYMMETRIC_6:
4734                 if (raid_disk == raid_disks - 1)
4735                         return 1;
4736         }
4737         return 0;
4738 }
4739
4740 static int run(mddev_t *mddev)
4741 {
4742         raid5_conf_t *conf;
4743         int working_disks = 0;
4744         int dirty_parity_disks = 0;
4745         mdk_rdev_t *rdev;
4746         sector_t reshape_offset = 0;
4747
4748         if (mddev->recovery_cp != MaxSector)
4749                 printk(KERN_NOTICE "md/raid:%s: not clean"
4750                        " -- starting background reconstruction\n",
4751                        mdname(mddev));
4752         if (mddev->reshape_position != MaxSector) {
4753                 /* Check that we can continue the reshape.
4754                  * Currently only disks can change, it must
4755                  * increase, and we must be past the point where
4756                  * a stripe over-writes itself
4757                  */
4758                 sector_t here_new, here_old;
4759                 int old_disks;
4760                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4761
4762                 if (mddev->new_level != mddev->level) {
4763                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4764                                "required - aborting.\n",
4765                                mdname(mddev));
4766                         return -EINVAL;
4767                 }
4768                 old_disks = mddev->raid_disks - mddev->delta_disks;
4769                 /* reshape_position must be on a new-stripe boundary, and one
4770                  * further up in new geometry must map after here in old
4771                  * geometry.
4772                  */
4773                 here_new = mddev->reshape_position;
4774                 if (sector_div(here_new, mddev->new_chunk_sectors *
4775                                (mddev->raid_disks - max_degraded))) {
4776                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4777                                "on a stripe boundary\n", mdname(mddev));
4778                         return -EINVAL;
4779                 }
4780                 reshape_offset = here_new * mddev->new_chunk_sectors;
4781                 /* here_new is the stripe we will write to */
4782                 here_old = mddev->reshape_position;
4783                 sector_div(here_old, mddev->chunk_sectors *
4784                            (old_disks-max_degraded));
4785                 /* here_old is the first stripe that we might need to read
4786                  * from */
4787                 if (mddev->delta_disks == 0) {
4788                         /* We cannot be sure it is safe to start an in-place
4789                          * reshape.  It is only safe if user-space if monitoring
4790                          * and taking constant backups.
4791                          * mdadm always starts a situation like this in
4792                          * readonly mode so it can take control before
4793                          * allowing any writes.  So just check for that.
4794                          */
4795                         if ((here_new * mddev->new_chunk_sectors != 
4796                              here_old * mddev->chunk_sectors) ||
4797                             mddev->ro == 0) {
4798                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4799                                        " in read-only mode - aborting\n",
4800                                        mdname(mddev));
4801                                 return -EINVAL;
4802                         }
4803                 } else if (mddev->delta_disks < 0
4804                     ? (here_new * mddev->new_chunk_sectors <=
4805                        here_old * mddev->chunk_sectors)
4806                     : (here_new * mddev->new_chunk_sectors >=
4807                        here_old * mddev->chunk_sectors)) {
4808                         /* Reading from the same stripe as writing to - bad */
4809                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4810                                "auto-recovery - aborting.\n",
4811                                mdname(mddev));
4812                         return -EINVAL;
4813                 }
4814                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4815                        mdname(mddev));
4816                 /* OK, we should be able to continue; */
4817         } else {
4818                 BUG_ON(mddev->level != mddev->new_level);
4819                 BUG_ON(mddev->layout != mddev->new_layout);
4820                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4821                 BUG_ON(mddev->delta_disks != 0);
4822         }
4823
4824         if (mddev->private == NULL)
4825                 conf = setup_conf(mddev);
4826         else
4827                 conf = mddev->private;
4828
4829         if (IS_ERR(conf))
4830                 return PTR_ERR(conf);
4831
4832         mddev->thread = conf->thread;
4833         conf->thread = NULL;
4834         mddev->private = conf;
4835
4836         /*
4837          * 0 for a fully functional array, 1 or 2 for a degraded array.
4838          */
4839         list_for_each_entry(rdev, &mddev->disks, same_set) {
4840                 if (rdev->raid_disk < 0)
4841                         continue;
4842                 if (test_bit(In_sync, &rdev->flags)) {
4843                         working_disks++;
4844                         continue;
4845                 }
4846                 /* This disc is not fully in-sync.  However if it
4847                  * just stored parity (beyond the recovery_offset),
4848                  * when we don't need to be concerned about the
4849                  * array being dirty.
4850                  * When reshape goes 'backwards', we never have
4851                  * partially completed devices, so we only need
4852                  * to worry about reshape going forwards.
4853                  */
4854                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4855                 if (mddev->major_version == 0 &&
4856                     mddev->minor_version > 90)
4857                         rdev->recovery_offset = reshape_offset;
4858                         
4859                 if (rdev->recovery_offset < reshape_offset) {
4860                         /* We need to check old and new layout */
4861                         if (!only_parity(rdev->raid_disk,
4862                                          conf->algorithm,
4863                                          conf->raid_disks,
4864                                          conf->max_degraded))
4865                                 continue;
4866                 }
4867                 if (!only_parity(rdev->raid_disk,
4868                                  conf->prev_algo,
4869                                  conf->previous_raid_disks,
4870                                  conf->max_degraded))
4871                         continue;
4872                 dirty_parity_disks++;
4873         }
4874
4875         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4876                            - working_disks);
4877
4878         if (has_failed(conf)) {
4879                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4880                         " (%d/%d failed)\n",
4881                         mdname(mddev), mddev->degraded, conf->raid_disks);
4882                 goto abort;
4883         }
4884
4885         /* device size must be a multiple of chunk size */
4886         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4887         mddev->resync_max_sectors = mddev->dev_sectors;
4888
4889         if (mddev->degraded > dirty_parity_disks &&
4890             mddev->recovery_cp != MaxSector) {
4891                 if (mddev->ok_start_degraded)
4892                         printk(KERN_WARNING
4893                                "md/raid:%s: starting dirty degraded array"
4894                                " - data corruption possible.\n",
4895                                mdname(mddev));
4896                 else {
4897                         printk(KERN_ERR
4898                                "md/raid:%s: cannot start dirty degraded array.\n",
4899                                mdname(mddev));
4900                         goto abort;
4901                 }
4902         }
4903
4904         if (mddev->degraded == 0)
4905                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4906                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4907                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4908                        mddev->new_layout);
4909         else
4910                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4911                        " out of %d devices, algorithm %d\n",
4912                        mdname(mddev), conf->level,
4913                        mddev->raid_disks - mddev->degraded,
4914                        mddev->raid_disks, mddev->new_layout);
4915
4916         print_raid5_conf(conf);
4917
4918         if (conf->reshape_progress != MaxSector) {
4919                 conf->reshape_safe = conf->reshape_progress;
4920                 atomic_set(&conf->reshape_stripes, 0);
4921                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4922                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4923                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4924                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4925                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4926                                                         "reshape");
4927         }
4928
4929
4930         /* Ok, everything is just fine now */
4931         if (mddev->to_remove == &raid5_attrs_group)
4932                 mddev->to_remove = NULL;
4933         else if (mddev->kobj.sd &&
4934             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4935                 printk(KERN_WARNING
4936                        "raid5: failed to create sysfs attributes for %s\n",
4937                        mdname(mddev));
4938         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4939
4940         if (mddev->queue) {
4941                 int chunk_size;
4942                 /* read-ahead size must cover two whole stripes, which
4943                  * is 2 * (datadisks) * chunksize where 'n' is the
4944                  * number of raid devices
4945                  */
4946                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4947                 int stripe = data_disks *
4948                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4949                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4950                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4951
4952                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4953
4954                 mddev->queue->backing_dev_info.congested_data = mddev;
4955                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4956
4957                 chunk_size = mddev->chunk_sectors << 9;
4958                 blk_queue_io_min(mddev->queue, chunk_size);
4959                 blk_queue_io_opt(mddev->queue, chunk_size *
4960                                  (conf->raid_disks - conf->max_degraded));
4961
4962                 list_for_each_entry(rdev, &mddev->disks, same_set)
4963                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4964                                           rdev->data_offset << 9);
4965         }
4966
4967         return 0;
4968 abort:
4969         md_unregister_thread(mddev->thread);
4970         mddev->thread = NULL;
4971         if (conf) {
4972                 print_raid5_conf(conf);
4973                 free_conf(conf);
4974         }
4975         mddev->private = NULL;
4976         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4977         return -EIO;
4978 }
4979
4980 static int stop(mddev_t *mddev)
4981 {
4982         raid5_conf_t *conf = mddev->private;
4983
4984         md_unregister_thread(mddev->thread);
4985         mddev->thread = NULL;
4986         if (mddev->queue)
4987                 mddev->queue->backing_dev_info.congested_fn = NULL;
4988         free_conf(conf);
4989         mddev->private = NULL;
4990         mddev->to_remove = &raid5_attrs_group;
4991         return 0;
4992 }
4993
4994 #ifdef DEBUG
4995 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4996 {
4997         int i;
4998
4999         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5000                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5001         seq_printf(seq, "sh %llu,  count %d.\n",
5002                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5003         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5004         for (i = 0; i < sh->disks; i++) {
5005                 seq_printf(seq, "(cache%d: %p %ld) ",
5006                            i, sh->dev[i].page, sh->dev[i].flags);
5007         }
5008         seq_printf(seq, "\n");
5009 }
5010
5011 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5012 {
5013         struct stripe_head *sh;
5014         struct hlist_node *hn;
5015         int i;
5016
5017         spin_lock_irq(&conf->device_lock);
5018         for (i = 0; i < NR_HASH; i++) {
5019                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5020                         if (sh->raid_conf != conf)
5021                                 continue;
5022                         print_sh(seq, sh);
5023                 }
5024         }
5025         spin_unlock_irq(&conf->device_lock);
5026 }
5027 #endif
5028
5029 static void status(struct seq_file *seq, mddev_t *mddev)
5030 {
5031         raid5_conf_t *conf = mddev->private;
5032         int i;
5033
5034         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5035                 mddev->chunk_sectors / 2, mddev->layout);
5036         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5037         for (i = 0; i < conf->raid_disks; i++)
5038                 seq_printf (seq, "%s",
5039                                conf->disks[i].rdev &&
5040                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5041         seq_printf (seq, "]");
5042 #ifdef DEBUG
5043         seq_printf (seq, "\n");
5044         printall(seq, conf);
5045 #endif
5046 }
5047
5048 static void print_raid5_conf (raid5_conf_t *conf)
5049 {
5050         int i;
5051         struct disk_info *tmp;
5052
5053         printk(KERN_DEBUG "RAID conf printout:\n");
5054         if (!conf) {
5055                 printk("(conf==NULL)\n");
5056                 return;
5057         }
5058         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5059                conf->raid_disks,
5060                conf->raid_disks - conf->mddev->degraded);
5061
5062         for (i = 0; i < conf->raid_disks; i++) {
5063                 char b[BDEVNAME_SIZE];
5064                 tmp = conf->disks + i;
5065                 if (tmp->rdev)
5066                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5067                                i, !test_bit(Faulty, &tmp->rdev->flags),
5068                                bdevname(tmp->rdev->bdev, b));
5069         }
5070 }
5071
5072 static int raid5_spare_active(mddev_t *mddev)
5073 {
5074         int i;
5075         raid5_conf_t *conf = mddev->private;
5076         struct disk_info *tmp;
5077         int count = 0;
5078         unsigned long flags;
5079
5080         for (i = 0; i < conf->raid_disks; i++) {
5081                 tmp = conf->disks + i;
5082                 if (tmp->rdev
5083                     && tmp->rdev->recovery_offset == MaxSector
5084                     && !test_bit(Faulty, &tmp->rdev->flags)
5085                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5086                         count++;
5087                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5088                 }
5089         }
5090         spin_lock_irqsave(&conf->device_lock, flags);
5091         mddev->degraded -= count;
5092         spin_unlock_irqrestore(&conf->device_lock, flags);
5093         print_raid5_conf(conf);
5094         return count;
5095 }
5096
5097 static int raid5_remove_disk(mddev_t *mddev, int number)
5098 {
5099         raid5_conf_t *conf = mddev->private;
5100         int err = 0;
5101         mdk_rdev_t *rdev;
5102         struct disk_info *p = conf->disks + number;
5103
5104         print_raid5_conf(conf);
5105         rdev = p->rdev;
5106         if (rdev) {
5107                 if (number >= conf->raid_disks &&
5108                     conf->reshape_progress == MaxSector)
5109                         clear_bit(In_sync, &rdev->flags);
5110
5111                 if (test_bit(In_sync, &rdev->flags) ||
5112                     atomic_read(&rdev->nr_pending)) {
5113                         err = -EBUSY;
5114                         goto abort;
5115                 }
5116                 /* Only remove non-faulty devices if recovery
5117                  * isn't possible.
5118                  */
5119                 if (!test_bit(Faulty, &rdev->flags) &&
5120                     !has_failed(conf) &&
5121                     number < conf->raid_disks) {
5122                         err = -EBUSY;
5123                         goto abort;
5124                 }
5125                 p->rdev = NULL;
5126                 synchronize_rcu();
5127                 if (atomic_read(&rdev->nr_pending)) {
5128                         /* lost the race, try later */
5129                         err = -EBUSY;
5130                         p->rdev = rdev;
5131                 }
5132         }
5133 abort:
5134
5135         print_raid5_conf(conf);
5136         return err;
5137 }
5138
5139 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5140 {
5141         raid5_conf_t *conf = mddev->private;
5142         int err = -EEXIST;
5143         int disk;
5144         struct disk_info *p;
5145         int first = 0;
5146         int last = conf->raid_disks - 1;
5147
5148         if (has_failed(conf))
5149                 /* no point adding a device */
5150                 return -EINVAL;
5151
5152         if (rdev->raid_disk >= 0)
5153                 first = last = rdev->raid_disk;
5154
5155         /*
5156          * find the disk ... but prefer rdev->saved_raid_disk
5157          * if possible.
5158          */
5159         if (rdev->saved_raid_disk >= 0 &&
5160             rdev->saved_raid_disk >= first &&
5161             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5162                 disk = rdev->saved_raid_disk;
5163         else
5164                 disk = first;
5165         for ( ; disk <= last ; disk++)
5166                 if ((p=conf->disks + disk)->rdev == NULL) {
5167                         clear_bit(In_sync, &rdev->flags);
5168                         rdev->raid_disk = disk;
5169                         err = 0;
5170                         if (rdev->saved_raid_disk != disk)
5171                                 conf->fullsync = 1;
5172                         rcu_assign_pointer(p->rdev, rdev);
5173                         break;
5174                 }
5175         print_raid5_conf(conf);
5176         return err;
5177 }
5178
5179 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5180 {
5181         /* no resync is happening, and there is enough space
5182          * on all devices, so we can resize.
5183          * We need to make sure resync covers any new space.
5184          * If the array is shrinking we should possibly wait until
5185          * any io in the removed space completes, but it hardly seems
5186          * worth it.
5187          */
5188         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5189         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5190                                                mddev->raid_disks));
5191         if (mddev->array_sectors >
5192             raid5_size(mddev, sectors, mddev->raid_disks))
5193                 return -EINVAL;
5194         set_capacity(mddev->gendisk, mddev->array_sectors);
5195         revalidate_disk(mddev->gendisk);
5196         if (sectors > mddev->dev_sectors &&
5197             mddev->recovery_cp > mddev->dev_sectors) {
5198                 mddev->recovery_cp = mddev->dev_sectors;
5199                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200         }
5201         mddev->dev_sectors = sectors;
5202         mddev->resync_max_sectors = sectors;
5203         return 0;
5204 }
5205
5206 static int check_stripe_cache(mddev_t *mddev)
5207 {
5208         /* Can only proceed if there are plenty of stripe_heads.
5209          * We need a minimum of one full stripe,, and for sensible progress
5210          * it is best to have about 4 times that.
5211          * If we require 4 times, then the default 256 4K stripe_heads will
5212          * allow for chunk sizes up to 256K, which is probably OK.
5213          * If the chunk size is greater, user-space should request more
5214          * stripe_heads first.
5215          */
5216         raid5_conf_t *conf = mddev->private;
5217         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5218             > conf->max_nr_stripes ||
5219             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5220             > conf->max_nr_stripes) {
5221                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5222                        mdname(mddev),
5223                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5224                         / STRIPE_SIZE)*4);
5225                 return 0;
5226         }
5227         return 1;
5228 }
5229
5230 static int check_reshape(mddev_t *mddev)
5231 {
5232         raid5_conf_t *conf = mddev->private;
5233
5234         if (mddev->delta_disks == 0 &&
5235             mddev->new_layout == mddev->layout &&
5236             mddev->new_chunk_sectors == mddev->chunk_sectors)
5237                 return 0; /* nothing to do */
5238         if (mddev->bitmap)
5239                 /* Cannot grow a bitmap yet */
5240                 return -EBUSY;
5241         if (has_failed(conf))
5242                 return -EINVAL;
5243         if (mddev->delta_disks < 0) {
5244                 /* We might be able to shrink, but the devices must
5245                  * be made bigger first.
5246                  * For raid6, 4 is the minimum size.
5247                  * Otherwise 2 is the minimum
5248                  */
5249                 int min = 2;
5250                 if (mddev->level == 6)
5251                         min = 4;
5252                 if (mddev->raid_disks + mddev->delta_disks < min)
5253                         return -EINVAL;
5254         }
5255
5256         if (!check_stripe_cache(mddev))
5257                 return -ENOSPC;
5258
5259         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5260 }
5261
5262 static int raid5_start_reshape(mddev_t *mddev)
5263 {
5264         raid5_conf_t *conf = mddev->private;
5265         mdk_rdev_t *rdev;
5266         int spares = 0;
5267         unsigned long flags;
5268
5269         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5270                 return -EBUSY;
5271
5272         if (!check_stripe_cache(mddev))
5273                 return -ENOSPC;
5274
5275         list_for_each_entry(rdev, &mddev->disks, same_set)
5276                 if (!test_bit(In_sync, &rdev->flags)
5277                     && !test_bit(Faulty, &rdev->flags))
5278                         spares++;
5279
5280         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5281                 /* Not enough devices even to make a degraded array
5282                  * of that size
5283                  */
5284                 return -EINVAL;
5285
5286         /* Refuse to reduce size of the array.  Any reductions in
5287          * array size must be through explicit setting of array_size
5288          * attribute.
5289          */
5290         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5291             < mddev->array_sectors) {
5292                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5293                        "before number of disks\n", mdname(mddev));
5294                 return -EINVAL;
5295         }
5296
5297         atomic_set(&conf->reshape_stripes, 0);
5298         spin_lock_irq(&conf->device_lock);
5299         conf->previous_raid_disks = conf->raid_disks;
5300         conf->raid_disks += mddev->delta_disks;
5301         conf->prev_chunk_sectors = conf->chunk_sectors;
5302         conf->chunk_sectors = mddev->new_chunk_sectors;
5303         conf->prev_algo = conf->algorithm;
5304         conf->algorithm = mddev->new_layout;
5305         if (mddev->delta_disks < 0)
5306                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5307         else
5308                 conf->reshape_progress = 0;
5309         conf->reshape_safe = conf->reshape_progress;
5310         conf->generation++;
5311         spin_unlock_irq(&conf->device_lock);
5312
5313         /* Add some new drives, as many as will fit.
5314          * We know there are enough to make the newly sized array work.
5315          * Don't add devices if we are reducing the number of
5316          * devices in the array.  This is because it is not possible
5317          * to correctly record the "partially reconstructed" state of
5318          * such devices during the reshape and confusion could result.
5319          */
5320         if (mddev->delta_disks >= 0) {
5321                 int added_devices = 0;
5322                 list_for_each_entry(rdev, &mddev->disks, same_set)
5323                         if (rdev->raid_disk < 0 &&
5324                             !test_bit(Faulty, &rdev->flags)) {
5325                                 if (raid5_add_disk(mddev, rdev) == 0) {
5326                                         char nm[20];
5327                                         if (rdev->raid_disk
5328                                             >= conf->previous_raid_disks) {
5329                                                 set_bit(In_sync, &rdev->flags);
5330                                                 added_devices++;
5331                                         } else
5332                                                 rdev->recovery_offset = 0;
5333                                         sprintf(nm, "rd%d", rdev->raid_disk);
5334                                         if (sysfs_create_link(&mddev->kobj,
5335                                                               &rdev->kobj, nm))
5336                                                 /* Failure here is OK */;
5337                                 }
5338                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5339                                    && !test_bit(Faulty, &rdev->flags)) {
5340                                 /* This is a spare that was manually added */
5341                                 set_bit(In_sync, &rdev->flags);
5342                                 added_devices++;
5343                         }
5344
5345                 /* When a reshape changes the number of devices,
5346                  * ->degraded is measured against the larger of the
5347                  * pre and post number of devices.
5348                  */
5349                 spin_lock_irqsave(&conf->device_lock, flags);
5350                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5351                         - added_devices;
5352                 spin_unlock_irqrestore(&conf->device_lock, flags);
5353         }
5354         mddev->raid_disks = conf->raid_disks;
5355         mddev->reshape_position = conf->reshape_progress;
5356         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5357
5358         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5359         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5360         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5361         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5362         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5363                                                 "reshape");
5364         if (!mddev->sync_thread) {
5365                 mddev->recovery = 0;
5366                 spin_lock_irq(&conf->device_lock);
5367                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5368                 conf->reshape_progress = MaxSector;
5369                 spin_unlock_irq(&conf->device_lock);
5370                 return -EAGAIN;
5371         }
5372         conf->reshape_checkpoint = jiffies;
5373         md_wakeup_thread(mddev->sync_thread);
5374         md_new_event(mddev);
5375         return 0;
5376 }
5377
5378 /* This is called from the reshape thread and should make any
5379  * changes needed in 'conf'
5380  */
5381 static void end_reshape(raid5_conf_t *conf)
5382 {
5383
5384         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5385
5386                 spin_lock_irq(&conf->device_lock);
5387                 conf->previous_raid_disks = conf->raid_disks;
5388                 conf->reshape_progress = MaxSector;
5389                 spin_unlock_irq(&conf->device_lock);
5390                 wake_up(&conf->wait_for_overlap);
5391
5392                 /* read-ahead size must cover two whole stripes, which is
5393                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5394                  */
5395                 if (conf->mddev->queue) {
5396                         int data_disks = conf->raid_disks - conf->max_degraded;
5397                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5398                                                    / PAGE_SIZE);
5399                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5400                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5401                 }
5402         }
5403 }
5404
5405 /* This is called from the raid5d thread with mddev_lock held.
5406  * It makes config changes to the device.
5407  */
5408 static void raid5_finish_reshape(mddev_t *mddev)
5409 {
5410         raid5_conf_t *conf = mddev->private;
5411
5412         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5413
5414                 if (mddev->delta_disks > 0) {
5415                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5416                         set_capacity(mddev->gendisk, mddev->array_sectors);
5417                         revalidate_disk(mddev->gendisk);
5418                 } else {
5419                         int d;
5420                         mddev->degraded = conf->raid_disks;
5421                         for (d = 0; d < conf->raid_disks ; d++)
5422                                 if (conf->disks[d].rdev &&
5423                                     test_bit(In_sync,
5424                                              &conf->disks[d].rdev->flags))
5425                                         mddev->degraded--;
5426                         for (d = conf->raid_disks ;
5427                              d < conf->raid_disks - mddev->delta_disks;
5428                              d++) {
5429                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5430                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5431                                         char nm[20];
5432                                         sprintf(nm, "rd%d", rdev->raid_disk);
5433                                         sysfs_remove_link(&mddev->kobj, nm);
5434                                         rdev->raid_disk = -1;
5435                                 }
5436                         }
5437                 }
5438                 mddev->layout = conf->algorithm;
5439                 mddev->chunk_sectors = conf->chunk_sectors;
5440                 mddev->reshape_position = MaxSector;
5441                 mddev->delta_disks = 0;
5442         }
5443 }
5444
5445 static void raid5_quiesce(mddev_t *mddev, int state)
5446 {
5447         raid5_conf_t *conf = mddev->private;
5448
5449         switch(state) {
5450         case 2: /* resume for a suspend */
5451                 wake_up(&conf->wait_for_overlap);
5452                 break;
5453
5454         case 1: /* stop all writes */
5455                 spin_lock_irq(&conf->device_lock);
5456                 /* '2' tells resync/reshape to pause so that all
5457                  * active stripes can drain
5458                  */
5459                 conf->quiesce = 2;
5460                 wait_event_lock_irq(conf->wait_for_stripe,
5461                                     atomic_read(&conf->active_stripes) == 0 &&
5462                                     atomic_read(&conf->active_aligned_reads) == 0,
5463                                     conf->device_lock, /* nothing */);
5464                 conf->quiesce = 1;
5465                 spin_unlock_irq(&conf->device_lock);
5466                 /* allow reshape to continue */
5467                 wake_up(&conf->wait_for_overlap);
5468                 break;
5469
5470         case 0: /* re-enable writes */
5471                 spin_lock_irq(&conf->device_lock);
5472                 conf->quiesce = 0;
5473                 wake_up(&conf->wait_for_stripe);
5474                 wake_up(&conf->wait_for_overlap);
5475                 spin_unlock_irq(&conf->device_lock);
5476                 break;
5477         }
5478 }
5479
5480
5481 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5482 {
5483         struct raid0_private_data *raid0_priv = mddev->private;
5484         sector_t sectors;
5485
5486         /* for raid0 takeover only one zone is supported */
5487         if (raid0_priv->nr_strip_zones > 1) {
5488                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5489                        mdname(mddev));
5490                 return ERR_PTR(-EINVAL);
5491         }
5492
5493         sectors = raid0_priv->strip_zone[0].zone_end;
5494         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5495         mddev->dev_sectors = sectors;
5496         mddev->new_level = level;
5497         mddev->new_layout = ALGORITHM_PARITY_N;
5498         mddev->new_chunk_sectors = mddev->chunk_sectors;
5499         mddev->raid_disks += 1;
5500         mddev->delta_disks = 1;
5501         /* make sure it will be not marked as dirty */
5502         mddev->recovery_cp = MaxSector;
5503
5504         return setup_conf(mddev);
5505 }
5506
5507
5508 static void *raid5_takeover_raid1(mddev_t *mddev)
5509 {
5510         int chunksect;
5511
5512         if (mddev->raid_disks != 2 ||
5513             mddev->degraded > 1)
5514                 return ERR_PTR(-EINVAL);
5515
5516         /* Should check if there are write-behind devices? */
5517
5518         chunksect = 64*2; /* 64K by default */
5519
5520         /* The array must be an exact multiple of chunksize */
5521         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5522                 chunksect >>= 1;
5523
5524         if ((chunksect<<9) < STRIPE_SIZE)
5525                 /* array size does not allow a suitable chunk size */
5526                 return ERR_PTR(-EINVAL);
5527
5528         mddev->new_level = 5;
5529         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5530         mddev->new_chunk_sectors = chunksect;
5531
5532         return setup_conf(mddev);
5533 }
5534
5535 static void *raid5_takeover_raid6(mddev_t *mddev)
5536 {
5537         int new_layout;
5538
5539         switch (mddev->layout) {
5540         case ALGORITHM_LEFT_ASYMMETRIC_6:
5541                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5542                 break;
5543         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5544                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5545                 break;
5546         case ALGORITHM_LEFT_SYMMETRIC_6:
5547                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5548                 break;
5549         case ALGORITHM_RIGHT_SYMMETRIC_6:
5550                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5551                 break;
5552         case ALGORITHM_PARITY_0_6:
5553                 new_layout = ALGORITHM_PARITY_0;
5554                 break;
5555         case ALGORITHM_PARITY_N:
5556                 new_layout = ALGORITHM_PARITY_N;
5557                 break;
5558         default:
5559                 return ERR_PTR(-EINVAL);
5560         }
5561         mddev->new_level = 5;
5562         mddev->new_layout = new_layout;
5563         mddev->delta_disks = -1;
5564         mddev->raid_disks -= 1;
5565         return setup_conf(mddev);
5566 }
5567
5568
5569 static int raid5_check_reshape(mddev_t *mddev)
5570 {
5571         /* For a 2-drive array, the layout and chunk size can be changed
5572          * immediately as not restriping is needed.
5573          * For larger arrays we record the new value - after validation
5574          * to be used by a reshape pass.
5575          */
5576         raid5_conf_t *conf = mddev->private;
5577         int new_chunk = mddev->new_chunk_sectors;
5578
5579         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5580                 return -EINVAL;
5581         if (new_chunk > 0) {
5582                 if (!is_power_of_2(new_chunk))
5583                         return -EINVAL;
5584                 if (new_chunk < (PAGE_SIZE>>9))
5585                         return -EINVAL;
5586                 if (mddev->array_sectors & (new_chunk-1))
5587                         /* not factor of array size */
5588                         return -EINVAL;
5589         }
5590
5591         /* They look valid */
5592
5593         if (mddev->raid_disks == 2) {
5594                 /* can make the change immediately */
5595                 if (mddev->new_layout >= 0) {
5596                         conf->algorithm = mddev->new_layout;
5597                         mddev->layout = mddev->new_layout;
5598                 }
5599                 if (new_chunk > 0) {
5600                         conf->chunk_sectors = new_chunk ;
5601                         mddev->chunk_sectors = new_chunk;
5602                 }
5603                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5604                 md_wakeup_thread(mddev->thread);
5605         }
5606         return check_reshape(mddev);
5607 }
5608
5609 static int raid6_check_reshape(mddev_t *mddev)
5610 {
5611         int new_chunk = mddev->new_chunk_sectors;
5612
5613         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5614                 return -EINVAL;
5615         if (new_chunk > 0) {
5616                 if (!is_power_of_2(new_chunk))
5617                         return -EINVAL;
5618                 if (new_chunk < (PAGE_SIZE >> 9))
5619                         return -EINVAL;
5620                 if (mddev->array_sectors & (new_chunk-1))
5621                         /* not factor of array size */
5622                         return -EINVAL;
5623         }
5624
5625         /* They look valid */
5626         return check_reshape(mddev);
5627 }
5628
5629 static void *raid5_takeover(mddev_t *mddev)
5630 {
5631         /* raid5 can take over:
5632          *  raid0 - if there is only one strip zone - make it a raid4 layout
5633          *  raid1 - if there are two drives.  We need to know the chunk size
5634          *  raid4 - trivial - just use a raid4 layout.
5635          *  raid6 - Providing it is a *_6 layout
5636          */
5637         if (mddev->level == 0)
5638                 return raid45_takeover_raid0(mddev, 5);
5639         if (mddev->level == 1)
5640                 return raid5_takeover_raid1(mddev);
5641         if (mddev->level == 4) {
5642                 mddev->new_layout = ALGORITHM_PARITY_N;
5643                 mddev->new_level = 5;
5644                 return setup_conf(mddev);
5645         }
5646         if (mddev->level == 6)
5647                 return raid5_takeover_raid6(mddev);
5648
5649         return ERR_PTR(-EINVAL);
5650 }
5651
5652 static void *raid4_takeover(mddev_t *mddev)
5653 {
5654         /* raid4 can take over:
5655          *  raid0 - if there is only one strip zone
5656          *  raid5 - if layout is right
5657          */
5658         if (mddev->level == 0)
5659                 return raid45_takeover_raid0(mddev, 4);
5660         if (mddev->level == 5 &&
5661             mddev->layout == ALGORITHM_PARITY_N) {
5662                 mddev->new_layout = 0;
5663                 mddev->new_level = 4;
5664                 return setup_conf(mddev);
5665         }
5666         return ERR_PTR(-EINVAL);
5667 }
5668
5669 static struct mdk_personality raid5_personality;
5670
5671 static void *raid6_takeover(mddev_t *mddev)
5672 {
5673         /* Currently can only take over a raid5.  We map the
5674          * personality to an equivalent raid6 personality
5675          * with the Q block at the end.
5676          */
5677         int new_layout;
5678
5679         if (mddev->pers != &raid5_personality)
5680                 return ERR_PTR(-EINVAL);
5681         if (mddev->degraded > 1)
5682                 return ERR_PTR(-EINVAL);
5683         if (mddev->raid_disks > 253)
5684                 return ERR_PTR(-EINVAL);
5685         if (mddev->raid_disks < 3)
5686                 return ERR_PTR(-EINVAL);
5687
5688         switch (mddev->layout) {
5689         case ALGORITHM_LEFT_ASYMMETRIC:
5690                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5691                 break;
5692         case ALGORITHM_RIGHT_ASYMMETRIC:
5693                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5694                 break;
5695         case ALGORITHM_LEFT_SYMMETRIC:
5696                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5697                 break;
5698         case ALGORITHM_RIGHT_SYMMETRIC:
5699                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5700                 break;
5701         case ALGORITHM_PARITY_0:
5702                 new_layout = ALGORITHM_PARITY_0_6;
5703                 break;
5704         case ALGORITHM_PARITY_N:
5705                 new_layout = ALGORITHM_PARITY_N;
5706                 break;
5707         default:
5708                 return ERR_PTR(-EINVAL);
5709         }
5710         mddev->new_level = 6;
5711         mddev->new_layout = new_layout;
5712         mddev->delta_disks = 1;
5713         mddev->raid_disks += 1;
5714         return setup_conf(mddev);
5715 }
5716
5717
5718 static struct mdk_personality raid6_personality =
5719 {
5720         .name           = "raid6",
5721         .level          = 6,
5722         .owner          = THIS_MODULE,
5723         .make_request   = make_request,
5724         .run            = run,
5725         .stop           = stop,
5726         .status         = status,
5727         .error_handler  = error,
5728         .hot_add_disk   = raid5_add_disk,
5729         .hot_remove_disk= raid5_remove_disk,
5730         .spare_active   = raid5_spare_active,
5731         .sync_request   = sync_request,
5732         .resize         = raid5_resize,
5733         .size           = raid5_size,
5734         .check_reshape  = raid6_check_reshape,
5735         .start_reshape  = raid5_start_reshape,
5736         .finish_reshape = raid5_finish_reshape,
5737         .quiesce        = raid5_quiesce,
5738         .takeover       = raid6_takeover,
5739 };
5740 static struct mdk_personality raid5_personality =
5741 {
5742         .name           = "raid5",
5743         .level          = 5,
5744         .owner          = THIS_MODULE,
5745         .make_request   = make_request,
5746         .run            = run,
5747         .stop           = stop,
5748         .status         = status,
5749         .error_handler  = error,
5750         .hot_add_disk   = raid5_add_disk,
5751         .hot_remove_disk= raid5_remove_disk,
5752         .spare_active   = raid5_spare_active,
5753         .sync_request   = sync_request,
5754         .resize         = raid5_resize,
5755         .size           = raid5_size,
5756         .check_reshape  = raid5_check_reshape,
5757         .start_reshape  = raid5_start_reshape,
5758         .finish_reshape = raid5_finish_reshape,
5759         .quiesce        = raid5_quiesce,
5760         .takeover       = raid5_takeover,
5761 };
5762
5763 static struct mdk_personality raid4_personality =
5764 {
5765         .name           = "raid4",
5766         .level          = 4,
5767         .owner          = THIS_MODULE,
5768         .make_request   = make_request,
5769         .run            = run,
5770         .stop           = stop,
5771         .status         = status,
5772         .error_handler  = error,
5773         .hot_add_disk   = raid5_add_disk,
5774         .hot_remove_disk= raid5_remove_disk,
5775         .spare_active   = raid5_spare_active,
5776         .sync_request   = sync_request,
5777         .resize         = raid5_resize,
5778         .size           = raid5_size,
5779         .check_reshape  = raid5_check_reshape,
5780         .start_reshape  = raid5_start_reshape,
5781         .finish_reshape = raid5_finish_reshape,
5782         .quiesce        = raid5_quiesce,
5783         .takeover       = raid4_takeover,
5784 };
5785
5786 static int __init raid5_init(void)
5787 {
5788         register_md_personality(&raid6_personality);
5789         register_md_personality(&raid5_personality);
5790         register_md_personality(&raid4_personality);
5791         return 0;
5792 }
5793
5794 static void raid5_exit(void)
5795 {
5796         unregister_md_personality(&raid6_personality);
5797         unregister_md_personality(&raid5_personality);
5798         unregister_md_personality(&raid4_personality);
5799 }
5800
5801 module_init(raid5_init);
5802 module_exit(raid5_exit);
5803 MODULE_LICENSE("GPL");
5804 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5805 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5806 MODULE_ALIAS("md-raid5");
5807 MODULE_ALIAS("md-raid4");
5808 MODULE_ALIAS("md-level-5");
5809 MODULE_ALIAS("md-level-4");
5810 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5811 MODULE_ALIAS("md-raid6");
5812 MODULE_ALIAS("md-level-6");
5813
5814 /* This used to be two separate modules, they were: */
5815 MODULE_ALIAS("raid5");
5816 MODULE_ALIAS("raid6");