]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: Protect some more code with ->device_lock.
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock(&sh->lock);
1024                         spin_lock_irq(&sh->raid_conf->device_lock);
1025                         chosen = dev->towrite;
1026                         dev->towrite = NULL;
1027                         BUG_ON(dev->written);
1028                         wbi = dev->written = chosen;
1029                         spin_unlock_irq(&sh->raid_conf->device_lock);
1030                         spin_unlock(&sh->lock);
1031
1032                         while (wbi && wbi->bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 if (wbi->bi_rw & REQ_FUA)
1035                                         set_bit(R5_WantFUA, &dev->flags);
1036                                 tx = async_copy_data(1, wbi, dev->page,
1037                                         dev->sector, tx);
1038                                 wbi = r5_next_bio(wbi, dev->sector);
1039                         }
1040                 }
1041         }
1042
1043         return tx;
1044 }
1045
1046 static void ops_complete_reconstruct(void *stripe_head_ref)
1047 {
1048         struct stripe_head *sh = stripe_head_ref;
1049         int disks = sh->disks;
1050         int pd_idx = sh->pd_idx;
1051         int qd_idx = sh->qd_idx;
1052         int i;
1053         bool fua = false;
1054
1055         pr_debug("%s: stripe %llu\n", __func__,
1056                 (unsigned long long)sh->sector);
1057
1058         for (i = disks; i--; )
1059                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1060
1061         for (i = disks; i--; ) {
1062                 struct r5dev *dev = &sh->dev[i];
1063
1064                 if (dev->written || i == pd_idx || i == qd_idx) {
1065                         set_bit(R5_UPTODATE, &dev->flags);
1066                         if (fua)
1067                                 set_bit(R5_WantFUA, &dev->flags);
1068                 }
1069         }
1070
1071         if (sh->reconstruct_state == reconstruct_state_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_drain_result;
1073         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1074                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1075         else {
1076                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1077                 sh->reconstruct_state = reconstruct_state_result;
1078         }
1079
1080         set_bit(STRIPE_HANDLE, &sh->state);
1081         release_stripe(sh);
1082 }
1083
1084 static void
1085 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1086                      struct dma_async_tx_descriptor *tx)
1087 {
1088         int disks = sh->disks;
1089         struct page **xor_srcs = percpu->scribble;
1090         struct async_submit_ctl submit;
1091         int count = 0, pd_idx = sh->pd_idx, i;
1092         struct page *xor_dest;
1093         int prexor = 0;
1094         unsigned long flags;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         /* check if prexor is active which means only process blocks
1100          * that are part of a read-modify-write (written)
1101          */
1102         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1103                 prexor = 1;
1104                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105                 for (i = disks; i--; ) {
1106                         struct r5dev *dev = &sh->dev[i];
1107                         if (dev->written)
1108                                 xor_srcs[count++] = dev->page;
1109                 }
1110         } else {
1111                 xor_dest = sh->dev[pd_idx].page;
1112                 for (i = disks; i--; ) {
1113                         struct r5dev *dev = &sh->dev[i];
1114                         if (i != pd_idx)
1115                                 xor_srcs[count++] = dev->page;
1116                 }
1117         }
1118
1119         /* 1/ if we prexor'd then the dest is reused as a source
1120          * 2/ if we did not prexor then we are redoing the parity
1121          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122          * for the synchronous xor case
1123          */
1124         flags = ASYNC_TX_ACK |
1125                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1126
1127         atomic_inc(&sh->count);
1128
1129         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1130                           to_addr_conv(sh, percpu));
1131         if (unlikely(count == 1))
1132                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1133         else
1134                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 }
1136
1137 static void
1138 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1139                      struct dma_async_tx_descriptor *tx)
1140 {
1141         struct async_submit_ctl submit;
1142         struct page **blocks = percpu->scribble;
1143         int count;
1144
1145         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1146
1147         count = set_syndrome_sources(blocks, sh);
1148
1149         atomic_inc(&sh->count);
1150
1151         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1152                           sh, to_addr_conv(sh, percpu));
1153         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1154 }
1155
1156 static void ops_complete_check(void *stripe_head_ref)
1157 {
1158         struct stripe_head *sh = stripe_head_ref;
1159
1160         pr_debug("%s: stripe %llu\n", __func__,
1161                 (unsigned long long)sh->sector);
1162
1163         sh->check_state = check_state_check_result;
1164         set_bit(STRIPE_HANDLE, &sh->state);
1165         release_stripe(sh);
1166 }
1167
1168 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1169 {
1170         int disks = sh->disks;
1171         int pd_idx = sh->pd_idx;
1172         int qd_idx = sh->qd_idx;
1173         struct page *xor_dest;
1174         struct page **xor_srcs = percpu->scribble;
1175         struct dma_async_tx_descriptor *tx;
1176         struct async_submit_ctl submit;
1177         int count;
1178         int i;
1179
1180         pr_debug("%s: stripe %llu\n", __func__,
1181                 (unsigned long long)sh->sector);
1182
1183         count = 0;
1184         xor_dest = sh->dev[pd_idx].page;
1185         xor_srcs[count++] = xor_dest;
1186         for (i = disks; i--; ) {
1187                 if (i == pd_idx || i == qd_idx)
1188                         continue;
1189                 xor_srcs[count++] = sh->dev[i].page;
1190         }
1191
1192         init_async_submit(&submit, 0, NULL, NULL, NULL,
1193                           to_addr_conv(sh, percpu));
1194         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1195                            &sh->ops.zero_sum_result, &submit);
1196
1197         atomic_inc(&sh->count);
1198         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1199         tx = async_trigger_callback(&submit);
1200 }
1201
1202 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1203 {
1204         struct page **srcs = percpu->scribble;
1205         struct async_submit_ctl submit;
1206         int count;
1207
1208         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1209                 (unsigned long long)sh->sector, checkp);
1210
1211         count = set_syndrome_sources(srcs, sh);
1212         if (!checkp)
1213                 srcs[count] = NULL;
1214
1215         atomic_inc(&sh->count);
1216         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1217                           sh, to_addr_conv(sh, percpu));
1218         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1219                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 }
1221
1222 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224         int overlap_clear = 0, i, disks = sh->disks;
1225         struct dma_async_tx_descriptor *tx = NULL;
1226         raid5_conf_t *conf = sh->raid_conf;
1227         int level = conf->level;
1228         struct raid5_percpu *percpu;
1229         unsigned long cpu;
1230
1231         cpu = get_cpu();
1232         percpu = per_cpu_ptr(conf->percpu, cpu);
1233         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1234                 ops_run_biofill(sh);
1235                 overlap_clear++;
1236         }
1237
1238         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1239                 if (level < 6)
1240                         tx = ops_run_compute5(sh, percpu);
1241                 else {
1242                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1243                                 tx = ops_run_compute6_1(sh, percpu);
1244                         else
1245                                 tx = ops_run_compute6_2(sh, percpu);
1246                 }
1247                 /* terminate the chain if reconstruct is not set to be run */
1248                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1249                         async_tx_ack(tx);
1250         }
1251
1252         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1253                 tx = ops_run_prexor(sh, percpu, tx);
1254
1255         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1256                 tx = ops_run_biodrain(sh, tx);
1257                 overlap_clear++;
1258         }
1259
1260         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1261                 if (level < 6)
1262                         ops_run_reconstruct5(sh, percpu, tx);
1263                 else
1264                         ops_run_reconstruct6(sh, percpu, tx);
1265         }
1266
1267         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1268                 if (sh->check_state == check_state_run)
1269                         ops_run_check_p(sh, percpu);
1270                 else if (sh->check_state == check_state_run_q)
1271                         ops_run_check_pq(sh, percpu, 0);
1272                 else if (sh->check_state == check_state_run_pq)
1273                         ops_run_check_pq(sh, percpu, 1);
1274                 else
1275                         BUG();
1276         }
1277
1278         if (overlap_clear)
1279                 for (i = disks; i--; ) {
1280                         struct r5dev *dev = &sh->dev[i];
1281                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1282                                 wake_up(&sh->raid_conf->wait_for_overlap);
1283                 }
1284         put_cpu();
1285 }
1286
1287 #ifdef CONFIG_MULTICORE_RAID456
1288 static void async_run_ops(void *param, async_cookie_t cookie)
1289 {
1290         struct stripe_head *sh = param;
1291         unsigned long ops_request = sh->ops.request;
1292
1293         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1294         wake_up(&sh->ops.wait_for_ops);
1295
1296         __raid_run_ops(sh, ops_request);
1297         release_stripe(sh);
1298 }
1299
1300 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1301 {
1302         /* since handle_stripe can be called outside of raid5d context
1303          * we need to ensure sh->ops.request is de-staged before another
1304          * request arrives
1305          */
1306         wait_event(sh->ops.wait_for_ops,
1307                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1308         sh->ops.request = ops_request;
1309
1310         atomic_inc(&sh->count);
1311         async_schedule(async_run_ops, sh);
1312 }
1313 #else
1314 #define raid_run_ops __raid_run_ops
1315 #endif
1316
1317 static int grow_one_stripe(raid5_conf_t *conf)
1318 {
1319         struct stripe_head *sh;
1320         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1321         if (!sh)
1322                 return 0;
1323
1324         sh->raid_conf = conf;
1325         spin_lock_init(&sh->lock);
1326         #ifdef CONFIG_MULTICORE_RAID456
1327         init_waitqueue_head(&sh->ops.wait_for_ops);
1328         #endif
1329
1330         if (grow_buffers(sh)) {
1331                 shrink_buffers(sh);
1332                 kmem_cache_free(conf->slab_cache, sh);
1333                 return 0;
1334         }
1335         /* we just created an active stripe so... */
1336         atomic_set(&sh->count, 1);
1337         atomic_inc(&conf->active_stripes);
1338         INIT_LIST_HEAD(&sh->lru);
1339         release_stripe(sh);
1340         return 1;
1341 }
1342
1343 static int grow_stripes(raid5_conf_t *conf, int num)
1344 {
1345         struct kmem_cache *sc;
1346         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1347
1348         if (conf->mddev->gendisk)
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%s", conf->level, mdname(conf->mddev));
1351         else
1352                 sprintf(conf->cache_name[0],
1353                         "raid%d-%p", conf->level, conf->mddev);
1354         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1355
1356         conf->active_name = 0;
1357         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1358                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1359                                0, 0, NULL);
1360         if (!sc)
1361                 return 1;
1362         conf->slab_cache = sc;
1363         conf->pool_size = devs;
1364         while (num--)
1365                 if (!grow_one_stripe(conf))
1366                         return 1;
1367         return 0;
1368 }
1369
1370 /**
1371  * scribble_len - return the required size of the scribble region
1372  * @num - total number of disks in the array
1373  *
1374  * The size must be enough to contain:
1375  * 1/ a struct page pointer for each device in the array +2
1376  * 2/ room to convert each entry in (1) to its corresponding dma
1377  *    (dma_map_page()) or page (page_address()) address.
1378  *
1379  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380  * calculate over all devices (not just the data blocks), using zeros in place
1381  * of the P and Q blocks.
1382  */
1383 static size_t scribble_len(int num)
1384 {
1385         size_t len;
1386
1387         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1388
1389         return len;
1390 }
1391
1392 static int resize_stripes(raid5_conf_t *conf, int newsize)
1393 {
1394         /* Make all the stripes able to hold 'newsize' devices.
1395          * New slots in each stripe get 'page' set to a new page.
1396          *
1397          * This happens in stages:
1398          * 1/ create a new kmem_cache and allocate the required number of
1399          *    stripe_heads.
1400          * 2/ gather all the old stripe_heads and tranfer the pages across
1401          *    to the new stripe_heads.  This will have the side effect of
1402          *    freezing the array as once all stripe_heads have been collected,
1403          *    no IO will be possible.  Old stripe heads are freed once their
1404          *    pages have been transferred over, and the old kmem_cache is
1405          *    freed when all stripes are done.
1406          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1407          *    we simple return a failre status - no need to clean anything up.
1408          * 4/ allocate new pages for the new slots in the new stripe_heads.
1409          *    If this fails, we don't bother trying the shrink the
1410          *    stripe_heads down again, we just leave them as they are.
1411          *    As each stripe_head is processed the new one is released into
1412          *    active service.
1413          *
1414          * Once step2 is started, we cannot afford to wait for a write,
1415          * so we use GFP_NOIO allocations.
1416          */
1417         struct stripe_head *osh, *nsh;
1418         LIST_HEAD(newstripes);
1419         struct disk_info *ndisks;
1420         unsigned long cpu;
1421         int err;
1422         struct kmem_cache *sc;
1423         int i;
1424
1425         if (newsize <= conf->pool_size)
1426                 return 0; /* never bother to shrink */
1427
1428         err = md_allow_write(conf->mddev);
1429         if (err)
1430                 return err;
1431
1432         /* Step 1 */
1433         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1434                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1435                                0, 0, NULL);
1436         if (!sc)
1437                 return -ENOMEM;
1438
1439         for (i = conf->max_nr_stripes; i; i--) {
1440                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1441                 if (!nsh)
1442                         break;
1443
1444                 nsh->raid_conf = conf;
1445                 spin_lock_init(&nsh->lock);
1446                 #ifdef CONFIG_MULTICORE_RAID456
1447                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1448                 #endif
1449
1450                 list_add(&nsh->lru, &newstripes);
1451         }
1452         if (i) {
1453                 /* didn't get enough, give up */
1454                 while (!list_empty(&newstripes)) {
1455                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456                         list_del(&nsh->lru);
1457                         kmem_cache_free(sc, nsh);
1458                 }
1459                 kmem_cache_destroy(sc);
1460                 return -ENOMEM;
1461         }
1462         /* Step 2 - Must use GFP_NOIO now.
1463          * OK, we have enough stripes, start collecting inactive
1464          * stripes and copying them over
1465          */
1466         list_for_each_entry(nsh, &newstripes, lru) {
1467                 spin_lock_irq(&conf->device_lock);
1468                 wait_event_lock_irq(conf->wait_for_stripe,
1469                                     !list_empty(&conf->inactive_list),
1470                                     conf->device_lock,
1471                                     );
1472                 osh = get_free_stripe(conf);
1473                 spin_unlock_irq(&conf->device_lock);
1474                 atomic_set(&nsh->count, 1);
1475                 for(i=0; i<conf->pool_size; i++)
1476                         nsh->dev[i].page = osh->dev[i].page;
1477                 for( ; i<newsize; i++)
1478                         nsh->dev[i].page = NULL;
1479                 kmem_cache_free(conf->slab_cache, osh);
1480         }
1481         kmem_cache_destroy(conf->slab_cache);
1482
1483         /* Step 3.
1484          * At this point, we are holding all the stripes so the array
1485          * is completely stalled, so now is a good time to resize
1486          * conf->disks and the scribble region
1487          */
1488         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489         if (ndisks) {
1490                 for (i=0; i<conf->raid_disks; i++)
1491                         ndisks[i] = conf->disks[i];
1492                 kfree(conf->disks);
1493                 conf->disks = ndisks;
1494         } else
1495                 err = -ENOMEM;
1496
1497         get_online_cpus();
1498         conf->scribble_len = scribble_len(newsize);
1499         for_each_present_cpu(cpu) {
1500                 struct raid5_percpu *percpu;
1501                 void *scribble;
1502
1503                 percpu = per_cpu_ptr(conf->percpu, cpu);
1504                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1505
1506                 if (scribble) {
1507                         kfree(percpu->scribble);
1508                         percpu->scribble = scribble;
1509                 } else {
1510                         err = -ENOMEM;
1511                         break;
1512                 }
1513         }
1514         put_online_cpus();
1515
1516         /* Step 4, return new stripes to service */
1517         while(!list_empty(&newstripes)) {
1518                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519                 list_del_init(&nsh->lru);
1520
1521                 for (i=conf->raid_disks; i < newsize; i++)
1522                         if (nsh->dev[i].page == NULL) {
1523                                 struct page *p = alloc_page(GFP_NOIO);
1524                                 nsh->dev[i].page = p;
1525                                 if (!p)
1526                                         err = -ENOMEM;
1527                         }
1528                 release_stripe(nsh);
1529         }
1530         /* critical section pass, GFP_NOIO no longer needed */
1531
1532         conf->slab_cache = sc;
1533         conf->active_name = 1-conf->active_name;
1534         conf->pool_size = newsize;
1535         return err;
1536 }
1537
1538 static int drop_one_stripe(raid5_conf_t *conf)
1539 {
1540         struct stripe_head *sh;
1541
1542         spin_lock_irq(&conf->device_lock);
1543         sh = get_free_stripe(conf);
1544         spin_unlock_irq(&conf->device_lock);
1545         if (!sh)
1546                 return 0;
1547         BUG_ON(atomic_read(&sh->count));
1548         shrink_buffers(sh);
1549         kmem_cache_free(conf->slab_cache, sh);
1550         atomic_dec(&conf->active_stripes);
1551         return 1;
1552 }
1553
1554 static void shrink_stripes(raid5_conf_t *conf)
1555 {
1556         while (drop_one_stripe(conf))
1557                 ;
1558
1559         if (conf->slab_cache)
1560                 kmem_cache_destroy(conf->slab_cache);
1561         conf->slab_cache = NULL;
1562 }
1563
1564 static void raid5_end_read_request(struct bio * bi, int error)
1565 {
1566         struct stripe_head *sh = bi->bi_private;
1567         raid5_conf_t *conf = sh->raid_conf;
1568         int disks = sh->disks, i;
1569         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570         char b[BDEVNAME_SIZE];
1571         mdk_rdev_t *rdev;
1572
1573
1574         for (i=0 ; i<disks; i++)
1575                 if (bi == &sh->dev[i].req)
1576                         break;
1577
1578         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580                 uptodate);
1581         if (i == disks) {
1582                 BUG();
1583                 return;
1584         }
1585
1586         if (uptodate) {
1587                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589                         rdev = conf->disks[i].rdev;
1590                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591                                   " (%lu sectors at %llu on %s)\n",
1592                                   mdname(conf->mddev), STRIPE_SECTORS,
1593                                   (unsigned long long)(sh->sector
1594                                                        + rdev->data_offset),
1595                                   bdevname(rdev->bdev, b));
1596                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1597                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1598                 }
1599                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1600                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1601         } else {
1602                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603                 int retry = 0;
1604                 rdev = conf->disks[i].rdev;
1605
1606                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607                 atomic_inc(&rdev->read_errors);
1608                 if (conf->mddev->degraded >= conf->max_degraded)
1609                         printk_rl(KERN_WARNING
1610                                   "md/raid:%s: read error not correctable "
1611                                   "(sector %llu on %s).\n",
1612                                   mdname(conf->mddev),
1613                                   (unsigned long long)(sh->sector
1614                                                        + rdev->data_offset),
1615                                   bdn);
1616                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617                         /* Oh, no!!! */
1618                         printk_rl(KERN_WARNING
1619                                   "md/raid:%s: read error NOT corrected!! "
1620                                   "(sector %llu on %s).\n",
1621                                   mdname(conf->mddev),
1622                                   (unsigned long long)(sh->sector
1623                                                        + rdev->data_offset),
1624                                   bdn);
1625                 else if (atomic_read(&rdev->read_errors)
1626                          > conf->max_nr_stripes)
1627                         printk(KERN_WARNING
1628                                "md/raid:%s: Too many read errors, failing device %s.\n",
1629                                mdname(conf->mddev), bdn);
1630                 else
1631                         retry = 1;
1632                 if (retry)
1633                         set_bit(R5_ReadError, &sh->dev[i].flags);
1634                 else {
1635                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1636                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637                         md_error(conf->mddev, rdev);
1638                 }
1639         }
1640         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1641         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642         set_bit(STRIPE_HANDLE, &sh->state);
1643         release_stripe(sh);
1644 }
1645
1646 static void raid5_end_write_request(struct bio *bi, int error)
1647 {
1648         struct stripe_head *sh = bi->bi_private;
1649         raid5_conf_t *conf = sh->raid_conf;
1650         int disks = sh->disks, i;
1651         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1652
1653         for (i=0 ; i<disks; i++)
1654                 if (bi == &sh->dev[i].req)
1655                         break;
1656
1657         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1658                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659                 uptodate);
1660         if (i == disks) {
1661                 BUG();
1662                 return;
1663         }
1664
1665         if (!uptodate)
1666                 md_error(conf->mddev, conf->disks[i].rdev);
1667
1668         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669         
1670         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671         set_bit(STRIPE_HANDLE, &sh->state);
1672         release_stripe(sh);
1673 }
1674
1675
1676 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1677         
1678 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1679 {
1680         struct r5dev *dev = &sh->dev[i];
1681
1682         bio_init(&dev->req);
1683         dev->req.bi_io_vec = &dev->vec;
1684         dev->req.bi_vcnt++;
1685         dev->req.bi_max_vecs++;
1686         dev->vec.bv_page = dev->page;
1687         dev->vec.bv_len = STRIPE_SIZE;
1688         dev->vec.bv_offset = 0;
1689
1690         dev->req.bi_sector = sh->sector;
1691         dev->req.bi_private = sh;
1692
1693         dev->flags = 0;
1694         dev->sector = compute_blocknr(sh, i, previous);
1695 }
1696
1697 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1698 {
1699         char b[BDEVNAME_SIZE];
1700         raid5_conf_t *conf = mddev->private;
1701         pr_debug("raid456: error called\n");
1702
1703         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1704                 unsigned long flags;
1705                 spin_lock_irqsave(&conf->device_lock, flags);
1706                 mddev->degraded++;
1707                 spin_unlock_irqrestore(&conf->device_lock, flags);
1708                 /*
1709                  * if recovery was running, make sure it aborts.
1710                  */
1711                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1712         }
1713         set_bit(Faulty, &rdev->flags);
1714         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715         printk(KERN_ALERT
1716                "md/raid:%s: Disk failure on %s, disabling device.\n"
1717                "md/raid:%s: Operation continuing on %d devices.\n",
1718                mdname(mddev),
1719                bdevname(rdev->bdev, b),
1720                mdname(mddev),
1721                conf->raid_disks - mddev->degraded);
1722 }
1723
1724 /*
1725  * Input: a 'big' sector number,
1726  * Output: index of the data and parity disk, and the sector # in them.
1727  */
1728 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1729                                      int previous, int *dd_idx,
1730                                      struct stripe_head *sh)
1731 {
1732         sector_t stripe, stripe2;
1733         sector_t chunk_number;
1734         unsigned int chunk_offset;
1735         int pd_idx, qd_idx;
1736         int ddf_layout = 0;
1737         sector_t new_sector;
1738         int algorithm = previous ? conf->prev_algo
1739                                  : conf->algorithm;
1740         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1741                                          : conf->chunk_sectors;
1742         int raid_disks = previous ? conf->previous_raid_disks
1743                                   : conf->raid_disks;
1744         int data_disks = raid_disks - conf->max_degraded;
1745
1746         /* First compute the information on this sector */
1747
1748         /*
1749          * Compute the chunk number and the sector offset inside the chunk
1750          */
1751         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1752         chunk_number = r_sector;
1753
1754         /*
1755          * Compute the stripe number
1756          */
1757         stripe = chunk_number;
1758         *dd_idx = sector_div(stripe, data_disks);
1759         stripe2 = stripe;
1760         /*
1761          * Select the parity disk based on the user selected algorithm.
1762          */
1763         pd_idx = qd_idx = ~0;
1764         switch(conf->level) {
1765         case 4:
1766                 pd_idx = data_disks;
1767                 break;
1768         case 5:
1769                 switch (algorithm) {
1770                 case ALGORITHM_LEFT_ASYMMETRIC:
1771                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1772                         if (*dd_idx >= pd_idx)
1773                                 (*dd_idx)++;
1774                         break;
1775                 case ALGORITHM_RIGHT_ASYMMETRIC:
1776                         pd_idx = sector_div(stripe2, raid_disks);
1777                         if (*dd_idx >= pd_idx)
1778                                 (*dd_idx)++;
1779                         break;
1780                 case ALGORITHM_LEFT_SYMMETRIC:
1781                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_RIGHT_SYMMETRIC:
1785                         pd_idx = sector_div(stripe2, raid_disks);
1786                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1787                         break;
1788                 case ALGORITHM_PARITY_0:
1789                         pd_idx = 0;
1790                         (*dd_idx)++;
1791                         break;
1792                 case ALGORITHM_PARITY_N:
1793                         pd_idx = data_disks;
1794                         break;
1795                 default:
1796                         BUG();
1797                 }
1798                 break;
1799         case 6:
1800
1801                 switch (algorithm) {
1802                 case ALGORITHM_LEFT_ASYMMETRIC:
1803                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1804                         qd_idx = pd_idx + 1;
1805                         if (pd_idx == raid_disks-1) {
1806                                 (*dd_idx)++;    /* Q D D D P */
1807                                 qd_idx = 0;
1808                         } else if (*dd_idx >= pd_idx)
1809                                 (*dd_idx) += 2; /* D D P Q D */
1810                         break;
1811                 case ALGORITHM_RIGHT_ASYMMETRIC:
1812                         pd_idx = sector_div(stripe2, raid_disks);
1813                         qd_idx = pd_idx + 1;
1814                         if (pd_idx == raid_disks-1) {
1815                                 (*dd_idx)++;    /* Q D D D P */
1816                                 qd_idx = 0;
1817                         } else if (*dd_idx >= pd_idx)
1818                                 (*dd_idx) += 2; /* D D P Q D */
1819                         break;
1820                 case ALGORITHM_LEFT_SYMMETRIC:
1821                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1822                         qd_idx = (pd_idx + 1) % raid_disks;
1823                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1824                         break;
1825                 case ALGORITHM_RIGHT_SYMMETRIC:
1826                         pd_idx = sector_div(stripe2, raid_disks);
1827                         qd_idx = (pd_idx + 1) % raid_disks;
1828                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1829                         break;
1830
1831                 case ALGORITHM_PARITY_0:
1832                         pd_idx = 0;
1833                         qd_idx = 1;
1834                         (*dd_idx) += 2;
1835                         break;
1836                 case ALGORITHM_PARITY_N:
1837                         pd_idx = data_disks;
1838                         qd_idx = data_disks + 1;
1839                         break;
1840
1841                 case ALGORITHM_ROTATING_ZERO_RESTART:
1842                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1843                          * of blocks for computing Q is different.
1844                          */
1845                         pd_idx = sector_div(stripe2, raid_disks);
1846                         qd_idx = pd_idx + 1;
1847                         if (pd_idx == raid_disks-1) {
1848                                 (*dd_idx)++;    /* Q D D D P */
1849                                 qd_idx = 0;
1850                         } else if (*dd_idx >= pd_idx)
1851                                 (*dd_idx) += 2; /* D D P Q D */
1852                         ddf_layout = 1;
1853                         break;
1854
1855                 case ALGORITHM_ROTATING_N_RESTART:
1856                         /* Same a left_asymmetric, by first stripe is
1857                          * D D D P Q  rather than
1858                          * Q D D D P
1859                          */
1860                         stripe2 += 1;
1861                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1862                         qd_idx = pd_idx + 1;
1863                         if (pd_idx == raid_disks-1) {
1864                                 (*dd_idx)++;    /* Q D D D P */
1865                                 qd_idx = 0;
1866                         } else if (*dd_idx >= pd_idx)
1867                                 (*dd_idx) += 2; /* D D P Q D */
1868                         ddf_layout = 1;
1869                         break;
1870
1871                 case ALGORITHM_ROTATING_N_CONTINUE:
1872                         /* Same as left_symmetric but Q is before P */
1873                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1874                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1875                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1876                         ddf_layout = 1;
1877                         break;
1878
1879                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1880                         /* RAID5 left_asymmetric, with Q on last device */
1881                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1882                         if (*dd_idx >= pd_idx)
1883                                 (*dd_idx)++;
1884                         qd_idx = raid_disks - 1;
1885                         break;
1886
1887                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1888                         pd_idx = sector_div(stripe2, raid_disks-1);
1889                         if (*dd_idx >= pd_idx)
1890                                 (*dd_idx)++;
1891                         qd_idx = raid_disks - 1;
1892                         break;
1893
1894                 case ALGORITHM_LEFT_SYMMETRIC_6:
1895                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1896                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897                         qd_idx = raid_disks - 1;
1898                         break;
1899
1900                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1901                         pd_idx = sector_div(stripe2, raid_disks-1);
1902                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1903                         qd_idx = raid_disks - 1;
1904                         break;
1905
1906                 case ALGORITHM_PARITY_0_6:
1907                         pd_idx = 0;
1908                         (*dd_idx)++;
1909                         qd_idx = raid_disks - 1;
1910                         break;
1911
1912                 default:
1913                         BUG();
1914                 }
1915                 break;
1916         }
1917
1918         if (sh) {
1919                 sh->pd_idx = pd_idx;
1920                 sh->qd_idx = qd_idx;
1921                 sh->ddf_layout = ddf_layout;
1922         }
1923         /*
1924          * Finally, compute the new sector number
1925          */
1926         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1927         return new_sector;
1928 }
1929
1930
1931 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1932 {
1933         raid5_conf_t *conf = sh->raid_conf;
1934         int raid_disks = sh->disks;
1935         int data_disks = raid_disks - conf->max_degraded;
1936         sector_t new_sector = sh->sector, check;
1937         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938                                          : conf->chunk_sectors;
1939         int algorithm = previous ? conf->prev_algo
1940                                  : conf->algorithm;
1941         sector_t stripe;
1942         int chunk_offset;
1943         sector_t chunk_number;
1944         int dummy1, dd_idx = i;
1945         sector_t r_sector;
1946         struct stripe_head sh2;
1947
1948
1949         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1950         stripe = new_sector;
1951
1952         if (i == sh->pd_idx)
1953                 return 0;
1954         switch(conf->level) {
1955         case 4: break;
1956         case 5:
1957                 switch (algorithm) {
1958                 case ALGORITHM_LEFT_ASYMMETRIC:
1959                 case ALGORITHM_RIGHT_ASYMMETRIC:
1960                         if (i > sh->pd_idx)
1961                                 i--;
1962                         break;
1963                 case ALGORITHM_LEFT_SYMMETRIC:
1964                 case ALGORITHM_RIGHT_SYMMETRIC:
1965                         if (i < sh->pd_idx)
1966                                 i += raid_disks;
1967                         i -= (sh->pd_idx + 1);
1968                         break;
1969                 case ALGORITHM_PARITY_0:
1970                         i -= 1;
1971                         break;
1972                 case ALGORITHM_PARITY_N:
1973                         break;
1974                 default:
1975                         BUG();
1976                 }
1977                 break;
1978         case 6:
1979                 if (i == sh->qd_idx)
1980                         return 0; /* It is the Q disk */
1981                 switch (algorithm) {
1982                 case ALGORITHM_LEFT_ASYMMETRIC:
1983                 case ALGORITHM_RIGHT_ASYMMETRIC:
1984                 case ALGORITHM_ROTATING_ZERO_RESTART:
1985                 case ALGORITHM_ROTATING_N_RESTART:
1986                         if (sh->pd_idx == raid_disks-1)
1987                                 i--;    /* Q D D D P */
1988                         else if (i > sh->pd_idx)
1989                                 i -= 2; /* D D P Q D */
1990                         break;
1991                 case ALGORITHM_LEFT_SYMMETRIC:
1992                 case ALGORITHM_RIGHT_SYMMETRIC:
1993                         if (sh->pd_idx == raid_disks-1)
1994                                 i--; /* Q D D D P */
1995                         else {
1996                                 /* D D P Q D */
1997                                 if (i < sh->pd_idx)
1998                                         i += raid_disks;
1999                                 i -= (sh->pd_idx + 2);
2000                         }
2001                         break;
2002                 case ALGORITHM_PARITY_0:
2003                         i -= 2;
2004                         break;
2005                 case ALGORITHM_PARITY_N:
2006                         break;
2007                 case ALGORITHM_ROTATING_N_CONTINUE:
2008                         /* Like left_symmetric, but P is before Q */
2009                         if (sh->pd_idx == 0)
2010                                 i--;    /* P D D D Q */
2011                         else {
2012                                 /* D D Q P D */
2013                                 if (i < sh->pd_idx)
2014                                         i += raid_disks;
2015                                 i -= (sh->pd_idx + 1);
2016                         }
2017                         break;
2018                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2020                         if (i > sh->pd_idx)
2021                                 i--;
2022                         break;
2023                 case ALGORITHM_LEFT_SYMMETRIC_6:
2024                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2025                         if (i < sh->pd_idx)
2026                                 i += data_disks + 1;
2027                         i -= (sh->pd_idx + 1);
2028                         break;
2029                 case ALGORITHM_PARITY_0_6:
2030                         i -= 1;
2031                         break;
2032                 default:
2033                         BUG();
2034                 }
2035                 break;
2036         }
2037
2038         chunk_number = stripe * data_disks + i;
2039         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2040
2041         check = raid5_compute_sector(conf, r_sector,
2042                                      previous, &dummy1, &sh2);
2043         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2044                 || sh2.qd_idx != sh->qd_idx) {
2045                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2046                        mdname(conf->mddev));
2047                 return 0;
2048         }
2049         return r_sector;
2050 }
2051
2052
2053 static void
2054 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2055                          int rcw, int expand)
2056 {
2057         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2058         raid5_conf_t *conf = sh->raid_conf;
2059         int level = conf->level;
2060
2061         if (rcw) {
2062                 /* if we are not expanding this is a proper write request, and
2063                  * there will be bios with new data to be drained into the
2064                  * stripe cache
2065                  */
2066                 if (!expand) {
2067                         sh->reconstruct_state = reconstruct_state_drain_run;
2068                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2069                 } else
2070                         sh->reconstruct_state = reconstruct_state_run;
2071
2072                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2073
2074                 for (i = disks; i--; ) {
2075                         struct r5dev *dev = &sh->dev[i];
2076
2077                         if (dev->towrite) {
2078                                 set_bit(R5_LOCKED, &dev->flags);
2079                                 set_bit(R5_Wantdrain, &dev->flags);
2080                                 if (!expand)
2081                                         clear_bit(R5_UPTODATE, &dev->flags);
2082                                 s->locked++;
2083                         }
2084                 }
2085                 if (s->locked + conf->max_degraded == disks)
2086                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2087                                 atomic_inc(&conf->pending_full_writes);
2088         } else {
2089                 BUG_ON(level == 6);
2090                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2091                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2092
2093                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2094                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2095                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2097
2098                 for (i = disks; i--; ) {
2099                         struct r5dev *dev = &sh->dev[i];
2100                         if (i == pd_idx)
2101                                 continue;
2102
2103                         if (dev->towrite &&
2104                             (test_bit(R5_UPTODATE, &dev->flags) ||
2105                              test_bit(R5_Wantcompute, &dev->flags))) {
2106                                 set_bit(R5_Wantdrain, &dev->flags);
2107                                 set_bit(R5_LOCKED, &dev->flags);
2108                                 clear_bit(R5_UPTODATE, &dev->flags);
2109                                 s->locked++;
2110                         }
2111                 }
2112         }
2113
2114         /* keep the parity disk(s) locked while asynchronous operations
2115          * are in flight
2116          */
2117         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2118         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2119         s->locked++;
2120
2121         if (level == 6) {
2122                 int qd_idx = sh->qd_idx;
2123                 struct r5dev *dev = &sh->dev[qd_idx];
2124
2125                 set_bit(R5_LOCKED, &dev->flags);
2126                 clear_bit(R5_UPTODATE, &dev->flags);
2127                 s->locked++;
2128         }
2129
2130         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2131                 __func__, (unsigned long long)sh->sector,
2132                 s->locked, s->ops_request);
2133 }
2134
2135 /*
2136  * Each stripe/dev can have one or more bion attached.
2137  * toread/towrite point to the first in a chain.
2138  * The bi_next chain must be in order.
2139  */
2140 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2141 {
2142         struct bio **bip;
2143         raid5_conf_t *conf = sh->raid_conf;
2144         int firstwrite=0;
2145
2146         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2147                 (unsigned long long)bi->bi_sector,
2148                 (unsigned long long)sh->sector);
2149
2150
2151         spin_lock(&sh->lock);
2152         spin_lock_irq(&conf->device_lock);
2153         if (forwrite) {
2154                 bip = &sh->dev[dd_idx].towrite;
2155                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2156                         firstwrite = 1;
2157         } else
2158                 bip = &sh->dev[dd_idx].toread;
2159         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2160                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2161                         goto overlap;
2162                 bip = & (*bip)->bi_next;
2163         }
2164         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2165                 goto overlap;
2166
2167         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2168         if (*bip)
2169                 bi->bi_next = *bip;
2170         *bip = bi;
2171         bi->bi_phys_segments++;
2172
2173         if (forwrite) {
2174                 /* check if page is covered */
2175                 sector_t sector = sh->dev[dd_idx].sector;
2176                 for (bi=sh->dev[dd_idx].towrite;
2177                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2178                              bi && bi->bi_sector <= sector;
2179                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2180                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2181                                 sector = bi->bi_sector + (bi->bi_size>>9);
2182                 }
2183                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2184                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2185         }
2186         spin_unlock_irq(&conf->device_lock);
2187         spin_unlock(&sh->lock);
2188
2189         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2190                 (unsigned long long)(*bip)->bi_sector,
2191                 (unsigned long long)sh->sector, dd_idx);
2192
2193         if (conf->mddev->bitmap && firstwrite) {
2194                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2195                                   STRIPE_SECTORS, 0);
2196                 sh->bm_seq = conf->seq_flush+1;
2197                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2198         }
2199         return 1;
2200
2201  overlap:
2202         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2203         spin_unlock_irq(&conf->device_lock);
2204         spin_unlock(&sh->lock);
2205         return 0;
2206 }
2207
2208 static void end_reshape(raid5_conf_t *conf);
2209
2210 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2211                             struct stripe_head *sh)
2212 {
2213         int sectors_per_chunk =
2214                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2215         int dd_idx;
2216         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2217         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2218
2219         raid5_compute_sector(conf,
2220                              stripe * (disks - conf->max_degraded)
2221                              *sectors_per_chunk + chunk_offset,
2222                              previous,
2223                              &dd_idx, sh);
2224 }
2225
2226 static void
2227 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2228                                 struct stripe_head_state *s, int disks,
2229                                 struct bio **return_bi)
2230 {
2231         int i;
2232         for (i = disks; i--; ) {
2233                 struct bio *bi;
2234                 int bitmap_end = 0;
2235
2236                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2237                         mdk_rdev_t *rdev;
2238                         rcu_read_lock();
2239                         rdev = rcu_dereference(conf->disks[i].rdev);
2240                         if (rdev && test_bit(In_sync, &rdev->flags))
2241                                 /* multiple read failures in one stripe */
2242                                 md_error(conf->mddev, rdev);
2243                         rcu_read_unlock();
2244                 }
2245                 spin_lock_irq(&conf->device_lock);
2246                 /* fail all writes first */
2247                 bi = sh->dev[i].towrite;
2248                 sh->dev[i].towrite = NULL;
2249                 if (bi) {
2250                         s->to_write--;
2251                         bitmap_end = 1;
2252                 }
2253
2254                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2255                         wake_up(&conf->wait_for_overlap);
2256
2257                 while (bi && bi->bi_sector <
2258                         sh->dev[i].sector + STRIPE_SECTORS) {
2259                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2260                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2261                         if (!raid5_dec_bi_phys_segments(bi)) {
2262                                 md_write_end(conf->mddev);
2263                                 bi->bi_next = *return_bi;
2264                                 *return_bi = bi;
2265                         }
2266                         bi = nextbi;
2267                 }
2268                 /* and fail all 'written' */
2269                 bi = sh->dev[i].written;
2270                 sh->dev[i].written = NULL;
2271                 if (bi) bitmap_end = 1;
2272                 while (bi && bi->bi_sector <
2273                        sh->dev[i].sector + STRIPE_SECTORS) {
2274                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2275                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2276                         if (!raid5_dec_bi_phys_segments(bi)) {
2277                                 md_write_end(conf->mddev);
2278                                 bi->bi_next = *return_bi;
2279                                 *return_bi = bi;
2280                         }
2281                         bi = bi2;
2282                 }
2283
2284                 /* fail any reads if this device is non-operational and
2285                  * the data has not reached the cache yet.
2286                  */
2287                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2288                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2289                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2290                         bi = sh->dev[i].toread;
2291                         sh->dev[i].toread = NULL;
2292                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2293                                 wake_up(&conf->wait_for_overlap);
2294                         if (bi) s->to_read--;
2295                         while (bi && bi->bi_sector <
2296                                sh->dev[i].sector + STRIPE_SECTORS) {
2297                                 struct bio *nextbi =
2298                                         r5_next_bio(bi, sh->dev[i].sector);
2299                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300                                 if (!raid5_dec_bi_phys_segments(bi)) {
2301                                         bi->bi_next = *return_bi;
2302                                         *return_bi = bi;
2303                                 }
2304                                 bi = nextbi;
2305                         }
2306                 }
2307                 spin_unlock_irq(&conf->device_lock);
2308                 if (bitmap_end)
2309                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2310                                         STRIPE_SECTORS, 0, 0);
2311         }
2312
2313         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2314                 if (atomic_dec_and_test(&conf->pending_full_writes))
2315                         md_wakeup_thread(conf->mddev->thread);
2316 }
2317
2318 /* fetch_block5 - checks the given member device to see if its data needs
2319  * to be read or computed to satisfy a request.
2320  *
2321  * Returns 1 when no more member devices need to be checked, otherwise returns
2322  * 0 to tell the loop in handle_stripe_fill5 to continue
2323  */
2324 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2325                         int disk_idx, int disks)
2326 {
2327         struct r5dev *dev = &sh->dev[disk_idx];
2328         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2329
2330         /* is the data in this block needed, and can we get it? */
2331         if (!test_bit(R5_LOCKED, &dev->flags) &&
2332             !test_bit(R5_UPTODATE, &dev->flags) &&
2333             (dev->toread ||
2334              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335              s->syncing || s->expanding ||
2336              (s->failed &&
2337               (failed_dev->toread ||
2338                (failed_dev->towrite &&
2339                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2340                 /* We would like to get this block, possibly by computing it,
2341                  * otherwise read it if the backing disk is insync
2342                  */
2343                 if ((s->uptodate == disks - 1) &&
2344                     (s->failed && disk_idx == s->failed_num)) {
2345                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2346                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2347                         set_bit(R5_Wantcompute, &dev->flags);
2348                         sh->ops.target = disk_idx;
2349                         sh->ops.target2 = -1;
2350                         s->req_compute = 1;
2351                         /* Careful: from this point on 'uptodate' is in the eye
2352                          * of raid_run_ops which services 'compute' operations
2353                          * before writes. R5_Wantcompute flags a block that will
2354                          * be R5_UPTODATE by the time it is needed for a
2355                          * subsequent operation.
2356                          */
2357                         s->uptodate++;
2358                         return 1; /* uptodate + compute == disks */
2359                 } else if (test_bit(R5_Insync, &dev->flags)) {
2360                         set_bit(R5_LOCKED, &dev->flags);
2361                         set_bit(R5_Wantread, &dev->flags);
2362                         s->locked++;
2363                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2364                                 s->syncing);
2365                 }
2366         }
2367
2368         return 0;
2369 }
2370
2371 /**
2372  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2373  */
2374 static void handle_stripe_fill5(struct stripe_head *sh,
2375                         struct stripe_head_state *s, int disks)
2376 {
2377         int i;
2378
2379         /* look for blocks to read/compute, skip this if a compute
2380          * is already in flight, or if the stripe contents are in the
2381          * midst of changing due to a write
2382          */
2383         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2384             !sh->reconstruct_state)
2385                 for (i = disks; i--; )
2386                         if (fetch_block5(sh, s, i, disks))
2387                                 break;
2388         set_bit(STRIPE_HANDLE, &sh->state);
2389 }
2390
2391 /* fetch_block6 - checks the given member device to see if its data needs
2392  * to be read or computed to satisfy a request.
2393  *
2394  * Returns 1 when no more member devices need to be checked, otherwise returns
2395  * 0 to tell the loop in handle_stripe_fill6 to continue
2396  */
2397 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2398                          struct r6_state *r6s, int disk_idx, int disks)
2399 {
2400         struct r5dev *dev = &sh->dev[disk_idx];
2401         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2402                                   &sh->dev[r6s->failed_num[1]] };
2403
2404         if (!test_bit(R5_LOCKED, &dev->flags) &&
2405             !test_bit(R5_UPTODATE, &dev->flags) &&
2406             (dev->toread ||
2407              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408              s->syncing || s->expanding ||
2409              (s->failed >= 1 &&
2410               (fdev[0]->toread || s->to_write)) ||
2411              (s->failed >= 2 &&
2412               (fdev[1]->toread || s->to_write)))) {
2413                 /* we would like to get this block, possibly by computing it,
2414                  * otherwise read it if the backing disk is insync
2415                  */
2416                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418                 if ((s->uptodate == disks - 1) &&
2419                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2420                                    disk_idx == r6s->failed_num[1]))) {
2421                         /* have disk failed, and we're requested to fetch it;
2422                          * do compute it
2423                          */
2424                         pr_debug("Computing stripe %llu block %d\n",
2425                                (unsigned long long)sh->sector, disk_idx);
2426                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428                         set_bit(R5_Wantcompute, &dev->flags);
2429                         sh->ops.target = disk_idx;
2430                         sh->ops.target2 = -1; /* no 2nd target */
2431                         s->req_compute = 1;
2432                         s->uptodate++;
2433                         return 1;
2434                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2435                         /* Computing 2-failure is *very* expensive; only
2436                          * do it if failed >= 2
2437                          */
2438                         int other;
2439                         for (other = disks; other--; ) {
2440                                 if (other == disk_idx)
2441                                         continue;
2442                                 if (!test_bit(R5_UPTODATE,
2443                                       &sh->dev[other].flags))
2444                                         break;
2445                         }
2446                         BUG_ON(other < 0);
2447                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2448                                (unsigned long long)sh->sector,
2449                                disk_idx, other);
2450                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2451                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2452                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2453                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2454                         sh->ops.target = disk_idx;
2455                         sh->ops.target2 = other;
2456                         s->uptodate += 2;
2457                         s->req_compute = 1;
2458                         return 1;
2459                 } else if (test_bit(R5_Insync, &dev->flags)) {
2460                         set_bit(R5_LOCKED, &dev->flags);
2461                         set_bit(R5_Wantread, &dev->flags);
2462                         s->locked++;
2463                         pr_debug("Reading block %d (sync=%d)\n",
2464                                 disk_idx, s->syncing);
2465                 }
2466         }
2467
2468         return 0;
2469 }
2470
2471 /**
2472  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2473  */
2474 static void handle_stripe_fill6(struct stripe_head *sh,
2475                         struct stripe_head_state *s, struct r6_state *r6s,
2476                         int disks)
2477 {
2478         int i;
2479
2480         /* look for blocks to read/compute, skip this if a compute
2481          * is already in flight, or if the stripe contents are in the
2482          * midst of changing due to a write
2483          */
2484         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2485             !sh->reconstruct_state)
2486                 for (i = disks; i--; )
2487                         if (fetch_block6(sh, s, r6s, i, disks))
2488                                 break;
2489         set_bit(STRIPE_HANDLE, &sh->state);
2490 }
2491
2492
2493 /* handle_stripe_clean_event
2494  * any written block on an uptodate or failed drive can be returned.
2495  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2496  * never LOCKED, so we don't need to test 'failed' directly.
2497  */
2498 static void handle_stripe_clean_event(raid5_conf_t *conf,
2499         struct stripe_head *sh, int disks, struct bio **return_bi)
2500 {
2501         int i;
2502         struct r5dev *dev;
2503
2504         for (i = disks; i--; )
2505                 if (sh->dev[i].written) {
2506                         dev = &sh->dev[i];
2507                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2508                                 test_bit(R5_UPTODATE, &dev->flags)) {
2509                                 /* We can return any write requests */
2510                                 struct bio *wbi, *wbi2;
2511                                 int bitmap_end = 0;
2512                                 pr_debug("Return write for disc %d\n", i);
2513                                 spin_lock_irq(&conf->device_lock);
2514                                 wbi = dev->written;
2515                                 dev->written = NULL;
2516                                 while (wbi && wbi->bi_sector <
2517                                         dev->sector + STRIPE_SECTORS) {
2518                                         wbi2 = r5_next_bio(wbi, dev->sector);
2519                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2520                                                 md_write_end(conf->mddev);
2521                                                 wbi->bi_next = *return_bi;
2522                                                 *return_bi = wbi;
2523                                         }
2524                                         wbi = wbi2;
2525                                 }
2526                                 if (dev->towrite == NULL)
2527                                         bitmap_end = 1;
2528                                 spin_unlock_irq(&conf->device_lock);
2529                                 if (bitmap_end)
2530                                         bitmap_endwrite(conf->mddev->bitmap,
2531                                                         sh->sector,
2532                                                         STRIPE_SECTORS,
2533                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2534                                                         0);
2535                         }
2536                 }
2537
2538         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2539                 if (atomic_dec_and_test(&conf->pending_full_writes))
2540                         md_wakeup_thread(conf->mddev->thread);
2541 }
2542
2543 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2544                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2545 {
2546         int rmw = 0, rcw = 0, i;
2547         for (i = disks; i--; ) {
2548                 /* would I have to read this buffer for read_modify_write */
2549                 struct r5dev *dev = &sh->dev[i];
2550                 if ((dev->towrite || i == sh->pd_idx) &&
2551                     !test_bit(R5_LOCKED, &dev->flags) &&
2552                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2553                       test_bit(R5_Wantcompute, &dev->flags))) {
2554                         if (test_bit(R5_Insync, &dev->flags))
2555                                 rmw++;
2556                         else
2557                                 rmw += 2*disks;  /* cannot read it */
2558                 }
2559                 /* Would I have to read this buffer for reconstruct_write */
2560                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2561                     !test_bit(R5_LOCKED, &dev->flags) &&
2562                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2563                     test_bit(R5_Wantcompute, &dev->flags))) {
2564                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2565                         else
2566                                 rcw += 2*disks;
2567                 }
2568         }
2569         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2570                 (unsigned long long)sh->sector, rmw, rcw);
2571         set_bit(STRIPE_HANDLE, &sh->state);
2572         if (rmw < rcw && rmw > 0)
2573                 /* prefer read-modify-write, but need to get some data */
2574                 for (i = disks; i--; ) {
2575                         struct r5dev *dev = &sh->dev[i];
2576                         if ((dev->towrite || i == sh->pd_idx) &&
2577                             !test_bit(R5_LOCKED, &dev->flags) &&
2578                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2579                             test_bit(R5_Wantcompute, &dev->flags)) &&
2580                             test_bit(R5_Insync, &dev->flags)) {
2581                                 if (
2582                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583                                         pr_debug("Read_old block "
2584                                                 "%d for r-m-w\n", i);
2585                                         set_bit(R5_LOCKED, &dev->flags);
2586                                         set_bit(R5_Wantread, &dev->flags);
2587                                         s->locked++;
2588                                 } else {
2589                                         set_bit(STRIPE_DELAYED, &sh->state);
2590                                         set_bit(STRIPE_HANDLE, &sh->state);
2591                                 }
2592                         }
2593                 }
2594         if (rcw <= rmw && rcw > 0)
2595                 /* want reconstruct write, but need to get some data */
2596                 for (i = disks; i--; ) {
2597                         struct r5dev *dev = &sh->dev[i];
2598                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2599                             i != sh->pd_idx &&
2600                             !test_bit(R5_LOCKED, &dev->flags) &&
2601                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2602                             test_bit(R5_Wantcompute, &dev->flags)) &&
2603                             test_bit(R5_Insync, &dev->flags)) {
2604                                 if (
2605                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606                                         pr_debug("Read_old block "
2607                                                 "%d for Reconstruct\n", i);
2608                                         set_bit(R5_LOCKED, &dev->flags);
2609                                         set_bit(R5_Wantread, &dev->flags);
2610                                         s->locked++;
2611                                 } else {
2612                                         set_bit(STRIPE_DELAYED, &sh->state);
2613                                         set_bit(STRIPE_HANDLE, &sh->state);
2614                                 }
2615                         }
2616                 }
2617         /* now if nothing is locked, and if we have enough data,
2618          * we can start a write request
2619          */
2620         /* since handle_stripe can be called at any time we need to handle the
2621          * case where a compute block operation has been submitted and then a
2622          * subsequent call wants to start a write request.  raid_run_ops only
2623          * handles the case where compute block and reconstruct are requested
2624          * simultaneously.  If this is not the case then new writes need to be
2625          * held off until the compute completes.
2626          */
2627         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2628             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2629             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2630                 schedule_reconstruction(sh, s, rcw == 0, 0);
2631 }
2632
2633 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2634                 struct stripe_head *sh, struct stripe_head_state *s,
2635                 struct r6_state *r6s, int disks)
2636 {
2637         int rcw = 0, pd_idx = sh->pd_idx, i;
2638         int qd_idx = sh->qd_idx;
2639
2640         set_bit(STRIPE_HANDLE, &sh->state);
2641         for (i = disks; i--; ) {
2642                 struct r5dev *dev = &sh->dev[i];
2643                 /* check if we haven't enough data */
2644                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2645                     i != pd_idx && i != qd_idx &&
2646                     !test_bit(R5_LOCKED, &dev->flags) &&
2647                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2648                       test_bit(R5_Wantcompute, &dev->flags))) {
2649                         rcw++;
2650                         if (!test_bit(R5_Insync, &dev->flags))
2651                                 continue; /* it's a failed drive */
2652
2653                         if (
2654                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2655                                 pr_debug("Read_old stripe %llu "
2656                                         "block %d for Reconstruct\n",
2657                                      (unsigned long long)sh->sector, i);
2658                                 set_bit(R5_LOCKED, &dev->flags);
2659                                 set_bit(R5_Wantread, &dev->flags);
2660                                 s->locked++;
2661                         } else {
2662                                 pr_debug("Request delayed stripe %llu "
2663                                         "block %d for Reconstruct\n",
2664                                      (unsigned long long)sh->sector, i);
2665                                 set_bit(STRIPE_DELAYED, &sh->state);
2666                                 set_bit(STRIPE_HANDLE, &sh->state);
2667                         }
2668                 }
2669         }
2670         /* now if nothing is locked, and if we have enough data, we can start a
2671          * write request
2672          */
2673         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2674             s->locked == 0 && rcw == 0 &&
2675             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2676                 schedule_reconstruction(sh, s, 1, 0);
2677         }
2678 }
2679
2680 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2681                                 struct stripe_head_state *s, int disks)
2682 {
2683         struct r5dev *dev = NULL;
2684
2685         set_bit(STRIPE_HANDLE, &sh->state);
2686
2687         switch (sh->check_state) {
2688         case check_state_idle:
2689                 /* start a new check operation if there are no failures */
2690                 if (s->failed == 0) {
2691                         BUG_ON(s->uptodate != disks);
2692                         sh->check_state = check_state_run;
2693                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2694                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2695                         s->uptodate--;
2696                         break;
2697                 }
2698                 dev = &sh->dev[s->failed_num];
2699                 /* fall through */
2700         case check_state_compute_result:
2701                 sh->check_state = check_state_idle;
2702                 if (!dev)
2703                         dev = &sh->dev[sh->pd_idx];
2704
2705                 /* check that a write has not made the stripe insync */
2706                 if (test_bit(STRIPE_INSYNC, &sh->state))
2707                         break;
2708
2709                 /* either failed parity check, or recovery is happening */
2710                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2711                 BUG_ON(s->uptodate != disks);
2712
2713                 set_bit(R5_LOCKED, &dev->flags);
2714                 s->locked++;
2715                 set_bit(R5_Wantwrite, &dev->flags);
2716
2717                 clear_bit(STRIPE_DEGRADED, &sh->state);
2718                 set_bit(STRIPE_INSYNC, &sh->state);
2719                 break;
2720         case check_state_run:
2721                 break; /* we will be called again upon completion */
2722         case check_state_check_result:
2723                 sh->check_state = check_state_idle;
2724
2725                 /* if a failure occurred during the check operation, leave
2726                  * STRIPE_INSYNC not set and let the stripe be handled again
2727                  */
2728                 if (s->failed)
2729                         break;
2730
2731                 /* handle a successful check operation, if parity is correct
2732                  * we are done.  Otherwise update the mismatch count and repair
2733                  * parity if !MD_RECOVERY_CHECK
2734                  */
2735                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2736                         /* parity is correct (on disc,
2737                          * not in buffer any more)
2738                          */
2739                         set_bit(STRIPE_INSYNC, &sh->state);
2740                 else {
2741                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2742                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2743                                 /* don't try to repair!! */
2744                                 set_bit(STRIPE_INSYNC, &sh->state);
2745                         else {
2746                                 sh->check_state = check_state_compute_run;
2747                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2748                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2749                                 set_bit(R5_Wantcompute,
2750                                         &sh->dev[sh->pd_idx].flags);
2751                                 sh->ops.target = sh->pd_idx;
2752                                 sh->ops.target2 = -1;
2753                                 s->uptodate++;
2754                         }
2755                 }
2756                 break;
2757         case check_state_compute_run:
2758                 break;
2759         default:
2760                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2761                        __func__, sh->check_state,
2762                        (unsigned long long) sh->sector);
2763                 BUG();
2764         }
2765 }
2766
2767
2768 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2769                                   struct stripe_head_state *s,
2770                                   struct r6_state *r6s, int disks)
2771 {
2772         int pd_idx = sh->pd_idx;
2773         int qd_idx = sh->qd_idx;
2774         struct r5dev *dev;
2775
2776         set_bit(STRIPE_HANDLE, &sh->state);
2777
2778         BUG_ON(s->failed > 2);
2779
2780         /* Want to check and possibly repair P and Q.
2781          * However there could be one 'failed' device, in which
2782          * case we can only check one of them, possibly using the
2783          * other to generate missing data
2784          */
2785
2786         switch (sh->check_state) {
2787         case check_state_idle:
2788                 /* start a new check operation if there are < 2 failures */
2789                 if (s->failed == r6s->q_failed) {
2790                         /* The only possible failed device holds Q, so it
2791                          * makes sense to check P (If anything else were failed,
2792                          * we would have used P to recreate it).
2793                          */
2794                         sh->check_state = check_state_run;
2795                 }
2796                 if (!r6s->q_failed && s->failed < 2) {
2797                         /* Q is not failed, and we didn't use it to generate
2798                          * anything, so it makes sense to check it
2799                          */
2800                         if (sh->check_state == check_state_run)
2801                                 sh->check_state = check_state_run_pq;
2802                         else
2803                                 sh->check_state = check_state_run_q;
2804                 }
2805
2806                 /* discard potentially stale zero_sum_result */
2807                 sh->ops.zero_sum_result = 0;
2808
2809                 if (sh->check_state == check_state_run) {
2810                         /* async_xor_zero_sum destroys the contents of P */
2811                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2812                         s->uptodate--;
2813                 }
2814                 if (sh->check_state >= check_state_run &&
2815                     sh->check_state <= check_state_run_pq) {
2816                         /* async_syndrome_zero_sum preserves P and Q, so
2817                          * no need to mark them !uptodate here
2818                          */
2819                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2820                         break;
2821                 }
2822
2823                 /* we have 2-disk failure */
2824                 BUG_ON(s->failed != 2);
2825                 /* fall through */
2826         case check_state_compute_result:
2827                 sh->check_state = check_state_idle;
2828
2829                 /* check that a write has not made the stripe insync */
2830                 if (test_bit(STRIPE_INSYNC, &sh->state))
2831                         break;
2832
2833                 /* now write out any block on a failed drive,
2834                  * or P or Q if they were recomputed
2835                  */
2836                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2837                 if (s->failed == 2) {
2838                         dev = &sh->dev[r6s->failed_num[1]];
2839                         s->locked++;
2840                         set_bit(R5_LOCKED, &dev->flags);
2841                         set_bit(R5_Wantwrite, &dev->flags);
2842                 }
2843                 if (s->failed >= 1) {
2844                         dev = &sh->dev[r6s->failed_num[0]];
2845                         s->locked++;
2846                         set_bit(R5_LOCKED, &dev->flags);
2847                         set_bit(R5_Wantwrite, &dev->flags);
2848                 }
2849                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2850                         dev = &sh->dev[pd_idx];
2851                         s->locked++;
2852                         set_bit(R5_LOCKED, &dev->flags);
2853                         set_bit(R5_Wantwrite, &dev->flags);
2854                 }
2855                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2856                         dev = &sh->dev[qd_idx];
2857                         s->locked++;
2858                         set_bit(R5_LOCKED, &dev->flags);
2859                         set_bit(R5_Wantwrite, &dev->flags);
2860                 }
2861                 clear_bit(STRIPE_DEGRADED, &sh->state);
2862
2863                 set_bit(STRIPE_INSYNC, &sh->state);
2864                 break;
2865         case check_state_run:
2866         case check_state_run_q:
2867         case check_state_run_pq:
2868                 break; /* we will be called again upon completion */
2869         case check_state_check_result:
2870                 sh->check_state = check_state_idle;
2871
2872                 /* handle a successful check operation, if parity is correct
2873                  * we are done.  Otherwise update the mismatch count and repair
2874                  * parity if !MD_RECOVERY_CHECK
2875                  */
2876                 if (sh->ops.zero_sum_result == 0) {
2877                         /* both parities are correct */
2878                         if (!s->failed)
2879                                 set_bit(STRIPE_INSYNC, &sh->state);
2880                         else {
2881                                 /* in contrast to the raid5 case we can validate
2882                                  * parity, but still have a failure to write
2883                                  * back
2884                                  */
2885                                 sh->check_state = check_state_compute_result;
2886                                 /* Returning at this point means that we may go
2887                                  * off and bring p and/or q uptodate again so
2888                                  * we make sure to check zero_sum_result again
2889                                  * to verify if p or q need writeback
2890                                  */
2891                         }
2892                 } else {
2893                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2894                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2895                                 /* don't try to repair!! */
2896                                 set_bit(STRIPE_INSYNC, &sh->state);
2897                         else {
2898                                 int *target = &sh->ops.target;
2899
2900                                 sh->ops.target = -1;
2901                                 sh->ops.target2 = -1;
2902                                 sh->check_state = check_state_compute_run;
2903                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2904                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2905                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2906                                         set_bit(R5_Wantcompute,
2907                                                 &sh->dev[pd_idx].flags);
2908                                         *target = pd_idx;
2909                                         target = &sh->ops.target2;
2910                                         s->uptodate++;
2911                                 }
2912                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2913                                         set_bit(R5_Wantcompute,
2914                                                 &sh->dev[qd_idx].flags);
2915                                         *target = qd_idx;
2916                                         s->uptodate++;
2917                                 }
2918                         }
2919                 }
2920                 break;
2921         case check_state_compute_run:
2922                 break;
2923         default:
2924                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925                        __func__, sh->check_state,
2926                        (unsigned long long) sh->sector);
2927                 BUG();
2928         }
2929 }
2930
2931 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2932                                 struct r6_state *r6s)
2933 {
2934         int i;
2935
2936         /* We have read all the blocks in this stripe and now we need to
2937          * copy some of them into a target stripe for expand.
2938          */
2939         struct dma_async_tx_descriptor *tx = NULL;
2940         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2941         for (i = 0; i < sh->disks; i++)
2942                 if (i != sh->pd_idx && i != sh->qd_idx) {
2943                         int dd_idx, j;
2944                         struct stripe_head *sh2;
2945                         struct async_submit_ctl submit;
2946
2947                         sector_t bn = compute_blocknr(sh, i, 1);
2948                         sector_t s = raid5_compute_sector(conf, bn, 0,
2949                                                           &dd_idx, NULL);
2950                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2951                         if (sh2 == NULL)
2952                                 /* so far only the early blocks of this stripe
2953                                  * have been requested.  When later blocks
2954                                  * get requested, we will try again
2955                                  */
2956                                 continue;
2957                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2958                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2959                                 /* must have already done this block */
2960                                 release_stripe(sh2);
2961                                 continue;
2962                         }
2963
2964                         /* place all the copies on one channel */
2965                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2966                         tx = async_memcpy(sh2->dev[dd_idx].page,
2967                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2968                                           &submit);
2969
2970                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2971                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2972                         for (j = 0; j < conf->raid_disks; j++)
2973                                 if (j != sh2->pd_idx &&
2974                                     (!r6s || j != sh2->qd_idx) &&
2975                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2976                                         break;
2977                         if (j == conf->raid_disks) {
2978                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2979                                 set_bit(STRIPE_HANDLE, &sh2->state);
2980                         }
2981                         release_stripe(sh2);
2982
2983                 }
2984         /* done submitting copies, wait for them to complete */
2985         if (tx) {
2986                 async_tx_ack(tx);
2987                 dma_wait_for_async_tx(tx);
2988         }
2989 }
2990
2991
2992 /*
2993  * handle_stripe - do things to a stripe.
2994  *
2995  * We lock the stripe and then examine the state of various bits
2996  * to see what needs to be done.
2997  * Possible results:
2998  *    return some read request which now have data
2999  *    return some write requests which are safely on disc
3000  *    schedule a read on some buffers
3001  *    schedule a write of some buffers
3002  *    return confirmation of parity correctness
3003  *
3004  * buffers are taken off read_list or write_list, and bh_cache buffers
3005  * get BH_Lock set before the stripe lock is released.
3006  *
3007  */
3008
3009 static void handle_stripe5(struct stripe_head *sh)
3010 {
3011         raid5_conf_t *conf = sh->raid_conf;
3012         int disks = sh->disks, i;
3013         struct bio *return_bi = NULL;
3014         struct stripe_head_state s;
3015         struct r5dev *dev;
3016         mdk_rdev_t *blocked_rdev = NULL;
3017         int prexor;
3018         int dec_preread_active = 0;
3019
3020         memset(&s, 0, sizeof(s));
3021         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3022                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3023                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3024                  sh->reconstruct_state);
3025
3026         spin_lock(&sh->lock);
3027         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3028                 set_bit(STRIPE_SYNCING, &sh->state);
3029                 clear_bit(STRIPE_INSYNC, &sh->state);
3030         }
3031         clear_bit(STRIPE_HANDLE, &sh->state);
3032         clear_bit(STRIPE_DELAYED, &sh->state);
3033
3034         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3035         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3036         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3037
3038         /* Now to look around and see what can be done */
3039         rcu_read_lock();
3040         for (i=disks; i--; ) {
3041                 mdk_rdev_t *rdev;
3042
3043                 dev = &sh->dev[i];
3044
3045                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3046                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3047                         dev->towrite, dev->written);
3048
3049                 /* maybe we can request a biofill operation
3050                  *
3051                  * new wantfill requests are only permitted while
3052                  * ops_complete_biofill is guaranteed to be inactive
3053                  */
3054                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3055                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3056                         set_bit(R5_Wantfill, &dev->flags);
3057
3058                 /* now count some things */
3059                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3060                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3061                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3062
3063                 if (test_bit(R5_Wantfill, &dev->flags))
3064                         s.to_fill++;
3065                 else if (dev->toread)
3066                         s.to_read++;
3067                 if (dev->towrite) {
3068                         s.to_write++;
3069                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3070                                 s.non_overwrite++;
3071                 }
3072                 if (dev->written)
3073                         s.written++;
3074                 rdev = rcu_dereference(conf->disks[i].rdev);
3075                 if (blocked_rdev == NULL &&
3076                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3077                         blocked_rdev = rdev;
3078                         atomic_inc(&rdev->nr_pending);
3079                 }
3080                 clear_bit(R5_Insync, &dev->flags);
3081                 if (!rdev)
3082                         /* Not in-sync */;
3083                 else if (test_bit(In_sync, &rdev->flags))
3084                         set_bit(R5_Insync, &dev->flags);
3085                 else {
3086                         /* could be in-sync depending on recovery/reshape status */
3087                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3088                                 set_bit(R5_Insync, &dev->flags);
3089                 }
3090                 if (!test_bit(R5_Insync, &dev->flags)) {
3091                         /* The ReadError flag will just be confusing now */
3092                         clear_bit(R5_ReadError, &dev->flags);
3093                         clear_bit(R5_ReWrite, &dev->flags);
3094                 }
3095                 if (test_bit(R5_ReadError, &dev->flags))
3096                         clear_bit(R5_Insync, &dev->flags);
3097                 if (!test_bit(R5_Insync, &dev->flags)) {
3098                         s.failed++;
3099                         s.failed_num = i;
3100                 }
3101         }
3102         rcu_read_unlock();
3103
3104         if (unlikely(blocked_rdev)) {
3105                 if (s.syncing || s.expanding || s.expanded ||
3106                     s.to_write || s.written) {
3107                         set_bit(STRIPE_HANDLE, &sh->state);
3108                         goto unlock;
3109                 }
3110                 /* There is nothing for the blocked_rdev to block */
3111                 rdev_dec_pending(blocked_rdev, conf->mddev);
3112                 blocked_rdev = NULL;
3113         }
3114
3115         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3116                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3117                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3118         }
3119
3120         pr_debug("locked=%d uptodate=%d to_read=%d"
3121                 " to_write=%d failed=%d failed_num=%d\n",
3122                 s.locked, s.uptodate, s.to_read, s.to_write,
3123                 s.failed, s.failed_num);
3124         /* check if the array has lost two devices and, if so, some requests might
3125          * need to be failed
3126          */
3127         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3128                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3129         if (s.failed > 1 && s.syncing) {
3130                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3131                 clear_bit(STRIPE_SYNCING, &sh->state);
3132                 s.syncing = 0;
3133         }
3134
3135         /* might be able to return some write requests if the parity block
3136          * is safe, or on a failed drive
3137          */
3138         dev = &sh->dev[sh->pd_idx];
3139         if ( s.written &&
3140              ((test_bit(R5_Insync, &dev->flags) &&
3141                !test_bit(R5_LOCKED, &dev->flags) &&
3142                test_bit(R5_UPTODATE, &dev->flags)) ||
3143                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3144                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3145
3146         /* Now we might consider reading some blocks, either to check/generate
3147          * parity, or to satisfy requests
3148          * or to load a block that is being partially written.
3149          */
3150         if (s.to_read || s.non_overwrite ||
3151             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3152                 handle_stripe_fill5(sh, &s, disks);
3153
3154         /* Now we check to see if any write operations have recently
3155          * completed
3156          */
3157         prexor = 0;
3158         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3159                 prexor = 1;
3160         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3161             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3162                 sh->reconstruct_state = reconstruct_state_idle;
3163
3164                 /* All the 'written' buffers and the parity block are ready to
3165                  * be written back to disk
3166                  */
3167                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3168                 for (i = disks; i--; ) {
3169                         dev = &sh->dev[i];
3170                         if (test_bit(R5_LOCKED, &dev->flags) &&
3171                                 (i == sh->pd_idx || dev->written)) {
3172                                 pr_debug("Writing block %d\n", i);
3173                                 set_bit(R5_Wantwrite, &dev->flags);
3174                                 if (prexor)
3175                                         continue;
3176                                 if (!test_bit(R5_Insync, &dev->flags) ||
3177                                     (i == sh->pd_idx && s.failed == 0))
3178                                         set_bit(STRIPE_INSYNC, &sh->state);
3179                         }
3180                 }
3181                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3182                         dec_preread_active = 1;
3183         }
3184
3185         /* Now to consider new write requests and what else, if anything
3186          * should be read.  We do not handle new writes when:
3187          * 1/ A 'write' operation (copy+xor) is already in flight.
3188          * 2/ A 'check' operation is in flight, as it may clobber the parity
3189          *    block.
3190          */
3191         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3192                 handle_stripe_dirtying5(conf, sh, &s, disks);
3193
3194         /* maybe we need to check and possibly fix the parity for this stripe
3195          * Any reads will already have been scheduled, so we just see if enough
3196          * data is available.  The parity check is held off while parity
3197          * dependent operations are in flight.
3198          */
3199         if (sh->check_state ||
3200             (s.syncing && s.locked == 0 &&
3201              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3202              !test_bit(STRIPE_INSYNC, &sh->state)))
3203                 handle_parity_checks5(conf, sh, &s, disks);
3204
3205         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3206                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3207                 clear_bit(STRIPE_SYNCING, &sh->state);
3208         }
3209
3210         /* If the failed drive is just a ReadError, then we might need to progress
3211          * the repair/check process
3212          */
3213         if (s.failed == 1 && !conf->mddev->ro &&
3214             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3215             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3216             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3217                 ) {
3218                 dev = &sh->dev[s.failed_num];
3219                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3220                         set_bit(R5_Wantwrite, &dev->flags);
3221                         set_bit(R5_ReWrite, &dev->flags);
3222                         set_bit(R5_LOCKED, &dev->flags);
3223                         s.locked++;
3224                 } else {
3225                         /* let's read it back */
3226                         set_bit(R5_Wantread, &dev->flags);
3227                         set_bit(R5_LOCKED, &dev->flags);
3228                         s.locked++;
3229                 }
3230         }
3231
3232         /* Finish reconstruct operations initiated by the expansion process */
3233         if (sh->reconstruct_state == reconstruct_state_result) {
3234                 struct stripe_head *sh2
3235                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3236                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3237                         /* sh cannot be written until sh2 has been read.
3238                          * so arrange for sh to be delayed a little
3239                          */
3240                         set_bit(STRIPE_DELAYED, &sh->state);
3241                         set_bit(STRIPE_HANDLE, &sh->state);
3242                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3243                                               &sh2->state))
3244                                 atomic_inc(&conf->preread_active_stripes);
3245                         release_stripe(sh2);
3246                         goto unlock;
3247                 }
3248                 if (sh2)
3249                         release_stripe(sh2);
3250
3251                 sh->reconstruct_state = reconstruct_state_idle;
3252                 clear_bit(STRIPE_EXPANDING, &sh->state);
3253                 for (i = conf->raid_disks; i--; ) {
3254                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3255                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3256                         s.locked++;
3257                 }
3258         }
3259
3260         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3261             !sh->reconstruct_state) {
3262                 /* Need to write out all blocks after computing parity */
3263                 sh->disks = conf->raid_disks;
3264                 stripe_set_idx(sh->sector, conf, 0, sh);
3265                 schedule_reconstruction(sh, &s, 1, 1);
3266         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3267                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3268                 atomic_dec(&conf->reshape_stripes);
3269                 wake_up(&conf->wait_for_overlap);
3270                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3271         }
3272
3273         if (s.expanding && s.locked == 0 &&
3274             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3275                 handle_stripe_expansion(conf, sh, NULL);
3276
3277  unlock:
3278         spin_unlock(&sh->lock);
3279
3280         /* wait for this device to become unblocked */
3281         if (unlikely(blocked_rdev))
3282                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3283
3284         if (s.ops_request)
3285                 raid_run_ops(sh, s.ops_request);
3286
3287         ops_run_io(sh, &s);
3288
3289         if (dec_preread_active) {
3290                 /* We delay this until after ops_run_io so that if make_request
3291                  * is waiting on a flush, it won't continue until the writes
3292                  * have actually been submitted.
3293                  */
3294                 atomic_dec(&conf->preread_active_stripes);
3295                 if (atomic_read(&conf->preread_active_stripes) <
3296                     IO_THRESHOLD)
3297                         md_wakeup_thread(conf->mddev->thread);
3298         }
3299         return_io(return_bi);
3300 }
3301
3302 static void handle_stripe6(struct stripe_head *sh)
3303 {
3304         raid5_conf_t *conf = sh->raid_conf;
3305         int disks = sh->disks;
3306         struct bio *return_bi = NULL;
3307         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3308         struct stripe_head_state s;
3309         struct r6_state r6s;
3310         struct r5dev *dev, *pdev, *qdev;
3311         mdk_rdev_t *blocked_rdev = NULL;
3312         int dec_preread_active = 0;
3313
3314         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316                (unsigned long long)sh->sector, sh->state,
3317                atomic_read(&sh->count), pd_idx, qd_idx,
3318                sh->check_state, sh->reconstruct_state);
3319         memset(&s, 0, sizeof(s));
3320
3321         spin_lock(&sh->lock);
3322         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3323                 set_bit(STRIPE_SYNCING, &sh->state);
3324                 clear_bit(STRIPE_INSYNC, &sh->state);
3325         }
3326         clear_bit(STRIPE_HANDLE, &sh->state);
3327         clear_bit(STRIPE_DELAYED, &sh->state);
3328
3329         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3330         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3331         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3332         /* Now to look around and see what can be done */
3333
3334         rcu_read_lock();
3335         for (i=disks; i--; ) {
3336                 mdk_rdev_t *rdev;
3337                 dev = &sh->dev[i];
3338
3339                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3340                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3341                 /* maybe we can reply to a read
3342                  *
3343                  * new wantfill requests are only permitted while
3344                  * ops_complete_biofill is guaranteed to be inactive
3345                  */
3346                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3347                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3348                         set_bit(R5_Wantfill, &dev->flags);
3349
3350                 /* now count some things */
3351                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3352                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3353                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3354                         s.compute++;
3355                         BUG_ON(s.compute > 2);
3356                 }
3357
3358                 if (test_bit(R5_Wantfill, &dev->flags)) {
3359                         s.to_fill++;
3360                 } else if (dev->toread)
3361                         s.to_read++;
3362                 if (dev->towrite) {
3363                         s.to_write++;
3364                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3365                                 s.non_overwrite++;
3366                 }
3367                 if (dev->written)
3368                         s.written++;
3369                 rdev = rcu_dereference(conf->disks[i].rdev);
3370                 if (blocked_rdev == NULL &&
3371                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3372                         blocked_rdev = rdev;
3373                         atomic_inc(&rdev->nr_pending);
3374                 }
3375                 clear_bit(R5_Insync, &dev->flags);
3376                 if (!rdev)
3377                         /* Not in-sync */;
3378                 else if (test_bit(In_sync, &rdev->flags))
3379                         set_bit(R5_Insync, &dev->flags);
3380                 else {
3381                         /* in sync if before recovery_offset */
3382                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3383                                 set_bit(R5_Insync, &dev->flags);
3384                 }
3385                 if (!test_bit(R5_Insync, &dev->flags)) {
3386                         /* The ReadError flag will just be confusing now */
3387                         clear_bit(R5_ReadError, &dev->flags);
3388                         clear_bit(R5_ReWrite, &dev->flags);
3389                 }
3390                 if (test_bit(R5_ReadError, &dev->flags))
3391                         clear_bit(R5_Insync, &dev->flags);
3392                 if (!test_bit(R5_Insync, &dev->flags)) {
3393                         if (s.failed < 2)
3394                                 r6s.failed_num[s.failed] = i;
3395                         s.failed++;
3396                 }
3397         }
3398         rcu_read_unlock();
3399
3400         if (unlikely(blocked_rdev)) {
3401                 if (s.syncing || s.expanding || s.expanded ||
3402                     s.to_write || s.written) {
3403                         set_bit(STRIPE_HANDLE, &sh->state);
3404                         goto unlock;
3405                 }
3406                 /* There is nothing for the blocked_rdev to block */
3407                 rdev_dec_pending(blocked_rdev, conf->mddev);
3408                 blocked_rdev = NULL;
3409         }
3410
3411         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3412                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3413                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3414         }
3415
3416         pr_debug("locked=%d uptodate=%d to_read=%d"
3417                " to_write=%d failed=%d failed_num=%d,%d\n",
3418                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3419                r6s.failed_num[0], r6s.failed_num[1]);
3420         /* check if the array has lost >2 devices and, if so, some requests
3421          * might need to be failed
3422          */
3423         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3424                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3425         if (s.failed > 2 && s.syncing) {
3426                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3427                 clear_bit(STRIPE_SYNCING, &sh->state);
3428                 s.syncing = 0;
3429         }
3430
3431         /*
3432          * might be able to return some write requests if the parity blocks
3433          * are safe, or on a failed drive
3434          */
3435         pdev = &sh->dev[pd_idx];
3436         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3437                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3438         qdev = &sh->dev[qd_idx];
3439         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3440                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3441
3442         if ( s.written &&
3443              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3444                              && !test_bit(R5_LOCKED, &pdev->flags)
3445                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3446              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3447                              && !test_bit(R5_LOCKED, &qdev->flags)
3448                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3449                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3450
3451         /* Now we might consider reading some blocks, either to check/generate
3452          * parity, or to satisfy requests
3453          * or to load a block that is being partially written.
3454          */
3455         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3456             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3457                 handle_stripe_fill6(sh, &s, &r6s, disks);
3458
3459         /* Now we check to see if any write operations have recently
3460          * completed
3461          */
3462         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3463
3464                 sh->reconstruct_state = reconstruct_state_idle;
3465                 /* All the 'written' buffers and the parity blocks are ready to
3466                  * be written back to disk
3467                  */
3468                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3470                 for (i = disks; i--; ) {
3471                         dev = &sh->dev[i];
3472                         if (test_bit(R5_LOCKED, &dev->flags) &&
3473                             (i == sh->pd_idx || i == qd_idx ||
3474                              dev->written)) {
3475                                 pr_debug("Writing block %d\n", i);
3476                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3477                                 set_bit(R5_Wantwrite, &dev->flags);
3478                                 if (!test_bit(R5_Insync, &dev->flags) ||
3479                                     ((i == sh->pd_idx || i == qd_idx) &&
3480                                       s.failed == 0))
3481                                         set_bit(STRIPE_INSYNC, &sh->state);
3482                         }
3483                 }
3484                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3485                         dec_preread_active = 1;
3486         }
3487
3488         /* Now to consider new write requests and what else, if anything
3489          * should be read.  We do not handle new writes when:
3490          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3491          * 2/ A 'check' operation is in flight, as it may clobber the parity
3492          *    block.
3493          */
3494         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3495                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3496
3497         /* maybe we need to check and possibly fix the parity for this stripe
3498          * Any reads will already have been scheduled, so we just see if enough
3499          * data is available.  The parity check is held off while parity
3500          * dependent operations are in flight.
3501          */
3502         if (sh->check_state ||
3503             (s.syncing && s.locked == 0 &&
3504              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3505              !test_bit(STRIPE_INSYNC, &sh->state)))
3506                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3507
3508         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3509                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3510                 clear_bit(STRIPE_SYNCING, &sh->state);
3511         }
3512
3513         /* If the failed drives are just a ReadError, then we might need
3514          * to progress the repair/check process
3515          */
3516         if (s.failed <= 2 && !conf->mddev->ro)
3517                 for (i = 0; i < s.failed; i++) {
3518                         dev = &sh->dev[r6s.failed_num[i]];
3519                         if (test_bit(R5_ReadError, &dev->flags)
3520                             && !test_bit(R5_LOCKED, &dev->flags)
3521                             && test_bit(R5_UPTODATE, &dev->flags)
3522                                 ) {
3523                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3524                                         set_bit(R5_Wantwrite, &dev->flags);
3525                                         set_bit(R5_ReWrite, &dev->flags);
3526                                         set_bit(R5_LOCKED, &dev->flags);
3527                                         s.locked++;
3528                                 } else {
3529                                         /* let's read it back */
3530                                         set_bit(R5_Wantread, &dev->flags);
3531                                         set_bit(R5_LOCKED, &dev->flags);
3532                                         s.locked++;
3533                                 }
3534                         }
3535                 }
3536
3537         /* Finish reconstruct operations initiated by the expansion process */
3538         if (sh->reconstruct_state == reconstruct_state_result) {
3539                 sh->reconstruct_state = reconstruct_state_idle;
3540                 clear_bit(STRIPE_EXPANDING, &sh->state);
3541                 for (i = conf->raid_disks; i--; ) {
3542                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3543                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3544                         s.locked++;
3545                 }
3546         }
3547
3548         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3549             !sh->reconstruct_state) {
3550                 struct stripe_head *sh2
3551                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3552                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3553                         /* sh cannot be written until sh2 has been read.
3554                          * so arrange for sh to be delayed a little
3555                          */
3556                         set_bit(STRIPE_DELAYED, &sh->state);
3557                         set_bit(STRIPE_HANDLE, &sh->state);
3558                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3559                                               &sh2->state))
3560                                 atomic_inc(&conf->preread_active_stripes);
3561                         release_stripe(sh2);
3562                         goto unlock;
3563                 }
3564                 if (sh2)
3565                         release_stripe(sh2);
3566
3567                 /* Need to write out all blocks after computing P&Q */
3568                 sh->disks = conf->raid_disks;
3569                 stripe_set_idx(sh->sector, conf, 0, sh);
3570                 schedule_reconstruction(sh, &s, 1, 1);
3571         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3572                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3573                 atomic_dec(&conf->reshape_stripes);
3574                 wake_up(&conf->wait_for_overlap);
3575                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3576         }
3577
3578         if (s.expanding && s.locked == 0 &&
3579             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3580                 handle_stripe_expansion(conf, sh, &r6s);
3581
3582  unlock:
3583         spin_unlock(&sh->lock);
3584
3585         /* wait for this device to become unblocked */
3586         if (unlikely(blocked_rdev))
3587                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3588
3589         if (s.ops_request)
3590                 raid_run_ops(sh, s.ops_request);
3591
3592         ops_run_io(sh, &s);
3593
3594
3595         if (dec_preread_active) {
3596                 /* We delay this until after ops_run_io so that if make_request
3597                  * is waiting on a flush, it won't continue until the writes
3598                  * have actually been submitted.
3599                  */
3600                 atomic_dec(&conf->preread_active_stripes);
3601                 if (atomic_read(&conf->preread_active_stripes) <
3602                     IO_THRESHOLD)
3603                         md_wakeup_thread(conf->mddev->thread);
3604         }
3605
3606         return_io(return_bi);
3607 }
3608
3609 static void handle_stripe(struct stripe_head *sh)
3610 {
3611         if (sh->raid_conf->level == 6)
3612                 handle_stripe6(sh);
3613         else
3614                 handle_stripe5(sh);
3615 }
3616
3617 static void raid5_activate_delayed(raid5_conf_t *conf)
3618 {
3619         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3620                 while (!list_empty(&conf->delayed_list)) {
3621                         struct list_head *l = conf->delayed_list.next;
3622                         struct stripe_head *sh;
3623                         sh = list_entry(l, struct stripe_head, lru);
3624                         list_del_init(l);
3625                         clear_bit(STRIPE_DELAYED, &sh->state);
3626                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3627                                 atomic_inc(&conf->preread_active_stripes);
3628                         list_add_tail(&sh->lru, &conf->hold_list);
3629                 }
3630         }
3631 }
3632
3633 static void activate_bit_delay(raid5_conf_t *conf)
3634 {
3635         /* device_lock is held */
3636         struct list_head head;
3637         list_add(&head, &conf->bitmap_list);
3638         list_del_init(&conf->bitmap_list);
3639         while (!list_empty(&head)) {
3640                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3641                 list_del_init(&sh->lru);
3642                 atomic_inc(&sh->count);
3643                 __release_stripe(conf, sh);
3644         }
3645 }
3646
3647 int md_raid5_congested(mddev_t *mddev, int bits)
3648 {
3649         raid5_conf_t *conf = mddev->private;
3650
3651         /* No difference between reads and writes.  Just check
3652          * how busy the stripe_cache is
3653          */
3654
3655         if (conf->inactive_blocked)
3656                 return 1;
3657         if (conf->quiesce)
3658                 return 1;
3659         if (list_empty_careful(&conf->inactive_list))
3660                 return 1;
3661
3662         return 0;
3663 }
3664 EXPORT_SYMBOL_GPL(md_raid5_congested);
3665
3666 static int raid5_congested(void *data, int bits)
3667 {
3668         mddev_t *mddev = data;
3669
3670         return mddev_congested(mddev, bits) ||
3671                 md_raid5_congested(mddev, bits);
3672 }
3673
3674 /* We want read requests to align with chunks where possible,
3675  * but write requests don't need to.
3676  */
3677 static int raid5_mergeable_bvec(struct request_queue *q,
3678                                 struct bvec_merge_data *bvm,
3679                                 struct bio_vec *biovec)
3680 {
3681         mddev_t *mddev = q->queuedata;
3682         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3683         int max;
3684         unsigned int chunk_sectors = mddev->chunk_sectors;
3685         unsigned int bio_sectors = bvm->bi_size >> 9;
3686
3687         if ((bvm->bi_rw & 1) == WRITE)
3688                 return biovec->bv_len; /* always allow writes to be mergeable */
3689
3690         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3691                 chunk_sectors = mddev->new_chunk_sectors;
3692         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3693         if (max < 0) max = 0;
3694         if (max <= biovec->bv_len && bio_sectors == 0)
3695                 return biovec->bv_len;
3696         else
3697                 return max;
3698 }
3699
3700
3701 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3702 {
3703         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3704         unsigned int chunk_sectors = mddev->chunk_sectors;
3705         unsigned int bio_sectors = bio->bi_size >> 9;
3706
3707         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3708                 chunk_sectors = mddev->new_chunk_sectors;
3709         return  chunk_sectors >=
3710                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3711 }
3712
3713 /*
3714  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3715  *  later sampled by raid5d.
3716  */
3717 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3718 {
3719         unsigned long flags;
3720
3721         spin_lock_irqsave(&conf->device_lock, flags);
3722
3723         bi->bi_next = conf->retry_read_aligned_list;
3724         conf->retry_read_aligned_list = bi;
3725
3726         spin_unlock_irqrestore(&conf->device_lock, flags);
3727         md_wakeup_thread(conf->mddev->thread);
3728 }
3729
3730
3731 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3732 {
3733         struct bio *bi;
3734
3735         bi = conf->retry_read_aligned;
3736         if (bi) {
3737                 conf->retry_read_aligned = NULL;
3738                 return bi;
3739         }
3740         bi = conf->retry_read_aligned_list;
3741         if(bi) {
3742                 conf->retry_read_aligned_list = bi->bi_next;
3743                 bi->bi_next = NULL;
3744                 /*
3745                  * this sets the active strip count to 1 and the processed
3746                  * strip count to zero (upper 8 bits)
3747                  */
3748                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3749         }
3750
3751         return bi;
3752 }
3753
3754
3755 /*
3756  *  The "raid5_align_endio" should check if the read succeeded and if it
3757  *  did, call bio_endio on the original bio (having bio_put the new bio
3758  *  first).
3759  *  If the read failed..
3760  */
3761 static void raid5_align_endio(struct bio *bi, int error)
3762 {
3763         struct bio* raid_bi  = bi->bi_private;
3764         mddev_t *mddev;
3765         raid5_conf_t *conf;
3766         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3767         mdk_rdev_t *rdev;
3768
3769         bio_put(bi);
3770
3771         rdev = (void*)raid_bi->bi_next;
3772         raid_bi->bi_next = NULL;
3773         mddev = rdev->mddev;
3774         conf = mddev->private;
3775
3776         rdev_dec_pending(rdev, conf->mddev);
3777
3778         if (!error && uptodate) {
3779                 bio_endio(raid_bi, 0);
3780                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3781                         wake_up(&conf->wait_for_stripe);
3782                 return;
3783         }
3784
3785
3786         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3787
3788         add_bio_to_retry(raid_bi, conf);
3789 }
3790
3791 static int bio_fits_rdev(struct bio *bi)
3792 {
3793         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3794
3795         if ((bi->bi_size>>9) > queue_max_sectors(q))
3796                 return 0;
3797         blk_recount_segments(q, bi);
3798         if (bi->bi_phys_segments > queue_max_segments(q))
3799                 return 0;
3800
3801         if (q->merge_bvec_fn)
3802                 /* it's too hard to apply the merge_bvec_fn at this stage,
3803                  * just just give up
3804                  */
3805                 return 0;
3806
3807         return 1;
3808 }
3809
3810
3811 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3812 {
3813         raid5_conf_t *conf = mddev->private;
3814         int dd_idx;
3815         struct bio* align_bi;
3816         mdk_rdev_t *rdev;
3817
3818         if (!in_chunk_boundary(mddev, raid_bio)) {
3819                 pr_debug("chunk_aligned_read : non aligned\n");
3820                 return 0;
3821         }
3822         /*
3823          * use bio_clone_mddev to make a copy of the bio
3824          */
3825         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3826         if (!align_bi)
3827                 return 0;
3828         /*
3829          *   set bi_end_io to a new function, and set bi_private to the
3830          *     original bio.
3831          */
3832         align_bi->bi_end_io  = raid5_align_endio;
3833         align_bi->bi_private = raid_bio;
3834         /*
3835          *      compute position
3836          */
3837         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3838                                                     0,
3839                                                     &dd_idx, NULL);
3840
3841         rcu_read_lock();
3842         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3843         if (rdev && test_bit(In_sync, &rdev->flags)) {
3844                 atomic_inc(&rdev->nr_pending);
3845                 rcu_read_unlock();
3846                 raid_bio->bi_next = (void*)rdev;
3847                 align_bi->bi_bdev =  rdev->bdev;
3848                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3849                 align_bi->bi_sector += rdev->data_offset;
3850
3851                 if (!bio_fits_rdev(align_bi)) {
3852                         /* too big in some way */
3853                         bio_put(align_bi);
3854                         rdev_dec_pending(rdev, mddev);
3855                         return 0;
3856                 }
3857
3858                 spin_lock_irq(&conf->device_lock);
3859                 wait_event_lock_irq(conf->wait_for_stripe,
3860                                     conf->quiesce == 0,
3861                                     conf->device_lock, /* nothing */);
3862                 atomic_inc(&conf->active_aligned_reads);
3863                 spin_unlock_irq(&conf->device_lock);
3864
3865                 generic_make_request(align_bi);
3866                 return 1;
3867         } else {
3868                 rcu_read_unlock();
3869                 bio_put(align_bi);
3870                 return 0;
3871         }
3872 }
3873
3874 /* __get_priority_stripe - get the next stripe to process
3875  *
3876  * Full stripe writes are allowed to pass preread active stripes up until
3877  * the bypass_threshold is exceeded.  In general the bypass_count
3878  * increments when the handle_list is handled before the hold_list; however, it
3879  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3880  * stripe with in flight i/o.  The bypass_count will be reset when the
3881  * head of the hold_list has changed, i.e. the head was promoted to the
3882  * handle_list.
3883  */
3884 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3885 {
3886         struct stripe_head *sh;
3887
3888         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3889                   __func__,
3890                   list_empty(&conf->handle_list) ? "empty" : "busy",
3891                   list_empty(&conf->hold_list) ? "empty" : "busy",
3892                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3893
3894         if (!list_empty(&conf->handle_list)) {
3895                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3896
3897                 if (list_empty(&conf->hold_list))
3898                         conf->bypass_count = 0;
3899                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3900                         if (conf->hold_list.next == conf->last_hold)
3901                                 conf->bypass_count++;
3902                         else {
3903                                 conf->last_hold = conf->hold_list.next;
3904                                 conf->bypass_count -= conf->bypass_threshold;
3905                                 if (conf->bypass_count < 0)
3906                                         conf->bypass_count = 0;
3907                         }
3908                 }
3909         } else if (!list_empty(&conf->hold_list) &&
3910                    ((conf->bypass_threshold &&
3911                      conf->bypass_count > conf->bypass_threshold) ||
3912                     atomic_read(&conf->pending_full_writes) == 0)) {
3913                 sh = list_entry(conf->hold_list.next,
3914                                 typeof(*sh), lru);
3915                 conf->bypass_count -= conf->bypass_threshold;
3916                 if (conf->bypass_count < 0)
3917                         conf->bypass_count = 0;
3918         } else
3919                 return NULL;
3920
3921         list_del_init(&sh->lru);
3922         atomic_inc(&sh->count);
3923         BUG_ON(atomic_read(&sh->count) != 1);
3924         return sh;
3925 }
3926
3927 static int make_request(mddev_t *mddev, struct bio * bi)
3928 {
3929         raid5_conf_t *conf = mddev->private;
3930         int dd_idx;
3931         sector_t new_sector;
3932         sector_t logical_sector, last_sector;
3933         struct stripe_head *sh;
3934         const int rw = bio_data_dir(bi);
3935         int remaining;
3936         int plugged;
3937
3938         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3939                 md_flush_request(mddev, bi);
3940                 return 0;
3941         }
3942
3943         md_write_start(mddev, bi);
3944
3945         if (rw == READ &&
3946              mddev->reshape_position == MaxSector &&
3947              chunk_aligned_read(mddev,bi))
3948                 return 0;
3949
3950         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3951         last_sector = bi->bi_sector + (bi->bi_size>>9);
3952         bi->bi_next = NULL;
3953         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3954
3955         plugged = mddev_check_plugged(mddev);
3956         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3957                 DEFINE_WAIT(w);
3958                 int disks, data_disks;
3959                 int previous;
3960
3961         retry:
3962                 previous = 0;
3963                 disks = conf->raid_disks;
3964                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3965                 if (unlikely(conf->reshape_progress != MaxSector)) {
3966                         /* spinlock is needed as reshape_progress may be
3967                          * 64bit on a 32bit platform, and so it might be
3968                          * possible to see a half-updated value
3969                          * Of course reshape_progress could change after
3970                          * the lock is dropped, so once we get a reference
3971                          * to the stripe that we think it is, we will have
3972                          * to check again.
3973                          */
3974                         spin_lock_irq(&conf->device_lock);
3975                         if (mddev->delta_disks < 0
3976                             ? logical_sector < conf->reshape_progress
3977                             : logical_sector >= conf->reshape_progress) {
3978                                 disks = conf->previous_raid_disks;
3979                                 previous = 1;
3980                         } else {
3981                                 if (mddev->delta_disks < 0
3982                                     ? logical_sector < conf->reshape_safe
3983                                     : logical_sector >= conf->reshape_safe) {
3984                                         spin_unlock_irq(&conf->device_lock);
3985                                         schedule();
3986                                         goto retry;
3987                                 }
3988                         }
3989                         spin_unlock_irq(&conf->device_lock);
3990                 }
3991                 data_disks = disks - conf->max_degraded;
3992
3993                 new_sector = raid5_compute_sector(conf, logical_sector,
3994                                                   previous,
3995                                                   &dd_idx, NULL);
3996                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3997                         (unsigned long long)new_sector, 
3998                         (unsigned long long)logical_sector);
3999
4000                 sh = get_active_stripe(conf, new_sector, previous,
4001                                        (bi->bi_rw&RWA_MASK), 0);
4002                 if (sh) {
4003                         if (unlikely(previous)) {
4004                                 /* expansion might have moved on while waiting for a
4005                                  * stripe, so we must do the range check again.
4006                                  * Expansion could still move past after this
4007                                  * test, but as we are holding a reference to
4008                                  * 'sh', we know that if that happens,
4009                                  *  STRIPE_EXPANDING will get set and the expansion
4010                                  * won't proceed until we finish with the stripe.
4011                                  */
4012                                 int must_retry = 0;
4013                                 spin_lock_irq(&conf->device_lock);
4014                                 if (mddev->delta_disks < 0
4015                                     ? logical_sector >= conf->reshape_progress
4016                                     : logical_sector < conf->reshape_progress)
4017                                         /* mismatch, need to try again */
4018                                         must_retry = 1;
4019                                 spin_unlock_irq(&conf->device_lock);
4020                                 if (must_retry) {
4021                                         release_stripe(sh);
4022                                         schedule();
4023                                         goto retry;
4024                                 }
4025                         }
4026
4027                         if (rw == WRITE &&
4028                             logical_sector >= mddev->suspend_lo &&
4029                             logical_sector < mddev->suspend_hi) {
4030                                 release_stripe(sh);
4031                                 /* As the suspend_* range is controlled by
4032                                  * userspace, we want an interruptible
4033                                  * wait.
4034                                  */
4035                                 flush_signals(current);
4036                                 prepare_to_wait(&conf->wait_for_overlap,
4037                                                 &w, TASK_INTERRUPTIBLE);
4038                                 if (logical_sector >= mddev->suspend_lo &&
4039                                     logical_sector < mddev->suspend_hi)
4040                                         schedule();
4041                                 goto retry;
4042                         }
4043
4044                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4045                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4046                                 /* Stripe is busy expanding or
4047                                  * add failed due to overlap.  Flush everything
4048                                  * and wait a while
4049                                  */
4050                                 md_wakeup_thread(mddev->thread);
4051                                 release_stripe(sh);
4052                                 schedule();
4053                                 goto retry;
4054                         }
4055                         finish_wait(&conf->wait_for_overlap, &w);
4056                         set_bit(STRIPE_HANDLE, &sh->state);
4057                         clear_bit(STRIPE_DELAYED, &sh->state);
4058                         if ((bi->bi_rw & REQ_SYNC) &&
4059                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4060                                 atomic_inc(&conf->preread_active_stripes);
4061                         release_stripe(sh);
4062                 } else {
4063                         /* cannot get stripe for read-ahead, just give-up */
4064                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4065                         finish_wait(&conf->wait_for_overlap, &w);
4066                         break;
4067                 }
4068                         
4069         }
4070         if (!plugged)
4071                 md_wakeup_thread(mddev->thread);
4072
4073         spin_lock_irq(&conf->device_lock);
4074         remaining = raid5_dec_bi_phys_segments(bi);
4075         spin_unlock_irq(&conf->device_lock);
4076         if (remaining == 0) {
4077
4078                 if ( rw == WRITE )
4079                         md_write_end(mddev);
4080
4081                 bio_endio(bi, 0);
4082         }
4083
4084         return 0;
4085 }
4086
4087 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4088
4089 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4090 {
4091         /* reshaping is quite different to recovery/resync so it is
4092          * handled quite separately ... here.
4093          *
4094          * On each call to sync_request, we gather one chunk worth of
4095          * destination stripes and flag them as expanding.
4096          * Then we find all the source stripes and request reads.
4097          * As the reads complete, handle_stripe will copy the data
4098          * into the destination stripe and release that stripe.
4099          */
4100         raid5_conf_t *conf = mddev->private;
4101         struct stripe_head *sh;
4102         sector_t first_sector, last_sector;
4103         int raid_disks = conf->previous_raid_disks;
4104         int data_disks = raid_disks - conf->max_degraded;
4105         int new_data_disks = conf->raid_disks - conf->max_degraded;
4106         int i;
4107         int dd_idx;
4108         sector_t writepos, readpos, safepos;
4109         sector_t stripe_addr;
4110         int reshape_sectors;
4111         struct list_head stripes;
4112
4113         if (sector_nr == 0) {
4114                 /* If restarting in the middle, skip the initial sectors */
4115                 if (mddev->delta_disks < 0 &&
4116                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4117                         sector_nr = raid5_size(mddev, 0, 0)
4118                                 - conf->reshape_progress;
4119                 } else if (mddev->delta_disks >= 0 &&
4120                            conf->reshape_progress > 0)
4121                         sector_nr = conf->reshape_progress;
4122                 sector_div(sector_nr, new_data_disks);
4123                 if (sector_nr) {
4124                         mddev->curr_resync_completed = sector_nr;
4125                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4126                         *skipped = 1;
4127                         return sector_nr;
4128                 }
4129         }
4130
4131         /* We need to process a full chunk at a time.
4132          * If old and new chunk sizes differ, we need to process the
4133          * largest of these
4134          */
4135         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4136                 reshape_sectors = mddev->new_chunk_sectors;
4137         else
4138                 reshape_sectors = mddev->chunk_sectors;
4139
4140         /* we update the metadata when there is more than 3Meg
4141          * in the block range (that is rather arbitrary, should
4142          * probably be time based) or when the data about to be
4143          * copied would over-write the source of the data at
4144          * the front of the range.
4145          * i.e. one new_stripe along from reshape_progress new_maps
4146          * to after where reshape_safe old_maps to
4147          */
4148         writepos = conf->reshape_progress;
4149         sector_div(writepos, new_data_disks);
4150         readpos = conf->reshape_progress;
4151         sector_div(readpos, data_disks);
4152         safepos = conf->reshape_safe;
4153         sector_div(safepos, data_disks);
4154         if (mddev->delta_disks < 0) {
4155                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4156                 readpos += reshape_sectors;
4157                 safepos += reshape_sectors;
4158         } else {
4159                 writepos += reshape_sectors;
4160                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4161                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4162         }
4163
4164         /* 'writepos' is the most advanced device address we might write.
4165          * 'readpos' is the least advanced device address we might read.
4166          * 'safepos' is the least address recorded in the metadata as having
4167          *     been reshaped.
4168          * If 'readpos' is behind 'writepos', then there is no way that we can
4169          * ensure safety in the face of a crash - that must be done by userspace
4170          * making a backup of the data.  So in that case there is no particular
4171          * rush to update metadata.
4172          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4173          * update the metadata to advance 'safepos' to match 'readpos' so that
4174          * we can be safe in the event of a crash.
4175          * So we insist on updating metadata if safepos is behind writepos and
4176          * readpos is beyond writepos.
4177          * In any case, update the metadata every 10 seconds.
4178          * Maybe that number should be configurable, but I'm not sure it is
4179          * worth it.... maybe it could be a multiple of safemode_delay???
4180          */
4181         if ((mddev->delta_disks < 0
4182              ? (safepos > writepos && readpos < writepos)
4183              : (safepos < writepos && readpos > writepos)) ||
4184             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4185                 /* Cannot proceed until we've updated the superblock... */
4186                 wait_event(conf->wait_for_overlap,
4187                            atomic_read(&conf->reshape_stripes)==0);
4188                 mddev->reshape_position = conf->reshape_progress;
4189                 mddev->curr_resync_completed = sector_nr;
4190                 conf->reshape_checkpoint = jiffies;
4191                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4192                 md_wakeup_thread(mddev->thread);
4193                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4194                            kthread_should_stop());
4195                 spin_lock_irq(&conf->device_lock);
4196                 conf->reshape_safe = mddev->reshape_position;
4197                 spin_unlock_irq(&conf->device_lock);
4198                 wake_up(&conf->wait_for_overlap);
4199                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4200         }
4201
4202         if (mddev->delta_disks < 0) {
4203                 BUG_ON(conf->reshape_progress == 0);
4204                 stripe_addr = writepos;
4205                 BUG_ON((mddev->dev_sectors &
4206                         ~((sector_t)reshape_sectors - 1))
4207                        - reshape_sectors - stripe_addr
4208                        != sector_nr);
4209         } else {
4210                 BUG_ON(writepos != sector_nr + reshape_sectors);
4211                 stripe_addr = sector_nr;
4212         }
4213         INIT_LIST_HEAD(&stripes);
4214         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4215                 int j;
4216                 int skipped_disk = 0;
4217                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4218                 set_bit(STRIPE_EXPANDING, &sh->state);
4219                 atomic_inc(&conf->reshape_stripes);
4220                 /* If any of this stripe is beyond the end of the old
4221                  * array, then we need to zero those blocks
4222                  */
4223                 for (j=sh->disks; j--;) {
4224                         sector_t s;
4225                         if (j == sh->pd_idx)
4226                                 continue;
4227                         if (conf->level == 6 &&
4228                             j == sh->qd_idx)
4229                                 continue;
4230                         s = compute_blocknr(sh, j, 0);
4231                         if (s < raid5_size(mddev, 0, 0)) {
4232                                 skipped_disk = 1;
4233                                 continue;
4234                         }
4235                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4236                         set_bit(R5_Expanded, &sh->dev[j].flags);
4237                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4238                 }
4239                 if (!skipped_disk) {
4240                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4241                         set_bit(STRIPE_HANDLE, &sh->state);
4242                 }
4243                 list_add(&sh->lru, &stripes);
4244         }
4245         spin_lock_irq(&conf->device_lock);
4246         if (mddev->delta_disks < 0)
4247                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4248         else
4249                 conf->reshape_progress += reshape_sectors * new_data_disks;
4250         spin_unlock_irq(&conf->device_lock);
4251         /* Ok, those stripe are ready. We can start scheduling
4252          * reads on the source stripes.
4253          * The source stripes are determined by mapping the first and last
4254          * block on the destination stripes.
4255          */
4256         first_sector =
4257                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4258                                      1, &dd_idx, NULL);
4259         last_sector =
4260                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4261                                             * new_data_disks - 1),
4262                                      1, &dd_idx, NULL);
4263         if (last_sector >= mddev->dev_sectors)
4264                 last_sector = mddev->dev_sectors - 1;
4265         while (first_sector <= last_sector) {
4266                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4267                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4268                 set_bit(STRIPE_HANDLE, &sh->state);
4269                 release_stripe(sh);
4270                 first_sector += STRIPE_SECTORS;
4271         }
4272         /* Now that the sources are clearly marked, we can release
4273          * the destination stripes
4274          */
4275         while (!list_empty(&stripes)) {
4276                 sh = list_entry(stripes.next, struct stripe_head, lru);
4277                 list_del_init(&sh->lru);
4278                 release_stripe(sh);
4279         }
4280         /* If this takes us to the resync_max point where we have to pause,
4281          * then we need to write out the superblock.
4282          */
4283         sector_nr += reshape_sectors;
4284         if ((sector_nr - mddev->curr_resync_completed) * 2
4285             >= mddev->resync_max - mddev->curr_resync_completed) {
4286                 /* Cannot proceed until we've updated the superblock... */
4287                 wait_event(conf->wait_for_overlap,
4288                            atomic_read(&conf->reshape_stripes) == 0);
4289                 mddev->reshape_position = conf->reshape_progress;
4290                 mddev->curr_resync_completed = sector_nr;
4291                 conf->reshape_checkpoint = jiffies;
4292                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4293                 md_wakeup_thread(mddev->thread);
4294                 wait_event(mddev->sb_wait,
4295                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4296                            || kthread_should_stop());
4297                 spin_lock_irq(&conf->device_lock);
4298                 conf->reshape_safe = mddev->reshape_position;
4299                 spin_unlock_irq(&conf->device_lock);
4300                 wake_up(&conf->wait_for_overlap);
4301                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4302         }
4303         return reshape_sectors;
4304 }
4305
4306 /* FIXME go_faster isn't used */
4307 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4308 {
4309         raid5_conf_t *conf = mddev->private;
4310         struct stripe_head *sh;
4311         sector_t max_sector = mddev->dev_sectors;
4312         sector_t sync_blocks;
4313         int still_degraded = 0;
4314         int i;
4315
4316         if (sector_nr >= max_sector) {
4317                 /* just being told to finish up .. nothing much to do */
4318
4319                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4320                         end_reshape(conf);
4321                         return 0;
4322                 }
4323
4324                 if (mddev->curr_resync < max_sector) /* aborted */
4325                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4326                                         &sync_blocks, 1);
4327                 else /* completed sync */
4328                         conf->fullsync = 0;
4329                 bitmap_close_sync(mddev->bitmap);
4330
4331                 return 0;
4332         }
4333
4334         /* Allow raid5_quiesce to complete */
4335         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4336
4337         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4338                 return reshape_request(mddev, sector_nr, skipped);
4339
4340         /* No need to check resync_max as we never do more than one
4341          * stripe, and as resync_max will always be on a chunk boundary,
4342          * if the check in md_do_sync didn't fire, there is no chance
4343          * of overstepping resync_max here
4344          */
4345
4346         /* if there is too many failed drives and we are trying
4347          * to resync, then assert that we are finished, because there is
4348          * nothing we can do.
4349          */
4350         if (mddev->degraded >= conf->max_degraded &&
4351             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4352                 sector_t rv = mddev->dev_sectors - sector_nr;
4353                 *skipped = 1;
4354                 return rv;
4355         }
4356         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4357             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4358             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4359                 /* we can skip this block, and probably more */
4360                 sync_blocks /= STRIPE_SECTORS;
4361                 *skipped = 1;
4362                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4363         }
4364
4365
4366         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4367
4368         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4369         if (sh == NULL) {
4370                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4371                 /* make sure we don't swamp the stripe cache if someone else
4372                  * is trying to get access
4373                  */
4374                 schedule_timeout_uninterruptible(1);
4375         }
4376         /* Need to check if array will still be degraded after recovery/resync
4377          * We don't need to check the 'failed' flag as when that gets set,
4378          * recovery aborts.
4379          */
4380         for (i = 0; i < conf->raid_disks; i++)
4381                 if (conf->disks[i].rdev == NULL)
4382                         still_degraded = 1;
4383
4384         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4385
4386         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4387
4388         handle_stripe(sh);
4389         release_stripe(sh);
4390
4391         return STRIPE_SECTORS;
4392 }
4393
4394 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4395 {
4396         /* We may not be able to submit a whole bio at once as there
4397          * may not be enough stripe_heads available.
4398          * We cannot pre-allocate enough stripe_heads as we may need
4399          * more than exist in the cache (if we allow ever large chunks).
4400          * So we do one stripe head at a time and record in
4401          * ->bi_hw_segments how many have been done.
4402          *
4403          * We *know* that this entire raid_bio is in one chunk, so
4404          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4405          */
4406         struct stripe_head *sh;
4407         int dd_idx;
4408         sector_t sector, logical_sector, last_sector;
4409         int scnt = 0;
4410         int remaining;
4411         int handled = 0;
4412
4413         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4414         sector = raid5_compute_sector(conf, logical_sector,
4415                                       0, &dd_idx, NULL);
4416         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4417
4418         for (; logical_sector < last_sector;
4419              logical_sector += STRIPE_SECTORS,
4420                      sector += STRIPE_SECTORS,
4421                      scnt++) {
4422
4423                 if (scnt < raid5_bi_hw_segments(raid_bio))
4424                         /* already done this stripe */
4425                         continue;
4426
4427                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4428
4429                 if (!sh) {
4430                         /* failed to get a stripe - must wait */
4431                         raid5_set_bi_hw_segments(raid_bio, scnt);
4432                         conf->retry_read_aligned = raid_bio;
4433                         return handled;
4434                 }
4435
4436                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4437                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4438                         release_stripe(sh);
4439                         raid5_set_bi_hw_segments(raid_bio, scnt);
4440                         conf->retry_read_aligned = raid_bio;
4441                         return handled;
4442                 }
4443
4444                 handle_stripe(sh);
4445                 release_stripe(sh);
4446                 handled++;
4447         }
4448         spin_lock_irq(&conf->device_lock);
4449         remaining = raid5_dec_bi_phys_segments(raid_bio);
4450         spin_unlock_irq(&conf->device_lock);
4451         if (remaining == 0)
4452                 bio_endio(raid_bio, 0);
4453         if (atomic_dec_and_test(&conf->active_aligned_reads))
4454                 wake_up(&conf->wait_for_stripe);
4455         return handled;
4456 }
4457
4458
4459 /*
4460  * This is our raid5 kernel thread.
4461  *
4462  * We scan the hash table for stripes which can be handled now.
4463  * During the scan, completed stripes are saved for us by the interrupt
4464  * handler, so that they will not have to wait for our next wakeup.
4465  */
4466 static void raid5d(mddev_t *mddev)
4467 {
4468         struct stripe_head *sh;
4469         raid5_conf_t *conf = mddev->private;
4470         int handled;
4471         struct blk_plug plug;
4472
4473         pr_debug("+++ raid5d active\n");
4474
4475         md_check_recovery(mddev);
4476
4477         blk_start_plug(&plug);
4478         handled = 0;
4479         spin_lock_irq(&conf->device_lock);
4480         while (1) {
4481                 struct bio *bio;
4482
4483                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4484                     !list_empty(&conf->bitmap_list)) {
4485                         /* Now is a good time to flush some bitmap updates */
4486                         conf->seq_flush++;
4487                         spin_unlock_irq(&conf->device_lock);
4488                         bitmap_unplug(mddev->bitmap);
4489                         spin_lock_irq(&conf->device_lock);
4490                         conf->seq_write = conf->seq_flush;
4491                         activate_bit_delay(conf);
4492                 }
4493                 if (atomic_read(&mddev->plug_cnt) == 0)
4494                         raid5_activate_delayed(conf);
4495
4496                 while ((bio = remove_bio_from_retry(conf))) {
4497                         int ok;
4498                         spin_unlock_irq(&conf->device_lock);
4499                         ok = retry_aligned_read(conf, bio);
4500                         spin_lock_irq(&conf->device_lock);
4501                         if (!ok)
4502                                 break;
4503                         handled++;
4504                 }
4505
4506                 sh = __get_priority_stripe(conf);
4507
4508                 if (!sh)
4509                         break;
4510                 spin_unlock_irq(&conf->device_lock);
4511                 
4512                 handled++;
4513                 handle_stripe(sh);
4514                 release_stripe(sh);
4515                 cond_resched();
4516
4517                 spin_lock_irq(&conf->device_lock);
4518         }
4519         pr_debug("%d stripes handled\n", handled);
4520
4521         spin_unlock_irq(&conf->device_lock);
4522
4523         async_tx_issue_pending_all();
4524         blk_finish_plug(&plug);
4525
4526         pr_debug("--- raid5d inactive\n");
4527 }
4528
4529 static ssize_t
4530 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4531 {
4532         raid5_conf_t *conf = mddev->private;
4533         if (conf)
4534                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4535         else
4536                 return 0;
4537 }
4538
4539 int
4540 raid5_set_cache_size(mddev_t *mddev, int size)
4541 {
4542         raid5_conf_t *conf = mddev->private;
4543         int err;
4544
4545         if (size <= 16 || size > 32768)
4546                 return -EINVAL;
4547         while (size < conf->max_nr_stripes) {
4548                 if (drop_one_stripe(conf))
4549                         conf->max_nr_stripes--;
4550                 else
4551                         break;
4552         }
4553         err = md_allow_write(mddev);
4554         if (err)
4555                 return err;
4556         while (size > conf->max_nr_stripes) {
4557                 if (grow_one_stripe(conf))
4558                         conf->max_nr_stripes++;
4559                 else break;
4560         }
4561         return 0;
4562 }
4563 EXPORT_SYMBOL(raid5_set_cache_size);
4564
4565 static ssize_t
4566 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4567 {
4568         raid5_conf_t *conf = mddev->private;
4569         unsigned long new;
4570         int err;
4571
4572         if (len >= PAGE_SIZE)
4573                 return -EINVAL;
4574         if (!conf)
4575                 return -ENODEV;
4576
4577         if (strict_strtoul(page, 10, &new))
4578                 return -EINVAL;
4579         err = raid5_set_cache_size(mddev, new);
4580         if (err)
4581                 return err;
4582         return len;
4583 }
4584
4585 static struct md_sysfs_entry
4586 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4587                                 raid5_show_stripe_cache_size,
4588                                 raid5_store_stripe_cache_size);
4589
4590 static ssize_t
4591 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4592 {
4593         raid5_conf_t *conf = mddev->private;
4594         if (conf)
4595                 return sprintf(page, "%d\n", conf->bypass_threshold);
4596         else
4597                 return 0;
4598 }
4599
4600 static ssize_t
4601 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4602 {
4603         raid5_conf_t *conf = mddev->private;
4604         unsigned long new;
4605         if (len >= PAGE_SIZE)
4606                 return -EINVAL;
4607         if (!conf)
4608                 return -ENODEV;
4609
4610         if (strict_strtoul(page, 10, &new))
4611                 return -EINVAL;
4612         if (new > conf->max_nr_stripes)
4613                 return -EINVAL;
4614         conf->bypass_threshold = new;
4615         return len;
4616 }
4617
4618 static struct md_sysfs_entry
4619 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4620                                         S_IRUGO | S_IWUSR,
4621                                         raid5_show_preread_threshold,
4622                                         raid5_store_preread_threshold);
4623
4624 static ssize_t
4625 stripe_cache_active_show(mddev_t *mddev, char *page)
4626 {
4627         raid5_conf_t *conf = mddev->private;
4628         if (conf)
4629                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4630         else
4631                 return 0;
4632 }
4633
4634 static struct md_sysfs_entry
4635 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4636
4637 static struct attribute *raid5_attrs[] =  {
4638         &raid5_stripecache_size.attr,
4639         &raid5_stripecache_active.attr,
4640         &raid5_preread_bypass_threshold.attr,
4641         NULL,
4642 };
4643 static struct attribute_group raid5_attrs_group = {
4644         .name = NULL,
4645         .attrs = raid5_attrs,
4646 };
4647
4648 static sector_t
4649 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4650 {
4651         raid5_conf_t *conf = mddev->private;
4652
4653         if (!sectors)
4654                 sectors = mddev->dev_sectors;
4655         if (!raid_disks)
4656                 /* size is defined by the smallest of previous and new size */
4657                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4658
4659         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4660         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4661         return sectors * (raid_disks - conf->max_degraded);
4662 }
4663
4664 static void raid5_free_percpu(raid5_conf_t *conf)
4665 {
4666         struct raid5_percpu *percpu;
4667         unsigned long cpu;
4668
4669         if (!conf->percpu)
4670                 return;
4671
4672         get_online_cpus();
4673         for_each_possible_cpu(cpu) {
4674                 percpu = per_cpu_ptr(conf->percpu, cpu);
4675                 safe_put_page(percpu->spare_page);
4676                 kfree(percpu->scribble);
4677         }
4678 #ifdef CONFIG_HOTPLUG_CPU
4679         unregister_cpu_notifier(&conf->cpu_notify);
4680 #endif
4681         put_online_cpus();
4682
4683         free_percpu(conf->percpu);
4684 }
4685
4686 static void free_conf(raid5_conf_t *conf)
4687 {
4688         shrink_stripes(conf);
4689         raid5_free_percpu(conf);
4690         kfree(conf->disks);
4691         kfree(conf->stripe_hashtbl);
4692         kfree(conf);
4693 }
4694
4695 #ifdef CONFIG_HOTPLUG_CPU
4696 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4697                               void *hcpu)
4698 {
4699         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4700         long cpu = (long)hcpu;
4701         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4702
4703         switch (action) {
4704         case CPU_UP_PREPARE:
4705         case CPU_UP_PREPARE_FROZEN:
4706                 if (conf->level == 6 && !percpu->spare_page)
4707                         percpu->spare_page = alloc_page(GFP_KERNEL);
4708                 if (!percpu->scribble)
4709                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4710
4711                 if (!percpu->scribble ||
4712                     (conf->level == 6 && !percpu->spare_page)) {
4713                         safe_put_page(percpu->spare_page);
4714                         kfree(percpu->scribble);
4715                         pr_err("%s: failed memory allocation for cpu%ld\n",
4716                                __func__, cpu);
4717                         return notifier_from_errno(-ENOMEM);
4718                 }
4719                 break;
4720         case CPU_DEAD:
4721         case CPU_DEAD_FROZEN:
4722                 safe_put_page(percpu->spare_page);
4723                 kfree(percpu->scribble);
4724                 percpu->spare_page = NULL;
4725                 percpu->scribble = NULL;
4726                 break;
4727         default:
4728                 break;
4729         }
4730         return NOTIFY_OK;
4731 }
4732 #endif
4733
4734 static int raid5_alloc_percpu(raid5_conf_t *conf)
4735 {
4736         unsigned long cpu;
4737         struct page *spare_page;
4738         struct raid5_percpu __percpu *allcpus;
4739         void *scribble;
4740         int err;
4741
4742         allcpus = alloc_percpu(struct raid5_percpu);
4743         if (!allcpus)
4744                 return -ENOMEM;
4745         conf->percpu = allcpus;
4746
4747         get_online_cpus();
4748         err = 0;
4749         for_each_present_cpu(cpu) {
4750                 if (conf->level == 6) {
4751                         spare_page = alloc_page(GFP_KERNEL);
4752                         if (!spare_page) {
4753                                 err = -ENOMEM;
4754                                 break;
4755                         }
4756                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4757                 }
4758                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4759                 if (!scribble) {
4760                         err = -ENOMEM;
4761                         break;
4762                 }
4763                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4764         }
4765 #ifdef CONFIG_HOTPLUG_CPU
4766         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4767         conf->cpu_notify.priority = 0;
4768         if (err == 0)
4769                 err = register_cpu_notifier(&conf->cpu_notify);
4770 #endif
4771         put_online_cpus();
4772
4773         return err;
4774 }
4775
4776 static raid5_conf_t *setup_conf(mddev_t *mddev)
4777 {
4778         raid5_conf_t *conf;
4779         int raid_disk, memory, max_disks;
4780         mdk_rdev_t *rdev;
4781         struct disk_info *disk;
4782
4783         if (mddev->new_level != 5
4784             && mddev->new_level != 4
4785             && mddev->new_level != 6) {
4786                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4787                        mdname(mddev), mddev->new_level);
4788                 return ERR_PTR(-EIO);
4789         }
4790         if ((mddev->new_level == 5
4791              && !algorithm_valid_raid5(mddev->new_layout)) ||
4792             (mddev->new_level == 6
4793              && !algorithm_valid_raid6(mddev->new_layout))) {
4794                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4795                        mdname(mddev), mddev->new_layout);
4796                 return ERR_PTR(-EIO);
4797         }
4798         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4799                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4800                        mdname(mddev), mddev->raid_disks);
4801                 return ERR_PTR(-EINVAL);
4802         }
4803
4804         if (!mddev->new_chunk_sectors ||
4805             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4806             !is_power_of_2(mddev->new_chunk_sectors)) {
4807                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4808                        mdname(mddev), mddev->new_chunk_sectors << 9);
4809                 return ERR_PTR(-EINVAL);
4810         }
4811
4812         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4813         if (conf == NULL)
4814                 goto abort;
4815         spin_lock_init(&conf->device_lock);
4816         init_waitqueue_head(&conf->wait_for_stripe);
4817         init_waitqueue_head(&conf->wait_for_overlap);
4818         INIT_LIST_HEAD(&conf->handle_list);
4819         INIT_LIST_HEAD(&conf->hold_list);
4820         INIT_LIST_HEAD(&conf->delayed_list);
4821         INIT_LIST_HEAD(&conf->bitmap_list);
4822         INIT_LIST_HEAD(&conf->inactive_list);
4823         atomic_set(&conf->active_stripes, 0);
4824         atomic_set(&conf->preread_active_stripes, 0);
4825         atomic_set(&conf->active_aligned_reads, 0);
4826         conf->bypass_threshold = BYPASS_THRESHOLD;
4827
4828         conf->raid_disks = mddev->raid_disks;
4829         if (mddev->reshape_position == MaxSector)
4830                 conf->previous_raid_disks = mddev->raid_disks;
4831         else
4832                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4833         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4834         conf->scribble_len = scribble_len(max_disks);
4835
4836         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4837                               GFP_KERNEL);
4838         if (!conf->disks)
4839                 goto abort;
4840
4841         conf->mddev = mddev;
4842
4843         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4844                 goto abort;
4845
4846         conf->level = mddev->new_level;
4847         if (raid5_alloc_percpu(conf) != 0)
4848                 goto abort;
4849
4850         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4851
4852         list_for_each_entry(rdev, &mddev->disks, same_set) {
4853                 raid_disk = rdev->raid_disk;
4854                 if (raid_disk >= max_disks
4855                     || raid_disk < 0)
4856                         continue;
4857                 disk = conf->disks + raid_disk;
4858
4859                 disk->rdev = rdev;
4860
4861                 if (test_bit(In_sync, &rdev->flags)) {
4862                         char b[BDEVNAME_SIZE];
4863                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4864                                " disk %d\n",
4865                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4866                 } else if (rdev->saved_raid_disk != raid_disk)
4867                         /* Cannot rely on bitmap to complete recovery */
4868                         conf->fullsync = 1;
4869         }
4870
4871         conf->chunk_sectors = mddev->new_chunk_sectors;
4872         conf->level = mddev->new_level;
4873         if (conf->level == 6)
4874                 conf->max_degraded = 2;
4875         else
4876                 conf->max_degraded = 1;
4877         conf->algorithm = mddev->new_layout;
4878         conf->max_nr_stripes = NR_STRIPES;
4879         conf->reshape_progress = mddev->reshape_position;
4880         if (conf->reshape_progress != MaxSector) {
4881                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4882                 conf->prev_algo = mddev->layout;
4883         }
4884
4885         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4886                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4887         if (grow_stripes(conf, conf->max_nr_stripes)) {
4888                 printk(KERN_ERR
4889                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4890                        mdname(mddev), memory);
4891                 goto abort;
4892         } else
4893                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4894                        mdname(mddev), memory);
4895
4896         conf->thread = md_register_thread(raid5d, mddev, NULL);
4897         if (!conf->thread) {
4898                 printk(KERN_ERR
4899                        "md/raid:%s: couldn't allocate thread.\n",
4900                        mdname(mddev));
4901                 goto abort;
4902         }
4903
4904         return conf;
4905
4906  abort:
4907         if (conf) {
4908                 free_conf(conf);
4909                 return ERR_PTR(-EIO);
4910         } else
4911                 return ERR_PTR(-ENOMEM);
4912 }
4913
4914
4915 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4916 {
4917         switch (algo) {
4918         case ALGORITHM_PARITY_0:
4919                 if (raid_disk < max_degraded)
4920                         return 1;
4921                 break;
4922         case ALGORITHM_PARITY_N:
4923                 if (raid_disk >= raid_disks - max_degraded)
4924                         return 1;
4925                 break;
4926         case ALGORITHM_PARITY_0_6:
4927                 if (raid_disk == 0 || 
4928                     raid_disk == raid_disks - 1)
4929                         return 1;
4930                 break;
4931         case ALGORITHM_LEFT_ASYMMETRIC_6:
4932         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4933         case ALGORITHM_LEFT_SYMMETRIC_6:
4934         case ALGORITHM_RIGHT_SYMMETRIC_6:
4935                 if (raid_disk == raid_disks - 1)
4936                         return 1;
4937         }
4938         return 0;
4939 }
4940
4941 static int run(mddev_t *mddev)
4942 {
4943         raid5_conf_t *conf;
4944         int working_disks = 0;
4945         int dirty_parity_disks = 0;
4946         mdk_rdev_t *rdev;
4947         sector_t reshape_offset = 0;
4948
4949         if (mddev->recovery_cp != MaxSector)
4950                 printk(KERN_NOTICE "md/raid:%s: not clean"
4951                        " -- starting background reconstruction\n",
4952                        mdname(mddev));
4953         if (mddev->reshape_position != MaxSector) {
4954                 /* Check that we can continue the reshape.
4955                  * Currently only disks can change, it must
4956                  * increase, and we must be past the point where
4957                  * a stripe over-writes itself
4958                  */
4959                 sector_t here_new, here_old;
4960                 int old_disks;
4961                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4962
4963                 if (mddev->new_level != mddev->level) {
4964                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4965                                "required - aborting.\n",
4966                                mdname(mddev));
4967                         return -EINVAL;
4968                 }
4969                 old_disks = mddev->raid_disks - mddev->delta_disks;
4970                 /* reshape_position must be on a new-stripe boundary, and one
4971                  * further up in new geometry must map after here in old
4972                  * geometry.
4973                  */
4974                 here_new = mddev->reshape_position;
4975                 if (sector_div(here_new, mddev->new_chunk_sectors *
4976                                (mddev->raid_disks - max_degraded))) {
4977                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4978                                "on a stripe boundary\n", mdname(mddev));
4979                         return -EINVAL;
4980                 }
4981                 reshape_offset = here_new * mddev->new_chunk_sectors;
4982                 /* here_new is the stripe we will write to */
4983                 here_old = mddev->reshape_position;
4984                 sector_div(here_old, mddev->chunk_sectors *
4985                            (old_disks-max_degraded));
4986                 /* here_old is the first stripe that we might need to read
4987                  * from */
4988                 if (mddev->delta_disks == 0) {
4989                         /* We cannot be sure it is safe to start an in-place
4990                          * reshape.  It is only safe if user-space if monitoring
4991                          * and taking constant backups.
4992                          * mdadm always starts a situation like this in
4993                          * readonly mode so it can take control before
4994                          * allowing any writes.  So just check for that.
4995                          */
4996                         if ((here_new * mddev->new_chunk_sectors != 
4997                              here_old * mddev->chunk_sectors) ||
4998                             mddev->ro == 0) {
4999                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5000                                        " in read-only mode - aborting\n",
5001                                        mdname(mddev));
5002                                 return -EINVAL;
5003                         }
5004                 } else if (mddev->delta_disks < 0
5005                     ? (here_new * mddev->new_chunk_sectors <=
5006                        here_old * mddev->chunk_sectors)
5007                     : (here_new * mddev->new_chunk_sectors >=
5008                        here_old * mddev->chunk_sectors)) {
5009                         /* Reading from the same stripe as writing to - bad */
5010                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5011                                "auto-recovery - aborting.\n",
5012                                mdname(mddev));
5013                         return -EINVAL;
5014                 }
5015                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5016                        mdname(mddev));
5017                 /* OK, we should be able to continue; */
5018         } else {
5019                 BUG_ON(mddev->level != mddev->new_level);
5020                 BUG_ON(mddev->layout != mddev->new_layout);
5021                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5022                 BUG_ON(mddev->delta_disks != 0);
5023         }
5024
5025         if (mddev->private == NULL)
5026                 conf = setup_conf(mddev);
5027         else
5028                 conf = mddev->private;
5029
5030         if (IS_ERR(conf))
5031                 return PTR_ERR(conf);
5032
5033         mddev->thread = conf->thread;
5034         conf->thread = NULL;
5035         mddev->private = conf;
5036
5037         /*
5038          * 0 for a fully functional array, 1 or 2 for a degraded array.
5039          */
5040         list_for_each_entry(rdev, &mddev->disks, same_set) {
5041                 if (rdev->raid_disk < 0)
5042                         continue;
5043                 if (test_bit(In_sync, &rdev->flags)) {
5044                         working_disks++;
5045                         continue;
5046                 }
5047                 /* This disc is not fully in-sync.  However if it
5048                  * just stored parity (beyond the recovery_offset),
5049                  * when we don't need to be concerned about the
5050                  * array being dirty.
5051                  * When reshape goes 'backwards', we never have
5052                  * partially completed devices, so we only need
5053                  * to worry about reshape going forwards.
5054                  */
5055                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5056                 if (mddev->major_version == 0 &&
5057                     mddev->minor_version > 90)
5058                         rdev->recovery_offset = reshape_offset;
5059                         
5060                 if (rdev->recovery_offset < reshape_offset) {
5061                         /* We need to check old and new layout */
5062                         if (!only_parity(rdev->raid_disk,
5063                                          conf->algorithm,
5064                                          conf->raid_disks,
5065                                          conf->max_degraded))
5066                                 continue;
5067                 }
5068                 if (!only_parity(rdev->raid_disk,
5069                                  conf->prev_algo,
5070                                  conf->previous_raid_disks,
5071                                  conf->max_degraded))
5072                         continue;
5073                 dirty_parity_disks++;
5074         }
5075
5076         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5077                            - working_disks);
5078
5079         if (has_failed(conf)) {
5080                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5081                         " (%d/%d failed)\n",
5082                         mdname(mddev), mddev->degraded, conf->raid_disks);
5083                 goto abort;
5084         }
5085
5086         /* device size must be a multiple of chunk size */
5087         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5088         mddev->resync_max_sectors = mddev->dev_sectors;
5089
5090         if (mddev->degraded > dirty_parity_disks &&
5091             mddev->recovery_cp != MaxSector) {
5092                 if (mddev->ok_start_degraded)
5093                         printk(KERN_WARNING
5094                                "md/raid:%s: starting dirty degraded array"
5095                                " - data corruption possible.\n",
5096                                mdname(mddev));
5097                 else {
5098                         printk(KERN_ERR
5099                                "md/raid:%s: cannot start dirty degraded array.\n",
5100                                mdname(mddev));
5101                         goto abort;
5102                 }
5103         }
5104
5105         if (mddev->degraded == 0)
5106                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5107                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5108                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5109                        mddev->new_layout);
5110         else
5111                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5112                        " out of %d devices, algorithm %d\n",
5113                        mdname(mddev), conf->level,
5114                        mddev->raid_disks - mddev->degraded,
5115                        mddev->raid_disks, mddev->new_layout);
5116
5117         print_raid5_conf(conf);
5118
5119         if (conf->reshape_progress != MaxSector) {
5120                 conf->reshape_safe = conf->reshape_progress;
5121                 atomic_set(&conf->reshape_stripes, 0);
5122                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5123                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5124                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5125                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5126                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5127                                                         "reshape");
5128         }
5129
5130
5131         /* Ok, everything is just fine now */
5132         if (mddev->to_remove == &raid5_attrs_group)
5133                 mddev->to_remove = NULL;
5134         else if (mddev->kobj.sd &&
5135             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5136                 printk(KERN_WARNING
5137                        "raid5: failed to create sysfs attributes for %s\n",
5138                        mdname(mddev));
5139         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5140
5141         if (mddev->queue) {
5142                 int chunk_size;
5143                 /* read-ahead size must cover two whole stripes, which
5144                  * is 2 * (datadisks) * chunksize where 'n' is the
5145                  * number of raid devices
5146                  */
5147                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5148                 int stripe = data_disks *
5149                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5150                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5151                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5152
5153                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5154
5155                 mddev->queue->backing_dev_info.congested_data = mddev;
5156                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5157
5158                 chunk_size = mddev->chunk_sectors << 9;
5159                 blk_queue_io_min(mddev->queue, chunk_size);
5160                 blk_queue_io_opt(mddev->queue, chunk_size *
5161                                  (conf->raid_disks - conf->max_degraded));
5162
5163                 list_for_each_entry(rdev, &mddev->disks, same_set)
5164                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5165                                           rdev->data_offset << 9);
5166         }
5167
5168         return 0;
5169 abort:
5170         md_unregister_thread(mddev->thread);
5171         mddev->thread = NULL;
5172         if (conf) {
5173                 print_raid5_conf(conf);
5174                 free_conf(conf);
5175         }
5176         mddev->private = NULL;
5177         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5178         return -EIO;
5179 }
5180
5181 static int stop(mddev_t *mddev)
5182 {
5183         raid5_conf_t *conf = mddev->private;
5184
5185         md_unregister_thread(mddev->thread);
5186         mddev->thread = NULL;
5187         if (mddev->queue)
5188                 mddev->queue->backing_dev_info.congested_fn = NULL;
5189         free_conf(conf);
5190         mddev->private = NULL;
5191         mddev->to_remove = &raid5_attrs_group;
5192         return 0;
5193 }
5194
5195 #ifdef DEBUG
5196 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5197 {
5198         int i;
5199
5200         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5201                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5202         seq_printf(seq, "sh %llu,  count %d.\n",
5203                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5204         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5205         for (i = 0; i < sh->disks; i++) {
5206                 seq_printf(seq, "(cache%d: %p %ld) ",
5207                            i, sh->dev[i].page, sh->dev[i].flags);
5208         }
5209         seq_printf(seq, "\n");
5210 }
5211
5212 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5213 {
5214         struct stripe_head *sh;
5215         struct hlist_node *hn;
5216         int i;
5217
5218         spin_lock_irq(&conf->device_lock);
5219         for (i = 0; i < NR_HASH; i++) {
5220                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5221                         if (sh->raid_conf != conf)
5222                                 continue;
5223                         print_sh(seq, sh);
5224                 }
5225         }
5226         spin_unlock_irq(&conf->device_lock);
5227 }
5228 #endif
5229
5230 static void status(struct seq_file *seq, mddev_t *mddev)
5231 {
5232         raid5_conf_t *conf = mddev->private;
5233         int i;
5234
5235         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5236                 mddev->chunk_sectors / 2, mddev->layout);
5237         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5238         for (i = 0; i < conf->raid_disks; i++)
5239                 seq_printf (seq, "%s",
5240                                conf->disks[i].rdev &&
5241                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5242         seq_printf (seq, "]");
5243 #ifdef DEBUG
5244         seq_printf (seq, "\n");
5245         printall(seq, conf);
5246 #endif
5247 }
5248
5249 static void print_raid5_conf (raid5_conf_t *conf)
5250 {
5251         int i;
5252         struct disk_info *tmp;
5253
5254         printk(KERN_DEBUG "RAID conf printout:\n");
5255         if (!conf) {
5256                 printk("(conf==NULL)\n");
5257                 return;
5258         }
5259         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5260                conf->raid_disks,
5261                conf->raid_disks - conf->mddev->degraded);
5262
5263         for (i = 0; i < conf->raid_disks; i++) {
5264                 char b[BDEVNAME_SIZE];
5265                 tmp = conf->disks + i;
5266                 if (tmp->rdev)
5267                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5268                                i, !test_bit(Faulty, &tmp->rdev->flags),
5269                                bdevname(tmp->rdev->bdev, b));
5270         }
5271 }
5272
5273 static int raid5_spare_active(mddev_t *mddev)
5274 {
5275         int i;
5276         raid5_conf_t *conf = mddev->private;
5277         struct disk_info *tmp;
5278         int count = 0;
5279         unsigned long flags;
5280
5281         for (i = 0; i < conf->raid_disks; i++) {
5282                 tmp = conf->disks + i;
5283                 if (tmp->rdev
5284                     && tmp->rdev->recovery_offset == MaxSector
5285                     && !test_bit(Faulty, &tmp->rdev->flags)
5286                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5287                         count++;
5288                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5289                 }
5290         }
5291         spin_lock_irqsave(&conf->device_lock, flags);
5292         mddev->degraded -= count;
5293         spin_unlock_irqrestore(&conf->device_lock, flags);
5294         print_raid5_conf(conf);
5295         return count;
5296 }
5297
5298 static int raid5_remove_disk(mddev_t *mddev, int number)
5299 {
5300         raid5_conf_t *conf = mddev->private;
5301         int err = 0;
5302         mdk_rdev_t *rdev;
5303         struct disk_info *p = conf->disks + number;
5304
5305         print_raid5_conf(conf);
5306         rdev = p->rdev;
5307         if (rdev) {
5308                 if (number >= conf->raid_disks &&
5309                     conf->reshape_progress == MaxSector)
5310                         clear_bit(In_sync, &rdev->flags);
5311
5312                 if (test_bit(In_sync, &rdev->flags) ||
5313                     atomic_read(&rdev->nr_pending)) {
5314                         err = -EBUSY;
5315                         goto abort;
5316                 }
5317                 /* Only remove non-faulty devices if recovery
5318                  * isn't possible.
5319                  */
5320                 if (!test_bit(Faulty, &rdev->flags) &&
5321                     !has_failed(conf) &&
5322                     number < conf->raid_disks) {
5323                         err = -EBUSY;
5324                         goto abort;
5325                 }
5326                 p->rdev = NULL;
5327                 synchronize_rcu();
5328                 if (atomic_read(&rdev->nr_pending)) {
5329                         /* lost the race, try later */
5330                         err = -EBUSY;
5331                         p->rdev = rdev;
5332                 }
5333         }
5334 abort:
5335
5336         print_raid5_conf(conf);
5337         return err;
5338 }
5339
5340 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5341 {
5342         raid5_conf_t *conf = mddev->private;
5343         int err = -EEXIST;
5344         int disk;
5345         struct disk_info *p;
5346         int first = 0;
5347         int last = conf->raid_disks - 1;
5348
5349         if (has_failed(conf))
5350                 /* no point adding a device */
5351                 return -EINVAL;
5352
5353         if (rdev->raid_disk >= 0)
5354                 first = last = rdev->raid_disk;
5355
5356         /*
5357          * find the disk ... but prefer rdev->saved_raid_disk
5358          * if possible.
5359          */
5360         if (rdev->saved_raid_disk >= 0 &&
5361             rdev->saved_raid_disk >= first &&
5362             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5363                 disk = rdev->saved_raid_disk;
5364         else
5365                 disk = first;
5366         for ( ; disk <= last ; disk++)
5367                 if ((p=conf->disks + disk)->rdev == NULL) {
5368                         clear_bit(In_sync, &rdev->flags);
5369                         rdev->raid_disk = disk;
5370                         err = 0;
5371                         if (rdev->saved_raid_disk != disk)
5372                                 conf->fullsync = 1;
5373                         rcu_assign_pointer(p->rdev, rdev);
5374                         break;
5375                 }
5376         print_raid5_conf(conf);
5377         return err;
5378 }
5379
5380 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5381 {
5382         /* no resync is happening, and there is enough space
5383          * on all devices, so we can resize.
5384          * We need to make sure resync covers any new space.
5385          * If the array is shrinking we should possibly wait until
5386          * any io in the removed space completes, but it hardly seems
5387          * worth it.
5388          */
5389         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5390         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5391                                                mddev->raid_disks));
5392         if (mddev->array_sectors >
5393             raid5_size(mddev, sectors, mddev->raid_disks))
5394                 return -EINVAL;
5395         set_capacity(mddev->gendisk, mddev->array_sectors);
5396         revalidate_disk(mddev->gendisk);
5397         if (sectors > mddev->dev_sectors &&
5398             mddev->recovery_cp > mddev->dev_sectors) {
5399                 mddev->recovery_cp = mddev->dev_sectors;
5400                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5401         }
5402         mddev->dev_sectors = sectors;
5403         mddev->resync_max_sectors = sectors;
5404         return 0;
5405 }
5406
5407 static int check_stripe_cache(mddev_t *mddev)
5408 {
5409         /* Can only proceed if there are plenty of stripe_heads.
5410          * We need a minimum of one full stripe,, and for sensible progress
5411          * it is best to have about 4 times that.
5412          * If we require 4 times, then the default 256 4K stripe_heads will
5413          * allow for chunk sizes up to 256K, which is probably OK.
5414          * If the chunk size is greater, user-space should request more
5415          * stripe_heads first.
5416          */
5417         raid5_conf_t *conf = mddev->private;
5418         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5419             > conf->max_nr_stripes ||
5420             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5421             > conf->max_nr_stripes) {
5422                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5423                        mdname(mddev),
5424                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5425                         / STRIPE_SIZE)*4);
5426                 return 0;
5427         }
5428         return 1;
5429 }
5430
5431 static int check_reshape(mddev_t *mddev)
5432 {
5433         raid5_conf_t *conf = mddev->private;
5434
5435         if (mddev->delta_disks == 0 &&
5436             mddev->new_layout == mddev->layout &&
5437             mddev->new_chunk_sectors == mddev->chunk_sectors)
5438                 return 0; /* nothing to do */
5439         if (mddev->bitmap)
5440                 /* Cannot grow a bitmap yet */
5441                 return -EBUSY;
5442         if (has_failed(conf))
5443                 return -EINVAL;
5444         if (mddev->delta_disks < 0) {
5445                 /* We might be able to shrink, but the devices must
5446                  * be made bigger first.
5447                  * For raid6, 4 is the minimum size.
5448                  * Otherwise 2 is the minimum
5449                  */
5450                 int min = 2;
5451                 if (mddev->level == 6)
5452                         min = 4;
5453                 if (mddev->raid_disks + mddev->delta_disks < min)
5454                         return -EINVAL;
5455         }
5456
5457         if (!check_stripe_cache(mddev))
5458                 return -ENOSPC;
5459
5460         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5461 }
5462
5463 static int raid5_start_reshape(mddev_t *mddev)
5464 {
5465         raid5_conf_t *conf = mddev->private;
5466         mdk_rdev_t *rdev;
5467         int spares = 0;
5468         unsigned long flags;
5469
5470         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5471                 return -EBUSY;
5472
5473         if (!check_stripe_cache(mddev))
5474                 return -ENOSPC;
5475
5476         list_for_each_entry(rdev, &mddev->disks, same_set)
5477                 if (!test_bit(In_sync, &rdev->flags)
5478                     && !test_bit(Faulty, &rdev->flags))
5479                         spares++;
5480
5481         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5482                 /* Not enough devices even to make a degraded array
5483                  * of that size
5484                  */
5485                 return -EINVAL;
5486
5487         /* Refuse to reduce size of the array.  Any reductions in
5488          * array size must be through explicit setting of array_size
5489          * attribute.
5490          */
5491         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5492             < mddev->array_sectors) {
5493                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5494                        "before number of disks\n", mdname(mddev));
5495                 return -EINVAL;
5496         }
5497
5498         atomic_set(&conf->reshape_stripes, 0);
5499         spin_lock_irq(&conf->device_lock);
5500         conf->previous_raid_disks = conf->raid_disks;
5501         conf->raid_disks += mddev->delta_disks;
5502         conf->prev_chunk_sectors = conf->chunk_sectors;
5503         conf->chunk_sectors = mddev->new_chunk_sectors;
5504         conf->prev_algo = conf->algorithm;
5505         conf->algorithm = mddev->new_layout;
5506         if (mddev->delta_disks < 0)
5507                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5508         else
5509                 conf->reshape_progress = 0;
5510         conf->reshape_safe = conf->reshape_progress;
5511         conf->generation++;
5512         spin_unlock_irq(&conf->device_lock);
5513
5514         /* Add some new drives, as many as will fit.
5515          * We know there are enough to make the newly sized array work.
5516          * Don't add devices if we are reducing the number of
5517          * devices in the array.  This is because it is not possible
5518          * to correctly record the "partially reconstructed" state of
5519          * such devices during the reshape and confusion could result.
5520          */
5521         if (mddev->delta_disks >= 0) {
5522                 int added_devices = 0;
5523                 list_for_each_entry(rdev, &mddev->disks, same_set)
5524                         if (rdev->raid_disk < 0 &&
5525                             !test_bit(Faulty, &rdev->flags)) {
5526                                 if (raid5_add_disk(mddev, rdev) == 0) {
5527                                         char nm[20];
5528                                         if (rdev->raid_disk
5529                                             >= conf->previous_raid_disks) {
5530                                                 set_bit(In_sync, &rdev->flags);
5531                                                 added_devices++;
5532                                         } else
5533                                                 rdev->recovery_offset = 0;
5534                                         sprintf(nm, "rd%d", rdev->raid_disk);
5535                                         if (sysfs_create_link(&mddev->kobj,
5536                                                               &rdev->kobj, nm))
5537                                                 /* Failure here is OK */;
5538                                 }
5539                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5540                                    && !test_bit(Faulty, &rdev->flags)) {
5541                                 /* This is a spare that was manually added */
5542                                 set_bit(In_sync, &rdev->flags);
5543                                 added_devices++;
5544                         }
5545
5546                 /* When a reshape changes the number of devices,
5547                  * ->degraded is measured against the larger of the
5548                  * pre and post number of devices.
5549                  */
5550                 spin_lock_irqsave(&conf->device_lock, flags);
5551                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5552                         - added_devices;
5553                 spin_unlock_irqrestore(&conf->device_lock, flags);
5554         }
5555         mddev->raid_disks = conf->raid_disks;
5556         mddev->reshape_position = conf->reshape_progress;
5557         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5558
5559         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5560         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5561         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5562         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5563         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5564                                                 "reshape");
5565         if (!mddev->sync_thread) {
5566                 mddev->recovery = 0;
5567                 spin_lock_irq(&conf->device_lock);
5568                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5569                 conf->reshape_progress = MaxSector;
5570                 spin_unlock_irq(&conf->device_lock);
5571                 return -EAGAIN;
5572         }
5573         conf->reshape_checkpoint = jiffies;
5574         md_wakeup_thread(mddev->sync_thread);
5575         md_new_event(mddev);
5576         return 0;
5577 }
5578
5579 /* This is called from the reshape thread and should make any
5580  * changes needed in 'conf'
5581  */
5582 static void end_reshape(raid5_conf_t *conf)
5583 {
5584
5585         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5586
5587                 spin_lock_irq(&conf->device_lock);
5588                 conf->previous_raid_disks = conf->raid_disks;
5589                 conf->reshape_progress = MaxSector;
5590                 spin_unlock_irq(&conf->device_lock);
5591                 wake_up(&conf->wait_for_overlap);
5592
5593                 /* read-ahead size must cover two whole stripes, which is
5594                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5595                  */
5596                 if (conf->mddev->queue) {
5597                         int data_disks = conf->raid_disks - conf->max_degraded;
5598                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5599                                                    / PAGE_SIZE);
5600                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5601                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5602                 }
5603         }
5604 }
5605
5606 /* This is called from the raid5d thread with mddev_lock held.
5607  * It makes config changes to the device.
5608  */
5609 static void raid5_finish_reshape(mddev_t *mddev)
5610 {
5611         raid5_conf_t *conf = mddev->private;
5612
5613         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5614
5615                 if (mddev->delta_disks > 0) {
5616                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5617                         set_capacity(mddev->gendisk, mddev->array_sectors);
5618                         revalidate_disk(mddev->gendisk);
5619                 } else {
5620                         int d;
5621                         mddev->degraded = conf->raid_disks;
5622                         for (d = 0; d < conf->raid_disks ; d++)
5623                                 if (conf->disks[d].rdev &&
5624                                     test_bit(In_sync,
5625                                              &conf->disks[d].rdev->flags))
5626                                         mddev->degraded--;
5627                         for (d = conf->raid_disks ;
5628                              d < conf->raid_disks - mddev->delta_disks;
5629                              d++) {
5630                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5631                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5632                                         char nm[20];
5633                                         sprintf(nm, "rd%d", rdev->raid_disk);
5634                                         sysfs_remove_link(&mddev->kobj, nm);
5635                                         rdev->raid_disk = -1;
5636                                 }
5637                         }
5638                 }
5639                 mddev->layout = conf->algorithm;
5640                 mddev->chunk_sectors = conf->chunk_sectors;
5641                 mddev->reshape_position = MaxSector;
5642                 mddev->delta_disks = 0;
5643         }
5644 }
5645
5646 static void raid5_quiesce(mddev_t *mddev, int state)
5647 {
5648         raid5_conf_t *conf = mddev->private;
5649
5650         switch(state) {
5651         case 2: /* resume for a suspend */
5652                 wake_up(&conf->wait_for_overlap);
5653                 break;
5654
5655         case 1: /* stop all writes */
5656                 spin_lock_irq(&conf->device_lock);
5657                 /* '2' tells resync/reshape to pause so that all
5658                  * active stripes can drain
5659                  */
5660                 conf->quiesce = 2;
5661                 wait_event_lock_irq(conf->wait_for_stripe,
5662                                     atomic_read(&conf->active_stripes) == 0 &&
5663                                     atomic_read(&conf->active_aligned_reads) == 0,
5664                                     conf->device_lock, /* nothing */);
5665                 conf->quiesce = 1;
5666                 spin_unlock_irq(&conf->device_lock);
5667                 /* allow reshape to continue */
5668                 wake_up(&conf->wait_for_overlap);
5669                 break;
5670
5671         case 0: /* re-enable writes */
5672                 spin_lock_irq(&conf->device_lock);
5673                 conf->quiesce = 0;
5674                 wake_up(&conf->wait_for_stripe);
5675                 wake_up(&conf->wait_for_overlap);
5676                 spin_unlock_irq(&conf->device_lock);
5677                 break;
5678         }
5679 }
5680
5681
5682 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5683 {
5684         struct raid0_private_data *raid0_priv = mddev->private;
5685         sector_t sectors;
5686
5687         /* for raid0 takeover only one zone is supported */
5688         if (raid0_priv->nr_strip_zones > 1) {
5689                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5690                        mdname(mddev));
5691                 return ERR_PTR(-EINVAL);
5692         }
5693
5694         sectors = raid0_priv->strip_zone[0].zone_end;
5695         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5696         mddev->dev_sectors = sectors;
5697         mddev->new_level = level;
5698         mddev->new_layout = ALGORITHM_PARITY_N;
5699         mddev->new_chunk_sectors = mddev->chunk_sectors;
5700         mddev->raid_disks += 1;
5701         mddev->delta_disks = 1;
5702         /* make sure it will be not marked as dirty */
5703         mddev->recovery_cp = MaxSector;
5704
5705         return setup_conf(mddev);
5706 }
5707
5708
5709 static void *raid5_takeover_raid1(mddev_t *mddev)
5710 {
5711         int chunksect;
5712
5713         if (mddev->raid_disks != 2 ||
5714             mddev->degraded > 1)
5715                 return ERR_PTR(-EINVAL);
5716
5717         /* Should check if there are write-behind devices? */
5718
5719         chunksect = 64*2; /* 64K by default */
5720
5721         /* The array must be an exact multiple of chunksize */
5722         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5723                 chunksect >>= 1;
5724
5725         if ((chunksect<<9) < STRIPE_SIZE)
5726                 /* array size does not allow a suitable chunk size */
5727                 return ERR_PTR(-EINVAL);
5728
5729         mddev->new_level = 5;
5730         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5731         mddev->new_chunk_sectors = chunksect;
5732
5733         return setup_conf(mddev);
5734 }
5735
5736 static void *raid5_takeover_raid6(mddev_t *mddev)
5737 {
5738         int new_layout;
5739
5740         switch (mddev->layout) {
5741         case ALGORITHM_LEFT_ASYMMETRIC_6:
5742                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5743                 break;
5744         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5745                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5746                 break;
5747         case ALGORITHM_LEFT_SYMMETRIC_6:
5748                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5749                 break;
5750         case ALGORITHM_RIGHT_SYMMETRIC_6:
5751                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5752                 break;
5753         case ALGORITHM_PARITY_0_6:
5754                 new_layout = ALGORITHM_PARITY_0;
5755                 break;
5756         case ALGORITHM_PARITY_N:
5757                 new_layout = ALGORITHM_PARITY_N;
5758                 break;
5759         default:
5760                 return ERR_PTR(-EINVAL);
5761         }
5762         mddev->new_level = 5;
5763         mddev->new_layout = new_layout;
5764         mddev->delta_disks = -1;
5765         mddev->raid_disks -= 1;
5766         return setup_conf(mddev);
5767 }
5768
5769
5770 static int raid5_check_reshape(mddev_t *mddev)
5771 {
5772         /* For a 2-drive array, the layout and chunk size can be changed
5773          * immediately as not restriping is needed.
5774          * For larger arrays we record the new value - after validation
5775          * to be used by a reshape pass.
5776          */
5777         raid5_conf_t *conf = mddev->private;
5778         int new_chunk = mddev->new_chunk_sectors;
5779
5780         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5781                 return -EINVAL;
5782         if (new_chunk > 0) {
5783                 if (!is_power_of_2(new_chunk))
5784                         return -EINVAL;
5785                 if (new_chunk < (PAGE_SIZE>>9))
5786                         return -EINVAL;
5787                 if (mddev->array_sectors & (new_chunk-1))
5788                         /* not factor of array size */
5789                         return -EINVAL;
5790         }
5791
5792         /* They look valid */
5793
5794         if (mddev->raid_disks == 2) {
5795                 /* can make the change immediately */
5796                 if (mddev->new_layout >= 0) {
5797                         conf->algorithm = mddev->new_layout;
5798                         mddev->layout = mddev->new_layout;
5799                 }
5800                 if (new_chunk > 0) {
5801                         conf->chunk_sectors = new_chunk ;
5802                         mddev->chunk_sectors = new_chunk;
5803                 }
5804                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5805                 md_wakeup_thread(mddev->thread);
5806         }
5807         return check_reshape(mddev);
5808 }
5809
5810 static int raid6_check_reshape(mddev_t *mddev)
5811 {
5812         int new_chunk = mddev->new_chunk_sectors;
5813
5814         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5815                 return -EINVAL;
5816         if (new_chunk > 0) {
5817                 if (!is_power_of_2(new_chunk))
5818                         return -EINVAL;
5819                 if (new_chunk < (PAGE_SIZE >> 9))
5820                         return -EINVAL;
5821                 if (mddev->array_sectors & (new_chunk-1))
5822                         /* not factor of array size */
5823                         return -EINVAL;
5824         }
5825
5826         /* They look valid */
5827         return check_reshape(mddev);
5828 }
5829
5830 static void *raid5_takeover(mddev_t *mddev)
5831 {
5832         /* raid5 can take over:
5833          *  raid0 - if there is only one strip zone - make it a raid4 layout
5834          *  raid1 - if there are two drives.  We need to know the chunk size
5835          *  raid4 - trivial - just use a raid4 layout.
5836          *  raid6 - Providing it is a *_6 layout
5837          */
5838         if (mddev->level == 0)
5839                 return raid45_takeover_raid0(mddev, 5);
5840         if (mddev->level == 1)
5841                 return raid5_takeover_raid1(mddev);
5842         if (mddev->level == 4) {
5843                 mddev->new_layout = ALGORITHM_PARITY_N;
5844                 mddev->new_level = 5;
5845                 return setup_conf(mddev);
5846         }
5847         if (mddev->level == 6)
5848                 return raid5_takeover_raid6(mddev);
5849
5850         return ERR_PTR(-EINVAL);
5851 }
5852
5853 static void *raid4_takeover(mddev_t *mddev)
5854 {
5855         /* raid4 can take over:
5856          *  raid0 - if there is only one strip zone
5857          *  raid5 - if layout is right
5858          */
5859         if (mddev->level == 0)
5860                 return raid45_takeover_raid0(mddev, 4);
5861         if (mddev->level == 5 &&
5862             mddev->layout == ALGORITHM_PARITY_N) {
5863                 mddev->new_layout = 0;
5864                 mddev->new_level = 4;
5865                 return setup_conf(mddev);
5866         }
5867         return ERR_PTR(-EINVAL);
5868 }
5869
5870 static struct mdk_personality raid5_personality;
5871
5872 static void *raid6_takeover(mddev_t *mddev)
5873 {
5874         /* Currently can only take over a raid5.  We map the
5875          * personality to an equivalent raid6 personality
5876          * with the Q block at the end.
5877          */
5878         int new_layout;
5879
5880         if (mddev->pers != &raid5_personality)
5881                 return ERR_PTR(-EINVAL);
5882         if (mddev->degraded > 1)
5883                 return ERR_PTR(-EINVAL);
5884         if (mddev->raid_disks > 253)
5885                 return ERR_PTR(-EINVAL);
5886         if (mddev->raid_disks < 3)
5887                 return ERR_PTR(-EINVAL);
5888
5889         switch (mddev->layout) {
5890         case ALGORITHM_LEFT_ASYMMETRIC:
5891                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5892                 break;
5893         case ALGORITHM_RIGHT_ASYMMETRIC:
5894                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5895                 break;
5896         case ALGORITHM_LEFT_SYMMETRIC:
5897                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5898                 break;
5899         case ALGORITHM_RIGHT_SYMMETRIC:
5900                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5901                 break;
5902         case ALGORITHM_PARITY_0:
5903                 new_layout = ALGORITHM_PARITY_0_6;
5904                 break;
5905         case ALGORITHM_PARITY_N:
5906                 new_layout = ALGORITHM_PARITY_N;
5907                 break;
5908         default:
5909                 return ERR_PTR(-EINVAL);
5910         }
5911         mddev->new_level = 6;
5912         mddev->new_layout = new_layout;
5913         mddev->delta_disks = 1;
5914         mddev->raid_disks += 1;
5915         return setup_conf(mddev);
5916 }
5917
5918
5919 static struct mdk_personality raid6_personality =
5920 {
5921         .name           = "raid6",
5922         .level          = 6,
5923         .owner          = THIS_MODULE,
5924         .make_request   = make_request,
5925         .run            = run,
5926         .stop           = stop,
5927         .status         = status,
5928         .error_handler  = error,
5929         .hot_add_disk   = raid5_add_disk,
5930         .hot_remove_disk= raid5_remove_disk,
5931         .spare_active   = raid5_spare_active,
5932         .sync_request   = sync_request,
5933         .resize         = raid5_resize,
5934         .size           = raid5_size,
5935         .check_reshape  = raid6_check_reshape,
5936         .start_reshape  = raid5_start_reshape,
5937         .finish_reshape = raid5_finish_reshape,
5938         .quiesce        = raid5_quiesce,
5939         .takeover       = raid6_takeover,
5940 };
5941 static struct mdk_personality raid5_personality =
5942 {
5943         .name           = "raid5",
5944         .level          = 5,
5945         .owner          = THIS_MODULE,
5946         .make_request   = make_request,
5947         .run            = run,
5948         .stop           = stop,
5949         .status         = status,
5950         .error_handler  = error,
5951         .hot_add_disk   = raid5_add_disk,
5952         .hot_remove_disk= raid5_remove_disk,
5953         .spare_active   = raid5_spare_active,
5954         .sync_request   = sync_request,
5955         .resize         = raid5_resize,
5956         .size           = raid5_size,
5957         .check_reshape  = raid5_check_reshape,
5958         .start_reshape  = raid5_start_reshape,
5959         .finish_reshape = raid5_finish_reshape,
5960         .quiesce        = raid5_quiesce,
5961         .takeover       = raid5_takeover,
5962 };
5963
5964 static struct mdk_personality raid4_personality =
5965 {
5966         .name           = "raid4",
5967         .level          = 4,
5968         .owner          = THIS_MODULE,
5969         .make_request   = make_request,
5970         .run            = run,
5971         .stop           = stop,
5972         .status         = status,
5973         .error_handler  = error,
5974         .hot_add_disk   = raid5_add_disk,
5975         .hot_remove_disk= raid5_remove_disk,
5976         .spare_active   = raid5_spare_active,
5977         .sync_request   = sync_request,
5978         .resize         = raid5_resize,
5979         .size           = raid5_size,
5980         .check_reshape  = raid5_check_reshape,
5981         .start_reshape  = raid5_start_reshape,
5982         .finish_reshape = raid5_finish_reshape,
5983         .quiesce        = raid5_quiesce,
5984         .takeover       = raid4_takeover,
5985 };
5986
5987 static int __init raid5_init(void)
5988 {
5989         register_md_personality(&raid6_personality);
5990         register_md_personality(&raid5_personality);
5991         register_md_personality(&raid4_personality);
5992         return 0;
5993 }
5994
5995 static void raid5_exit(void)
5996 {
5997         unregister_md_personality(&raid6_personality);
5998         unregister_md_personality(&raid5_personality);
5999         unregister_md_personality(&raid4_personality);
6000 }
6001
6002 module_init(raid5_init);
6003 module_exit(raid5_exit);
6004 MODULE_LICENSE("GPL");
6005 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6006 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6007 MODULE_ALIAS("md-raid5");
6008 MODULE_ALIAS("md-raid4");
6009 MODULE_ALIAS("md-level-5");
6010 MODULE_ALIAS("md-level-4");
6011 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6012 MODULE_ALIAS("md-raid6");
6013 MODULE_ALIAS("md-level-6");
6014
6015 /* This used to be two separate modules, they were: */
6016 MODULE_ALIAS("raid5");
6017 MODULE_ALIAS("raid6");