]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
md/raid5: get rid of duplicated call to bio_data_dir()
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock(&sh->lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock(&sh->lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         spin_lock_init(&sh->lock);
1324         #ifdef CONFIG_MULTICORE_RAID456
1325         init_waitqueue_head(&sh->ops.wait_for_ops);
1326         #endif
1327
1328         if (grow_buffers(sh)) {
1329                 shrink_buffers(sh);
1330                 kmem_cache_free(conf->slab_cache, sh);
1331                 return 0;
1332         }
1333         /* we just created an active stripe so... */
1334         atomic_set(&sh->count, 1);
1335         atomic_inc(&conf->active_stripes);
1336         INIT_LIST_HEAD(&sh->lru);
1337         release_stripe(sh);
1338         return 1;
1339 }
1340
1341 static int grow_stripes(raid5_conf_t *conf, int num)
1342 {
1343         struct kmem_cache *sc;
1344         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1345
1346         if (conf->mddev->gendisk)
1347                 sprintf(conf->cache_name[0],
1348                         "raid%d-%s", conf->level, mdname(conf->mddev));
1349         else
1350                 sprintf(conf->cache_name[0],
1351                         "raid%d-%p", conf->level, conf->mddev);
1352         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1353
1354         conf->active_name = 0;
1355         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1356                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357                                0, 0, NULL);
1358         if (!sc)
1359                 return 1;
1360         conf->slab_cache = sc;
1361         conf->pool_size = devs;
1362         while (num--)
1363                 if (!grow_one_stripe(conf))
1364                         return 1;
1365         return 0;
1366 }
1367
1368 /**
1369  * scribble_len - return the required size of the scribble region
1370  * @num - total number of disks in the array
1371  *
1372  * The size must be enough to contain:
1373  * 1/ a struct page pointer for each device in the array +2
1374  * 2/ room to convert each entry in (1) to its corresponding dma
1375  *    (dma_map_page()) or page (page_address()) address.
1376  *
1377  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1378  * calculate over all devices (not just the data blocks), using zeros in place
1379  * of the P and Q blocks.
1380  */
1381 static size_t scribble_len(int num)
1382 {
1383         size_t len;
1384
1385         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1386
1387         return len;
1388 }
1389
1390 static int resize_stripes(raid5_conf_t *conf, int newsize)
1391 {
1392         /* Make all the stripes able to hold 'newsize' devices.
1393          * New slots in each stripe get 'page' set to a new page.
1394          *
1395          * This happens in stages:
1396          * 1/ create a new kmem_cache and allocate the required number of
1397          *    stripe_heads.
1398          * 2/ gather all the old stripe_heads and tranfer the pages across
1399          *    to the new stripe_heads.  This will have the side effect of
1400          *    freezing the array as once all stripe_heads have been collected,
1401          *    no IO will be possible.  Old stripe heads are freed once their
1402          *    pages have been transferred over, and the old kmem_cache is
1403          *    freed when all stripes are done.
1404          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1405          *    we simple return a failre status - no need to clean anything up.
1406          * 4/ allocate new pages for the new slots in the new stripe_heads.
1407          *    If this fails, we don't bother trying the shrink the
1408          *    stripe_heads down again, we just leave them as they are.
1409          *    As each stripe_head is processed the new one is released into
1410          *    active service.
1411          *
1412          * Once step2 is started, we cannot afford to wait for a write,
1413          * so we use GFP_NOIO allocations.
1414          */
1415         struct stripe_head *osh, *nsh;
1416         LIST_HEAD(newstripes);
1417         struct disk_info *ndisks;
1418         unsigned long cpu;
1419         int err;
1420         struct kmem_cache *sc;
1421         int i;
1422
1423         if (newsize <= conf->pool_size)
1424                 return 0; /* never bother to shrink */
1425
1426         err = md_allow_write(conf->mddev);
1427         if (err)
1428                 return err;
1429
1430         /* Step 1 */
1431         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1432                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433                                0, 0, NULL);
1434         if (!sc)
1435                 return -ENOMEM;
1436
1437         for (i = conf->max_nr_stripes; i; i--) {
1438                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1439                 if (!nsh)
1440                         break;
1441
1442                 nsh->raid_conf = conf;
1443                 spin_lock_init(&nsh->lock);
1444                 #ifdef CONFIG_MULTICORE_RAID456
1445                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1446                 #endif
1447
1448                 list_add(&nsh->lru, &newstripes);
1449         }
1450         if (i) {
1451                 /* didn't get enough, give up */
1452                 while (!list_empty(&newstripes)) {
1453                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1454                         list_del(&nsh->lru);
1455                         kmem_cache_free(sc, nsh);
1456                 }
1457                 kmem_cache_destroy(sc);
1458                 return -ENOMEM;
1459         }
1460         /* Step 2 - Must use GFP_NOIO now.
1461          * OK, we have enough stripes, start collecting inactive
1462          * stripes and copying them over
1463          */
1464         list_for_each_entry(nsh, &newstripes, lru) {
1465                 spin_lock_irq(&conf->device_lock);
1466                 wait_event_lock_irq(conf->wait_for_stripe,
1467                                     !list_empty(&conf->inactive_list),
1468                                     conf->device_lock,
1469                                     );
1470                 osh = get_free_stripe(conf);
1471                 spin_unlock_irq(&conf->device_lock);
1472                 atomic_set(&nsh->count, 1);
1473                 for(i=0; i<conf->pool_size; i++)
1474                         nsh->dev[i].page = osh->dev[i].page;
1475                 for( ; i<newsize; i++)
1476                         nsh->dev[i].page = NULL;
1477                 kmem_cache_free(conf->slab_cache, osh);
1478         }
1479         kmem_cache_destroy(conf->slab_cache);
1480
1481         /* Step 3.
1482          * At this point, we are holding all the stripes so the array
1483          * is completely stalled, so now is a good time to resize
1484          * conf->disks and the scribble region
1485          */
1486         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1487         if (ndisks) {
1488                 for (i=0; i<conf->raid_disks; i++)
1489                         ndisks[i] = conf->disks[i];
1490                 kfree(conf->disks);
1491                 conf->disks = ndisks;
1492         } else
1493                 err = -ENOMEM;
1494
1495         get_online_cpus();
1496         conf->scribble_len = scribble_len(newsize);
1497         for_each_present_cpu(cpu) {
1498                 struct raid5_percpu *percpu;
1499                 void *scribble;
1500
1501                 percpu = per_cpu_ptr(conf->percpu, cpu);
1502                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1503
1504                 if (scribble) {
1505                         kfree(percpu->scribble);
1506                         percpu->scribble = scribble;
1507                 } else {
1508                         err = -ENOMEM;
1509                         break;
1510                 }
1511         }
1512         put_online_cpus();
1513
1514         /* Step 4, return new stripes to service */
1515         while(!list_empty(&newstripes)) {
1516                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1517                 list_del_init(&nsh->lru);
1518
1519                 for (i=conf->raid_disks; i < newsize; i++)
1520                         if (nsh->dev[i].page == NULL) {
1521                                 struct page *p = alloc_page(GFP_NOIO);
1522                                 nsh->dev[i].page = p;
1523                                 if (!p)
1524                                         err = -ENOMEM;
1525                         }
1526                 release_stripe(nsh);
1527         }
1528         /* critical section pass, GFP_NOIO no longer needed */
1529
1530         conf->slab_cache = sc;
1531         conf->active_name = 1-conf->active_name;
1532         conf->pool_size = newsize;
1533         return err;
1534 }
1535
1536 static int drop_one_stripe(raid5_conf_t *conf)
1537 {
1538         struct stripe_head *sh;
1539
1540         spin_lock_irq(&conf->device_lock);
1541         sh = get_free_stripe(conf);
1542         spin_unlock_irq(&conf->device_lock);
1543         if (!sh)
1544                 return 0;
1545         BUG_ON(atomic_read(&sh->count));
1546         shrink_buffers(sh);
1547         kmem_cache_free(conf->slab_cache, sh);
1548         atomic_dec(&conf->active_stripes);
1549         return 1;
1550 }
1551
1552 static void shrink_stripes(raid5_conf_t *conf)
1553 {
1554         while (drop_one_stripe(conf))
1555                 ;
1556
1557         if (conf->slab_cache)
1558                 kmem_cache_destroy(conf->slab_cache);
1559         conf->slab_cache = NULL;
1560 }
1561
1562 static void raid5_end_read_request(struct bio * bi, int error)
1563 {
1564         struct stripe_head *sh = bi->bi_private;
1565         raid5_conf_t *conf = sh->raid_conf;
1566         int disks = sh->disks, i;
1567         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1568         char b[BDEVNAME_SIZE];
1569         mdk_rdev_t *rdev;
1570
1571
1572         for (i=0 ; i<disks; i++)
1573                 if (bi == &sh->dev[i].req)
1574                         break;
1575
1576         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1577                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1578                 uptodate);
1579         if (i == disks) {
1580                 BUG();
1581                 return;
1582         }
1583
1584         if (uptodate) {
1585                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1586                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1587                         rdev = conf->disks[i].rdev;
1588                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1589                                   " (%lu sectors at %llu on %s)\n",
1590                                   mdname(conf->mddev), STRIPE_SECTORS,
1591                                   (unsigned long long)(sh->sector
1592                                                        + rdev->data_offset),
1593                                   bdevname(rdev->bdev, b));
1594                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1595                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1596                 }
1597                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1598                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1599         } else {
1600                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1601                 int retry = 0;
1602                 rdev = conf->disks[i].rdev;
1603
1604                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1605                 atomic_inc(&rdev->read_errors);
1606                 if (conf->mddev->degraded >= conf->max_degraded)
1607                         printk_rl(KERN_WARNING
1608                                   "md/raid:%s: read error not correctable "
1609                                   "(sector %llu on %s).\n",
1610                                   mdname(conf->mddev),
1611                                   (unsigned long long)(sh->sector
1612                                                        + rdev->data_offset),
1613                                   bdn);
1614                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1615                         /* Oh, no!!! */
1616                         printk_rl(KERN_WARNING
1617                                   "md/raid:%s: read error NOT corrected!! "
1618                                   "(sector %llu on %s).\n",
1619                                   mdname(conf->mddev),
1620                                   (unsigned long long)(sh->sector
1621                                                        + rdev->data_offset),
1622                                   bdn);
1623                 else if (atomic_read(&rdev->read_errors)
1624                          > conf->max_nr_stripes)
1625                         printk(KERN_WARNING
1626                                "md/raid:%s: Too many read errors, failing device %s.\n",
1627                                mdname(conf->mddev), bdn);
1628                 else
1629                         retry = 1;
1630                 if (retry)
1631                         set_bit(R5_ReadError, &sh->dev[i].flags);
1632                 else {
1633                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1634                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1635                         md_error(conf->mddev, rdev);
1636                 }
1637         }
1638         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1639         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1640         set_bit(STRIPE_HANDLE, &sh->state);
1641         release_stripe(sh);
1642 }
1643
1644 static void raid5_end_write_request(struct bio *bi, int error)
1645 {
1646         struct stripe_head *sh = bi->bi_private;
1647         raid5_conf_t *conf = sh->raid_conf;
1648         int disks = sh->disks, i;
1649         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1650
1651         for (i=0 ; i<disks; i++)
1652                 if (bi == &sh->dev[i].req)
1653                         break;
1654
1655         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1656                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1657                 uptodate);
1658         if (i == disks) {
1659                 BUG();
1660                 return;
1661         }
1662
1663         if (!uptodate)
1664                 md_error(conf->mddev, conf->disks[i].rdev);
1665
1666         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667         
1668         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1669         set_bit(STRIPE_HANDLE, &sh->state);
1670         release_stripe(sh);
1671 }
1672
1673
1674 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1675         
1676 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1677 {
1678         struct r5dev *dev = &sh->dev[i];
1679
1680         bio_init(&dev->req);
1681         dev->req.bi_io_vec = &dev->vec;
1682         dev->req.bi_vcnt++;
1683         dev->req.bi_max_vecs++;
1684         dev->vec.bv_page = dev->page;
1685         dev->vec.bv_len = STRIPE_SIZE;
1686         dev->vec.bv_offset = 0;
1687
1688         dev->req.bi_sector = sh->sector;
1689         dev->req.bi_private = sh;
1690
1691         dev->flags = 0;
1692         dev->sector = compute_blocknr(sh, i, previous);
1693 }
1694
1695 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1696 {
1697         char b[BDEVNAME_SIZE];
1698         raid5_conf_t *conf = mddev->private;
1699         pr_debug("raid456: error called\n");
1700
1701         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702                 unsigned long flags;
1703                 spin_lock_irqsave(&conf->device_lock, flags);
1704                 mddev->degraded++;
1705                 spin_unlock_irqrestore(&conf->device_lock, flags);
1706                 /*
1707                  * if recovery was running, make sure it aborts.
1708                  */
1709                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1710         }
1711         set_bit(Faulty, &rdev->flags);
1712         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1713         printk(KERN_ALERT
1714                "md/raid:%s: Disk failure on %s, disabling device.\n"
1715                "md/raid:%s: Operation continuing on %d devices.\n",
1716                mdname(mddev),
1717                bdevname(rdev->bdev, b),
1718                mdname(mddev),
1719                conf->raid_disks - mddev->degraded);
1720 }
1721
1722 /*
1723  * Input: a 'big' sector number,
1724  * Output: index of the data and parity disk, and the sector # in them.
1725  */
1726 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1727                                      int previous, int *dd_idx,
1728                                      struct stripe_head *sh)
1729 {
1730         sector_t stripe, stripe2;
1731         sector_t chunk_number;
1732         unsigned int chunk_offset;
1733         int pd_idx, qd_idx;
1734         int ddf_layout = 0;
1735         sector_t new_sector;
1736         int algorithm = previous ? conf->prev_algo
1737                                  : conf->algorithm;
1738         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1739                                          : conf->chunk_sectors;
1740         int raid_disks = previous ? conf->previous_raid_disks
1741                                   : conf->raid_disks;
1742         int data_disks = raid_disks - conf->max_degraded;
1743
1744         /* First compute the information on this sector */
1745
1746         /*
1747          * Compute the chunk number and the sector offset inside the chunk
1748          */
1749         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1750         chunk_number = r_sector;
1751
1752         /*
1753          * Compute the stripe number
1754          */
1755         stripe = chunk_number;
1756         *dd_idx = sector_div(stripe, data_disks);
1757         stripe2 = stripe;
1758         /*
1759          * Select the parity disk based on the user selected algorithm.
1760          */
1761         pd_idx = qd_idx = ~0;
1762         switch(conf->level) {
1763         case 4:
1764                 pd_idx = data_disks;
1765                 break;
1766         case 5:
1767                 switch (algorithm) {
1768                 case ALGORITHM_LEFT_ASYMMETRIC:
1769                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1770                         if (*dd_idx >= pd_idx)
1771                                 (*dd_idx)++;
1772                         break;
1773                 case ALGORITHM_RIGHT_ASYMMETRIC:
1774                         pd_idx = sector_div(stripe2, raid_disks);
1775                         if (*dd_idx >= pd_idx)
1776                                 (*dd_idx)++;
1777                         break;
1778                 case ALGORITHM_LEFT_SYMMETRIC:
1779                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1780                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1781                         break;
1782                 case ALGORITHM_RIGHT_SYMMETRIC:
1783                         pd_idx = sector_div(stripe2, raid_disks);
1784                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1785                         break;
1786                 case ALGORITHM_PARITY_0:
1787                         pd_idx = 0;
1788                         (*dd_idx)++;
1789                         break;
1790                 case ALGORITHM_PARITY_N:
1791                         pd_idx = data_disks;
1792                         break;
1793                 default:
1794                         BUG();
1795                 }
1796                 break;
1797         case 6:
1798
1799                 switch (algorithm) {
1800                 case ALGORITHM_LEFT_ASYMMETRIC:
1801                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1802                         qd_idx = pd_idx + 1;
1803                         if (pd_idx == raid_disks-1) {
1804                                 (*dd_idx)++;    /* Q D D D P */
1805                                 qd_idx = 0;
1806                         } else if (*dd_idx >= pd_idx)
1807                                 (*dd_idx) += 2; /* D D P Q D */
1808                         break;
1809                 case ALGORITHM_RIGHT_ASYMMETRIC:
1810                         pd_idx = sector_div(stripe2, raid_disks);
1811                         qd_idx = pd_idx + 1;
1812                         if (pd_idx == raid_disks-1) {
1813                                 (*dd_idx)++;    /* Q D D D P */
1814                                 qd_idx = 0;
1815                         } else if (*dd_idx >= pd_idx)
1816                                 (*dd_idx) += 2; /* D D P Q D */
1817                         break;
1818                 case ALGORITHM_LEFT_SYMMETRIC:
1819                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1820                         qd_idx = (pd_idx + 1) % raid_disks;
1821                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1822                         break;
1823                 case ALGORITHM_RIGHT_SYMMETRIC:
1824                         pd_idx = sector_div(stripe2, raid_disks);
1825                         qd_idx = (pd_idx + 1) % raid_disks;
1826                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1827                         break;
1828
1829                 case ALGORITHM_PARITY_0:
1830                         pd_idx = 0;
1831                         qd_idx = 1;
1832                         (*dd_idx) += 2;
1833                         break;
1834                 case ALGORITHM_PARITY_N:
1835                         pd_idx = data_disks;
1836                         qd_idx = data_disks + 1;
1837                         break;
1838
1839                 case ALGORITHM_ROTATING_ZERO_RESTART:
1840                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1841                          * of blocks for computing Q is different.
1842                          */
1843                         pd_idx = sector_div(stripe2, raid_disks);
1844                         qd_idx = pd_idx + 1;
1845                         if (pd_idx == raid_disks-1) {
1846                                 (*dd_idx)++;    /* Q D D D P */
1847                                 qd_idx = 0;
1848                         } else if (*dd_idx >= pd_idx)
1849                                 (*dd_idx) += 2; /* D D P Q D */
1850                         ddf_layout = 1;
1851                         break;
1852
1853                 case ALGORITHM_ROTATING_N_RESTART:
1854                         /* Same a left_asymmetric, by first stripe is
1855                          * D D D P Q  rather than
1856                          * Q D D D P
1857                          */
1858                         stripe2 += 1;
1859                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1860                         qd_idx = pd_idx + 1;
1861                         if (pd_idx == raid_disks-1) {
1862                                 (*dd_idx)++;    /* Q D D D P */
1863                                 qd_idx = 0;
1864                         } else if (*dd_idx >= pd_idx)
1865                                 (*dd_idx) += 2; /* D D P Q D */
1866                         ddf_layout = 1;
1867                         break;
1868
1869                 case ALGORITHM_ROTATING_N_CONTINUE:
1870                         /* Same as left_symmetric but Q is before P */
1871                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1872                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1873                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1874                         ddf_layout = 1;
1875                         break;
1876
1877                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1878                         /* RAID5 left_asymmetric, with Q on last device */
1879                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1880                         if (*dd_idx >= pd_idx)
1881                                 (*dd_idx)++;
1882                         qd_idx = raid_disks - 1;
1883                         break;
1884
1885                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1886                         pd_idx = sector_div(stripe2, raid_disks-1);
1887                         if (*dd_idx >= pd_idx)
1888                                 (*dd_idx)++;
1889                         qd_idx = raid_disks - 1;
1890                         break;
1891
1892                 case ALGORITHM_LEFT_SYMMETRIC_6:
1893                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1894                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1895                         qd_idx = raid_disks - 1;
1896                         break;
1897
1898                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1899                         pd_idx = sector_div(stripe2, raid_disks-1);
1900                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1901                         qd_idx = raid_disks - 1;
1902                         break;
1903
1904                 case ALGORITHM_PARITY_0_6:
1905                         pd_idx = 0;
1906                         (*dd_idx)++;
1907                         qd_idx = raid_disks - 1;
1908                         break;
1909
1910                 default:
1911                         BUG();
1912                 }
1913                 break;
1914         }
1915
1916         if (sh) {
1917                 sh->pd_idx = pd_idx;
1918                 sh->qd_idx = qd_idx;
1919                 sh->ddf_layout = ddf_layout;
1920         }
1921         /*
1922          * Finally, compute the new sector number
1923          */
1924         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1925         return new_sector;
1926 }
1927
1928
1929 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1930 {
1931         raid5_conf_t *conf = sh->raid_conf;
1932         int raid_disks = sh->disks;
1933         int data_disks = raid_disks - conf->max_degraded;
1934         sector_t new_sector = sh->sector, check;
1935         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1936                                          : conf->chunk_sectors;
1937         int algorithm = previous ? conf->prev_algo
1938                                  : conf->algorithm;
1939         sector_t stripe;
1940         int chunk_offset;
1941         sector_t chunk_number;
1942         int dummy1, dd_idx = i;
1943         sector_t r_sector;
1944         struct stripe_head sh2;
1945
1946
1947         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1948         stripe = new_sector;
1949
1950         if (i == sh->pd_idx)
1951                 return 0;
1952         switch(conf->level) {
1953         case 4: break;
1954         case 5:
1955                 switch (algorithm) {
1956                 case ALGORITHM_LEFT_ASYMMETRIC:
1957                 case ALGORITHM_RIGHT_ASYMMETRIC:
1958                         if (i > sh->pd_idx)
1959                                 i--;
1960                         break;
1961                 case ALGORITHM_LEFT_SYMMETRIC:
1962                 case ALGORITHM_RIGHT_SYMMETRIC:
1963                         if (i < sh->pd_idx)
1964                                 i += raid_disks;
1965                         i -= (sh->pd_idx + 1);
1966                         break;
1967                 case ALGORITHM_PARITY_0:
1968                         i -= 1;
1969                         break;
1970                 case ALGORITHM_PARITY_N:
1971                         break;
1972                 default:
1973                         BUG();
1974                 }
1975                 break;
1976         case 6:
1977                 if (i == sh->qd_idx)
1978                         return 0; /* It is the Q disk */
1979                 switch (algorithm) {
1980                 case ALGORITHM_LEFT_ASYMMETRIC:
1981                 case ALGORITHM_RIGHT_ASYMMETRIC:
1982                 case ALGORITHM_ROTATING_ZERO_RESTART:
1983                 case ALGORITHM_ROTATING_N_RESTART:
1984                         if (sh->pd_idx == raid_disks-1)
1985                                 i--;    /* Q D D D P */
1986                         else if (i > sh->pd_idx)
1987                                 i -= 2; /* D D P Q D */
1988                         break;
1989                 case ALGORITHM_LEFT_SYMMETRIC:
1990                 case ALGORITHM_RIGHT_SYMMETRIC:
1991                         if (sh->pd_idx == raid_disks-1)
1992                                 i--; /* Q D D D P */
1993                         else {
1994                                 /* D D P Q D */
1995                                 if (i < sh->pd_idx)
1996                                         i += raid_disks;
1997                                 i -= (sh->pd_idx + 2);
1998                         }
1999                         break;
2000                 case ALGORITHM_PARITY_0:
2001                         i -= 2;
2002                         break;
2003                 case ALGORITHM_PARITY_N:
2004                         break;
2005                 case ALGORITHM_ROTATING_N_CONTINUE:
2006                         /* Like left_symmetric, but P is before Q */
2007                         if (sh->pd_idx == 0)
2008                                 i--;    /* P D D D Q */
2009                         else {
2010                                 /* D D Q P D */
2011                                 if (i < sh->pd_idx)
2012                                         i += raid_disks;
2013                                 i -= (sh->pd_idx + 1);
2014                         }
2015                         break;
2016                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2017                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2018                         if (i > sh->pd_idx)
2019                                 i--;
2020                         break;
2021                 case ALGORITHM_LEFT_SYMMETRIC_6:
2022                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2023                         if (i < sh->pd_idx)
2024                                 i += data_disks + 1;
2025                         i -= (sh->pd_idx + 1);
2026                         break;
2027                 case ALGORITHM_PARITY_0_6:
2028                         i -= 1;
2029                         break;
2030                 default:
2031                         BUG();
2032                 }
2033                 break;
2034         }
2035
2036         chunk_number = stripe * data_disks + i;
2037         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2038
2039         check = raid5_compute_sector(conf, r_sector,
2040                                      previous, &dummy1, &sh2);
2041         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2042                 || sh2.qd_idx != sh->qd_idx) {
2043                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2044                        mdname(conf->mddev));
2045                 return 0;
2046         }
2047         return r_sector;
2048 }
2049
2050
2051 static void
2052 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2053                          int rcw, int expand)
2054 {
2055         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2056         raid5_conf_t *conf = sh->raid_conf;
2057         int level = conf->level;
2058
2059         if (rcw) {
2060                 /* if we are not expanding this is a proper write request, and
2061                  * there will be bios with new data to be drained into the
2062                  * stripe cache
2063                  */
2064                 if (!expand) {
2065                         sh->reconstruct_state = reconstruct_state_drain_run;
2066                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2067                 } else
2068                         sh->reconstruct_state = reconstruct_state_run;
2069
2070                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2071
2072                 for (i = disks; i--; ) {
2073                         struct r5dev *dev = &sh->dev[i];
2074
2075                         if (dev->towrite) {
2076                                 set_bit(R5_LOCKED, &dev->flags);
2077                                 set_bit(R5_Wantdrain, &dev->flags);
2078                                 if (!expand)
2079                                         clear_bit(R5_UPTODATE, &dev->flags);
2080                                 s->locked++;
2081                         }
2082                 }
2083                 if (s->locked + conf->max_degraded == disks)
2084                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2085                                 atomic_inc(&conf->pending_full_writes);
2086         } else {
2087                 BUG_ON(level == 6);
2088                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2089                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2090
2091                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2092                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2093                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2094                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2095
2096                 for (i = disks; i--; ) {
2097                         struct r5dev *dev = &sh->dev[i];
2098                         if (i == pd_idx)
2099                                 continue;
2100
2101                         if (dev->towrite &&
2102                             (test_bit(R5_UPTODATE, &dev->flags) ||
2103                              test_bit(R5_Wantcompute, &dev->flags))) {
2104                                 set_bit(R5_Wantdrain, &dev->flags);
2105                                 set_bit(R5_LOCKED, &dev->flags);
2106                                 clear_bit(R5_UPTODATE, &dev->flags);
2107                                 s->locked++;
2108                         }
2109                 }
2110         }
2111
2112         /* keep the parity disk(s) locked while asynchronous operations
2113          * are in flight
2114          */
2115         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2116         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2117         s->locked++;
2118
2119         if (level == 6) {
2120                 int qd_idx = sh->qd_idx;
2121                 struct r5dev *dev = &sh->dev[qd_idx];
2122
2123                 set_bit(R5_LOCKED, &dev->flags);
2124                 clear_bit(R5_UPTODATE, &dev->flags);
2125                 s->locked++;
2126         }
2127
2128         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2129                 __func__, (unsigned long long)sh->sector,
2130                 s->locked, s->ops_request);
2131 }
2132
2133 /*
2134  * Each stripe/dev can have one or more bion attached.
2135  * toread/towrite point to the first in a chain.
2136  * The bi_next chain must be in order.
2137  */
2138 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2139 {
2140         struct bio **bip;
2141         raid5_conf_t *conf = sh->raid_conf;
2142         int firstwrite=0;
2143
2144         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2145                 (unsigned long long)bi->bi_sector,
2146                 (unsigned long long)sh->sector);
2147
2148
2149         spin_lock(&sh->lock);
2150         spin_lock_irq(&conf->device_lock);
2151         if (forwrite) {
2152                 bip = &sh->dev[dd_idx].towrite;
2153                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2154                         firstwrite = 1;
2155         } else
2156                 bip = &sh->dev[dd_idx].toread;
2157         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2158                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2159                         goto overlap;
2160                 bip = & (*bip)->bi_next;
2161         }
2162         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2163                 goto overlap;
2164
2165         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2166         if (*bip)
2167                 bi->bi_next = *bip;
2168         *bip = bi;
2169         bi->bi_phys_segments++;
2170         spin_unlock_irq(&conf->device_lock);
2171         spin_unlock(&sh->lock);
2172
2173         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2174                 (unsigned long long)bi->bi_sector,
2175                 (unsigned long long)sh->sector, dd_idx);
2176
2177         if (conf->mddev->bitmap && firstwrite) {
2178                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2179                                   STRIPE_SECTORS, 0);
2180                 sh->bm_seq = conf->seq_flush+1;
2181                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2182         }
2183
2184         if (forwrite) {
2185                 /* check if page is covered */
2186                 sector_t sector = sh->dev[dd_idx].sector;
2187                 for (bi=sh->dev[dd_idx].towrite;
2188                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2189                              bi && bi->bi_sector <= sector;
2190                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2191                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2192                                 sector = bi->bi_sector + (bi->bi_size>>9);
2193                 }
2194                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2195                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2196         }
2197         return 1;
2198
2199  overlap:
2200         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2201         spin_unlock_irq(&conf->device_lock);
2202         spin_unlock(&sh->lock);
2203         return 0;
2204 }
2205
2206 static void end_reshape(raid5_conf_t *conf);
2207
2208 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2209                             struct stripe_head *sh)
2210 {
2211         int sectors_per_chunk =
2212                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2213         int dd_idx;
2214         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2215         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2216
2217         raid5_compute_sector(conf,
2218                              stripe * (disks - conf->max_degraded)
2219                              *sectors_per_chunk + chunk_offset,
2220                              previous,
2221                              &dd_idx, sh);
2222 }
2223
2224 static void
2225 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2226                                 struct stripe_head_state *s, int disks,
2227                                 struct bio **return_bi)
2228 {
2229         int i;
2230         for (i = disks; i--; ) {
2231                 struct bio *bi;
2232                 int bitmap_end = 0;
2233
2234                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2235                         mdk_rdev_t *rdev;
2236                         rcu_read_lock();
2237                         rdev = rcu_dereference(conf->disks[i].rdev);
2238                         if (rdev && test_bit(In_sync, &rdev->flags))
2239                                 /* multiple read failures in one stripe */
2240                                 md_error(conf->mddev, rdev);
2241                         rcu_read_unlock();
2242                 }
2243                 spin_lock_irq(&conf->device_lock);
2244                 /* fail all writes first */
2245                 bi = sh->dev[i].towrite;
2246                 sh->dev[i].towrite = NULL;
2247                 if (bi) {
2248                         s->to_write--;
2249                         bitmap_end = 1;
2250                 }
2251
2252                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2253                         wake_up(&conf->wait_for_overlap);
2254
2255                 while (bi && bi->bi_sector <
2256                         sh->dev[i].sector + STRIPE_SECTORS) {
2257                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2258                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2259                         if (!raid5_dec_bi_phys_segments(bi)) {
2260                                 md_write_end(conf->mddev);
2261                                 bi->bi_next = *return_bi;
2262                                 *return_bi = bi;
2263                         }
2264                         bi = nextbi;
2265                 }
2266                 /* and fail all 'written' */
2267                 bi = sh->dev[i].written;
2268                 sh->dev[i].written = NULL;
2269                 if (bi) bitmap_end = 1;
2270                 while (bi && bi->bi_sector <
2271                        sh->dev[i].sector + STRIPE_SECTORS) {
2272                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2273                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2274                         if (!raid5_dec_bi_phys_segments(bi)) {
2275                                 md_write_end(conf->mddev);
2276                                 bi->bi_next = *return_bi;
2277                                 *return_bi = bi;
2278                         }
2279                         bi = bi2;
2280                 }
2281
2282                 /* fail any reads if this device is non-operational and
2283                  * the data has not reached the cache yet.
2284                  */
2285                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2286                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2287                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2288                         bi = sh->dev[i].toread;
2289                         sh->dev[i].toread = NULL;
2290                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2291                                 wake_up(&conf->wait_for_overlap);
2292                         if (bi) s->to_read--;
2293                         while (bi && bi->bi_sector <
2294                                sh->dev[i].sector + STRIPE_SECTORS) {
2295                                 struct bio *nextbi =
2296                                         r5_next_bio(bi, sh->dev[i].sector);
2297                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2298                                 if (!raid5_dec_bi_phys_segments(bi)) {
2299                                         bi->bi_next = *return_bi;
2300                                         *return_bi = bi;
2301                                 }
2302                                 bi = nextbi;
2303                         }
2304                 }
2305                 spin_unlock_irq(&conf->device_lock);
2306                 if (bitmap_end)
2307                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2308                                         STRIPE_SECTORS, 0, 0);
2309         }
2310
2311         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2312                 if (atomic_dec_and_test(&conf->pending_full_writes))
2313                         md_wakeup_thread(conf->mddev->thread);
2314 }
2315
2316 /* fetch_block5 - checks the given member device to see if its data needs
2317  * to be read or computed to satisfy a request.
2318  *
2319  * Returns 1 when no more member devices need to be checked, otherwise returns
2320  * 0 to tell the loop in handle_stripe_fill5 to continue
2321  */
2322 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2323                         int disk_idx, int disks)
2324 {
2325         struct r5dev *dev = &sh->dev[disk_idx];
2326         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2327
2328         /* is the data in this block needed, and can we get it? */
2329         if (!test_bit(R5_LOCKED, &dev->flags) &&
2330             !test_bit(R5_UPTODATE, &dev->flags) &&
2331             (dev->toread ||
2332              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2333              s->syncing || s->expanding ||
2334              (s->failed &&
2335               (failed_dev->toread ||
2336                (failed_dev->towrite &&
2337                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2338                 /* We would like to get this block, possibly by computing it,
2339                  * otherwise read it if the backing disk is insync
2340                  */
2341                 if ((s->uptodate == disks - 1) &&
2342                     (s->failed && disk_idx == s->failed_num)) {
2343                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2344                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2345                         set_bit(R5_Wantcompute, &dev->flags);
2346                         sh->ops.target = disk_idx;
2347                         sh->ops.target2 = -1;
2348                         s->req_compute = 1;
2349                         /* Careful: from this point on 'uptodate' is in the eye
2350                          * of raid_run_ops which services 'compute' operations
2351                          * before writes. R5_Wantcompute flags a block that will
2352                          * be R5_UPTODATE by the time it is needed for a
2353                          * subsequent operation.
2354                          */
2355                         s->uptodate++;
2356                         return 1; /* uptodate + compute == disks */
2357                 } else if (test_bit(R5_Insync, &dev->flags)) {
2358                         set_bit(R5_LOCKED, &dev->flags);
2359                         set_bit(R5_Wantread, &dev->flags);
2360                         s->locked++;
2361                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2362                                 s->syncing);
2363                 }
2364         }
2365
2366         return 0;
2367 }
2368
2369 /**
2370  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2371  */
2372 static void handle_stripe_fill5(struct stripe_head *sh,
2373                         struct stripe_head_state *s, int disks)
2374 {
2375         int i;
2376
2377         /* look for blocks to read/compute, skip this if a compute
2378          * is already in flight, or if the stripe contents are in the
2379          * midst of changing due to a write
2380          */
2381         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2382             !sh->reconstruct_state)
2383                 for (i = disks; i--; )
2384                         if (fetch_block5(sh, s, i, disks))
2385                                 break;
2386         set_bit(STRIPE_HANDLE, &sh->state);
2387 }
2388
2389 /* fetch_block6 - checks the given member device to see if its data needs
2390  * to be read or computed to satisfy a request.
2391  *
2392  * Returns 1 when no more member devices need to be checked, otherwise returns
2393  * 0 to tell the loop in handle_stripe_fill6 to continue
2394  */
2395 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2396                          struct r6_state *r6s, int disk_idx, int disks)
2397 {
2398         struct r5dev *dev = &sh->dev[disk_idx];
2399         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2400                                   &sh->dev[r6s->failed_num[1]] };
2401
2402         if (!test_bit(R5_LOCKED, &dev->flags) &&
2403             !test_bit(R5_UPTODATE, &dev->flags) &&
2404             (dev->toread ||
2405              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2406              s->syncing || s->expanding ||
2407              (s->failed >= 1 &&
2408               (fdev[0]->toread || s->to_write)) ||
2409              (s->failed >= 2 &&
2410               (fdev[1]->toread || s->to_write)))) {
2411                 /* we would like to get this block, possibly by computing it,
2412                  * otherwise read it if the backing disk is insync
2413                  */
2414                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2415                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2416                 if ((s->uptodate == disks - 1) &&
2417                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2418                                    disk_idx == r6s->failed_num[1]))) {
2419                         /* have disk failed, and we're requested to fetch it;
2420                          * do compute it
2421                          */
2422                         pr_debug("Computing stripe %llu block %d\n",
2423                                (unsigned long long)sh->sector, disk_idx);
2424                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2425                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2426                         set_bit(R5_Wantcompute, &dev->flags);
2427                         sh->ops.target = disk_idx;
2428                         sh->ops.target2 = -1; /* no 2nd target */
2429                         s->req_compute = 1;
2430                         s->uptodate++;
2431                         return 1;
2432                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2433                         /* Computing 2-failure is *very* expensive; only
2434                          * do it if failed >= 2
2435                          */
2436                         int other;
2437                         for (other = disks; other--; ) {
2438                                 if (other == disk_idx)
2439                                         continue;
2440                                 if (!test_bit(R5_UPTODATE,
2441                                       &sh->dev[other].flags))
2442                                         break;
2443                         }
2444                         BUG_ON(other < 0);
2445                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2446                                (unsigned long long)sh->sector,
2447                                disk_idx, other);
2448                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2449                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2450                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2451                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2452                         sh->ops.target = disk_idx;
2453                         sh->ops.target2 = other;
2454                         s->uptodate += 2;
2455                         s->req_compute = 1;
2456                         return 1;
2457                 } else if (test_bit(R5_Insync, &dev->flags)) {
2458                         set_bit(R5_LOCKED, &dev->flags);
2459                         set_bit(R5_Wantread, &dev->flags);
2460                         s->locked++;
2461                         pr_debug("Reading block %d (sync=%d)\n",
2462                                 disk_idx, s->syncing);
2463                 }
2464         }
2465
2466         return 0;
2467 }
2468
2469 /**
2470  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2471  */
2472 static void handle_stripe_fill6(struct stripe_head *sh,
2473                         struct stripe_head_state *s, struct r6_state *r6s,
2474                         int disks)
2475 {
2476         int i;
2477
2478         /* look for blocks to read/compute, skip this if a compute
2479          * is already in flight, or if the stripe contents are in the
2480          * midst of changing due to a write
2481          */
2482         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2483             !sh->reconstruct_state)
2484                 for (i = disks; i--; )
2485                         if (fetch_block6(sh, s, r6s, i, disks))
2486                                 break;
2487         set_bit(STRIPE_HANDLE, &sh->state);
2488 }
2489
2490
2491 /* handle_stripe_clean_event
2492  * any written block on an uptodate or failed drive can be returned.
2493  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2494  * never LOCKED, so we don't need to test 'failed' directly.
2495  */
2496 static void handle_stripe_clean_event(raid5_conf_t *conf,
2497         struct stripe_head *sh, int disks, struct bio **return_bi)
2498 {
2499         int i;
2500         struct r5dev *dev;
2501
2502         for (i = disks; i--; )
2503                 if (sh->dev[i].written) {
2504                         dev = &sh->dev[i];
2505                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2506                                 test_bit(R5_UPTODATE, &dev->flags)) {
2507                                 /* We can return any write requests */
2508                                 struct bio *wbi, *wbi2;
2509                                 int bitmap_end = 0;
2510                                 pr_debug("Return write for disc %d\n", i);
2511                                 spin_lock_irq(&conf->device_lock);
2512                                 wbi = dev->written;
2513                                 dev->written = NULL;
2514                                 while (wbi && wbi->bi_sector <
2515                                         dev->sector + STRIPE_SECTORS) {
2516                                         wbi2 = r5_next_bio(wbi, dev->sector);
2517                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2518                                                 md_write_end(conf->mddev);
2519                                                 wbi->bi_next = *return_bi;
2520                                                 *return_bi = wbi;
2521                                         }
2522                                         wbi = wbi2;
2523                                 }
2524                                 if (dev->towrite == NULL)
2525                                         bitmap_end = 1;
2526                                 spin_unlock_irq(&conf->device_lock);
2527                                 if (bitmap_end)
2528                                         bitmap_endwrite(conf->mddev->bitmap,
2529                                                         sh->sector,
2530                                                         STRIPE_SECTORS,
2531                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2532                                                         0);
2533                         }
2534                 }
2535
2536         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2537                 if (atomic_dec_and_test(&conf->pending_full_writes))
2538                         md_wakeup_thread(conf->mddev->thread);
2539 }
2540
2541 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2542                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2543 {
2544         int rmw = 0, rcw = 0, i;
2545         for (i = disks; i--; ) {
2546                 /* would I have to read this buffer for read_modify_write */
2547                 struct r5dev *dev = &sh->dev[i];
2548                 if ((dev->towrite || i == sh->pd_idx) &&
2549                     !test_bit(R5_LOCKED, &dev->flags) &&
2550                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2551                       test_bit(R5_Wantcompute, &dev->flags))) {
2552                         if (test_bit(R5_Insync, &dev->flags))
2553                                 rmw++;
2554                         else
2555                                 rmw += 2*disks;  /* cannot read it */
2556                 }
2557                 /* Would I have to read this buffer for reconstruct_write */
2558                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2559                     !test_bit(R5_LOCKED, &dev->flags) &&
2560                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2561                     test_bit(R5_Wantcompute, &dev->flags))) {
2562                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2563                         else
2564                                 rcw += 2*disks;
2565                 }
2566         }
2567         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2568                 (unsigned long long)sh->sector, rmw, rcw);
2569         set_bit(STRIPE_HANDLE, &sh->state);
2570         if (rmw < rcw && rmw > 0)
2571                 /* prefer read-modify-write, but need to get some data */
2572                 for (i = disks; i--; ) {
2573                         struct r5dev *dev = &sh->dev[i];
2574                         if ((dev->towrite || i == sh->pd_idx) &&
2575                             !test_bit(R5_LOCKED, &dev->flags) &&
2576                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2577                             test_bit(R5_Wantcompute, &dev->flags)) &&
2578                             test_bit(R5_Insync, &dev->flags)) {
2579                                 if (
2580                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581                                         pr_debug("Read_old block "
2582                                                 "%d for r-m-w\n", i);
2583                                         set_bit(R5_LOCKED, &dev->flags);
2584                                         set_bit(R5_Wantread, &dev->flags);
2585                                         s->locked++;
2586                                 } else {
2587                                         set_bit(STRIPE_DELAYED, &sh->state);
2588                                         set_bit(STRIPE_HANDLE, &sh->state);
2589                                 }
2590                         }
2591                 }
2592         if (rcw <= rmw && rcw > 0)
2593                 /* want reconstruct write, but need to get some data */
2594                 for (i = disks; i--; ) {
2595                         struct r5dev *dev = &sh->dev[i];
2596                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2597                             i != sh->pd_idx &&
2598                             !test_bit(R5_LOCKED, &dev->flags) &&
2599                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2600                             test_bit(R5_Wantcompute, &dev->flags)) &&
2601                             test_bit(R5_Insync, &dev->flags)) {
2602                                 if (
2603                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604                                         pr_debug("Read_old block "
2605                                                 "%d for Reconstruct\n", i);
2606                                         set_bit(R5_LOCKED, &dev->flags);
2607                                         set_bit(R5_Wantread, &dev->flags);
2608                                         s->locked++;
2609                                 } else {
2610                                         set_bit(STRIPE_DELAYED, &sh->state);
2611                                         set_bit(STRIPE_HANDLE, &sh->state);
2612                                 }
2613                         }
2614                 }
2615         /* now if nothing is locked, and if we have enough data,
2616          * we can start a write request
2617          */
2618         /* since handle_stripe can be called at any time we need to handle the
2619          * case where a compute block operation has been submitted and then a
2620          * subsequent call wants to start a write request.  raid_run_ops only
2621          * handles the case where compute block and reconstruct are requested
2622          * simultaneously.  If this is not the case then new writes need to be
2623          * held off until the compute completes.
2624          */
2625         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2626             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2627             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2628                 schedule_reconstruction(sh, s, rcw == 0, 0);
2629 }
2630
2631 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2632                 struct stripe_head *sh, struct stripe_head_state *s,
2633                 struct r6_state *r6s, int disks)
2634 {
2635         int rcw = 0, pd_idx = sh->pd_idx, i;
2636         int qd_idx = sh->qd_idx;
2637
2638         set_bit(STRIPE_HANDLE, &sh->state);
2639         for (i = disks; i--; ) {
2640                 struct r5dev *dev = &sh->dev[i];
2641                 /* check if we haven't enough data */
2642                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2643                     i != pd_idx && i != qd_idx &&
2644                     !test_bit(R5_LOCKED, &dev->flags) &&
2645                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2646                       test_bit(R5_Wantcompute, &dev->flags))) {
2647                         rcw++;
2648                         if (!test_bit(R5_Insync, &dev->flags))
2649                                 continue; /* it's a failed drive */
2650
2651                         if (
2652                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2653                                 pr_debug("Read_old stripe %llu "
2654                                         "block %d for Reconstruct\n",
2655                                      (unsigned long long)sh->sector, i);
2656                                 set_bit(R5_LOCKED, &dev->flags);
2657                                 set_bit(R5_Wantread, &dev->flags);
2658                                 s->locked++;
2659                         } else {
2660                                 pr_debug("Request delayed stripe %llu "
2661                                         "block %d for Reconstruct\n",
2662                                      (unsigned long long)sh->sector, i);
2663                                 set_bit(STRIPE_DELAYED, &sh->state);
2664                                 set_bit(STRIPE_HANDLE, &sh->state);
2665                         }
2666                 }
2667         }
2668         /* now if nothing is locked, and if we have enough data, we can start a
2669          * write request
2670          */
2671         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2672             s->locked == 0 && rcw == 0 &&
2673             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2674                 schedule_reconstruction(sh, s, 1, 0);
2675         }
2676 }
2677
2678 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2679                                 struct stripe_head_state *s, int disks)
2680 {
2681         struct r5dev *dev = NULL;
2682
2683         set_bit(STRIPE_HANDLE, &sh->state);
2684
2685         switch (sh->check_state) {
2686         case check_state_idle:
2687                 /* start a new check operation if there are no failures */
2688                 if (s->failed == 0) {
2689                         BUG_ON(s->uptodate != disks);
2690                         sh->check_state = check_state_run;
2691                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2692                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2693                         s->uptodate--;
2694                         break;
2695                 }
2696                 dev = &sh->dev[s->failed_num];
2697                 /* fall through */
2698         case check_state_compute_result:
2699                 sh->check_state = check_state_idle;
2700                 if (!dev)
2701                         dev = &sh->dev[sh->pd_idx];
2702
2703                 /* check that a write has not made the stripe insync */
2704                 if (test_bit(STRIPE_INSYNC, &sh->state))
2705                         break;
2706
2707                 /* either failed parity check, or recovery is happening */
2708                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2709                 BUG_ON(s->uptodate != disks);
2710
2711                 set_bit(R5_LOCKED, &dev->flags);
2712                 s->locked++;
2713                 set_bit(R5_Wantwrite, &dev->flags);
2714
2715                 clear_bit(STRIPE_DEGRADED, &sh->state);
2716                 set_bit(STRIPE_INSYNC, &sh->state);
2717                 break;
2718         case check_state_run:
2719                 break; /* we will be called again upon completion */
2720         case check_state_check_result:
2721                 sh->check_state = check_state_idle;
2722
2723                 /* if a failure occurred during the check operation, leave
2724                  * STRIPE_INSYNC not set and let the stripe be handled again
2725                  */
2726                 if (s->failed)
2727                         break;
2728
2729                 /* handle a successful check operation, if parity is correct
2730                  * we are done.  Otherwise update the mismatch count and repair
2731                  * parity if !MD_RECOVERY_CHECK
2732                  */
2733                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2734                         /* parity is correct (on disc,
2735                          * not in buffer any more)
2736                          */
2737                         set_bit(STRIPE_INSYNC, &sh->state);
2738                 else {
2739                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2740                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2741                                 /* don't try to repair!! */
2742                                 set_bit(STRIPE_INSYNC, &sh->state);
2743                         else {
2744                                 sh->check_state = check_state_compute_run;
2745                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2746                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2747                                 set_bit(R5_Wantcompute,
2748                                         &sh->dev[sh->pd_idx].flags);
2749                                 sh->ops.target = sh->pd_idx;
2750                                 sh->ops.target2 = -1;
2751                                 s->uptodate++;
2752                         }
2753                 }
2754                 break;
2755         case check_state_compute_run:
2756                 break;
2757         default:
2758                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2759                        __func__, sh->check_state,
2760                        (unsigned long long) sh->sector);
2761                 BUG();
2762         }
2763 }
2764
2765
2766 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2767                                   struct stripe_head_state *s,
2768                                   struct r6_state *r6s, int disks)
2769 {
2770         int pd_idx = sh->pd_idx;
2771         int qd_idx = sh->qd_idx;
2772         struct r5dev *dev;
2773
2774         set_bit(STRIPE_HANDLE, &sh->state);
2775
2776         BUG_ON(s->failed > 2);
2777
2778         /* Want to check and possibly repair P and Q.
2779          * However there could be one 'failed' device, in which
2780          * case we can only check one of them, possibly using the
2781          * other to generate missing data
2782          */
2783
2784         switch (sh->check_state) {
2785         case check_state_idle:
2786                 /* start a new check operation if there are < 2 failures */
2787                 if (s->failed == r6s->q_failed) {
2788                         /* The only possible failed device holds Q, so it
2789                          * makes sense to check P (If anything else were failed,
2790                          * we would have used P to recreate it).
2791                          */
2792                         sh->check_state = check_state_run;
2793                 }
2794                 if (!r6s->q_failed && s->failed < 2) {
2795                         /* Q is not failed, and we didn't use it to generate
2796                          * anything, so it makes sense to check it
2797                          */
2798                         if (sh->check_state == check_state_run)
2799                                 sh->check_state = check_state_run_pq;
2800                         else
2801                                 sh->check_state = check_state_run_q;
2802                 }
2803
2804                 /* discard potentially stale zero_sum_result */
2805                 sh->ops.zero_sum_result = 0;
2806
2807                 if (sh->check_state == check_state_run) {
2808                         /* async_xor_zero_sum destroys the contents of P */
2809                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2810                         s->uptodate--;
2811                 }
2812                 if (sh->check_state >= check_state_run &&
2813                     sh->check_state <= check_state_run_pq) {
2814                         /* async_syndrome_zero_sum preserves P and Q, so
2815                          * no need to mark them !uptodate here
2816                          */
2817                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2818                         break;
2819                 }
2820
2821                 /* we have 2-disk failure */
2822                 BUG_ON(s->failed != 2);
2823                 /* fall through */
2824         case check_state_compute_result:
2825                 sh->check_state = check_state_idle;
2826
2827                 /* check that a write has not made the stripe insync */
2828                 if (test_bit(STRIPE_INSYNC, &sh->state))
2829                         break;
2830
2831                 /* now write out any block on a failed drive,
2832                  * or P or Q if they were recomputed
2833                  */
2834                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2835                 if (s->failed == 2) {
2836                         dev = &sh->dev[r6s->failed_num[1]];
2837                         s->locked++;
2838                         set_bit(R5_LOCKED, &dev->flags);
2839                         set_bit(R5_Wantwrite, &dev->flags);
2840                 }
2841                 if (s->failed >= 1) {
2842                         dev = &sh->dev[r6s->failed_num[0]];
2843                         s->locked++;
2844                         set_bit(R5_LOCKED, &dev->flags);
2845                         set_bit(R5_Wantwrite, &dev->flags);
2846                 }
2847                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2848                         dev = &sh->dev[pd_idx];
2849                         s->locked++;
2850                         set_bit(R5_LOCKED, &dev->flags);
2851                         set_bit(R5_Wantwrite, &dev->flags);
2852                 }
2853                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2854                         dev = &sh->dev[qd_idx];
2855                         s->locked++;
2856                         set_bit(R5_LOCKED, &dev->flags);
2857                         set_bit(R5_Wantwrite, &dev->flags);
2858                 }
2859                 clear_bit(STRIPE_DEGRADED, &sh->state);
2860
2861                 set_bit(STRIPE_INSYNC, &sh->state);
2862                 break;
2863         case check_state_run:
2864         case check_state_run_q:
2865         case check_state_run_pq:
2866                 break; /* we will be called again upon completion */
2867         case check_state_check_result:
2868                 sh->check_state = check_state_idle;
2869
2870                 /* handle a successful check operation, if parity is correct
2871                  * we are done.  Otherwise update the mismatch count and repair
2872                  * parity if !MD_RECOVERY_CHECK
2873                  */
2874                 if (sh->ops.zero_sum_result == 0) {
2875                         /* both parities are correct */
2876                         if (!s->failed)
2877                                 set_bit(STRIPE_INSYNC, &sh->state);
2878                         else {
2879                                 /* in contrast to the raid5 case we can validate
2880                                  * parity, but still have a failure to write
2881                                  * back
2882                                  */
2883                                 sh->check_state = check_state_compute_result;
2884                                 /* Returning at this point means that we may go
2885                                  * off and bring p and/or q uptodate again so
2886                                  * we make sure to check zero_sum_result again
2887                                  * to verify if p or q need writeback
2888                                  */
2889                         }
2890                 } else {
2891                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2892                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2893                                 /* don't try to repair!! */
2894                                 set_bit(STRIPE_INSYNC, &sh->state);
2895                         else {
2896                                 int *target = &sh->ops.target;
2897
2898                                 sh->ops.target = -1;
2899                                 sh->ops.target2 = -1;
2900                                 sh->check_state = check_state_compute_run;
2901                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2902                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2903                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2904                                         set_bit(R5_Wantcompute,
2905                                                 &sh->dev[pd_idx].flags);
2906                                         *target = pd_idx;
2907                                         target = &sh->ops.target2;
2908                                         s->uptodate++;
2909                                 }
2910                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2911                                         set_bit(R5_Wantcompute,
2912                                                 &sh->dev[qd_idx].flags);
2913                                         *target = qd_idx;
2914                                         s->uptodate++;
2915                                 }
2916                         }
2917                 }
2918                 break;
2919         case check_state_compute_run:
2920                 break;
2921         default:
2922                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2923                        __func__, sh->check_state,
2924                        (unsigned long long) sh->sector);
2925                 BUG();
2926         }
2927 }
2928
2929 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2930                                 struct r6_state *r6s)
2931 {
2932         int i;
2933
2934         /* We have read all the blocks in this stripe and now we need to
2935          * copy some of them into a target stripe for expand.
2936          */
2937         struct dma_async_tx_descriptor *tx = NULL;
2938         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2939         for (i = 0; i < sh->disks; i++)
2940                 if (i != sh->pd_idx && i != sh->qd_idx) {
2941                         int dd_idx, j;
2942                         struct stripe_head *sh2;
2943                         struct async_submit_ctl submit;
2944
2945                         sector_t bn = compute_blocknr(sh, i, 1);
2946                         sector_t s = raid5_compute_sector(conf, bn, 0,
2947                                                           &dd_idx, NULL);
2948                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2949                         if (sh2 == NULL)
2950                                 /* so far only the early blocks of this stripe
2951                                  * have been requested.  When later blocks
2952                                  * get requested, we will try again
2953                                  */
2954                                 continue;
2955                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2956                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2957                                 /* must have already done this block */
2958                                 release_stripe(sh2);
2959                                 continue;
2960                         }
2961
2962                         /* place all the copies on one channel */
2963                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2964                         tx = async_memcpy(sh2->dev[dd_idx].page,
2965                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2966                                           &submit);
2967
2968                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2969                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2970                         for (j = 0; j < conf->raid_disks; j++)
2971                                 if (j != sh2->pd_idx &&
2972                                     (!r6s || j != sh2->qd_idx) &&
2973                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2974                                         break;
2975                         if (j == conf->raid_disks) {
2976                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2977                                 set_bit(STRIPE_HANDLE, &sh2->state);
2978                         }
2979                         release_stripe(sh2);
2980
2981                 }
2982         /* done submitting copies, wait for them to complete */
2983         if (tx) {
2984                 async_tx_ack(tx);
2985                 dma_wait_for_async_tx(tx);
2986         }
2987 }
2988
2989
2990 /*
2991  * handle_stripe - do things to a stripe.
2992  *
2993  * We lock the stripe and then examine the state of various bits
2994  * to see what needs to be done.
2995  * Possible results:
2996  *    return some read request which now have data
2997  *    return some write requests which are safely on disc
2998  *    schedule a read on some buffers
2999  *    schedule a write of some buffers
3000  *    return confirmation of parity correctness
3001  *
3002  * buffers are taken off read_list or write_list, and bh_cache buffers
3003  * get BH_Lock set before the stripe lock is released.
3004  *
3005  */
3006
3007 static void handle_stripe5(struct stripe_head *sh)
3008 {
3009         raid5_conf_t *conf = sh->raid_conf;
3010         int disks = sh->disks, i;
3011         struct bio *return_bi = NULL;
3012         struct stripe_head_state s;
3013         struct r5dev *dev;
3014         mdk_rdev_t *blocked_rdev = NULL;
3015         int prexor;
3016         int dec_preread_active = 0;
3017
3018         memset(&s, 0, sizeof(s));
3019         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3020                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3021                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3022                  sh->reconstruct_state);
3023
3024         spin_lock(&sh->lock);
3025         clear_bit(STRIPE_HANDLE, &sh->state);
3026         clear_bit(STRIPE_DELAYED, &sh->state);
3027
3028         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3029         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3030         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3031
3032         /* Now to look around and see what can be done */
3033         rcu_read_lock();
3034         for (i=disks; i--; ) {
3035                 mdk_rdev_t *rdev;
3036
3037                 dev = &sh->dev[i];
3038
3039                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3040                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3041                         dev->towrite, dev->written);
3042
3043                 /* maybe we can request a biofill operation
3044                  *
3045                  * new wantfill requests are only permitted while
3046                  * ops_complete_biofill is guaranteed to be inactive
3047                  */
3048                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3049                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3050                         set_bit(R5_Wantfill, &dev->flags);
3051
3052                 /* now count some things */
3053                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3054                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3055                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3056
3057                 if (test_bit(R5_Wantfill, &dev->flags))
3058                         s.to_fill++;
3059                 else if (dev->toread)
3060                         s.to_read++;
3061                 if (dev->towrite) {
3062                         s.to_write++;
3063                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3064                                 s.non_overwrite++;
3065                 }
3066                 if (dev->written)
3067                         s.written++;
3068                 rdev = rcu_dereference(conf->disks[i].rdev);
3069                 if (blocked_rdev == NULL &&
3070                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3071                         blocked_rdev = rdev;
3072                         atomic_inc(&rdev->nr_pending);
3073                 }
3074                 clear_bit(R5_Insync, &dev->flags);
3075                 if (!rdev)
3076                         /* Not in-sync */;
3077                 else if (test_bit(In_sync, &rdev->flags))
3078                         set_bit(R5_Insync, &dev->flags);
3079                 else {
3080                         /* could be in-sync depending on recovery/reshape status */
3081                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3082                                 set_bit(R5_Insync, &dev->flags);
3083                 }
3084                 if (!test_bit(R5_Insync, &dev->flags)) {
3085                         /* The ReadError flag will just be confusing now */
3086                         clear_bit(R5_ReadError, &dev->flags);
3087                         clear_bit(R5_ReWrite, &dev->flags);
3088                 }
3089                 if (test_bit(R5_ReadError, &dev->flags))
3090                         clear_bit(R5_Insync, &dev->flags);
3091                 if (!test_bit(R5_Insync, &dev->flags)) {
3092                         s.failed++;
3093                         s.failed_num = i;
3094                 }
3095         }
3096         rcu_read_unlock();
3097
3098         if (unlikely(blocked_rdev)) {
3099                 if (s.syncing || s.expanding || s.expanded ||
3100                     s.to_write || s.written) {
3101                         set_bit(STRIPE_HANDLE, &sh->state);
3102                         goto unlock;
3103                 }
3104                 /* There is nothing for the blocked_rdev to block */
3105                 rdev_dec_pending(blocked_rdev, conf->mddev);
3106                 blocked_rdev = NULL;
3107         }
3108
3109         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3110                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3111                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3112         }
3113
3114         pr_debug("locked=%d uptodate=%d to_read=%d"
3115                 " to_write=%d failed=%d failed_num=%d\n",
3116                 s.locked, s.uptodate, s.to_read, s.to_write,
3117                 s.failed, s.failed_num);
3118         /* check if the array has lost two devices and, if so, some requests might
3119          * need to be failed
3120          */
3121         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3122                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3123         if (s.failed > 1 && s.syncing) {
3124                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3125                 clear_bit(STRIPE_SYNCING, &sh->state);
3126                 s.syncing = 0;
3127         }
3128
3129         /* might be able to return some write requests if the parity block
3130          * is safe, or on a failed drive
3131          */
3132         dev = &sh->dev[sh->pd_idx];
3133         if ( s.written &&
3134              ((test_bit(R5_Insync, &dev->flags) &&
3135                !test_bit(R5_LOCKED, &dev->flags) &&
3136                test_bit(R5_UPTODATE, &dev->flags)) ||
3137                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3138                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3139
3140         /* Now we might consider reading some blocks, either to check/generate
3141          * parity, or to satisfy requests
3142          * or to load a block that is being partially written.
3143          */
3144         if (s.to_read || s.non_overwrite ||
3145             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3146                 handle_stripe_fill5(sh, &s, disks);
3147
3148         /* Now we check to see if any write operations have recently
3149          * completed
3150          */
3151         prexor = 0;
3152         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3153                 prexor = 1;
3154         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3155             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3156                 sh->reconstruct_state = reconstruct_state_idle;
3157
3158                 /* All the 'written' buffers and the parity block are ready to
3159                  * be written back to disk
3160                  */
3161                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3162                 for (i = disks; i--; ) {
3163                         dev = &sh->dev[i];
3164                         if (test_bit(R5_LOCKED, &dev->flags) &&
3165                                 (i == sh->pd_idx || dev->written)) {
3166                                 pr_debug("Writing block %d\n", i);
3167                                 set_bit(R5_Wantwrite, &dev->flags);
3168                                 if (prexor)
3169                                         continue;
3170                                 if (!test_bit(R5_Insync, &dev->flags) ||
3171                                     (i == sh->pd_idx && s.failed == 0))
3172                                         set_bit(STRIPE_INSYNC, &sh->state);
3173                         }
3174                 }
3175                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3176                         dec_preread_active = 1;
3177         }
3178
3179         /* Now to consider new write requests and what else, if anything
3180          * should be read.  We do not handle new writes when:
3181          * 1/ A 'write' operation (copy+xor) is already in flight.
3182          * 2/ A 'check' operation is in flight, as it may clobber the parity
3183          *    block.
3184          */
3185         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3186                 handle_stripe_dirtying5(conf, sh, &s, disks);
3187
3188         /* maybe we need to check and possibly fix the parity for this stripe
3189          * Any reads will already have been scheduled, so we just see if enough
3190          * data is available.  The parity check is held off while parity
3191          * dependent operations are in flight.
3192          */
3193         if (sh->check_state ||
3194             (s.syncing && s.locked == 0 &&
3195              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3196              !test_bit(STRIPE_INSYNC, &sh->state)))
3197                 handle_parity_checks5(conf, sh, &s, disks);
3198
3199         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3200                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3201                 clear_bit(STRIPE_SYNCING, &sh->state);
3202         }
3203
3204         /* If the failed drive is just a ReadError, then we might need to progress
3205          * the repair/check process
3206          */
3207         if (s.failed == 1 && !conf->mddev->ro &&
3208             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3209             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3210             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3211                 ) {
3212                 dev = &sh->dev[s.failed_num];
3213                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3214                         set_bit(R5_Wantwrite, &dev->flags);
3215                         set_bit(R5_ReWrite, &dev->flags);
3216                         set_bit(R5_LOCKED, &dev->flags);
3217                         s.locked++;
3218                 } else {
3219                         /* let's read it back */
3220                         set_bit(R5_Wantread, &dev->flags);
3221                         set_bit(R5_LOCKED, &dev->flags);
3222                         s.locked++;
3223                 }
3224         }
3225
3226         /* Finish reconstruct operations initiated by the expansion process */
3227         if (sh->reconstruct_state == reconstruct_state_result) {
3228                 struct stripe_head *sh2
3229                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3230                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3231                         /* sh cannot be written until sh2 has been read.
3232                          * so arrange for sh to be delayed a little
3233                          */
3234                         set_bit(STRIPE_DELAYED, &sh->state);
3235                         set_bit(STRIPE_HANDLE, &sh->state);
3236                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3237                                               &sh2->state))
3238                                 atomic_inc(&conf->preread_active_stripes);
3239                         release_stripe(sh2);
3240                         goto unlock;
3241                 }
3242                 if (sh2)
3243                         release_stripe(sh2);
3244
3245                 sh->reconstruct_state = reconstruct_state_idle;
3246                 clear_bit(STRIPE_EXPANDING, &sh->state);
3247                 for (i = conf->raid_disks; i--; ) {
3248                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3249                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3250                         s.locked++;
3251                 }
3252         }
3253
3254         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3255             !sh->reconstruct_state) {
3256                 /* Need to write out all blocks after computing parity */
3257                 sh->disks = conf->raid_disks;
3258                 stripe_set_idx(sh->sector, conf, 0, sh);
3259                 schedule_reconstruction(sh, &s, 1, 1);
3260         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3261                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3262                 atomic_dec(&conf->reshape_stripes);
3263                 wake_up(&conf->wait_for_overlap);
3264                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3265         }
3266
3267         if (s.expanding && s.locked == 0 &&
3268             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3269                 handle_stripe_expansion(conf, sh, NULL);
3270
3271  unlock:
3272         spin_unlock(&sh->lock);
3273
3274         /* wait for this device to become unblocked */
3275         if (unlikely(blocked_rdev))
3276                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3277
3278         if (s.ops_request)
3279                 raid_run_ops(sh, s.ops_request);
3280
3281         ops_run_io(sh, &s);
3282
3283         if (dec_preread_active) {
3284                 /* We delay this until after ops_run_io so that if make_request
3285                  * is waiting on a flush, it won't continue until the writes
3286                  * have actually been submitted.
3287                  */
3288                 atomic_dec(&conf->preread_active_stripes);
3289                 if (atomic_read(&conf->preread_active_stripes) <
3290                     IO_THRESHOLD)
3291                         md_wakeup_thread(conf->mddev->thread);
3292         }
3293         return_io(return_bi);
3294 }
3295
3296 static void handle_stripe6(struct stripe_head *sh)
3297 {
3298         raid5_conf_t *conf = sh->raid_conf;
3299         int disks = sh->disks;
3300         struct bio *return_bi = NULL;
3301         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3302         struct stripe_head_state s;
3303         struct r6_state r6s;
3304         struct r5dev *dev, *pdev, *qdev;
3305         mdk_rdev_t *blocked_rdev = NULL;
3306         int dec_preread_active = 0;
3307
3308         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3309                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3310                (unsigned long long)sh->sector, sh->state,
3311                atomic_read(&sh->count), pd_idx, qd_idx,
3312                sh->check_state, sh->reconstruct_state);
3313         memset(&s, 0, sizeof(s));
3314
3315         spin_lock(&sh->lock);
3316         clear_bit(STRIPE_HANDLE, &sh->state);
3317         clear_bit(STRIPE_DELAYED, &sh->state);
3318
3319         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3320         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3321         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3322         /* Now to look around and see what can be done */
3323
3324         rcu_read_lock();
3325         for (i=disks; i--; ) {
3326                 mdk_rdev_t *rdev;
3327                 dev = &sh->dev[i];
3328
3329                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3330                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3331                 /* maybe we can reply to a read
3332                  *
3333                  * new wantfill requests are only permitted while
3334                  * ops_complete_biofill is guaranteed to be inactive
3335                  */
3336                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3337                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3338                         set_bit(R5_Wantfill, &dev->flags);
3339
3340                 /* now count some things */
3341                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3342                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3343                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3344                         s.compute++;
3345                         BUG_ON(s.compute > 2);
3346                 }
3347
3348                 if (test_bit(R5_Wantfill, &dev->flags)) {
3349                         s.to_fill++;
3350                 } else if (dev->toread)
3351                         s.to_read++;
3352                 if (dev->towrite) {
3353                         s.to_write++;
3354                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3355                                 s.non_overwrite++;
3356                 }
3357                 if (dev->written)
3358                         s.written++;
3359                 rdev = rcu_dereference(conf->disks[i].rdev);
3360                 if (blocked_rdev == NULL &&
3361                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3362                         blocked_rdev = rdev;
3363                         atomic_inc(&rdev->nr_pending);
3364                 }
3365                 clear_bit(R5_Insync, &dev->flags);
3366                 if (!rdev)
3367                         /* Not in-sync */;
3368                 else if (test_bit(In_sync, &rdev->flags))
3369                         set_bit(R5_Insync, &dev->flags);
3370                 else {
3371                         /* in sync if before recovery_offset */
3372                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3373                                 set_bit(R5_Insync, &dev->flags);
3374                 }
3375                 if (!test_bit(R5_Insync, &dev->flags)) {
3376                         /* The ReadError flag will just be confusing now */
3377                         clear_bit(R5_ReadError, &dev->flags);
3378                         clear_bit(R5_ReWrite, &dev->flags);
3379                 }
3380                 if (test_bit(R5_ReadError, &dev->flags))
3381                         clear_bit(R5_Insync, &dev->flags);
3382                 if (!test_bit(R5_Insync, &dev->flags)) {
3383                         if (s.failed < 2)
3384                                 r6s.failed_num[s.failed] = i;
3385                         s.failed++;
3386                 }
3387         }
3388         rcu_read_unlock();
3389
3390         if (unlikely(blocked_rdev)) {
3391                 if (s.syncing || s.expanding || s.expanded ||
3392                     s.to_write || s.written) {
3393                         set_bit(STRIPE_HANDLE, &sh->state);
3394                         goto unlock;
3395                 }
3396                 /* There is nothing for the blocked_rdev to block */
3397                 rdev_dec_pending(blocked_rdev, conf->mddev);
3398                 blocked_rdev = NULL;
3399         }
3400
3401         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3402                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3403                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3404         }
3405
3406         pr_debug("locked=%d uptodate=%d to_read=%d"
3407                " to_write=%d failed=%d failed_num=%d,%d\n",
3408                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3409                r6s.failed_num[0], r6s.failed_num[1]);
3410         /* check if the array has lost >2 devices and, if so, some requests
3411          * might need to be failed
3412          */
3413         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3414                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3415         if (s.failed > 2 && s.syncing) {
3416                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3417                 clear_bit(STRIPE_SYNCING, &sh->state);
3418                 s.syncing = 0;
3419         }
3420
3421         /*
3422          * might be able to return some write requests if the parity blocks
3423          * are safe, or on a failed drive
3424          */
3425         pdev = &sh->dev[pd_idx];
3426         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3427                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3428         qdev = &sh->dev[qd_idx];
3429         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3430                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3431
3432         if ( s.written &&
3433              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3434                              && !test_bit(R5_LOCKED, &pdev->flags)
3435                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3436              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3437                              && !test_bit(R5_LOCKED, &qdev->flags)
3438                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3439                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3440
3441         /* Now we might consider reading some blocks, either to check/generate
3442          * parity, or to satisfy requests
3443          * or to load a block that is being partially written.
3444          */
3445         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3446             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3447                 handle_stripe_fill6(sh, &s, &r6s, disks);
3448
3449         /* Now we check to see if any write operations have recently
3450          * completed
3451          */
3452         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3453
3454                 sh->reconstruct_state = reconstruct_state_idle;
3455                 /* All the 'written' buffers and the parity blocks are ready to
3456                  * be written back to disk
3457                  */
3458                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3459                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3460                 for (i = disks; i--; ) {
3461                         dev = &sh->dev[i];
3462                         if (test_bit(R5_LOCKED, &dev->flags) &&
3463                             (i == sh->pd_idx || i == qd_idx ||
3464                              dev->written)) {
3465                                 pr_debug("Writing block %d\n", i);
3466                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3467                                 set_bit(R5_Wantwrite, &dev->flags);
3468                                 if (!test_bit(R5_Insync, &dev->flags) ||
3469                                     ((i == sh->pd_idx || i == qd_idx) &&
3470                                       s.failed == 0))
3471                                         set_bit(STRIPE_INSYNC, &sh->state);
3472                         }
3473                 }
3474                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3475                         dec_preread_active = 1;
3476         }
3477
3478         /* Now to consider new write requests and what else, if anything
3479          * should be read.  We do not handle new writes when:
3480          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3481          * 2/ A 'check' operation is in flight, as it may clobber the parity
3482          *    block.
3483          */
3484         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3485                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3486
3487         /* maybe we need to check and possibly fix the parity for this stripe
3488          * Any reads will already have been scheduled, so we just see if enough
3489          * data is available.  The parity check is held off while parity
3490          * dependent operations are in flight.
3491          */
3492         if (sh->check_state ||
3493             (s.syncing && s.locked == 0 &&
3494              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3495              !test_bit(STRIPE_INSYNC, &sh->state)))
3496                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3497
3498         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3499                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3500                 clear_bit(STRIPE_SYNCING, &sh->state);
3501         }
3502
3503         /* If the failed drives are just a ReadError, then we might need
3504          * to progress the repair/check process
3505          */
3506         if (s.failed <= 2 && !conf->mddev->ro)
3507                 for (i = 0; i < s.failed; i++) {
3508                         dev = &sh->dev[r6s.failed_num[i]];
3509                         if (test_bit(R5_ReadError, &dev->flags)
3510                             && !test_bit(R5_LOCKED, &dev->flags)
3511                             && test_bit(R5_UPTODATE, &dev->flags)
3512                                 ) {
3513                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3514                                         set_bit(R5_Wantwrite, &dev->flags);
3515                                         set_bit(R5_ReWrite, &dev->flags);
3516                                         set_bit(R5_LOCKED, &dev->flags);
3517                                         s.locked++;
3518                                 } else {
3519                                         /* let's read it back */
3520                                         set_bit(R5_Wantread, &dev->flags);
3521                                         set_bit(R5_LOCKED, &dev->flags);
3522                                         s.locked++;
3523                                 }
3524                         }
3525                 }
3526
3527         /* Finish reconstruct operations initiated by the expansion process */
3528         if (sh->reconstruct_state == reconstruct_state_result) {
3529                 sh->reconstruct_state = reconstruct_state_idle;
3530                 clear_bit(STRIPE_EXPANDING, &sh->state);
3531                 for (i = conf->raid_disks; i--; ) {
3532                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3533                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3534                         s.locked++;
3535                 }
3536         }
3537
3538         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3539             !sh->reconstruct_state) {
3540                 struct stripe_head *sh2
3541                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3542                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3543                         /* sh cannot be written until sh2 has been read.
3544                          * so arrange for sh to be delayed a little
3545                          */
3546                         set_bit(STRIPE_DELAYED, &sh->state);
3547                         set_bit(STRIPE_HANDLE, &sh->state);
3548                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3549                                               &sh2->state))
3550                                 atomic_inc(&conf->preread_active_stripes);
3551                         release_stripe(sh2);
3552                         goto unlock;
3553                 }
3554                 if (sh2)
3555                         release_stripe(sh2);
3556
3557                 /* Need to write out all blocks after computing P&Q */
3558                 sh->disks = conf->raid_disks;
3559                 stripe_set_idx(sh->sector, conf, 0, sh);
3560                 schedule_reconstruction(sh, &s, 1, 1);
3561         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3562                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3563                 atomic_dec(&conf->reshape_stripes);
3564                 wake_up(&conf->wait_for_overlap);
3565                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3566         }
3567
3568         if (s.expanding && s.locked == 0 &&
3569             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3570                 handle_stripe_expansion(conf, sh, &r6s);
3571
3572  unlock:
3573         spin_unlock(&sh->lock);
3574
3575         /* wait for this device to become unblocked */
3576         if (unlikely(blocked_rdev))
3577                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3578
3579         if (s.ops_request)
3580                 raid_run_ops(sh, s.ops_request);
3581
3582         ops_run_io(sh, &s);
3583
3584
3585         if (dec_preread_active) {
3586                 /* We delay this until after ops_run_io so that if make_request
3587                  * is waiting on a flush, it won't continue until the writes
3588                  * have actually been submitted.
3589                  */
3590                 atomic_dec(&conf->preread_active_stripes);
3591                 if (atomic_read(&conf->preread_active_stripes) <
3592                     IO_THRESHOLD)
3593                         md_wakeup_thread(conf->mddev->thread);
3594         }
3595
3596         return_io(return_bi);
3597 }
3598
3599 static void handle_stripe(struct stripe_head *sh)
3600 {
3601         if (sh->raid_conf->level == 6)
3602                 handle_stripe6(sh);
3603         else
3604                 handle_stripe5(sh);
3605 }
3606
3607 static void raid5_activate_delayed(raid5_conf_t *conf)
3608 {
3609         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3610                 while (!list_empty(&conf->delayed_list)) {
3611                         struct list_head *l = conf->delayed_list.next;
3612                         struct stripe_head *sh;
3613                         sh = list_entry(l, struct stripe_head, lru);
3614                         list_del_init(l);
3615                         clear_bit(STRIPE_DELAYED, &sh->state);
3616                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3617                                 atomic_inc(&conf->preread_active_stripes);
3618                         list_add_tail(&sh->lru, &conf->hold_list);
3619                 }
3620         }
3621 }
3622
3623 static void activate_bit_delay(raid5_conf_t *conf)
3624 {
3625         /* device_lock is held */
3626         struct list_head head;
3627         list_add(&head, &conf->bitmap_list);
3628         list_del_init(&conf->bitmap_list);
3629         while (!list_empty(&head)) {
3630                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3631                 list_del_init(&sh->lru);
3632                 atomic_inc(&sh->count);
3633                 __release_stripe(conf, sh);
3634         }
3635 }
3636
3637 int md_raid5_congested(mddev_t *mddev, int bits)
3638 {
3639         raid5_conf_t *conf = mddev->private;
3640
3641         /* No difference between reads and writes.  Just check
3642          * how busy the stripe_cache is
3643          */
3644
3645         if (conf->inactive_blocked)
3646                 return 1;
3647         if (conf->quiesce)
3648                 return 1;
3649         if (list_empty_careful(&conf->inactive_list))
3650                 return 1;
3651
3652         return 0;
3653 }
3654 EXPORT_SYMBOL_GPL(md_raid5_congested);
3655
3656 static int raid5_congested(void *data, int bits)
3657 {
3658         mddev_t *mddev = data;
3659
3660         return mddev_congested(mddev, bits) ||
3661                 md_raid5_congested(mddev, bits);
3662 }
3663
3664 /* We want read requests to align with chunks where possible,
3665  * but write requests don't need to.
3666  */
3667 static int raid5_mergeable_bvec(struct request_queue *q,
3668                                 struct bvec_merge_data *bvm,
3669                                 struct bio_vec *biovec)
3670 {
3671         mddev_t *mddev = q->queuedata;
3672         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3673         int max;
3674         unsigned int chunk_sectors = mddev->chunk_sectors;
3675         unsigned int bio_sectors = bvm->bi_size >> 9;
3676
3677         if ((bvm->bi_rw & 1) == WRITE)
3678                 return biovec->bv_len; /* always allow writes to be mergeable */
3679
3680         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3681                 chunk_sectors = mddev->new_chunk_sectors;
3682         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3683         if (max < 0) max = 0;
3684         if (max <= biovec->bv_len && bio_sectors == 0)
3685                 return biovec->bv_len;
3686         else
3687                 return max;
3688 }
3689
3690
3691 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3692 {
3693         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3694         unsigned int chunk_sectors = mddev->chunk_sectors;
3695         unsigned int bio_sectors = bio->bi_size >> 9;
3696
3697         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3698                 chunk_sectors = mddev->new_chunk_sectors;
3699         return  chunk_sectors >=
3700                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3701 }
3702
3703 /*
3704  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3705  *  later sampled by raid5d.
3706  */
3707 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3708 {
3709         unsigned long flags;
3710
3711         spin_lock_irqsave(&conf->device_lock, flags);
3712
3713         bi->bi_next = conf->retry_read_aligned_list;
3714         conf->retry_read_aligned_list = bi;
3715
3716         spin_unlock_irqrestore(&conf->device_lock, flags);
3717         md_wakeup_thread(conf->mddev->thread);
3718 }
3719
3720
3721 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3722 {
3723         struct bio *bi;
3724
3725         bi = conf->retry_read_aligned;
3726         if (bi) {
3727                 conf->retry_read_aligned = NULL;
3728                 return bi;
3729         }
3730         bi = conf->retry_read_aligned_list;
3731         if(bi) {
3732                 conf->retry_read_aligned_list = bi->bi_next;
3733                 bi->bi_next = NULL;
3734                 /*
3735                  * this sets the active strip count to 1 and the processed
3736                  * strip count to zero (upper 8 bits)
3737                  */
3738                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3739         }
3740
3741         return bi;
3742 }
3743
3744
3745 /*
3746  *  The "raid5_align_endio" should check if the read succeeded and if it
3747  *  did, call bio_endio on the original bio (having bio_put the new bio
3748  *  first).
3749  *  If the read failed..
3750  */
3751 static void raid5_align_endio(struct bio *bi, int error)
3752 {
3753         struct bio* raid_bi  = bi->bi_private;
3754         mddev_t *mddev;
3755         raid5_conf_t *conf;
3756         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3757         mdk_rdev_t *rdev;
3758
3759         bio_put(bi);
3760
3761         rdev = (void*)raid_bi->bi_next;
3762         raid_bi->bi_next = NULL;
3763         mddev = rdev->mddev;
3764         conf = mddev->private;
3765
3766         rdev_dec_pending(rdev, conf->mddev);
3767
3768         if (!error && uptodate) {
3769                 bio_endio(raid_bi, 0);
3770                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3771                         wake_up(&conf->wait_for_stripe);
3772                 return;
3773         }
3774
3775
3776         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3777
3778         add_bio_to_retry(raid_bi, conf);
3779 }
3780
3781 static int bio_fits_rdev(struct bio *bi)
3782 {
3783         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3784
3785         if ((bi->bi_size>>9) > queue_max_sectors(q))
3786                 return 0;
3787         blk_recount_segments(q, bi);
3788         if (bi->bi_phys_segments > queue_max_segments(q))
3789                 return 0;
3790
3791         if (q->merge_bvec_fn)
3792                 /* it's too hard to apply the merge_bvec_fn at this stage,
3793                  * just just give up
3794                  */
3795                 return 0;
3796
3797         return 1;
3798 }
3799
3800
3801 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3802 {
3803         raid5_conf_t *conf = mddev->private;
3804         int dd_idx;
3805         struct bio* align_bi;
3806         mdk_rdev_t *rdev;
3807
3808         if (!in_chunk_boundary(mddev, raid_bio)) {
3809                 pr_debug("chunk_aligned_read : non aligned\n");
3810                 return 0;
3811         }
3812         /*
3813          * use bio_clone_mddev to make a copy of the bio
3814          */
3815         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3816         if (!align_bi)
3817                 return 0;
3818         /*
3819          *   set bi_end_io to a new function, and set bi_private to the
3820          *     original bio.
3821          */
3822         align_bi->bi_end_io  = raid5_align_endio;
3823         align_bi->bi_private = raid_bio;
3824         /*
3825          *      compute position
3826          */
3827         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3828                                                     0,
3829                                                     &dd_idx, NULL);
3830
3831         rcu_read_lock();
3832         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3833         if (rdev && test_bit(In_sync, &rdev->flags)) {
3834                 atomic_inc(&rdev->nr_pending);
3835                 rcu_read_unlock();
3836                 raid_bio->bi_next = (void*)rdev;
3837                 align_bi->bi_bdev =  rdev->bdev;
3838                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3839                 align_bi->bi_sector += rdev->data_offset;
3840
3841                 if (!bio_fits_rdev(align_bi)) {
3842                         /* too big in some way */
3843                         bio_put(align_bi);
3844                         rdev_dec_pending(rdev, mddev);
3845                         return 0;
3846                 }
3847
3848                 spin_lock_irq(&conf->device_lock);
3849                 wait_event_lock_irq(conf->wait_for_stripe,
3850                                     conf->quiesce == 0,
3851                                     conf->device_lock, /* nothing */);
3852                 atomic_inc(&conf->active_aligned_reads);
3853                 spin_unlock_irq(&conf->device_lock);
3854
3855                 generic_make_request(align_bi);
3856                 return 1;
3857         } else {
3858                 rcu_read_unlock();
3859                 bio_put(align_bi);
3860                 return 0;
3861         }
3862 }
3863
3864 /* __get_priority_stripe - get the next stripe to process
3865  *
3866  * Full stripe writes are allowed to pass preread active stripes up until
3867  * the bypass_threshold is exceeded.  In general the bypass_count
3868  * increments when the handle_list is handled before the hold_list; however, it
3869  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3870  * stripe with in flight i/o.  The bypass_count will be reset when the
3871  * head of the hold_list has changed, i.e. the head was promoted to the
3872  * handle_list.
3873  */
3874 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3875 {
3876         struct stripe_head *sh;
3877
3878         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3879                   __func__,
3880                   list_empty(&conf->handle_list) ? "empty" : "busy",
3881                   list_empty(&conf->hold_list) ? "empty" : "busy",
3882                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3883
3884         if (!list_empty(&conf->handle_list)) {
3885                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3886
3887                 if (list_empty(&conf->hold_list))
3888                         conf->bypass_count = 0;
3889                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3890                         if (conf->hold_list.next == conf->last_hold)
3891                                 conf->bypass_count++;
3892                         else {
3893                                 conf->last_hold = conf->hold_list.next;
3894                                 conf->bypass_count -= conf->bypass_threshold;
3895                                 if (conf->bypass_count < 0)
3896                                         conf->bypass_count = 0;
3897                         }
3898                 }
3899         } else if (!list_empty(&conf->hold_list) &&
3900                    ((conf->bypass_threshold &&
3901                      conf->bypass_count > conf->bypass_threshold) ||
3902                     atomic_read(&conf->pending_full_writes) == 0)) {
3903                 sh = list_entry(conf->hold_list.next,
3904                                 typeof(*sh), lru);
3905                 conf->bypass_count -= conf->bypass_threshold;
3906                 if (conf->bypass_count < 0)
3907                         conf->bypass_count = 0;
3908         } else
3909                 return NULL;
3910
3911         list_del_init(&sh->lru);
3912         atomic_inc(&sh->count);
3913         BUG_ON(atomic_read(&sh->count) != 1);
3914         return sh;
3915 }
3916
3917 static int make_request(mddev_t *mddev, struct bio * bi)
3918 {
3919         raid5_conf_t *conf = mddev->private;
3920         int dd_idx;
3921         sector_t new_sector;
3922         sector_t logical_sector, last_sector;
3923         struct stripe_head *sh;
3924         const int rw = bio_data_dir(bi);
3925         int remaining;
3926         int plugged;
3927
3928         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3929                 md_flush_request(mddev, bi);
3930                 return 0;
3931         }
3932
3933         md_write_start(mddev, bi);
3934
3935         if (rw == READ &&
3936              mddev->reshape_position == MaxSector &&
3937              chunk_aligned_read(mddev,bi))
3938                 return 0;
3939
3940         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3941         last_sector = bi->bi_sector + (bi->bi_size>>9);
3942         bi->bi_next = NULL;
3943         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3944
3945         plugged = mddev_check_plugged(mddev);
3946         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3947                 DEFINE_WAIT(w);
3948                 int disks, data_disks;
3949                 int previous;
3950
3951         retry:
3952                 previous = 0;
3953                 disks = conf->raid_disks;
3954                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3955                 if (unlikely(conf->reshape_progress != MaxSector)) {
3956                         /* spinlock is needed as reshape_progress may be
3957                          * 64bit on a 32bit platform, and so it might be
3958                          * possible to see a half-updated value
3959                          * Of course reshape_progress could change after
3960                          * the lock is dropped, so once we get a reference
3961                          * to the stripe that we think it is, we will have
3962                          * to check again.
3963                          */
3964                         spin_lock_irq(&conf->device_lock);
3965                         if (mddev->delta_disks < 0
3966                             ? logical_sector < conf->reshape_progress
3967                             : logical_sector >= conf->reshape_progress) {
3968                                 disks = conf->previous_raid_disks;
3969                                 previous = 1;
3970                         } else {
3971                                 if (mddev->delta_disks < 0
3972                                     ? logical_sector < conf->reshape_safe
3973                                     : logical_sector >= conf->reshape_safe) {
3974                                         spin_unlock_irq(&conf->device_lock);
3975                                         schedule();
3976                                         goto retry;
3977                                 }
3978                         }
3979                         spin_unlock_irq(&conf->device_lock);
3980                 }
3981                 data_disks = disks - conf->max_degraded;
3982
3983                 new_sector = raid5_compute_sector(conf, logical_sector,
3984                                                   previous,
3985                                                   &dd_idx, NULL);
3986                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3987                         (unsigned long long)new_sector, 
3988                         (unsigned long long)logical_sector);
3989
3990                 sh = get_active_stripe(conf, new_sector, previous,
3991                                        (bi->bi_rw&RWA_MASK), 0);
3992                 if (sh) {
3993                         if (unlikely(previous)) {
3994                                 /* expansion might have moved on while waiting for a
3995                                  * stripe, so we must do the range check again.
3996                                  * Expansion could still move past after this
3997                                  * test, but as we are holding a reference to
3998                                  * 'sh', we know that if that happens,
3999                                  *  STRIPE_EXPANDING will get set and the expansion
4000                                  * won't proceed until we finish with the stripe.
4001                                  */
4002                                 int must_retry = 0;
4003                                 spin_lock_irq(&conf->device_lock);
4004                                 if (mddev->delta_disks < 0
4005                                     ? logical_sector >= conf->reshape_progress
4006                                     : logical_sector < conf->reshape_progress)
4007                                         /* mismatch, need to try again */
4008                                         must_retry = 1;
4009                                 spin_unlock_irq(&conf->device_lock);
4010                                 if (must_retry) {
4011                                         release_stripe(sh);
4012                                         schedule();
4013                                         goto retry;
4014                                 }
4015                         }
4016
4017                         if (rw == WRITE &&
4018                             logical_sector >= mddev->suspend_lo &&
4019                             logical_sector < mddev->suspend_hi) {
4020                                 release_stripe(sh);
4021                                 /* As the suspend_* range is controlled by
4022                                  * userspace, we want an interruptible
4023                                  * wait.
4024                                  */
4025                                 flush_signals(current);
4026                                 prepare_to_wait(&conf->wait_for_overlap,
4027                                                 &w, TASK_INTERRUPTIBLE);
4028                                 if (logical_sector >= mddev->suspend_lo &&
4029                                     logical_sector < mddev->suspend_hi)
4030                                         schedule();
4031                                 goto retry;
4032                         }
4033
4034                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4035                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4036                                 /* Stripe is busy expanding or
4037                                  * add failed due to overlap.  Flush everything
4038                                  * and wait a while
4039                                  */
4040                                 md_wakeup_thread(mddev->thread);
4041                                 release_stripe(sh);
4042                                 schedule();
4043                                 goto retry;
4044                         }
4045                         finish_wait(&conf->wait_for_overlap, &w);
4046                         set_bit(STRIPE_HANDLE, &sh->state);
4047                         clear_bit(STRIPE_DELAYED, &sh->state);
4048                         if ((bi->bi_rw & REQ_SYNC) &&
4049                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4050                                 atomic_inc(&conf->preread_active_stripes);
4051                         release_stripe(sh);
4052                 } else {
4053                         /* cannot get stripe for read-ahead, just give-up */
4054                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4055                         finish_wait(&conf->wait_for_overlap, &w);
4056                         break;
4057                 }
4058                         
4059         }
4060         if (!plugged)
4061                 md_wakeup_thread(mddev->thread);
4062
4063         spin_lock_irq(&conf->device_lock);
4064         remaining = raid5_dec_bi_phys_segments(bi);
4065         spin_unlock_irq(&conf->device_lock);
4066         if (remaining == 0) {
4067
4068                 if ( rw == WRITE )
4069                         md_write_end(mddev);
4070
4071                 bio_endio(bi, 0);
4072         }
4073
4074         return 0;
4075 }
4076
4077 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4078
4079 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4080 {
4081         /* reshaping is quite different to recovery/resync so it is
4082          * handled quite separately ... here.
4083          *
4084          * On each call to sync_request, we gather one chunk worth of
4085          * destination stripes and flag them as expanding.
4086          * Then we find all the source stripes and request reads.
4087          * As the reads complete, handle_stripe will copy the data
4088          * into the destination stripe and release that stripe.
4089          */
4090         raid5_conf_t *conf = mddev->private;
4091         struct stripe_head *sh;
4092         sector_t first_sector, last_sector;
4093         int raid_disks = conf->previous_raid_disks;
4094         int data_disks = raid_disks - conf->max_degraded;
4095         int new_data_disks = conf->raid_disks - conf->max_degraded;
4096         int i;
4097         int dd_idx;
4098         sector_t writepos, readpos, safepos;
4099         sector_t stripe_addr;
4100         int reshape_sectors;
4101         struct list_head stripes;
4102
4103         if (sector_nr == 0) {
4104                 /* If restarting in the middle, skip the initial sectors */
4105                 if (mddev->delta_disks < 0 &&
4106                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4107                         sector_nr = raid5_size(mddev, 0, 0)
4108                                 - conf->reshape_progress;
4109                 } else if (mddev->delta_disks >= 0 &&
4110                            conf->reshape_progress > 0)
4111                         sector_nr = conf->reshape_progress;
4112                 sector_div(sector_nr, new_data_disks);
4113                 if (sector_nr) {
4114                         mddev->curr_resync_completed = sector_nr;
4115                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4116                         *skipped = 1;
4117                         return sector_nr;
4118                 }
4119         }
4120
4121         /* We need to process a full chunk at a time.
4122          * If old and new chunk sizes differ, we need to process the
4123          * largest of these
4124          */
4125         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4126                 reshape_sectors = mddev->new_chunk_sectors;
4127         else
4128                 reshape_sectors = mddev->chunk_sectors;
4129
4130         /* we update the metadata when there is more than 3Meg
4131          * in the block range (that is rather arbitrary, should
4132          * probably be time based) or when the data about to be
4133          * copied would over-write the source of the data at
4134          * the front of the range.
4135          * i.e. one new_stripe along from reshape_progress new_maps
4136          * to after where reshape_safe old_maps to
4137          */
4138         writepos = conf->reshape_progress;
4139         sector_div(writepos, new_data_disks);
4140         readpos = conf->reshape_progress;
4141         sector_div(readpos, data_disks);
4142         safepos = conf->reshape_safe;
4143         sector_div(safepos, data_disks);
4144         if (mddev->delta_disks < 0) {
4145                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4146                 readpos += reshape_sectors;
4147                 safepos += reshape_sectors;
4148         } else {
4149                 writepos += reshape_sectors;
4150                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4151                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4152         }
4153
4154         /* 'writepos' is the most advanced device address we might write.
4155          * 'readpos' is the least advanced device address we might read.
4156          * 'safepos' is the least address recorded in the metadata as having
4157          *     been reshaped.
4158          * If 'readpos' is behind 'writepos', then there is no way that we can
4159          * ensure safety in the face of a crash - that must be done by userspace
4160          * making a backup of the data.  So in that case there is no particular
4161          * rush to update metadata.
4162          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4163          * update the metadata to advance 'safepos' to match 'readpos' so that
4164          * we can be safe in the event of a crash.
4165          * So we insist on updating metadata if safepos is behind writepos and
4166          * readpos is beyond writepos.
4167          * In any case, update the metadata every 10 seconds.
4168          * Maybe that number should be configurable, but I'm not sure it is
4169          * worth it.... maybe it could be a multiple of safemode_delay???
4170          */
4171         if ((mddev->delta_disks < 0
4172              ? (safepos > writepos && readpos < writepos)
4173              : (safepos < writepos && readpos > writepos)) ||
4174             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4175                 /* Cannot proceed until we've updated the superblock... */
4176                 wait_event(conf->wait_for_overlap,
4177                            atomic_read(&conf->reshape_stripes)==0);
4178                 mddev->reshape_position = conf->reshape_progress;
4179                 mddev->curr_resync_completed = sector_nr;
4180                 conf->reshape_checkpoint = jiffies;
4181                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4182                 md_wakeup_thread(mddev->thread);
4183                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4184                            kthread_should_stop());
4185                 spin_lock_irq(&conf->device_lock);
4186                 conf->reshape_safe = mddev->reshape_position;
4187                 spin_unlock_irq(&conf->device_lock);
4188                 wake_up(&conf->wait_for_overlap);
4189                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4190         }
4191
4192         if (mddev->delta_disks < 0) {
4193                 BUG_ON(conf->reshape_progress == 0);
4194                 stripe_addr = writepos;
4195                 BUG_ON((mddev->dev_sectors &
4196                         ~((sector_t)reshape_sectors - 1))
4197                        - reshape_sectors - stripe_addr
4198                        != sector_nr);
4199         } else {
4200                 BUG_ON(writepos != sector_nr + reshape_sectors);
4201                 stripe_addr = sector_nr;
4202         }
4203         INIT_LIST_HEAD(&stripes);
4204         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4205                 int j;
4206                 int skipped_disk = 0;
4207                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4208                 set_bit(STRIPE_EXPANDING, &sh->state);
4209                 atomic_inc(&conf->reshape_stripes);
4210                 /* If any of this stripe is beyond the end of the old
4211                  * array, then we need to zero those blocks
4212                  */
4213                 for (j=sh->disks; j--;) {
4214                         sector_t s;
4215                         if (j == sh->pd_idx)
4216                                 continue;
4217                         if (conf->level == 6 &&
4218                             j == sh->qd_idx)
4219                                 continue;
4220                         s = compute_blocknr(sh, j, 0);
4221                         if (s < raid5_size(mddev, 0, 0)) {
4222                                 skipped_disk = 1;
4223                                 continue;
4224                         }
4225                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4226                         set_bit(R5_Expanded, &sh->dev[j].flags);
4227                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4228                 }
4229                 if (!skipped_disk) {
4230                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4231                         set_bit(STRIPE_HANDLE, &sh->state);
4232                 }
4233                 list_add(&sh->lru, &stripes);
4234         }
4235         spin_lock_irq(&conf->device_lock);
4236         if (mddev->delta_disks < 0)
4237                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4238         else
4239                 conf->reshape_progress += reshape_sectors * new_data_disks;
4240         spin_unlock_irq(&conf->device_lock);
4241         /* Ok, those stripe are ready. We can start scheduling
4242          * reads on the source stripes.
4243          * The source stripes are determined by mapping the first and last
4244          * block on the destination stripes.
4245          */
4246         first_sector =
4247                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4248                                      1, &dd_idx, NULL);
4249         last_sector =
4250                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4251                                             * new_data_disks - 1),
4252                                      1, &dd_idx, NULL);
4253         if (last_sector >= mddev->dev_sectors)
4254                 last_sector = mddev->dev_sectors - 1;
4255         while (first_sector <= last_sector) {
4256                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4257                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4258                 set_bit(STRIPE_HANDLE, &sh->state);
4259                 release_stripe(sh);
4260                 first_sector += STRIPE_SECTORS;
4261         }
4262         /* Now that the sources are clearly marked, we can release
4263          * the destination stripes
4264          */
4265         while (!list_empty(&stripes)) {
4266                 sh = list_entry(stripes.next, struct stripe_head, lru);
4267                 list_del_init(&sh->lru);
4268                 release_stripe(sh);
4269         }
4270         /* If this takes us to the resync_max point where we have to pause,
4271          * then we need to write out the superblock.
4272          */
4273         sector_nr += reshape_sectors;
4274         if ((sector_nr - mddev->curr_resync_completed) * 2
4275             >= mddev->resync_max - mddev->curr_resync_completed) {
4276                 /* Cannot proceed until we've updated the superblock... */
4277                 wait_event(conf->wait_for_overlap,
4278                            atomic_read(&conf->reshape_stripes) == 0);
4279                 mddev->reshape_position = conf->reshape_progress;
4280                 mddev->curr_resync_completed = sector_nr;
4281                 conf->reshape_checkpoint = jiffies;
4282                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4283                 md_wakeup_thread(mddev->thread);
4284                 wait_event(mddev->sb_wait,
4285                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4286                            || kthread_should_stop());
4287                 spin_lock_irq(&conf->device_lock);
4288                 conf->reshape_safe = mddev->reshape_position;
4289                 spin_unlock_irq(&conf->device_lock);
4290                 wake_up(&conf->wait_for_overlap);
4291                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4292         }
4293         return reshape_sectors;
4294 }
4295
4296 /* FIXME go_faster isn't used */
4297 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4298 {
4299         raid5_conf_t *conf = mddev->private;
4300         struct stripe_head *sh;
4301         sector_t max_sector = mddev->dev_sectors;
4302         sector_t sync_blocks;
4303         int still_degraded = 0;
4304         int i;
4305
4306         if (sector_nr >= max_sector) {
4307                 /* just being told to finish up .. nothing much to do */
4308
4309                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4310                         end_reshape(conf);
4311                         return 0;
4312                 }
4313
4314                 if (mddev->curr_resync < max_sector) /* aborted */
4315                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4316                                         &sync_blocks, 1);
4317                 else /* completed sync */
4318                         conf->fullsync = 0;
4319                 bitmap_close_sync(mddev->bitmap);
4320
4321                 return 0;
4322         }
4323
4324         /* Allow raid5_quiesce to complete */
4325         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4326
4327         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4328                 return reshape_request(mddev, sector_nr, skipped);
4329
4330         /* No need to check resync_max as we never do more than one
4331          * stripe, and as resync_max will always be on a chunk boundary,
4332          * if the check in md_do_sync didn't fire, there is no chance
4333          * of overstepping resync_max here
4334          */
4335
4336         /* if there is too many failed drives and we are trying
4337          * to resync, then assert that we are finished, because there is
4338          * nothing we can do.
4339          */
4340         if (mddev->degraded >= conf->max_degraded &&
4341             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4342                 sector_t rv = mddev->dev_sectors - sector_nr;
4343                 *skipped = 1;
4344                 return rv;
4345         }
4346         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4347             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4348             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4349                 /* we can skip this block, and probably more */
4350                 sync_blocks /= STRIPE_SECTORS;
4351                 *skipped = 1;
4352                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4353         }
4354
4355
4356         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4357
4358         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4359         if (sh == NULL) {
4360                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4361                 /* make sure we don't swamp the stripe cache if someone else
4362                  * is trying to get access
4363                  */
4364                 schedule_timeout_uninterruptible(1);
4365         }
4366         /* Need to check if array will still be degraded after recovery/resync
4367          * We don't need to check the 'failed' flag as when that gets set,
4368          * recovery aborts.
4369          */
4370         for (i = 0; i < conf->raid_disks; i++)
4371                 if (conf->disks[i].rdev == NULL)
4372                         still_degraded = 1;
4373
4374         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4375
4376         spin_lock(&sh->lock);
4377         set_bit(STRIPE_SYNCING, &sh->state);
4378         clear_bit(STRIPE_INSYNC, &sh->state);
4379         spin_unlock(&sh->lock);
4380
4381         handle_stripe(sh);
4382         release_stripe(sh);
4383
4384         return STRIPE_SECTORS;
4385 }
4386
4387 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4388 {
4389         /* We may not be able to submit a whole bio at once as there
4390          * may not be enough stripe_heads available.
4391          * We cannot pre-allocate enough stripe_heads as we may need
4392          * more than exist in the cache (if we allow ever large chunks).
4393          * So we do one stripe head at a time and record in
4394          * ->bi_hw_segments how many have been done.
4395          *
4396          * We *know* that this entire raid_bio is in one chunk, so
4397          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4398          */
4399         struct stripe_head *sh;
4400         int dd_idx;
4401         sector_t sector, logical_sector, last_sector;
4402         int scnt = 0;
4403         int remaining;
4404         int handled = 0;
4405
4406         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4407         sector = raid5_compute_sector(conf, logical_sector,
4408                                       0, &dd_idx, NULL);
4409         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4410
4411         for (; logical_sector < last_sector;
4412              logical_sector += STRIPE_SECTORS,
4413                      sector += STRIPE_SECTORS,
4414                      scnt++) {
4415
4416                 if (scnt < raid5_bi_hw_segments(raid_bio))
4417                         /* already done this stripe */
4418                         continue;
4419
4420                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4421
4422                 if (!sh) {
4423                         /* failed to get a stripe - must wait */
4424                         raid5_set_bi_hw_segments(raid_bio, scnt);
4425                         conf->retry_read_aligned = raid_bio;
4426                         return handled;
4427                 }
4428
4429                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4430                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4431                         release_stripe(sh);
4432                         raid5_set_bi_hw_segments(raid_bio, scnt);
4433                         conf->retry_read_aligned = raid_bio;
4434                         return handled;
4435                 }
4436
4437                 handle_stripe(sh);
4438                 release_stripe(sh);
4439                 handled++;
4440         }
4441         spin_lock_irq(&conf->device_lock);
4442         remaining = raid5_dec_bi_phys_segments(raid_bio);
4443         spin_unlock_irq(&conf->device_lock);
4444         if (remaining == 0)
4445                 bio_endio(raid_bio, 0);
4446         if (atomic_dec_and_test(&conf->active_aligned_reads))
4447                 wake_up(&conf->wait_for_stripe);
4448         return handled;
4449 }
4450
4451
4452 /*
4453  * This is our raid5 kernel thread.
4454  *
4455  * We scan the hash table for stripes which can be handled now.
4456  * During the scan, completed stripes are saved for us by the interrupt
4457  * handler, so that they will not have to wait for our next wakeup.
4458  */
4459 static void raid5d(mddev_t *mddev)
4460 {
4461         struct stripe_head *sh;
4462         raid5_conf_t *conf = mddev->private;
4463         int handled;
4464         struct blk_plug plug;
4465
4466         pr_debug("+++ raid5d active\n");
4467
4468         md_check_recovery(mddev);
4469
4470         blk_start_plug(&plug);
4471         handled = 0;
4472         spin_lock_irq(&conf->device_lock);
4473         while (1) {
4474                 struct bio *bio;
4475
4476                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4477                     !list_empty(&conf->bitmap_list)) {
4478                         /* Now is a good time to flush some bitmap updates */
4479                         conf->seq_flush++;
4480                         spin_unlock_irq(&conf->device_lock);
4481                         bitmap_unplug(mddev->bitmap);
4482                         spin_lock_irq(&conf->device_lock);
4483                         conf->seq_write = conf->seq_flush;
4484                         activate_bit_delay(conf);
4485                 }
4486                 if (atomic_read(&mddev->plug_cnt) == 0)
4487                         raid5_activate_delayed(conf);
4488
4489                 while ((bio = remove_bio_from_retry(conf))) {
4490                         int ok;
4491                         spin_unlock_irq(&conf->device_lock);
4492                         ok = retry_aligned_read(conf, bio);
4493                         spin_lock_irq(&conf->device_lock);
4494                         if (!ok)
4495                                 break;
4496                         handled++;
4497                 }
4498
4499                 sh = __get_priority_stripe(conf);
4500
4501                 if (!sh)
4502                         break;
4503                 spin_unlock_irq(&conf->device_lock);
4504                 
4505                 handled++;
4506                 handle_stripe(sh);
4507                 release_stripe(sh);
4508                 cond_resched();
4509
4510                 spin_lock_irq(&conf->device_lock);
4511         }
4512         pr_debug("%d stripes handled\n", handled);
4513
4514         spin_unlock_irq(&conf->device_lock);
4515
4516         async_tx_issue_pending_all();
4517         blk_finish_plug(&plug);
4518
4519         pr_debug("--- raid5d inactive\n");
4520 }
4521
4522 static ssize_t
4523 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4524 {
4525         raid5_conf_t *conf = mddev->private;
4526         if (conf)
4527                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4528         else
4529                 return 0;
4530 }
4531
4532 int
4533 raid5_set_cache_size(mddev_t *mddev, int size)
4534 {
4535         raid5_conf_t *conf = mddev->private;
4536         int err;
4537
4538         if (size <= 16 || size > 32768)
4539                 return -EINVAL;
4540         while (size < conf->max_nr_stripes) {
4541                 if (drop_one_stripe(conf))
4542                         conf->max_nr_stripes--;
4543                 else
4544                         break;
4545         }
4546         err = md_allow_write(mddev);
4547         if (err)
4548                 return err;
4549         while (size > conf->max_nr_stripes) {
4550                 if (grow_one_stripe(conf))
4551                         conf->max_nr_stripes++;
4552                 else break;
4553         }
4554         return 0;
4555 }
4556 EXPORT_SYMBOL(raid5_set_cache_size);
4557
4558 static ssize_t
4559 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4560 {
4561         raid5_conf_t *conf = mddev->private;
4562         unsigned long new;
4563         int err;
4564
4565         if (len >= PAGE_SIZE)
4566                 return -EINVAL;
4567         if (!conf)
4568                 return -ENODEV;
4569
4570         if (strict_strtoul(page, 10, &new))
4571                 return -EINVAL;
4572         err = raid5_set_cache_size(mddev, new);
4573         if (err)
4574                 return err;
4575         return len;
4576 }
4577
4578 static struct md_sysfs_entry
4579 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4580                                 raid5_show_stripe_cache_size,
4581                                 raid5_store_stripe_cache_size);
4582
4583 static ssize_t
4584 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4585 {
4586         raid5_conf_t *conf = mddev->private;
4587         if (conf)
4588                 return sprintf(page, "%d\n", conf->bypass_threshold);
4589         else
4590                 return 0;
4591 }
4592
4593 static ssize_t
4594 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4595 {
4596         raid5_conf_t *conf = mddev->private;
4597         unsigned long new;
4598         if (len >= PAGE_SIZE)
4599                 return -EINVAL;
4600         if (!conf)
4601                 return -ENODEV;
4602
4603         if (strict_strtoul(page, 10, &new))
4604                 return -EINVAL;
4605         if (new > conf->max_nr_stripes)
4606                 return -EINVAL;
4607         conf->bypass_threshold = new;
4608         return len;
4609 }
4610
4611 static struct md_sysfs_entry
4612 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4613                                         S_IRUGO | S_IWUSR,
4614                                         raid5_show_preread_threshold,
4615                                         raid5_store_preread_threshold);
4616
4617 static ssize_t
4618 stripe_cache_active_show(mddev_t *mddev, char *page)
4619 {
4620         raid5_conf_t *conf = mddev->private;
4621         if (conf)
4622                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4623         else
4624                 return 0;
4625 }
4626
4627 static struct md_sysfs_entry
4628 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4629
4630 static struct attribute *raid5_attrs[] =  {
4631         &raid5_stripecache_size.attr,
4632         &raid5_stripecache_active.attr,
4633         &raid5_preread_bypass_threshold.attr,
4634         NULL,
4635 };
4636 static struct attribute_group raid5_attrs_group = {
4637         .name = NULL,
4638         .attrs = raid5_attrs,
4639 };
4640
4641 static sector_t
4642 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4643 {
4644         raid5_conf_t *conf = mddev->private;
4645
4646         if (!sectors)
4647                 sectors = mddev->dev_sectors;
4648         if (!raid_disks)
4649                 /* size is defined by the smallest of previous and new size */
4650                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4651
4652         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4653         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4654         return sectors * (raid_disks - conf->max_degraded);
4655 }
4656
4657 static void raid5_free_percpu(raid5_conf_t *conf)
4658 {
4659         struct raid5_percpu *percpu;
4660         unsigned long cpu;
4661
4662         if (!conf->percpu)
4663                 return;
4664
4665         get_online_cpus();
4666         for_each_possible_cpu(cpu) {
4667                 percpu = per_cpu_ptr(conf->percpu, cpu);
4668                 safe_put_page(percpu->spare_page);
4669                 kfree(percpu->scribble);
4670         }
4671 #ifdef CONFIG_HOTPLUG_CPU
4672         unregister_cpu_notifier(&conf->cpu_notify);
4673 #endif
4674         put_online_cpus();
4675
4676         free_percpu(conf->percpu);
4677 }
4678
4679 static void free_conf(raid5_conf_t *conf)
4680 {
4681         shrink_stripes(conf);
4682         raid5_free_percpu(conf);
4683         kfree(conf->disks);
4684         kfree(conf->stripe_hashtbl);
4685         kfree(conf);
4686 }
4687
4688 #ifdef CONFIG_HOTPLUG_CPU
4689 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4690                               void *hcpu)
4691 {
4692         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4693         long cpu = (long)hcpu;
4694         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4695
4696         switch (action) {
4697         case CPU_UP_PREPARE:
4698         case CPU_UP_PREPARE_FROZEN:
4699                 if (conf->level == 6 && !percpu->spare_page)
4700                         percpu->spare_page = alloc_page(GFP_KERNEL);
4701                 if (!percpu->scribble)
4702                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4703
4704                 if (!percpu->scribble ||
4705                     (conf->level == 6 && !percpu->spare_page)) {
4706                         safe_put_page(percpu->spare_page);
4707                         kfree(percpu->scribble);
4708                         pr_err("%s: failed memory allocation for cpu%ld\n",
4709                                __func__, cpu);
4710                         return notifier_from_errno(-ENOMEM);
4711                 }
4712                 break;
4713         case CPU_DEAD:
4714         case CPU_DEAD_FROZEN:
4715                 safe_put_page(percpu->spare_page);
4716                 kfree(percpu->scribble);
4717                 percpu->spare_page = NULL;
4718                 percpu->scribble = NULL;
4719                 break;
4720         default:
4721                 break;
4722         }
4723         return NOTIFY_OK;
4724 }
4725 #endif
4726
4727 static int raid5_alloc_percpu(raid5_conf_t *conf)
4728 {
4729         unsigned long cpu;
4730         struct page *spare_page;
4731         struct raid5_percpu __percpu *allcpus;
4732         void *scribble;
4733         int err;
4734
4735         allcpus = alloc_percpu(struct raid5_percpu);
4736         if (!allcpus)
4737                 return -ENOMEM;
4738         conf->percpu = allcpus;
4739
4740         get_online_cpus();
4741         err = 0;
4742         for_each_present_cpu(cpu) {
4743                 if (conf->level == 6) {
4744                         spare_page = alloc_page(GFP_KERNEL);
4745                         if (!spare_page) {
4746                                 err = -ENOMEM;
4747                                 break;
4748                         }
4749                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4750                 }
4751                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4752                 if (!scribble) {
4753                         err = -ENOMEM;
4754                         break;
4755                 }
4756                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4757         }
4758 #ifdef CONFIG_HOTPLUG_CPU
4759         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4760         conf->cpu_notify.priority = 0;
4761         if (err == 0)
4762                 err = register_cpu_notifier(&conf->cpu_notify);
4763 #endif
4764         put_online_cpus();
4765
4766         return err;
4767 }
4768
4769 static raid5_conf_t *setup_conf(mddev_t *mddev)
4770 {
4771         raid5_conf_t *conf;
4772         int raid_disk, memory, max_disks;
4773         mdk_rdev_t *rdev;
4774         struct disk_info *disk;
4775
4776         if (mddev->new_level != 5
4777             && mddev->new_level != 4
4778             && mddev->new_level != 6) {
4779                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4780                        mdname(mddev), mddev->new_level);
4781                 return ERR_PTR(-EIO);
4782         }
4783         if ((mddev->new_level == 5
4784              && !algorithm_valid_raid5(mddev->new_layout)) ||
4785             (mddev->new_level == 6
4786              && !algorithm_valid_raid6(mddev->new_layout))) {
4787                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4788                        mdname(mddev), mddev->new_layout);
4789                 return ERR_PTR(-EIO);
4790         }
4791         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4792                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4793                        mdname(mddev), mddev->raid_disks);
4794                 return ERR_PTR(-EINVAL);
4795         }
4796
4797         if (!mddev->new_chunk_sectors ||
4798             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4799             !is_power_of_2(mddev->new_chunk_sectors)) {
4800                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4801                        mdname(mddev), mddev->new_chunk_sectors << 9);
4802                 return ERR_PTR(-EINVAL);
4803         }
4804
4805         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4806         if (conf == NULL)
4807                 goto abort;
4808         spin_lock_init(&conf->device_lock);
4809         init_waitqueue_head(&conf->wait_for_stripe);
4810         init_waitqueue_head(&conf->wait_for_overlap);
4811         INIT_LIST_HEAD(&conf->handle_list);
4812         INIT_LIST_HEAD(&conf->hold_list);
4813         INIT_LIST_HEAD(&conf->delayed_list);
4814         INIT_LIST_HEAD(&conf->bitmap_list);
4815         INIT_LIST_HEAD(&conf->inactive_list);
4816         atomic_set(&conf->active_stripes, 0);
4817         atomic_set(&conf->preread_active_stripes, 0);
4818         atomic_set(&conf->active_aligned_reads, 0);
4819         conf->bypass_threshold = BYPASS_THRESHOLD;
4820
4821         conf->raid_disks = mddev->raid_disks;
4822         if (mddev->reshape_position == MaxSector)
4823                 conf->previous_raid_disks = mddev->raid_disks;
4824         else
4825                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4826         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4827         conf->scribble_len = scribble_len(max_disks);
4828
4829         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4830                               GFP_KERNEL);
4831         if (!conf->disks)
4832                 goto abort;
4833
4834         conf->mddev = mddev;
4835
4836         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4837                 goto abort;
4838
4839         conf->level = mddev->new_level;
4840         if (raid5_alloc_percpu(conf) != 0)
4841                 goto abort;
4842
4843         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4844
4845         list_for_each_entry(rdev, &mddev->disks, same_set) {
4846                 raid_disk = rdev->raid_disk;
4847                 if (raid_disk >= max_disks
4848                     || raid_disk < 0)
4849                         continue;
4850                 disk = conf->disks + raid_disk;
4851
4852                 disk->rdev = rdev;
4853
4854                 if (test_bit(In_sync, &rdev->flags)) {
4855                         char b[BDEVNAME_SIZE];
4856                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4857                                " disk %d\n",
4858                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4859                 } else if (rdev->saved_raid_disk != raid_disk)
4860                         /* Cannot rely on bitmap to complete recovery */
4861                         conf->fullsync = 1;
4862         }
4863
4864         conf->chunk_sectors = mddev->new_chunk_sectors;
4865         conf->level = mddev->new_level;
4866         if (conf->level == 6)
4867                 conf->max_degraded = 2;
4868         else
4869                 conf->max_degraded = 1;
4870         conf->algorithm = mddev->new_layout;
4871         conf->max_nr_stripes = NR_STRIPES;
4872         conf->reshape_progress = mddev->reshape_position;
4873         if (conf->reshape_progress != MaxSector) {
4874                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4875                 conf->prev_algo = mddev->layout;
4876         }
4877
4878         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4879                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4880         if (grow_stripes(conf, conf->max_nr_stripes)) {
4881                 printk(KERN_ERR
4882                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4883                        mdname(mddev), memory);
4884                 goto abort;
4885         } else
4886                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4887                        mdname(mddev), memory);
4888
4889         conf->thread = md_register_thread(raid5d, mddev, NULL);
4890         if (!conf->thread) {
4891                 printk(KERN_ERR
4892                        "md/raid:%s: couldn't allocate thread.\n",
4893                        mdname(mddev));
4894                 goto abort;
4895         }
4896
4897         return conf;
4898
4899  abort:
4900         if (conf) {
4901                 free_conf(conf);
4902                 return ERR_PTR(-EIO);
4903         } else
4904                 return ERR_PTR(-ENOMEM);
4905 }
4906
4907
4908 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4909 {
4910         switch (algo) {
4911         case ALGORITHM_PARITY_0:
4912                 if (raid_disk < max_degraded)
4913                         return 1;
4914                 break;
4915         case ALGORITHM_PARITY_N:
4916                 if (raid_disk >= raid_disks - max_degraded)
4917                         return 1;
4918                 break;
4919         case ALGORITHM_PARITY_0_6:
4920                 if (raid_disk == 0 || 
4921                     raid_disk == raid_disks - 1)
4922                         return 1;
4923                 break;
4924         case ALGORITHM_LEFT_ASYMMETRIC_6:
4925         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4926         case ALGORITHM_LEFT_SYMMETRIC_6:
4927         case ALGORITHM_RIGHT_SYMMETRIC_6:
4928                 if (raid_disk == raid_disks - 1)
4929                         return 1;
4930         }
4931         return 0;
4932 }
4933
4934 static int run(mddev_t *mddev)
4935 {
4936         raid5_conf_t *conf;
4937         int working_disks = 0;
4938         int dirty_parity_disks = 0;
4939         mdk_rdev_t *rdev;
4940         sector_t reshape_offset = 0;
4941
4942         if (mddev->recovery_cp != MaxSector)
4943                 printk(KERN_NOTICE "md/raid:%s: not clean"
4944                        " -- starting background reconstruction\n",
4945                        mdname(mddev));
4946         if (mddev->reshape_position != MaxSector) {
4947                 /* Check that we can continue the reshape.
4948                  * Currently only disks can change, it must
4949                  * increase, and we must be past the point where
4950                  * a stripe over-writes itself
4951                  */
4952                 sector_t here_new, here_old;
4953                 int old_disks;
4954                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4955
4956                 if (mddev->new_level != mddev->level) {
4957                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4958                                "required - aborting.\n",
4959                                mdname(mddev));
4960                         return -EINVAL;
4961                 }
4962                 old_disks = mddev->raid_disks - mddev->delta_disks;
4963                 /* reshape_position must be on a new-stripe boundary, and one
4964                  * further up in new geometry must map after here in old
4965                  * geometry.
4966                  */
4967                 here_new = mddev->reshape_position;
4968                 if (sector_div(here_new, mddev->new_chunk_sectors *
4969                                (mddev->raid_disks - max_degraded))) {
4970                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4971                                "on a stripe boundary\n", mdname(mddev));
4972                         return -EINVAL;
4973                 }
4974                 reshape_offset = here_new * mddev->new_chunk_sectors;
4975                 /* here_new is the stripe we will write to */
4976                 here_old = mddev->reshape_position;
4977                 sector_div(here_old, mddev->chunk_sectors *
4978                            (old_disks-max_degraded));
4979                 /* here_old is the first stripe that we might need to read
4980                  * from */
4981                 if (mddev->delta_disks == 0) {
4982                         /* We cannot be sure it is safe to start an in-place
4983                          * reshape.  It is only safe if user-space if monitoring
4984                          * and taking constant backups.
4985                          * mdadm always starts a situation like this in
4986                          * readonly mode so it can take control before
4987                          * allowing any writes.  So just check for that.
4988                          */
4989                         if ((here_new * mddev->new_chunk_sectors != 
4990                              here_old * mddev->chunk_sectors) ||
4991                             mddev->ro == 0) {
4992                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4993                                        " in read-only mode - aborting\n",
4994                                        mdname(mddev));
4995                                 return -EINVAL;
4996                         }
4997                 } else if (mddev->delta_disks < 0
4998                     ? (here_new * mddev->new_chunk_sectors <=
4999                        here_old * mddev->chunk_sectors)
5000                     : (here_new * mddev->new_chunk_sectors >=
5001                        here_old * mddev->chunk_sectors)) {
5002                         /* Reading from the same stripe as writing to - bad */
5003                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5004                                "auto-recovery - aborting.\n",
5005                                mdname(mddev));
5006                         return -EINVAL;
5007                 }
5008                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5009                        mdname(mddev));
5010                 /* OK, we should be able to continue; */
5011         } else {
5012                 BUG_ON(mddev->level != mddev->new_level);
5013                 BUG_ON(mddev->layout != mddev->new_layout);
5014                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5015                 BUG_ON(mddev->delta_disks != 0);
5016         }
5017
5018         if (mddev->private == NULL)
5019                 conf = setup_conf(mddev);
5020         else
5021                 conf = mddev->private;
5022
5023         if (IS_ERR(conf))
5024                 return PTR_ERR(conf);
5025
5026         mddev->thread = conf->thread;
5027         conf->thread = NULL;
5028         mddev->private = conf;
5029
5030         /*
5031          * 0 for a fully functional array, 1 or 2 for a degraded array.
5032          */
5033         list_for_each_entry(rdev, &mddev->disks, same_set) {
5034                 if (rdev->raid_disk < 0)
5035                         continue;
5036                 if (test_bit(In_sync, &rdev->flags)) {
5037                         working_disks++;
5038                         continue;
5039                 }
5040                 /* This disc is not fully in-sync.  However if it
5041                  * just stored parity (beyond the recovery_offset),
5042                  * when we don't need to be concerned about the
5043                  * array being dirty.
5044                  * When reshape goes 'backwards', we never have
5045                  * partially completed devices, so we only need
5046                  * to worry about reshape going forwards.
5047                  */
5048                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5049                 if (mddev->major_version == 0 &&
5050                     mddev->minor_version > 90)
5051                         rdev->recovery_offset = reshape_offset;
5052                         
5053                 if (rdev->recovery_offset < reshape_offset) {
5054                         /* We need to check old and new layout */
5055                         if (!only_parity(rdev->raid_disk,
5056                                          conf->algorithm,
5057                                          conf->raid_disks,
5058                                          conf->max_degraded))
5059                                 continue;
5060                 }
5061                 if (!only_parity(rdev->raid_disk,
5062                                  conf->prev_algo,
5063                                  conf->previous_raid_disks,
5064                                  conf->max_degraded))
5065                         continue;
5066                 dirty_parity_disks++;
5067         }
5068
5069         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5070                            - working_disks);
5071
5072         if (has_failed(conf)) {
5073                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5074                         " (%d/%d failed)\n",
5075                         mdname(mddev), mddev->degraded, conf->raid_disks);
5076                 goto abort;
5077         }
5078
5079         /* device size must be a multiple of chunk size */
5080         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5081         mddev->resync_max_sectors = mddev->dev_sectors;
5082
5083         if (mddev->degraded > dirty_parity_disks &&
5084             mddev->recovery_cp != MaxSector) {
5085                 if (mddev->ok_start_degraded)
5086                         printk(KERN_WARNING
5087                                "md/raid:%s: starting dirty degraded array"
5088                                " - data corruption possible.\n",
5089                                mdname(mddev));
5090                 else {
5091                         printk(KERN_ERR
5092                                "md/raid:%s: cannot start dirty degraded array.\n",
5093                                mdname(mddev));
5094                         goto abort;
5095                 }
5096         }
5097
5098         if (mddev->degraded == 0)
5099                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5100                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5101                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5102                        mddev->new_layout);
5103         else
5104                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5105                        " out of %d devices, algorithm %d\n",
5106                        mdname(mddev), conf->level,
5107                        mddev->raid_disks - mddev->degraded,
5108                        mddev->raid_disks, mddev->new_layout);
5109
5110         print_raid5_conf(conf);
5111
5112         if (conf->reshape_progress != MaxSector) {
5113                 conf->reshape_safe = conf->reshape_progress;
5114                 atomic_set(&conf->reshape_stripes, 0);
5115                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5116                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5117                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5118                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5119                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5120                                                         "reshape");
5121         }
5122
5123
5124         /* Ok, everything is just fine now */
5125         if (mddev->to_remove == &raid5_attrs_group)
5126                 mddev->to_remove = NULL;
5127         else if (mddev->kobj.sd &&
5128             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5129                 printk(KERN_WARNING
5130                        "raid5: failed to create sysfs attributes for %s\n",
5131                        mdname(mddev));
5132         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5133
5134         if (mddev->queue) {
5135                 int chunk_size;
5136                 /* read-ahead size must cover two whole stripes, which
5137                  * is 2 * (datadisks) * chunksize where 'n' is the
5138                  * number of raid devices
5139                  */
5140                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5141                 int stripe = data_disks *
5142                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5143                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5144                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5145
5146                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5147
5148                 mddev->queue->backing_dev_info.congested_data = mddev;
5149                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5150
5151                 chunk_size = mddev->chunk_sectors << 9;
5152                 blk_queue_io_min(mddev->queue, chunk_size);
5153                 blk_queue_io_opt(mddev->queue, chunk_size *
5154                                  (conf->raid_disks - conf->max_degraded));
5155
5156                 list_for_each_entry(rdev, &mddev->disks, same_set)
5157                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5158                                           rdev->data_offset << 9);
5159         }
5160
5161         return 0;
5162 abort:
5163         md_unregister_thread(mddev->thread);
5164         mddev->thread = NULL;
5165         if (conf) {
5166                 print_raid5_conf(conf);
5167                 free_conf(conf);
5168         }
5169         mddev->private = NULL;
5170         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5171         return -EIO;
5172 }
5173
5174 static int stop(mddev_t *mddev)
5175 {
5176         raid5_conf_t *conf = mddev->private;
5177
5178         md_unregister_thread(mddev->thread);
5179         mddev->thread = NULL;
5180         if (mddev->queue)
5181                 mddev->queue->backing_dev_info.congested_fn = NULL;
5182         free_conf(conf);
5183         mddev->private = NULL;
5184         mddev->to_remove = &raid5_attrs_group;
5185         return 0;
5186 }
5187
5188 #ifdef DEBUG
5189 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5190 {
5191         int i;
5192
5193         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5194                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5195         seq_printf(seq, "sh %llu,  count %d.\n",
5196                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5197         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5198         for (i = 0; i < sh->disks; i++) {
5199                 seq_printf(seq, "(cache%d: %p %ld) ",
5200                            i, sh->dev[i].page, sh->dev[i].flags);
5201         }
5202         seq_printf(seq, "\n");
5203 }
5204
5205 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5206 {
5207         struct stripe_head *sh;
5208         struct hlist_node *hn;
5209         int i;
5210
5211         spin_lock_irq(&conf->device_lock);
5212         for (i = 0; i < NR_HASH; i++) {
5213                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5214                         if (sh->raid_conf != conf)
5215                                 continue;
5216                         print_sh(seq, sh);
5217                 }
5218         }
5219         spin_unlock_irq(&conf->device_lock);
5220 }
5221 #endif
5222
5223 static void status(struct seq_file *seq, mddev_t *mddev)
5224 {
5225         raid5_conf_t *conf = mddev->private;
5226         int i;
5227
5228         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5229                 mddev->chunk_sectors / 2, mddev->layout);
5230         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5231         for (i = 0; i < conf->raid_disks; i++)
5232                 seq_printf (seq, "%s",
5233                                conf->disks[i].rdev &&
5234                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5235         seq_printf (seq, "]");
5236 #ifdef DEBUG
5237         seq_printf (seq, "\n");
5238         printall(seq, conf);
5239 #endif
5240 }
5241
5242 static void print_raid5_conf (raid5_conf_t *conf)
5243 {
5244         int i;
5245         struct disk_info *tmp;
5246
5247         printk(KERN_DEBUG "RAID conf printout:\n");
5248         if (!conf) {
5249                 printk("(conf==NULL)\n");
5250                 return;
5251         }
5252         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5253                conf->raid_disks,
5254                conf->raid_disks - conf->mddev->degraded);
5255
5256         for (i = 0; i < conf->raid_disks; i++) {
5257                 char b[BDEVNAME_SIZE];
5258                 tmp = conf->disks + i;
5259                 if (tmp->rdev)
5260                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5261                                i, !test_bit(Faulty, &tmp->rdev->flags),
5262                                bdevname(tmp->rdev->bdev, b));
5263         }
5264 }
5265
5266 static int raid5_spare_active(mddev_t *mddev)
5267 {
5268         int i;
5269         raid5_conf_t *conf = mddev->private;
5270         struct disk_info *tmp;
5271         int count = 0;
5272         unsigned long flags;
5273
5274         for (i = 0; i < conf->raid_disks; i++) {
5275                 tmp = conf->disks + i;
5276                 if (tmp->rdev
5277                     && tmp->rdev->recovery_offset == MaxSector
5278                     && !test_bit(Faulty, &tmp->rdev->flags)
5279                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5280                         count++;
5281                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5282                 }
5283         }
5284         spin_lock_irqsave(&conf->device_lock, flags);
5285         mddev->degraded -= count;
5286         spin_unlock_irqrestore(&conf->device_lock, flags);
5287         print_raid5_conf(conf);
5288         return count;
5289 }
5290
5291 static int raid5_remove_disk(mddev_t *mddev, int number)
5292 {
5293         raid5_conf_t *conf = mddev->private;
5294         int err = 0;
5295         mdk_rdev_t *rdev;
5296         struct disk_info *p = conf->disks + number;
5297
5298         print_raid5_conf(conf);
5299         rdev = p->rdev;
5300         if (rdev) {
5301                 if (number >= conf->raid_disks &&
5302                     conf->reshape_progress == MaxSector)
5303                         clear_bit(In_sync, &rdev->flags);
5304
5305                 if (test_bit(In_sync, &rdev->flags) ||
5306                     atomic_read(&rdev->nr_pending)) {
5307                         err = -EBUSY;
5308                         goto abort;
5309                 }
5310                 /* Only remove non-faulty devices if recovery
5311                  * isn't possible.
5312                  */
5313                 if (!test_bit(Faulty, &rdev->flags) &&
5314                     !has_failed(conf) &&
5315                     number < conf->raid_disks) {
5316                         err = -EBUSY;
5317                         goto abort;
5318                 }
5319                 p->rdev = NULL;
5320                 synchronize_rcu();
5321                 if (atomic_read(&rdev->nr_pending)) {
5322                         /* lost the race, try later */
5323                         err = -EBUSY;
5324                         p->rdev = rdev;
5325                 }
5326         }
5327 abort:
5328
5329         print_raid5_conf(conf);
5330         return err;
5331 }
5332
5333 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5334 {
5335         raid5_conf_t *conf = mddev->private;
5336         int err = -EEXIST;
5337         int disk;
5338         struct disk_info *p;
5339         int first = 0;
5340         int last = conf->raid_disks - 1;
5341
5342         if (has_failed(conf))
5343                 /* no point adding a device */
5344                 return -EINVAL;
5345
5346         if (rdev->raid_disk >= 0)
5347                 first = last = rdev->raid_disk;
5348
5349         /*
5350          * find the disk ... but prefer rdev->saved_raid_disk
5351          * if possible.
5352          */
5353         if (rdev->saved_raid_disk >= 0 &&
5354             rdev->saved_raid_disk >= first &&
5355             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5356                 disk = rdev->saved_raid_disk;
5357         else
5358                 disk = first;
5359         for ( ; disk <= last ; disk++)
5360                 if ((p=conf->disks + disk)->rdev == NULL) {
5361                         clear_bit(In_sync, &rdev->flags);
5362                         rdev->raid_disk = disk;
5363                         err = 0;
5364                         if (rdev->saved_raid_disk != disk)
5365                                 conf->fullsync = 1;
5366                         rcu_assign_pointer(p->rdev, rdev);
5367                         break;
5368                 }
5369         print_raid5_conf(conf);
5370         return err;
5371 }
5372
5373 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5374 {
5375         /* no resync is happening, and there is enough space
5376          * on all devices, so we can resize.
5377          * We need to make sure resync covers any new space.
5378          * If the array is shrinking we should possibly wait until
5379          * any io in the removed space completes, but it hardly seems
5380          * worth it.
5381          */
5382         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5383         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5384                                                mddev->raid_disks));
5385         if (mddev->array_sectors >
5386             raid5_size(mddev, sectors, mddev->raid_disks))
5387                 return -EINVAL;
5388         set_capacity(mddev->gendisk, mddev->array_sectors);
5389         revalidate_disk(mddev->gendisk);
5390         if (sectors > mddev->dev_sectors &&
5391             mddev->recovery_cp > mddev->dev_sectors) {
5392                 mddev->recovery_cp = mddev->dev_sectors;
5393                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5394         }
5395         mddev->dev_sectors = sectors;
5396         mddev->resync_max_sectors = sectors;
5397         return 0;
5398 }
5399
5400 static int check_stripe_cache(mddev_t *mddev)
5401 {
5402         /* Can only proceed if there are plenty of stripe_heads.
5403          * We need a minimum of one full stripe,, and for sensible progress
5404          * it is best to have about 4 times that.
5405          * If we require 4 times, then the default 256 4K stripe_heads will
5406          * allow for chunk sizes up to 256K, which is probably OK.
5407          * If the chunk size is greater, user-space should request more
5408          * stripe_heads first.
5409          */
5410         raid5_conf_t *conf = mddev->private;
5411         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5412             > conf->max_nr_stripes ||
5413             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5414             > conf->max_nr_stripes) {
5415                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5416                        mdname(mddev),
5417                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5418                         / STRIPE_SIZE)*4);
5419                 return 0;
5420         }
5421         return 1;
5422 }
5423
5424 static int check_reshape(mddev_t *mddev)
5425 {
5426         raid5_conf_t *conf = mddev->private;
5427
5428         if (mddev->delta_disks == 0 &&
5429             mddev->new_layout == mddev->layout &&
5430             mddev->new_chunk_sectors == mddev->chunk_sectors)
5431                 return 0; /* nothing to do */
5432         if (mddev->bitmap)
5433                 /* Cannot grow a bitmap yet */
5434                 return -EBUSY;
5435         if (has_failed(conf))
5436                 return -EINVAL;
5437         if (mddev->delta_disks < 0) {
5438                 /* We might be able to shrink, but the devices must
5439                  * be made bigger first.
5440                  * For raid6, 4 is the minimum size.
5441                  * Otherwise 2 is the minimum
5442                  */
5443                 int min = 2;
5444                 if (mddev->level == 6)
5445                         min = 4;
5446                 if (mddev->raid_disks + mddev->delta_disks < min)
5447                         return -EINVAL;
5448         }
5449
5450         if (!check_stripe_cache(mddev))
5451                 return -ENOSPC;
5452
5453         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5454 }
5455
5456 static int raid5_start_reshape(mddev_t *mddev)
5457 {
5458         raid5_conf_t *conf = mddev->private;
5459         mdk_rdev_t *rdev;
5460         int spares = 0;
5461         unsigned long flags;
5462
5463         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5464                 return -EBUSY;
5465
5466         if (!check_stripe_cache(mddev))
5467                 return -ENOSPC;
5468
5469         list_for_each_entry(rdev, &mddev->disks, same_set)
5470                 if (!test_bit(In_sync, &rdev->flags)
5471                     && !test_bit(Faulty, &rdev->flags))
5472                         spares++;
5473
5474         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5475                 /* Not enough devices even to make a degraded array
5476                  * of that size
5477                  */
5478                 return -EINVAL;
5479
5480         /* Refuse to reduce size of the array.  Any reductions in
5481          * array size must be through explicit setting of array_size
5482          * attribute.
5483          */
5484         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5485             < mddev->array_sectors) {
5486                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5487                        "before number of disks\n", mdname(mddev));
5488                 return -EINVAL;
5489         }
5490
5491         atomic_set(&conf->reshape_stripes, 0);
5492         spin_lock_irq(&conf->device_lock);
5493         conf->previous_raid_disks = conf->raid_disks;
5494         conf->raid_disks += mddev->delta_disks;
5495         conf->prev_chunk_sectors = conf->chunk_sectors;
5496         conf->chunk_sectors = mddev->new_chunk_sectors;
5497         conf->prev_algo = conf->algorithm;
5498         conf->algorithm = mddev->new_layout;
5499         if (mddev->delta_disks < 0)
5500                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5501         else
5502                 conf->reshape_progress = 0;
5503         conf->reshape_safe = conf->reshape_progress;
5504         conf->generation++;
5505         spin_unlock_irq(&conf->device_lock);
5506
5507         /* Add some new drives, as many as will fit.
5508          * We know there are enough to make the newly sized array work.
5509          * Don't add devices if we are reducing the number of
5510          * devices in the array.  This is because it is not possible
5511          * to correctly record the "partially reconstructed" state of
5512          * such devices during the reshape and confusion could result.
5513          */
5514         if (mddev->delta_disks >= 0) {
5515                 int added_devices = 0;
5516                 list_for_each_entry(rdev, &mddev->disks, same_set)
5517                         if (rdev->raid_disk < 0 &&
5518                             !test_bit(Faulty, &rdev->flags)) {
5519                                 if (raid5_add_disk(mddev, rdev) == 0) {
5520                                         char nm[20];
5521                                         if (rdev->raid_disk
5522                                             >= conf->previous_raid_disks) {
5523                                                 set_bit(In_sync, &rdev->flags);
5524                                                 added_devices++;
5525                                         } else
5526                                                 rdev->recovery_offset = 0;
5527                                         sprintf(nm, "rd%d", rdev->raid_disk);
5528                                         if (sysfs_create_link(&mddev->kobj,
5529                                                               &rdev->kobj, nm))
5530                                                 /* Failure here is OK */;
5531                                 }
5532                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5533                                    && !test_bit(Faulty, &rdev->flags)) {
5534                                 /* This is a spare that was manually added */
5535                                 set_bit(In_sync, &rdev->flags);
5536                                 added_devices++;
5537                         }
5538
5539                 /* When a reshape changes the number of devices,
5540                  * ->degraded is measured against the larger of the
5541                  * pre and post number of devices.
5542                  */
5543                 spin_lock_irqsave(&conf->device_lock, flags);
5544                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5545                         - added_devices;
5546                 spin_unlock_irqrestore(&conf->device_lock, flags);
5547         }
5548         mddev->raid_disks = conf->raid_disks;
5549         mddev->reshape_position = conf->reshape_progress;
5550         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5551
5552         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5553         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5554         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5555         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5556         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5557                                                 "reshape");
5558         if (!mddev->sync_thread) {
5559                 mddev->recovery = 0;
5560                 spin_lock_irq(&conf->device_lock);
5561                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5562                 conf->reshape_progress = MaxSector;
5563                 spin_unlock_irq(&conf->device_lock);
5564                 return -EAGAIN;
5565         }
5566         conf->reshape_checkpoint = jiffies;
5567         md_wakeup_thread(mddev->sync_thread);
5568         md_new_event(mddev);
5569         return 0;
5570 }
5571
5572 /* This is called from the reshape thread and should make any
5573  * changes needed in 'conf'
5574  */
5575 static void end_reshape(raid5_conf_t *conf)
5576 {
5577
5578         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5579
5580                 spin_lock_irq(&conf->device_lock);
5581                 conf->previous_raid_disks = conf->raid_disks;
5582                 conf->reshape_progress = MaxSector;
5583                 spin_unlock_irq(&conf->device_lock);
5584                 wake_up(&conf->wait_for_overlap);
5585
5586                 /* read-ahead size must cover two whole stripes, which is
5587                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5588                  */
5589                 if (conf->mddev->queue) {
5590                         int data_disks = conf->raid_disks - conf->max_degraded;
5591                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5592                                                    / PAGE_SIZE);
5593                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5594                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5595                 }
5596         }
5597 }
5598
5599 /* This is called from the raid5d thread with mddev_lock held.
5600  * It makes config changes to the device.
5601  */
5602 static void raid5_finish_reshape(mddev_t *mddev)
5603 {
5604         raid5_conf_t *conf = mddev->private;
5605
5606         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5607
5608                 if (mddev->delta_disks > 0) {
5609                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5610                         set_capacity(mddev->gendisk, mddev->array_sectors);
5611                         revalidate_disk(mddev->gendisk);
5612                 } else {
5613                         int d;
5614                         mddev->degraded = conf->raid_disks;
5615                         for (d = 0; d < conf->raid_disks ; d++)
5616                                 if (conf->disks[d].rdev &&
5617                                     test_bit(In_sync,
5618                                              &conf->disks[d].rdev->flags))
5619                                         mddev->degraded--;
5620                         for (d = conf->raid_disks ;
5621                              d < conf->raid_disks - mddev->delta_disks;
5622                              d++) {
5623                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5624                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5625                                         char nm[20];
5626                                         sprintf(nm, "rd%d", rdev->raid_disk);
5627                                         sysfs_remove_link(&mddev->kobj, nm);
5628                                         rdev->raid_disk = -1;
5629                                 }
5630                         }
5631                 }
5632                 mddev->layout = conf->algorithm;
5633                 mddev->chunk_sectors = conf->chunk_sectors;
5634                 mddev->reshape_position = MaxSector;
5635                 mddev->delta_disks = 0;
5636         }
5637 }
5638
5639 static void raid5_quiesce(mddev_t *mddev, int state)
5640 {
5641         raid5_conf_t *conf = mddev->private;
5642
5643         switch(state) {
5644         case 2: /* resume for a suspend */
5645                 wake_up(&conf->wait_for_overlap);
5646                 break;
5647
5648         case 1: /* stop all writes */
5649                 spin_lock_irq(&conf->device_lock);
5650                 /* '2' tells resync/reshape to pause so that all
5651                  * active stripes can drain
5652                  */
5653                 conf->quiesce = 2;
5654                 wait_event_lock_irq(conf->wait_for_stripe,
5655                                     atomic_read(&conf->active_stripes) == 0 &&
5656                                     atomic_read(&conf->active_aligned_reads) == 0,
5657                                     conf->device_lock, /* nothing */);
5658                 conf->quiesce = 1;
5659                 spin_unlock_irq(&conf->device_lock);
5660                 /* allow reshape to continue */
5661                 wake_up(&conf->wait_for_overlap);
5662                 break;
5663
5664         case 0: /* re-enable writes */
5665                 spin_lock_irq(&conf->device_lock);
5666                 conf->quiesce = 0;
5667                 wake_up(&conf->wait_for_stripe);
5668                 wake_up(&conf->wait_for_overlap);
5669                 spin_unlock_irq(&conf->device_lock);
5670                 break;
5671         }
5672 }
5673
5674
5675 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5676 {
5677         struct raid0_private_data *raid0_priv = mddev->private;
5678         sector_t sectors;
5679
5680         /* for raid0 takeover only one zone is supported */
5681         if (raid0_priv->nr_strip_zones > 1) {
5682                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5683                        mdname(mddev));
5684                 return ERR_PTR(-EINVAL);
5685         }
5686
5687         sectors = raid0_priv->strip_zone[0].zone_end;
5688         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5689         mddev->dev_sectors = sectors;
5690         mddev->new_level = level;
5691         mddev->new_layout = ALGORITHM_PARITY_N;
5692         mddev->new_chunk_sectors = mddev->chunk_sectors;
5693         mddev->raid_disks += 1;
5694         mddev->delta_disks = 1;
5695         /* make sure it will be not marked as dirty */
5696         mddev->recovery_cp = MaxSector;
5697
5698         return setup_conf(mddev);
5699 }
5700
5701
5702 static void *raid5_takeover_raid1(mddev_t *mddev)
5703 {
5704         int chunksect;
5705
5706         if (mddev->raid_disks != 2 ||
5707             mddev->degraded > 1)
5708                 return ERR_PTR(-EINVAL);
5709
5710         /* Should check if there are write-behind devices? */
5711
5712         chunksect = 64*2; /* 64K by default */
5713
5714         /* The array must be an exact multiple of chunksize */
5715         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5716                 chunksect >>= 1;
5717
5718         if ((chunksect<<9) < STRIPE_SIZE)
5719                 /* array size does not allow a suitable chunk size */
5720                 return ERR_PTR(-EINVAL);
5721
5722         mddev->new_level = 5;
5723         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5724         mddev->new_chunk_sectors = chunksect;
5725
5726         return setup_conf(mddev);
5727 }
5728
5729 static void *raid5_takeover_raid6(mddev_t *mddev)
5730 {
5731         int new_layout;
5732
5733         switch (mddev->layout) {
5734         case ALGORITHM_LEFT_ASYMMETRIC_6:
5735                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5736                 break;
5737         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5738                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5739                 break;
5740         case ALGORITHM_LEFT_SYMMETRIC_6:
5741                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5742                 break;
5743         case ALGORITHM_RIGHT_SYMMETRIC_6:
5744                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5745                 break;
5746         case ALGORITHM_PARITY_0_6:
5747                 new_layout = ALGORITHM_PARITY_0;
5748                 break;
5749         case ALGORITHM_PARITY_N:
5750                 new_layout = ALGORITHM_PARITY_N;
5751                 break;
5752         default:
5753                 return ERR_PTR(-EINVAL);
5754         }
5755         mddev->new_level = 5;
5756         mddev->new_layout = new_layout;
5757         mddev->delta_disks = -1;
5758         mddev->raid_disks -= 1;
5759         return setup_conf(mddev);
5760 }
5761
5762
5763 static int raid5_check_reshape(mddev_t *mddev)
5764 {
5765         /* For a 2-drive array, the layout and chunk size can be changed
5766          * immediately as not restriping is needed.
5767          * For larger arrays we record the new value - after validation
5768          * to be used by a reshape pass.
5769          */
5770         raid5_conf_t *conf = mddev->private;
5771         int new_chunk = mddev->new_chunk_sectors;
5772
5773         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5774                 return -EINVAL;
5775         if (new_chunk > 0) {
5776                 if (!is_power_of_2(new_chunk))
5777                         return -EINVAL;
5778                 if (new_chunk < (PAGE_SIZE>>9))
5779                         return -EINVAL;
5780                 if (mddev->array_sectors & (new_chunk-1))
5781                         /* not factor of array size */
5782                         return -EINVAL;
5783         }
5784
5785         /* They look valid */
5786
5787         if (mddev->raid_disks == 2) {
5788                 /* can make the change immediately */
5789                 if (mddev->new_layout >= 0) {
5790                         conf->algorithm = mddev->new_layout;
5791                         mddev->layout = mddev->new_layout;
5792                 }
5793                 if (new_chunk > 0) {
5794                         conf->chunk_sectors = new_chunk ;
5795                         mddev->chunk_sectors = new_chunk;
5796                 }
5797                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5798                 md_wakeup_thread(mddev->thread);
5799         }
5800         return check_reshape(mddev);
5801 }
5802
5803 static int raid6_check_reshape(mddev_t *mddev)
5804 {
5805         int new_chunk = mddev->new_chunk_sectors;
5806
5807         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5808                 return -EINVAL;
5809         if (new_chunk > 0) {
5810                 if (!is_power_of_2(new_chunk))
5811                         return -EINVAL;
5812                 if (new_chunk < (PAGE_SIZE >> 9))
5813                         return -EINVAL;
5814                 if (mddev->array_sectors & (new_chunk-1))
5815                         /* not factor of array size */
5816                         return -EINVAL;
5817         }
5818
5819         /* They look valid */
5820         return check_reshape(mddev);
5821 }
5822
5823 static void *raid5_takeover(mddev_t *mddev)
5824 {
5825         /* raid5 can take over:
5826          *  raid0 - if there is only one strip zone - make it a raid4 layout
5827          *  raid1 - if there are two drives.  We need to know the chunk size
5828          *  raid4 - trivial - just use a raid4 layout.
5829          *  raid6 - Providing it is a *_6 layout
5830          */
5831         if (mddev->level == 0)
5832                 return raid45_takeover_raid0(mddev, 5);
5833         if (mddev->level == 1)
5834                 return raid5_takeover_raid1(mddev);
5835         if (mddev->level == 4) {
5836                 mddev->new_layout = ALGORITHM_PARITY_N;
5837                 mddev->new_level = 5;
5838                 return setup_conf(mddev);
5839         }
5840         if (mddev->level == 6)
5841                 return raid5_takeover_raid6(mddev);
5842
5843         return ERR_PTR(-EINVAL);
5844 }
5845
5846 static void *raid4_takeover(mddev_t *mddev)
5847 {
5848         /* raid4 can take over:
5849          *  raid0 - if there is only one strip zone
5850          *  raid5 - if layout is right
5851          */
5852         if (mddev->level == 0)
5853                 return raid45_takeover_raid0(mddev, 4);
5854         if (mddev->level == 5 &&
5855             mddev->layout == ALGORITHM_PARITY_N) {
5856                 mddev->new_layout = 0;
5857                 mddev->new_level = 4;
5858                 return setup_conf(mddev);
5859         }
5860         return ERR_PTR(-EINVAL);
5861 }
5862
5863 static struct mdk_personality raid5_personality;
5864
5865 static void *raid6_takeover(mddev_t *mddev)
5866 {
5867         /* Currently can only take over a raid5.  We map the
5868          * personality to an equivalent raid6 personality
5869          * with the Q block at the end.
5870          */
5871         int new_layout;
5872
5873         if (mddev->pers != &raid5_personality)
5874                 return ERR_PTR(-EINVAL);
5875         if (mddev->degraded > 1)
5876                 return ERR_PTR(-EINVAL);
5877         if (mddev->raid_disks > 253)
5878                 return ERR_PTR(-EINVAL);
5879         if (mddev->raid_disks < 3)
5880                 return ERR_PTR(-EINVAL);
5881
5882         switch (mddev->layout) {
5883         case ALGORITHM_LEFT_ASYMMETRIC:
5884                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5885                 break;
5886         case ALGORITHM_RIGHT_ASYMMETRIC:
5887                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5888                 break;
5889         case ALGORITHM_LEFT_SYMMETRIC:
5890                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5891                 break;
5892         case ALGORITHM_RIGHT_SYMMETRIC:
5893                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5894                 break;
5895         case ALGORITHM_PARITY_0:
5896                 new_layout = ALGORITHM_PARITY_0_6;
5897                 break;
5898         case ALGORITHM_PARITY_N:
5899                 new_layout = ALGORITHM_PARITY_N;
5900                 break;
5901         default:
5902                 return ERR_PTR(-EINVAL);
5903         }
5904         mddev->new_level = 6;
5905         mddev->new_layout = new_layout;
5906         mddev->delta_disks = 1;
5907         mddev->raid_disks += 1;
5908         return setup_conf(mddev);
5909 }
5910
5911
5912 static struct mdk_personality raid6_personality =
5913 {
5914         .name           = "raid6",
5915         .level          = 6,
5916         .owner          = THIS_MODULE,
5917         .make_request   = make_request,
5918         .run            = run,
5919         .stop           = stop,
5920         .status         = status,
5921         .error_handler  = error,
5922         .hot_add_disk   = raid5_add_disk,
5923         .hot_remove_disk= raid5_remove_disk,
5924         .spare_active   = raid5_spare_active,
5925         .sync_request   = sync_request,
5926         .resize         = raid5_resize,
5927         .size           = raid5_size,
5928         .check_reshape  = raid6_check_reshape,
5929         .start_reshape  = raid5_start_reshape,
5930         .finish_reshape = raid5_finish_reshape,
5931         .quiesce        = raid5_quiesce,
5932         .takeover       = raid6_takeover,
5933 };
5934 static struct mdk_personality raid5_personality =
5935 {
5936         .name           = "raid5",
5937         .level          = 5,
5938         .owner          = THIS_MODULE,
5939         .make_request   = make_request,
5940         .run            = run,
5941         .stop           = stop,
5942         .status         = status,
5943         .error_handler  = error,
5944         .hot_add_disk   = raid5_add_disk,
5945         .hot_remove_disk= raid5_remove_disk,
5946         .spare_active   = raid5_spare_active,
5947         .sync_request   = sync_request,
5948         .resize         = raid5_resize,
5949         .size           = raid5_size,
5950         .check_reshape  = raid5_check_reshape,
5951         .start_reshape  = raid5_start_reshape,
5952         .finish_reshape = raid5_finish_reshape,
5953         .quiesce        = raid5_quiesce,
5954         .takeover       = raid5_takeover,
5955 };
5956
5957 static struct mdk_personality raid4_personality =
5958 {
5959         .name           = "raid4",
5960         .level          = 4,
5961         .owner          = THIS_MODULE,
5962         .make_request   = make_request,
5963         .run            = run,
5964         .stop           = stop,
5965         .status         = status,
5966         .error_handler  = error,
5967         .hot_add_disk   = raid5_add_disk,
5968         .hot_remove_disk= raid5_remove_disk,
5969         .spare_active   = raid5_spare_active,
5970         .sync_request   = sync_request,
5971         .resize         = raid5_resize,
5972         .size           = raid5_size,
5973         .check_reshape  = raid5_check_reshape,
5974         .start_reshape  = raid5_start_reshape,
5975         .finish_reshape = raid5_finish_reshape,
5976         .quiesce        = raid5_quiesce,
5977         .takeover       = raid4_takeover,
5978 };
5979
5980 static int __init raid5_init(void)
5981 {
5982         register_md_personality(&raid6_personality);
5983         register_md_personality(&raid5_personality);
5984         register_md_personality(&raid4_personality);
5985         return 0;
5986 }
5987
5988 static void raid5_exit(void)
5989 {
5990         unregister_md_personality(&raid6_personality);
5991         unregister_md_personality(&raid5_personality);
5992         unregister_md_personality(&raid4_personality);
5993 }
5994
5995 module_init(raid5_init);
5996 module_exit(raid5_exit);
5997 MODULE_LICENSE("GPL");
5998 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5999 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6000 MODULE_ALIAS("md-raid5");
6001 MODULE_ALIAS("md-raid4");
6002 MODULE_ALIAS("md-level-5");
6003 MODULE_ALIAS("md-level-4");
6004 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6005 MODULE_ALIAS("md-raid6");
6006 MODULE_ALIAS("md-level-6");
6007
6008 /* This used to be two separate modules, they were: */
6009 MODULE_ALIAS("raid5");
6010 MODULE_ALIAS("raid6");