]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/media/dvb/frontends/mb86a16.c
V4L/DVB (13801): [MB86A16] Use the search callback
[mv-sheeva.git] / drivers / media / dvb / frontends / mb86a16.c
1 /*
2         Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4         Copyright (C) 2005, 2006 Manu Abraham (abraham.manu@gmail.com)
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the Free Software
18         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25
26 #include "dvb_frontend.h"
27 #include "mb86a16.h"
28 #include "mb86a16_priv.h"
29
30 unsigned int verbose = 5;
31 module_param(verbose, int, 0644);
32
33 #define ABS(x)          ((x) < 0 ? (-x) : (x))
34
35 struct mb86a16_state {
36         struct i2c_adapter              *i2c_adap;
37         const struct mb86a16_config     *config;
38         struct dvb_frontend             frontend;
39
40         // tuning parameters
41         int                             frequency;
42         int                             srate;
43
44         // Internal stuff
45         int                             master_clk;
46         int                             deci;
47         int                             csel;
48         int                             rsel;
49 };
50
51 #define MB86A16_ERROR           0
52 #define MB86A16_NOTICE          1
53 #define MB86A16_INFO            2
54 #define MB86A16_DEBUG           3
55
56 #define dprintk(x, y, z, format, arg...) do {                                           \
57         if (z) {                                                                        \
58                 if      ((x > MB86A16_ERROR) && (x > y))                                \
59                         printk(KERN_ERR "%s: " format "\n", __func__, ##arg);           \
60                 else if ((x > MB86A16_NOTICE) && (x > y))                               \
61                         printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);        \
62                 else if ((x > MB86A16_INFO) && (x > y))                                 \
63                         printk(KERN_INFO "%s: " format "\n", __func__, ##arg);          \
64                 else if ((x > MB86A16_DEBUG) && (x > y))                                \
65                         printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);         \
66         } else {                                                                        \
67                 if (x > y)                                                              \
68                         printk(format, ##arg);                                          \
69         }                                                                               \
70 } while (0)
71
72 #define TRACE_IN        dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
73 #define TRACE_OUT       dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
74
75 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
76 {
77         int ret;
78         u8 buf[] = { reg, val };
79
80         struct i2c_msg msg = {
81                 .addr = state->config->demod_address,
82                 .flags = 0,
83                 .buf = buf,
84                 .len = 2
85         };
86
87         dprintk(verbose, MB86A16_DEBUG, 1,
88                 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
89                 state->config->demod_address, buf[0], buf[1]);
90
91         ret = i2c_transfer(state->i2c_adap, &msg, 1);
92
93         return (ret != 1) ? -EREMOTEIO : 0;
94 }
95
96 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
97 {
98         int ret;
99         u8 b0[] = { reg };
100         u8 b1[] = { 0 };
101
102         struct i2c_msg msg[] = {
103                 {
104                         .addr = state->config->demod_address,
105                         .flags = 0,
106                         .buf = b0,
107                         .len = 1
108                 },{
109                         .addr = state->config->demod_address,
110                         .flags = I2C_M_RD,
111                         .buf = b1,
112                         .len = 1
113                 }
114         };
115         ret = i2c_transfer(state->i2c_adap, msg, 2);
116         if (ret != 2) {
117                 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
118                         reg, ret);
119
120                 return -EREMOTEIO;
121         }
122         *val = b1[0];
123
124         return ret;
125 }
126
127 static int CNTM_set(struct mb86a16_state *state,
128                     unsigned char timint1,
129                     unsigned char timint2,
130                     unsigned char cnext)
131 {
132         unsigned char val;
133
134         val = (timint1 << 4) | (timint2 << 2) | cnext;
135         if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
136                 goto err;
137
138         return 0;
139
140 err:
141         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
142         return -EREMOTEIO;
143 }
144
145 static int smrt_set(struct mb86a16_state *state, int rate)
146 {
147         int tmp ;
148         int m ;
149         unsigned char STOFS0, STOFS1;
150
151         m = 1 << state->deci;
152         tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
153
154         STOFS0 = tmp & 0x0ff;
155         STOFS1 = (tmp & 0xf00) >> 8;
156
157         if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
158                                        (state->csel << 1) |
159                                         state->rsel) < 0)
160                 goto err;
161         if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
162                 goto err;
163         if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
164                 goto err;
165
166         return 0;
167 err:
168         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
169         return -1;
170 }
171
172 static int srst(struct mb86a16_state *state)
173 {
174         if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
175                 goto err;
176
177         return 0;
178 err:
179         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
180         return -EREMOTEIO;
181
182 }
183
184 static int afcex_data_set(struct mb86a16_state *state,
185                           unsigned char AFCEX_L,
186                           unsigned char AFCEX_H)
187 {
188         if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
189                 goto err;
190         if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
191                 goto err;
192
193         return 0;
194 err:
195         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
196
197         return -1;
198 }
199
200 static int afcofs_data_set(struct mb86a16_state *state,
201                            unsigned char AFCEX_L,
202                            unsigned char AFCEX_H)
203 {
204         if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
205                 goto err;
206         if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
207                 goto err;
208
209         return 0;
210 err:
211         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
212         return -EREMOTEIO;
213 }
214
215 static int stlp_set(struct mb86a16_state *state,
216                     unsigned char STRAS,
217                     unsigned char STRBS)
218 {
219         if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
220                 goto err;
221
222         return 0;
223 err:
224         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
225         return -EREMOTEIO;
226 }
227
228 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
229 {
230         if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
231                 goto err;
232         if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
233                 goto err;
234
235         return 0;
236 err:
237         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
238         return -EREMOTEIO;
239 }
240
241 static int initial_set(struct mb86a16_state *state)
242 {
243         if (stlp_set(state, 5, 7))
244                 goto err;
245
246         udelay(100);
247         if (afcex_data_set(state, 0, 0))
248                 goto err;
249
250         udelay(100);
251         if (afcofs_data_set(state, 0, 0))
252                 goto err;
253
254         udelay(100);
255         if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
256                 goto err;
257         if (mb86a16_write(state, 0x2f, 0x21) < 0)
258                 goto err;
259         if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
260                 goto err;
261         if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
262                 goto err;
263         if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
264                 goto err;
265         if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
266                 goto err;
267         if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
268                 goto err;
269         if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
270                 goto err;
271         if (mb86a16_write(state, 0x54, 0xff) < 0)
272                 goto err;
273         if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
274                 goto err;
275
276         return 0;
277
278 err:
279         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
280         return -EREMOTEIO;
281 }
282
283 static int S01T_set(struct mb86a16_state *state,
284                     unsigned char s1t,
285                     unsigned s0t)
286 {
287         if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
288                 goto err;
289
290         return 0;
291 err:
292         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
293         return -EREMOTEIO;
294 }
295
296
297 static int EN_set(struct mb86a16_state *state,
298                   int cren,
299                   int afcen)
300 {
301         unsigned char val;
302
303         val = 0x7a | (cren << 7) | (afcen << 2);
304         if (mb86a16_write(state, 0x49, val) < 0)
305                 goto err;
306
307         return 0;
308 err:
309         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
310         return -EREMOTEIO;
311 }
312
313 static int AFCEXEN_set(struct mb86a16_state *state,
314                        int afcexen,
315                        int smrt)
316 {
317         unsigned char AFCA ;
318
319         if (smrt > 18875)
320                 AFCA = 4;
321         else if (smrt > 9375)
322                 AFCA = 3;
323         else if (smrt > 2250)
324                 AFCA = 2;
325         else
326                 AFCA = 1;
327
328         if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
329                 goto err;
330
331         return 0;
332
333 err:
334         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
335         return -EREMOTEIO;
336 }
337
338 static int DAGC_data_set(struct mb86a16_state *state,
339                          unsigned char DAGCA,
340                          unsigned char DAGCW)
341 {
342         if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
343                 goto err;
344
345         return 0;
346
347 err:
348         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
349         return -EREMOTEIO;
350 }
351
352 static void smrt_info_get(struct mb86a16_state *state, int rate)
353 {
354         if (rate >= 37501) {
355                 state->deci = 0; state->csel = 0; state->rsel = 0;
356         } else if (rate >= 30001) {
357                 state->deci = 0; state->csel = 0; state->rsel = 1;
358         } else if (rate >= 26251) {
359                 state->deci = 0; state->csel = 1; state->rsel = 0;
360         } else if (rate >= 22501) {
361                 state->deci = 0; state->csel = 1; state->rsel = 1;
362         } else if (rate >= 18751) {
363                 state->deci = 1; state->csel = 0; state->rsel = 0;
364         } else if (rate >= 15001) {
365                 state->deci = 1; state->csel = 0; state->rsel = 1;
366         } else if (rate >= 13126) {
367                 state->deci = 1; state->csel = 1; state->rsel = 0;
368         } else if (rate >= 11251) {
369                 state->deci = 1; state->csel = 1; state->rsel = 1;
370         } else if (rate >= 9376) {
371                 state->deci = 2; state->csel = 0; state->rsel = 0;
372         } else if (rate >= 7501) {
373                 state->deci = 2; state->csel = 0; state->rsel = 1;
374         } else if (rate >= 6563) {
375                 state->deci = 2; state->csel = 1; state->rsel = 0;
376         } else if (rate >= 5626) {
377                 state->deci = 2; state->csel = 1; state->rsel = 1;
378         } else if (rate >= 4688) {
379                 state->deci = 3; state->csel = 0; state->rsel = 0;
380         } else if (rate >= 3751) {
381                 state->deci = 3; state->csel = 0; state->rsel = 1;
382         } else if (rate >= 3282) {
383                 state->deci = 3; state->csel = 1; state->rsel = 0;
384         } else if (rate >= 2814) {
385                 state->deci = 3; state->csel = 1; state->rsel = 1;
386         } else if (rate >= 2344) {
387                 state->deci = 4; state->csel = 0; state->rsel = 0;
388         } else if (rate >= 1876) {
389                 state->deci = 4; state->csel = 0; state->rsel = 1;
390         } else if (rate >= 1641) {
391                 state->deci = 4; state->csel = 1; state->rsel = 0;
392         } else if (rate >= 1407) {
393                 state->deci = 4; state->csel = 1; state->rsel = 1;
394         } else if (rate >= 1172) {
395                 state->deci = 5; state->csel = 0; state->rsel = 0;
396         } else if (rate >=  939) {
397                 state->deci = 5; state->csel = 0; state->rsel = 1;
398         } else if (rate >=  821) {
399                 state->deci = 5; state->csel = 1; state->rsel = 0;
400         } else {
401                 state->deci = 5; state->csel = 1; state->rsel = 1;
402         }
403
404         if (state->csel == 0)
405                 state->master_clk = 92000;
406         else
407                 state->master_clk = 61333;
408
409 }
410
411 static int signal_det(struct mb86a16_state *state,
412                       int smrt,
413                       unsigned char *SIG)
414 {
415
416         int ret ;
417         int smrtd ;
418         int wait_sym ;
419
420         u32 wait_t;
421         unsigned char S[3] ;
422         int i ;
423
424         if (*SIG > 45) {
425                 if (CNTM_set(state, 2, 1, 2) < 0) {
426                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
427                         return -1;
428                 }
429                 wait_sym = 40000;
430         } else {
431                 if (CNTM_set(state, 3, 1, 2) < 0) {
432                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
433                         return -1;
434                 }
435                 wait_sym = 80000;
436         }
437         for (i = 0; i < 3; i++) {
438                 if (i == 0 )
439                         smrtd = smrt * 98 / 100;
440                 else if (i == 1)
441                         smrtd = smrt;
442                 else
443                         smrtd = smrt * 102 / 100;
444                 smrt_info_get(state, smrtd);
445                 smrt_set(state, smrtd);
446                 srst(state);
447                 wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
448                 if (wait_t == 0)
449                         wait_t = 1;
450                 msleep_interruptible(10);
451                 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
452                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
453                         return -EREMOTEIO;
454                 }
455         }
456         if ((S[1] > S[0] * 112 / 100) &&
457             (S[1] > S[2] * 112 / 100)) {
458
459                 ret = 1;
460         } else {
461                 ret = 0;
462         }
463         *SIG = S[1];
464
465         if (CNTM_set(state, 0, 1, 2) < 0) {
466                 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
467                 return -1;
468         }
469
470         return ret;
471 }
472
473 static int rf_val_set(struct mb86a16_state *state,
474                       int f,
475                       int smrt,
476                       unsigned char R)
477 {
478         unsigned char C, F, B;
479         int M;
480         unsigned char rf_val[5];
481         int ack = -1;
482
483         if (smrt > 37750 )
484                 C = 1;
485         else if (smrt > 18875)
486                 C = 2;
487         else if (smrt > 5500 )
488                 C = 3;
489         else
490                 C = 4;
491
492         if (smrt > 30500)
493                 F = 3;
494         else if (smrt > 9375)
495                 F = 1;
496         else if (smrt > 4625)
497                 F = 0;
498         else
499                 F = 2;
500
501         if (f < 1060)
502                 B = 0;
503         else if (f < 1175)
504                 B = 1;
505         else if (f < 1305)
506                 B = 2;
507         else if (f < 1435)
508                 B = 3;
509         else if (f < 1570)
510                 B = 4;
511         else if (f < 1715)
512                 B = 5;
513         else if (f < 1845)
514                 B = 6;
515         else if (f < 1980)
516                 B = 7;
517         else if (f < 2080)
518                 B = 8;
519         else
520                 B = 9;
521
522         M = f * (1 << R) / 2;
523
524         rf_val[0] = 0x01 | (C << 3) | (F << 1);
525         rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
526         rf_val[2] = (M & 0x00ff0) >> 4;
527         rf_val[3] = ((M & 0x0000f) << 4) | B;
528
529         // Frequency Set
530         if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
531                 ack = 0;
532         if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
533                 ack = 0;
534         if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
535                 ack = 0;
536         if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
537                 ack = 0;
538         if (mb86a16_write(state, 0x25, 0x01) < 0)
539                 ack = 0;
540         if (ack == 0) {
541                 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
542                 return -EREMOTEIO;
543         }
544
545         return 0;
546 }
547
548 static int afcerr_chk(struct mb86a16_state *state)
549 {
550         unsigned char AFCM_L, AFCM_H ;
551         int AFCM ;
552         int afcm, afcerr ;
553
554         if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
555                 goto err;
556         if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
557                 goto err;
558
559         AFCM = (AFCM_H << 8) + AFCM_L;
560
561         if (AFCM > 2048)
562                 afcm = AFCM - 4096;
563         else
564                 afcm = AFCM;
565         afcerr = afcm * state->master_clk / 8192;
566
567         return afcerr;
568
569 err:
570         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
571         return -EREMOTEIO;
572 }
573
574 static int dagcm_val_get(struct mb86a16_state *state)
575 {
576         int DAGCM;
577         unsigned char DAGCM_H, DAGCM_L;
578
579         if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
580                 goto err;
581         if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
582                 goto err;
583
584         DAGCM = (DAGCM_H << 8) + DAGCM_L;
585
586         return DAGCM;
587
588 err:
589         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
590         return -EREMOTEIO;
591 }
592
593 static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
594 {
595         u8 stat, stat2;
596         struct mb86a16_state *state = fe->demodulator_priv;
597
598         *status = 0;
599
600         if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
601                 goto err;
602         if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
603                 goto err;
604         if ((stat > 25) && (stat2 > 25))
605                 *status |= FE_HAS_SIGNAL;
606         if ((stat > 45) && (stat2 > 45))
607                 *status |= FE_HAS_CARRIER;
608
609         if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
610                 goto err;
611
612         if (stat & 0x01)
613                 *status |= FE_HAS_SYNC;
614         if (stat & 0x01)
615                 *status |= FE_HAS_VITERBI;
616
617         if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
618                 goto err;
619
620         if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
621                 *status |= FE_HAS_LOCK;
622
623         return 0;
624
625 err:
626         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
627         return -EREMOTEIO;
628 }
629
630 static int sync_chk(struct mb86a16_state *state,
631                     unsigned char *VIRM)
632 {
633         unsigned char val;
634         int sync;
635
636         if (mb86a16_read(state, 0x0d, &val) != 2)
637                 goto err;
638
639         dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
640         sync = val & 0x01;
641         *VIRM = (val & 0x1c) >> 2;
642
643         return sync;
644 err:
645         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
646         return -EREMOTEIO;
647
648 }
649
650 static int freqerr_chk(struct mb86a16_state *state,
651                        int fTP,
652                        int smrt,
653                        int unit)
654 {
655         unsigned char CRM, AFCML, AFCMH;
656         unsigned char temp1, temp2, temp3;
657         int crm, afcm, AFCM;
658         int crrerr, afcerr;             // [kHz]
659         int frqerr;                     // [MHz]
660         int afcen, afcexen = 0;
661         int R, M, fOSC, fOSC_OFS;
662
663         if (mb86a16_read(state, 0x43, &CRM) != 2)
664                 goto err;
665
666         if (CRM > 127)
667                 crm = CRM - 256;
668         else
669                 crm = CRM;
670
671         crrerr = smrt * crm / 256;
672         if (mb86a16_read(state, 0x49, &temp1) != 2)
673                 goto err;
674
675         afcen = (temp1 & 0x04) >> 2;
676         if (afcen == 0) {
677                 if (mb86a16_read(state, 0x2a, &temp1) != 2)
678                         goto err;
679                 afcexen = (temp1 & 0x20) >> 5;
680         }
681
682         if (afcen == 1) {
683                 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
684                         goto err;
685                 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
686                         goto err;
687         } else if (afcexen == 1) {
688                 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
689                         goto err;
690                 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
691                         goto err;
692         }
693         if ((afcen == 1) || (afcexen == 1)) {
694                 smrt_info_get(state, smrt);
695                 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
696                 if (AFCM > 255)
697                         afcm = AFCM - 512;
698                 else
699                         afcm = AFCM;
700
701                 afcerr = afcm * state->master_clk / 8192;
702         } else
703                 afcerr = 0;
704
705         if (mb86a16_read(state, 0x22, &temp1) != 2)
706                 goto err;
707         if (mb86a16_read(state, 0x23, &temp2) != 2)
708                 goto err;
709         if (mb86a16_read(state, 0x24, &temp3) != 2)
710                 goto err;
711
712         R = (temp1 & 0xe0) >> 5;
713         M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
714         if (R == 0)
715                 fOSC = 2 * M;
716         else
717                 fOSC = M;
718
719         fOSC_OFS = fOSC - fTP;
720
721         if (unit == 0) {        //[MHz]
722                 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
723                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
724                 else
725                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
726         } else {        //[kHz]
727                 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
728         }
729
730         return frqerr;
731 err:
732         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
733         return -EREMOTEIO;
734 }
735
736 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
737 {
738         unsigned char R;
739
740         if (smrt > 9375)
741                 R = 0;
742         else
743                 R = 1;
744
745         return R;
746 }
747
748 static void swp_info_get(struct mb86a16_state *state,
749                          int fOSC_start,
750                          int smrt,
751                          int v, int R,
752                          int swp_ofs,
753                          int *fOSC,
754                          int *afcex_freq,
755                          unsigned char *AFCEX_L,
756                          unsigned char *AFCEX_H)
757 {
758         int AFCEX ;
759         int crnt_swp_freq ;
760
761         crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
762
763         if (R == 0 )
764                 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
765         else
766                 *fOSC = (crnt_swp_freq + 500) / 1000;
767
768         if (*fOSC >= crnt_swp_freq)
769                 *afcex_freq = *fOSC *1000 - crnt_swp_freq;
770         else
771                 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
772
773         AFCEX = *afcex_freq * 8192 / state->master_clk;
774         *AFCEX_L =  AFCEX & 0x00ff;
775         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
776 }
777
778
779 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
780                                int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
781 {
782         int swp_freq ;
783
784         if ((i % 2 == 1) && (v <= vmax)) {
785                 // positive v (case 1)
786                 if ((v - 1 == vmin)                             &&
787                     (*(V + 30 + v) >= 0)                        &&
788                     (*(V + 30 + v - 1) >= 0)                    &&
789                     (*(V + 30 + v - 1) > *(V + 30 + v))         &&
790                     (*(V + 30 + v - 1) > SIGMIN)) {
791
792                         swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
793                         *SIG1 = *(V + 30 + v - 1);
794                 } else if ((v == vmax)                          &&
795                            (*(V + 30 + v) >= 0)                 &&
796                            (*(V + 30 + v - 1) >= 0)             &&
797                            (*(V + 30 + v) > *(V + 30 + v - 1))  &&
798                            (*(V + 30 + v) > SIGMIN)) {
799                         // (case 2)
800                         swp_freq = fOSC * 1000 + afcex_freq;
801                         *SIG1 = *(V + 30 + v);
802                 } else if ((*(V + 30 + v) > 0)                  &&
803                            (*(V + 30 + v - 1) > 0)              &&
804                            (*(V + 30 + v - 2) > 0)              &&
805                            (*(V + 30 + v - 3) > 0)              &&
806                            (*(V + 30 + v - 1) > *(V + 30 + v))  &&
807                            (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
808                            ((*(V + 30 + v - 1) > SIGMIN)        ||
809                            (*(V + 30 + v - 2) > SIGMIN))) {
810                         // (case 3)
811                         if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
812                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
813                                 *SIG1 = *(V + 30 + v - 1);
814                         } else {
815                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
816                                 *SIG1 = *(V + 30 + v - 2);
817                         }
818                 } else if ((v == vmax)                          &&
819                            (*(V + 30 + v) >= 0)                 &&
820                            (*(V + 30 + v - 1) >= 0)             &&
821                            (*(V + 30 + v - 2) >= 0)             &&
822                            (*(V + 30 + v) > *(V + 30 + v - 2))  &&
823                            (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
824                            ((*(V + 30 + v) > SIGMIN)            ||
825                            (*(V + 30 + v - 1) > SIGMIN))) {
826                         // (case 4)
827                         if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
828                                 swp_freq = fOSC * 1000 + afcex_freq;
829                                 *SIG1 = *(V + 30 + v);
830                         } else {
831                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
832                                 *SIG1 = *(V + 30 + v - 1);
833                         }
834                 } else  {
835                         swp_freq = -1 ;
836                 }
837         } else if ((i % 2 == 0) && (v >= vmin)) {
838                 // Negative v (case 1)
839                 if ((*(V + 30 + v) > 0)                         &&
840                     (*(V + 30 + v + 1) > 0)                     &&
841                     (*(V + 30 + v + 2) > 0)                     &&
842                     (*(V + 30 + v + 1) > *(V + 30 + v))         &&
843                     (*(V + 30 + v + 1) > *(V + 30 + v + 2))     &&
844                     (*(V + 30 + v + 1) > SIGMIN)) {
845
846                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
847                         *SIG1 = *(V + 30 + v + 1);
848                 } else if ((v + 1 == vmax)                      &&
849                            (*(V + 30 + v) >= 0)                 &&
850                            (*(V + 30 + v + 1) >= 0)             &&
851                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
852                            (*(V + 30 + v + 1) > SIGMIN)) {
853                         // (case 2)
854                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
855                         *SIG1 = *(V + 30 + v);
856                 } else if ((v == vmin)                          &&
857                            (*(V + 30 + v) > 0)                  &&
858                            (*(V + 30 + v + 1) > 0)              &&
859                            (*(V + 30 + v + 2) > 0)              &&
860                            (*(V + 30 + v) > *(V + 30 + v + 1))  &&
861                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
862                            (*(V + 30 + v) > SIGMIN)) {
863                         // (case 3)
864                         swp_freq = fOSC * 1000 + afcex_freq;
865                         *SIG1 = *(V + 30 + v);
866                 } else if ((*(V + 30 + v) >= 0)                 &&
867                            (*(V + 30 + v + 1) >= 0)             &&
868                            (*(V + 30 + v + 2) >= 0)             &&
869                            (*(V +30 + v + 3) >= 0)              &&
870                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
871                            (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
872                            ((*(V + 30 + v + 1) > SIGMIN)        ||
873                             (*(V + 30 + v + 2) > SIGMIN))) {
874                         // (case 4)
875                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
876                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
877                                 *SIG1 = *(V + 30 + v + 1);
878                         } else {
879                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
880                                 *SIG1 = *(V + 30 + v + 2);
881                         }
882                 } else if ((*(V + 30 + v) >= 0)                 &&
883                            (*(V + 30 + v + 1) >= 0)             &&
884                            (*(V + 30 + v + 2) >= 0)             &&
885                            (*(V + 30 + v + 3) >= 0)             &&
886                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
887                            (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
888                            (*(V + 30 + v) > *(V + 30 + v + 3))  &&
889                            (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
890                            ((*(V + 30 + v) > SIGMIN)            ||
891                             (*(V + 30 + v + 1) > SIGMIN))) {
892                         // (case 5)
893                         if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
894                                 swp_freq = fOSC * 1000 + afcex_freq;
895                                 *SIG1 = *(V + 30 + v);
896                         } else {
897                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
898                                 *SIG1 = *(V + 30 + v + 1);
899                         }
900                 } else if ((v + 2 == vmin)                      &&
901                            (*(V + 30 + v) >= 0)                 &&
902                            (*(V + 30 + v + 1) >= 0)             &&
903                            (*(V + 30 + v + 2) >= 0)             &&
904                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
905                            (*(V + 30 + v + 2) > *(V + 30 + v))  &&
906                            ((*(V + 30 + v + 1) > SIGMIN)        ||
907                             (*(V + 30 + v + 2) > SIGMIN))) {
908                         // (case 6)
909                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
910                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
911                                 *SIG1 = *(V + 30 + v + 1);
912                         } else {
913                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
914                                 *SIG1 = *(V + 30 + v + 2);
915                         }
916                 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
917                         swp_freq = fOSC * 1000;
918                         *SIG1 = *(V + 30 + v);
919                 } else swp_freq = -1;
920         } else swp_freq = -1;
921
922         return swp_freq;
923 }
924
925 static void swp_info_get2(struct mb86a16_state *state,
926                           int smrt,
927                           int R,
928                           int swp_freq,
929                           int *afcex_freq,
930                           int *fOSC,
931                           unsigned char *AFCEX_L,
932                           unsigned char *AFCEX_H)
933 {
934         int AFCEX ;
935
936         if (R == 0)
937                 *fOSC = (swp_freq + 1000) / 2000 * 2;
938         else
939                 *fOSC = (swp_freq + 500) / 1000;
940
941         if (*fOSC >= swp_freq)
942                 *afcex_freq = *fOSC * 1000 - swp_freq;
943         else
944                 *afcex_freq = swp_freq - *fOSC * 1000;
945
946         AFCEX = *afcex_freq * 8192 / state->master_clk;
947         *AFCEX_L =  AFCEX & 0x00ff;
948         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
949 }
950
951 static void afcex_info_get(struct mb86a16_state *state,
952                            int afcex_freq,
953                            unsigned char *AFCEX_L,
954                            unsigned char *AFCEX_H)
955 {
956         int AFCEX ;
957
958         AFCEX = afcex_freq * 8192 / state->master_clk;
959         *AFCEX_L =  AFCEX & 0x00ff;
960         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
961 }
962
963 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
964 {
965         // SLOCK0 = 0
966         if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
967                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
968                 return -EREMOTEIO;
969         }
970
971         return 0;
972 }
973
974 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
975 {
976         // Viterbi Rate, IQ Settings
977         if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
978                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
979                 return -EREMOTEIO;
980         }
981
982         return 0;
983 }
984
985 static int FEC_srst(struct mb86a16_state *state)
986 {
987         if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
988                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
989                 return -EREMOTEIO;
990         }
991
992         return 0;
993 }
994
995 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
996 {
997         if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
998                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
999                 return -EREMOTEIO;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1006 {
1007         if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1008                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1009                 return -EREMOTEIO;
1010         }
1011
1012         return 0;
1013 }
1014
1015
1016 static int mb86a16_set_fe(struct mb86a16_state *state)
1017 {
1018         u8 agcval, cnmval;
1019
1020         int i, j;
1021         int fOSC = 0;
1022         int fOSC_start = 0;
1023         int wait_t;
1024         int fcp;
1025         int swp_ofs;
1026         int V[60];
1027         u8 SIG1MIN;
1028
1029         unsigned char CREN, AFCEN, AFCEXEN;
1030         unsigned char SIG1;
1031         unsigned char TIMINT1, TIMINT2, TIMEXT;
1032         unsigned char S0T, S1T;
1033         unsigned char S2T;
1034 //      unsigned char S2T, S3T;
1035         unsigned char S4T, S5T;
1036         unsigned char AFCEX_L, AFCEX_H;
1037         unsigned char R;
1038         unsigned char VIRM;
1039         unsigned char ETH, VIA;
1040         unsigned char junk;
1041
1042         int loop;
1043         int ftemp;
1044         int v, vmax, vmin;
1045         int vmax_his, vmin_his;
1046         int swp_freq, prev_swp_freq[20];
1047         int prev_freq_num;
1048         int signal_dupl;
1049         int afcex_freq;
1050         int signal;
1051         int afcerr;
1052         int temp_freq, delta_freq;
1053         int dagcm[4];
1054         int smrt_d;
1055 //      int freq_err;
1056         int n;
1057         int ret = -1;
1058         int sync;
1059
1060         dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1061
1062         fcp = 3000;
1063         swp_ofs = state->srate / 4;
1064
1065         for (i = 0; i < 60; i++)
1066                 V[i] = -1;
1067
1068         for (i = 0; i < 20; i++)
1069                 prev_swp_freq[i] = 0;
1070
1071         SIG1MIN = 25;
1072
1073         for (n = 0; ((n < 3) && (ret == -1)); n++) {
1074                 SEQ_set(state, 0);
1075                 iq_vt_set(state, 0);
1076
1077                 CREN = 0;
1078                 AFCEN = 0;
1079                 AFCEXEN = 1;
1080                 TIMINT1 = 0;
1081                 TIMINT2 = 1;
1082                 TIMEXT = 2;
1083                 S1T = 0;
1084                 S0T = 0;
1085
1086                 if (initial_set(state) < 0) {
1087                         dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1088                         return -1;
1089                 }
1090                 if (DAGC_data_set(state, 3, 2) < 0) {
1091                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1092                         return -1;
1093                 }
1094                 if (EN_set(state, CREN, AFCEN) < 0) {
1095                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1096                         return -1; // (0, 0)
1097                 }
1098                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1099                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1100                         return -1; // (1, smrt) = (1, symbolrate)
1101                 }
1102                 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1103                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1104                         return -1; // (0, 1, 2)
1105                 }
1106                 if (S01T_set(state, S1T, S0T) < 0) {
1107                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1108                         return -1; // (0, 0)
1109                 }
1110                 smrt_info_get(state, state->srate);
1111                 if (smrt_set(state, state->srate) < 0) {
1112                         dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1113                         return -1;
1114                 }
1115
1116                 R = vco_dev_get(state, state->srate);
1117                 if (R == 1)
1118                         fOSC_start = state->frequency;
1119
1120                 else if (R == 0) {
1121                         if (state->frequency % 2 == 0) {
1122                                 fOSC_start = state->frequency;
1123                         } else {
1124                                 fOSC_start = state->frequency + 1;
1125                                 if (fOSC_start > 2150)
1126                                         fOSC_start = state->frequency - 1;
1127                         }
1128                 }
1129                 loop = 1;
1130                 ftemp = fOSC_start * 1000;
1131                 vmax = 0 ;
1132                 while (loop == 1) {
1133                         ftemp = ftemp + swp_ofs;
1134                         vmax++;
1135
1136                         // Upper bound
1137                         if (ftemp > 2150000) {
1138                                 loop = 0;
1139                                 vmax--;
1140                         }
1141                         else if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1142                                 loop = 0;
1143                 }
1144
1145                 loop = 1;
1146                 ftemp = fOSC_start * 1000;
1147                 vmin = 0 ;
1148                 while (loop == 1) {
1149                         ftemp = ftemp - swp_ofs;
1150                         vmin--;
1151
1152                         // Lower bound
1153                         if (ftemp < 950000) {
1154                                 loop = 0;
1155                                 vmin++;
1156                         }
1157                         else if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1158                                 loop = 0;
1159                 }
1160
1161                 wait_t = (8000 + state->srate / 2) / state->srate;
1162                 if (wait_t == 0)
1163                         wait_t = 1;
1164
1165                 i = 0;
1166                 j = 0;
1167                 prev_freq_num = 0;
1168                 loop = 1;
1169                 signal = 0;
1170                 vmax_his = 0;
1171                 vmin_his = 0;
1172                 v = 0;
1173
1174                 while (loop == 1) {
1175                         swp_info_get(state, fOSC_start, state->srate,
1176                                      v, R, swp_ofs, &fOSC,
1177                                      &afcex_freq, &AFCEX_L, &AFCEX_H);
1178
1179                         udelay(100);
1180                         if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1181                                 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1182                                 return -1;
1183                         }
1184                         udelay(100);
1185                         if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1186                                 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1187                                 return -1;
1188                         }
1189                         if (srst(state) < 0) {
1190                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1191                                 return -1;
1192                         }
1193                         msleep_interruptible(wait_t);
1194
1195                         if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1196                                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1197                                 return -1;
1198                         }
1199                         V[30 + v] = SIG1 ;
1200                         swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1201                                                       SIG1MIN, fOSC, afcex_freq,
1202                                                       swp_ofs, &SIG1);  //changed
1203
1204                         signal_dupl = 0;
1205                         for (j = 0; j < prev_freq_num; j++) {
1206                                 if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1207                                         signal_dupl = 1;
1208                                         dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1209                                 }
1210                         }
1211                         if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1212                                 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1213                                 prev_swp_freq[prev_freq_num] = swp_freq;
1214                                 prev_freq_num++;
1215                                 swp_info_get2(state, state->srate, R, swp_freq,
1216                                               &afcex_freq, &fOSC,
1217                                               &AFCEX_L, &AFCEX_H);
1218
1219                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1220                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1221                                         return -1;
1222                                 }
1223                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1224                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1225                                         return -1;
1226                                 }
1227                                 signal = signal_det(state, state->srate, &SIG1);
1228                                 if (signal == 1) {
1229                                         dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1230                                         loop = 0;
1231                                 } else {
1232                                         dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1233                                         smrt_info_get(state, state->srate);
1234                                         if (smrt_set(state, state->srate) < 0) {
1235                                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1236                                                 return -1;
1237                                         }
1238                                 }
1239                         }
1240                         if (v > vmax)
1241                                 vmax_his = 1 ;
1242                         if (v < vmin)
1243                                 vmin_his = 1 ;
1244                         i++;
1245
1246                         if ((i % 2 == 1) && (vmax_his == 1))
1247                                 i++;
1248                         if ((i % 2 == 0) && (vmin_his == 1))
1249                                 i++;
1250
1251                         if (i % 2 == 1)
1252                                 v = (i + 1) / 2;
1253                         else
1254                                 v = -i / 2;
1255
1256                         if ((vmax_his == 1) && (vmin_his == 1))
1257                                 loop = 0 ;
1258                 }
1259
1260                 if (signal == 1) {
1261                         dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1262                         S1T = 7 ;
1263                         S0T = 1 ;
1264                         CREN = 0 ;
1265                         AFCEN = 1 ;
1266                         AFCEXEN = 0 ;
1267
1268                         if (S01T_set(state, S1T, S0T) < 0) {
1269                                 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1270                                 return -1;
1271                         }
1272                         smrt_info_get(state, state->srate);
1273                         if (smrt_set(state, state->srate) < 0) {
1274                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1275                                 return -1;
1276                         }
1277                         if (EN_set(state, CREN, AFCEN) < 0) {
1278                                 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1279                                 return -1;
1280                         }
1281                         if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1282                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1283                                 return -1;
1284                         }
1285                         afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1286                         if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1287                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1288                                 return -1;
1289                         }
1290                         if (srst(state) < 0) {
1291                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1292                                 return -1;
1293                         }
1294                         // delay 4~200
1295                         wait_t = 200000 / state->master_clk + 200000 / state->srate;
1296                         msleep(wait_t);
1297                         afcerr = afcerr_chk(state);
1298                         if (afcerr == -1)
1299                                 return -1;
1300
1301                         swp_freq = fOSC * 1000 + afcerr ;
1302                         AFCEXEN = 1 ;
1303                         if (state->srate >= 1500)
1304                                 smrt_d = state->srate / 3;
1305                         else
1306                                 smrt_d = state->srate / 2;
1307                         smrt_info_get(state, smrt_d);
1308                         if (smrt_set(state, smrt_d) < 0) {
1309                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1310                                 return -1;
1311                         }
1312                         if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1313                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1314                                 return -1;
1315                         }
1316                         R = vco_dev_get(state, smrt_d);
1317                         if (DAGC_data_set(state, 2, 0) < 0) {
1318                                 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1319                                 return -1;
1320                         }
1321                         for (i = 0; i < 3; i++) {
1322                                 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1323                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1324                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1325                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1326                                         return -1;
1327                                 }
1328                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1329                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1330                                         return -1;
1331                                 }
1332                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1333                                 msleep(wait_t);
1334                                 dagcm[i] = dagcm_val_get(state);
1335                         }
1336                         if ((dagcm[0] > dagcm[1]) &&
1337                             (dagcm[0] > dagcm[2]) &&
1338                             (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1339
1340                                 temp_freq = swp_freq - 2 * state->srate / 8;
1341                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1342                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1343                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1344                                         return -1;
1345                                 }
1346                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1347                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1348                                         return -1;
1349                                 }
1350                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1351                                 msleep(wait_t);
1352                                 dagcm[3] = dagcm_val_get(state);
1353                                 if (dagcm[3] > dagcm[1])
1354                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1355                                 else
1356                                         delta_freq = 0;
1357                         } else if ((dagcm[2] > dagcm[1]) &&
1358                                    (dagcm[2] > dagcm[0]) &&
1359                                    (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1360
1361                                 temp_freq = swp_freq + 2 * state->srate / 8;
1362                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1363                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1364                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1365                                         return -1;
1366                                 }
1367                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1368                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1369                                         return -1;
1370                                 }
1371                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1372                                 msleep(wait_t);
1373                                 dagcm[3] = dagcm_val_get(state);
1374                                 if (dagcm[3] > dagcm[1])
1375                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1376                                 else
1377                                         delta_freq = 0 ;
1378
1379                         } else {
1380                                 delta_freq = 0 ;
1381                         }
1382                         dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1383                         swp_freq += delta_freq;
1384                         dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1385                         if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1386                                 dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1387                         } else {
1388
1389                                 S1T = 0;
1390                                 S0T = 3;
1391                                 CREN = 1;
1392                                 AFCEN = 0;
1393                                 AFCEXEN = 1;
1394
1395                                 if (S01T_set(state, S1T, S0T) < 0) {
1396                                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1397                                         return -1;
1398                                 }
1399                                 if (DAGC_data_set(state, 0, 0) < 0) {
1400                                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1401                                         return -1;
1402                                 }
1403                                 R = vco_dev_get(state, state->srate);
1404                                 smrt_info_get(state, state->srate);
1405                                 if (smrt_set(state, state->srate) < 0) {
1406                                         dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1407                                         return -1;
1408                                 }
1409                                 if (EN_set(state, CREN, AFCEN) < 0) {
1410                                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1411                                         return -1;
1412                                 }
1413                                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1414                                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1415                                         return -1;
1416                                 }
1417                                 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1418                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1419                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1420                                         return -1;
1421                                 }
1422                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1423                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1424                                         return -1;
1425                                 }
1426                                 if (srst(state) < 0) {
1427                                         dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1428                                         return -1;
1429                                 }
1430                                 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1431                                 if (wait_t == 0)
1432                                         wait_t = 1;
1433                                 msleep_interruptible(wait_t);
1434                                 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1435                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1436                                         return -EREMOTEIO;
1437                                 }
1438
1439                                 if (SIG1 > 110) {
1440                                         S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1441                                         wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1442                                 } else if (SIG1 > 105) {
1443                                         S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1444                                         wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1445                                 } else if (SIG1 > 85) {
1446                                         S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1447                                         wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1448                                 } else if (SIG1 > 65) {
1449                                         S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1450                                         wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1451                                 } else {
1452                                         S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1453                                         wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1454                                 }
1455                                 wait_t *= 2; /*         FOS     */
1456                                 S2T_set(state, S2T);
1457                                 S45T_set(state, S4T, S5T);
1458                                 Vi_set(state, ETH, VIA);
1459                                 srst(state);
1460                                 msleep_interruptible(wait_t);
1461                                 sync = sync_chk(state, &VIRM);
1462                                 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1463                                 if (VIRM) {
1464                                         if (VIRM == 4) { // 5/6
1465                                                 if (SIG1 > 110)
1466                                                         wait_t = ( 786432 + state->srate / 2) / state->srate;
1467                                                 else
1468                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1469                                                 if (state->srate < 5000)
1470                                                         // FIXME ! , should be a long wait !
1471                                                         msleep_interruptible(wait_t);
1472                                                 else
1473                                                         msleep_interruptible(wait_t);
1474
1475                                                 if (sync_chk(state, &junk) == 0) {
1476                                                         iq_vt_set(state, 1);
1477                                                         FEC_srst(state);
1478                                                 }
1479                                         }
1480                                         // 1/2, 2/3, 3/4, 7/8
1481                                         if (SIG1 > 110)
1482                                                 wait_t = ( 786432 + state->srate / 2) / state->srate;
1483                                         else
1484                                                 wait_t = (1572864 + state->srate / 2) / state->srate;
1485                                         msleep_interruptible(wait_t);
1486                                         SEQ_set(state, 1);
1487                                 } else {
1488                                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1489                                         SEQ_set(state, 1);
1490                                         ret = -1;
1491                                 }
1492                         }
1493                 } else {
1494                         dprintk (verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1495                         ret = -1;
1496                 }
1497
1498                 sync = sync_chk(state, &junk);
1499                 if (sync) {
1500                         dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1501                         freqerr_chk(state, state->frequency, state->srate, 1);
1502                         ret = 0;
1503                         break;
1504                 }
1505         }
1506
1507         mb86a16_read(state, 0x15, &agcval);
1508         mb86a16_read(state, 0x26, &cnmval);
1509         dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1510
1511         return ret;
1512 }
1513
1514 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1515                                    struct dvb_diseqc_master_cmd *cmd)
1516 {
1517         struct mb86a16_state *state = fe->demodulator_priv;
1518         int i;
1519         u8 regs;
1520
1521         if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1522                 goto err;
1523         if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1524                 goto err;
1525         if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1526                 goto err;
1527
1528         regs = 0x18;
1529
1530         if (cmd->msg_len > 5 || cmd->msg_len < 4)
1531                 return -EINVAL;
1532
1533         for (i = 0; i < cmd->msg_len; i++) {
1534                 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1535                         goto err;
1536
1537                 regs++;
1538         }
1539         i += 0x90;
1540
1541         msleep_interruptible(10);
1542
1543         if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1544                 goto err;
1545         if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1546                 goto err;
1547
1548         return 0;
1549
1550 err:
1551         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1552         return -EREMOTEIO;
1553 }
1554
1555 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1556 {
1557         struct mb86a16_state *state = fe->demodulator_priv;
1558
1559         switch (burst) {
1560         case SEC_MINI_A:
1561                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1562                                                        MB86A16_DCC1_TBEN  |
1563                                                        MB86A16_DCC1_TBO) < 0)
1564                         goto err;
1565                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1566                         goto err;
1567                 break;
1568         case SEC_MINI_B:
1569                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1570                                                        MB86A16_DCC1_TBEN) < 0)
1571                         goto err;
1572                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1573                         goto err;
1574                 break;
1575         }
1576
1577         return 0;
1578 err:
1579         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1580         return -EREMOTEIO;
1581 }
1582
1583 static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1584 {
1585         struct mb86a16_state *state = fe->demodulator_priv;
1586
1587         switch (tone) {
1588         case SEC_TONE_ON:
1589                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1590                         goto err;
1591                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1592                                                        MB86A16_DCC1_CTOE) < 0)
1593
1594                         goto err;
1595                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1596                         goto err;
1597                 break;
1598         case SEC_TONE_OFF:
1599                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1600                         goto err;
1601                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1602                         goto err;
1603                 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1604                         goto err;
1605                 break;
1606         default:
1607                 return -EINVAL;
1608         }
1609         return 0;
1610
1611 err:
1612         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1613         return -EREMOTEIO;
1614 }
1615
1616 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe,
1617                                         struct dvb_frontend_parameters *p)
1618 {
1619         struct mb86a16_state *state = fe->demodulator_priv;
1620
1621         state->frequency = p->frequency / 1000;
1622         state->srate = p->u.qpsk.symbol_rate / 1000;
1623
1624         if (!mb86a16_set_fe(state)) {
1625                 dprintk(verbose, MB86A16_ERROR, 1, "Succesfully acquired LOCK");
1626                 return DVBFE_ALGO_SEARCH_SUCCESS;
1627         }
1628
1629         dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1630         return DVBFE_ALGO_SEARCH_FAILED;
1631 }
1632
1633 static void mb86a16_release(struct dvb_frontend *fe)
1634 {
1635         struct mb86a16_state *state = fe->demodulator_priv;
1636         kfree(state);
1637 }
1638
1639 static int mb86a16_init(struct dvb_frontend *fe)
1640 {
1641         return 0;
1642 }
1643
1644 static int mb86a16_sleep(struct dvb_frontend *fe)
1645 {
1646         return 0;
1647 }
1648
1649 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1650 {
1651         u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1652         u32 timer;
1653
1654         struct mb86a16_state *state = fe->demodulator_priv;
1655
1656         *ber = 0;
1657         if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1658                 goto err;
1659         if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1660                 goto err;
1661         if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1662                 goto err;
1663         if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1664                 goto err;
1665         if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1666                 goto err;
1667         /* BER monitor invalid when BER_EN = 0  */
1668         if (ber_mon & 0x04) {
1669                 /* coarse, fast calculation     */
1670                 *ber = ber_tab & 0x1f;
1671                 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1672                 if (ber_mon & 0x01) {
1673                         /*
1674                          * BER_SEL = 1, The monitored BER is the estimated
1675                          * value with a Reed-Solomon decoder error amount at
1676                          * the deinterleaver output.
1677                          * monitored BER is expressed as a 20 bit output in total
1678                          */
1679                         ber_rst = ber_mon >> 3;
1680                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1681                         if (ber_rst == 0)
1682                                 timer =  12500000;
1683                         if (ber_rst == 1)
1684                                 timer =  25000000;
1685                         if (ber_rst == 2)
1686                                 timer =  50000000;
1687                         if (ber_rst == 3)
1688                                 timer = 100000000;
1689
1690                         *ber /= timer;
1691                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1692                 } else {
1693                         /*
1694                          * BER_SEL = 0, The monitored BER is the estimated
1695                          * value with a Viterbi decoder error amount at the
1696                          * QPSK demodulator output.
1697                          * monitored BER is expressed as a 24 bit output in total
1698                          */
1699                         ber_tim = ber_mon >> 1;
1700                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1701                         if (ber_tim == 0)
1702                                 timer = 16;
1703                         if (ber_tim == 1)
1704                                 timer = 24;
1705
1706                         *ber /= 2 ^ timer;
1707                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1708                 }
1709         }
1710         return 0;
1711 err:
1712         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1713         return -EREMOTEIO;
1714 }
1715
1716 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1717 {
1718         u8 agcm = 0;
1719         struct mb86a16_state *state = fe->demodulator_priv;
1720
1721         *strength = 0;
1722         if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1723                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1724                 return -EREMOTEIO;
1725         }
1726
1727         *strength = ((0xff - agcm) * 100) / 256;
1728         dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1729         *strength = (0xffff - 0xff) + agcm;
1730
1731         return 0;
1732 }
1733
1734 struct cnr {
1735         u8 cn_reg;
1736         u8 cn_val;
1737 };
1738
1739 static const struct cnr cnr_tab[] = {
1740         {  35,  2 },
1741         {  40,  3 },
1742         {  50,  4 },
1743         {  60,  5 },
1744         {  70,  6 },
1745         {  80,  7 },
1746         {  92,  8 },
1747         { 103,  9 },
1748         { 115, 10 },
1749         { 138, 12 },
1750         { 162, 15 },
1751         { 180, 18 },
1752         { 185, 19 },
1753         { 189, 20 },
1754         { 195, 22 },
1755         { 199, 24 },
1756         { 201, 25 },
1757         { 202, 26 },
1758         { 203, 27 },
1759         { 205, 28 },
1760         { 208, 30 }
1761 };
1762
1763 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1764 {
1765         struct mb86a16_state *state = fe->demodulator_priv;
1766         int i = 0;
1767         int low_tide = 2, high_tide = 30, q_level;
1768         u8  cn;
1769
1770         *snr = 0;
1771         if (mb86a16_read(state, 0x26, &cn) != 2) {
1772                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1773                 return -EREMOTEIO;
1774         }
1775
1776         for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1777                 if (cn < cnr_tab[i].cn_reg) {
1778                         *snr = cnr_tab[i].cn_val;
1779                         break;
1780                 }
1781         }
1782         q_level = (*snr * 100) / (high_tide - low_tide);
1783         dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1784         *snr = (0xffff - 0xff) + *snr;
1785
1786         return 0;
1787 }
1788
1789 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1790 {
1791         u8 dist;
1792         struct mb86a16_state *state = fe->demodulator_priv;
1793
1794         if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1795                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1796                 return -EREMOTEIO;
1797         }
1798         *ucblocks = dist;
1799
1800         return 0;
1801 }
1802
1803 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1804 {
1805         return DVBFE_ALGO_CUSTOM;
1806 }
1807
1808 static struct dvb_frontend_ops mb86a16_ops = {
1809         .info = {
1810                 .name                   = "Fujitsu MB86A16 DVB-S",
1811                 .type                   = FE_QPSK,
1812                 .frequency_min          = 950000,
1813                 .frequency_max          = 2150000,
1814                 .frequency_stepsize     = 3000,
1815                 .frequency_tolerance    = 0,
1816                 .symbol_rate_min        = 1000000,
1817                 .symbol_rate_max        = 45000000,
1818                 .symbol_rate_tolerance  = 500,
1819                 .caps                   = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1820                                           FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1821                                           FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1822                                           FE_CAN_FEC_AUTO
1823         },
1824         .release                        = mb86a16_release,
1825
1826         .get_frontend_algo              = mb86a16_frontend_algo,
1827         .search                         = mb86a16_search,
1828         .read_status                    = mb86a16_read_status,
1829         .init                           = mb86a16_init,
1830         .sleep                          = mb86a16_sleep,
1831         .read_status                    = mb86a16_read_status,
1832
1833         .read_ber                       = mb86a16_read_ber,
1834         .read_signal_strength           = mb86a16_read_signal_strength,
1835         .read_snr                       = mb86a16_read_snr,
1836         .read_ucblocks                  = mb86a16_read_ucblocks,
1837
1838         .diseqc_send_master_cmd         = mb86a16_send_diseqc_msg,
1839         .diseqc_send_burst              = mb86a16_send_diseqc_burst,
1840         .set_tone                       = mb86a16_set_tone,
1841 };
1842
1843 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1844                                     struct i2c_adapter *i2c_adap)
1845 {
1846         u8 dev_id = 0;
1847         struct mb86a16_state *state = NULL;
1848
1849         state = kmalloc(sizeof (struct mb86a16_state), GFP_KERNEL);
1850         if (state == NULL)
1851                 goto error;
1852
1853         state->config = config;
1854         state->i2c_adap = i2c_adap;
1855
1856         mb86a16_read(state, 0x7f, &dev_id);
1857         if (dev_id != 0xfe)
1858                 goto error;
1859
1860         memcpy(&state->frontend.ops, &mb86a16_ops, sizeof (struct dvb_frontend_ops));
1861         state->frontend.demodulator_priv = state;
1862         state->frontend.ops.set_voltage = state->config->set_voltage;
1863
1864         return &state->frontend;
1865 error:
1866         kfree(state);
1867         return NULL;
1868 }
1869 EXPORT_SYMBOL(mb86a16_attach);
1870 MODULE_LICENSE("GPL");
1871 MODULE_AUTHOR("Manu Abraham");