2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * This code is more or less generated from another driver, please
23 * excuse some codingstyle oddities.
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
32 #include "dvb_frontend.h"
35 #include "dibx000_common.h"
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
41 #define dprintk(args...) do { \
43 printk(KERN_DEBUG "DiB0090: "); \
49 #define CONFIG_SYS_DVBT
50 #define CONFIG_SYS_ISDBT
51 #define CONFIG_BAND_CBAND
52 #define CONFIG_BAND_VHF
53 #define CONFIG_BAND_UHF
54 #define CONFIG_DIB0090_USE_PWM_AGC
56 #define EN_LNA0 0x8000
57 #define EN_LNA1 0x4000
58 #define EN_LNA2 0x2000
59 #define EN_LNA3 0x1000
60 #define EN_MIX0 0x0800
61 #define EN_MIX1 0x0400
62 #define EN_MIX2 0x0200
63 #define EN_MIX3 0x0100
64 #define EN_IQADC 0x0040
69 #define EN_BIAS 0x0001
71 #define EN_IQANA 0x0002
72 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
73 #define EN_CRYSTAL 0x0002
81 /* Calibration defines */
85 #define CAPTRIM_CAL 0x8
87 #define KROSUS_PLL_LOCKED 0x800
90 /* Use those defines to identify SOC version */
92 #define SOC_7090_P1G_11R1 0x82
93 #define SOC_7090_P1G_21R1 0x8a
94 #define SOC_8090_P1G_11R1 0x86
95 #define SOC_8090_P1G_21R1 0x8e
97 /* else use thos ones to check */
104 #define MP001 0x1 /* Single 9090/8096 */
105 #define MP005 0x4 /* Single Sband */
106 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
107 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
109 #define pgm_read_word(w) (*w)
111 struct dc_calibration;
113 struct dib0090_tuning {
114 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
125 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
132 struct dib0090_identity {
139 struct dib0090_state {
140 struct i2c_adapter *i2c;
141 struct dvb_frontend *fe;
142 const struct dib0090_config *config;
145 enum frontend_tune_state tune_state;
149 s16 wbd_target; /* in dB */
151 s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
152 s16 current_gain; /* keeps the currently programmed gain */
153 u8 agc_step; /* new binary search */
155 u16 gain[2]; /* for channel monitoring */
160 /* for the software AGC ramps */
165 /* for the captrim/dc-offset search */
173 const struct dc_calibration *dc;
176 const struct dib0090_tuning *current_tune_table_index;
177 const struct dib0090_pll *current_pll_table_index;
182 struct dib0090_identity identity;
192 u8 wbd_calibration_gain;
193 const struct dib0090_wbd_slope *current_wbd_table;
196 /* for the I2C transfer */
197 struct i2c_msg msg[2];
198 u8 i2c_write_buffer[3];
199 u8 i2c_read_buffer[2];
200 struct mutex i2c_buffer_lock;
203 struct dib0090_fw_state {
204 struct i2c_adapter *i2c;
205 struct dvb_frontend *fe;
206 struct dib0090_identity identity;
207 const struct dib0090_config *config;
209 /* for the I2C transfer */
211 u8 i2c_write_buffer[2];
212 u8 i2c_read_buffer[2];
213 struct mutex i2c_buffer_lock;
216 static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
220 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
221 dprintk("could not acquire lock");
225 state->i2c_write_buffer[0] = reg;
227 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
228 state->msg[0].addr = state->config->i2c_address;
229 state->msg[0].flags = 0;
230 state->msg[0].buf = state->i2c_write_buffer;
231 state->msg[0].len = 1;
232 state->msg[1].addr = state->config->i2c_address;
233 state->msg[1].flags = I2C_M_RD;
234 state->msg[1].buf = state->i2c_read_buffer;
235 state->msg[1].len = 2;
237 if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
238 printk(KERN_WARNING "DiB0090 I2C read failed\n");
241 ret = (state->i2c_read_buffer[0] << 8)
242 | state->i2c_read_buffer[1];
244 mutex_unlock(&state->i2c_buffer_lock);
248 static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
252 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
253 dprintk("could not acquire lock");
257 state->i2c_write_buffer[0] = reg & 0xff;
258 state->i2c_write_buffer[1] = val >> 8;
259 state->i2c_write_buffer[2] = val & 0xff;
261 memset(state->msg, 0, sizeof(struct i2c_msg));
262 state->msg[0].addr = state->config->i2c_address;
263 state->msg[0].flags = 0;
264 state->msg[0].buf = state->i2c_write_buffer;
265 state->msg[0].len = 3;
267 if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
268 printk(KERN_WARNING "DiB0090 I2C write failed\n");
273 mutex_unlock(&state->i2c_buffer_lock);
277 static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
281 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
282 dprintk("could not acquire lock");
286 state->i2c_write_buffer[0] = reg;
288 memset(&state->msg, 0, sizeof(struct i2c_msg));
289 state->msg.addr = reg;
290 state->msg.flags = I2C_M_RD;
291 state->msg.buf = state->i2c_read_buffer;
293 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
294 printk(KERN_WARNING "DiB0090 I2C read failed\n");
297 ret = (state->i2c_read_buffer[0] << 8)
298 | state->i2c_read_buffer[1];
300 mutex_unlock(&state->i2c_buffer_lock);
304 static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
308 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
309 dprintk("could not acquire lock");
313 state->i2c_write_buffer[0] = val >> 8;
314 state->i2c_write_buffer[1] = val & 0xff;
316 memset(&state->msg, 0, sizeof(struct i2c_msg));
317 state->msg.addr = reg;
318 state->msg.flags = 0;
319 state->msg.buf = state->i2c_write_buffer;
321 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
322 printk(KERN_WARNING "DiB0090 I2C write failed\n");
327 mutex_unlock(&state->i2c_buffer_lock);
331 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
332 #define ADC_TARGET -220
336 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
339 dib0090_write_reg(state, r++, *b++);
343 static int dib0090_identify(struct dvb_frontend *fe)
345 struct dib0090_state *state = fe->tuner_priv;
347 struct dib0090_identity *identity = &state->identity;
349 v = dib0090_read_reg(state, 0x1a);
352 identity->in_soc = 0;
354 dprintk("Tuner identification (Version = 0x%04x)", v);
356 /* without PLL lock info */
357 v &= ~KROSUS_PLL_LOCKED;
359 identity->version = v & 0xff;
360 identity->product = (v >> 8) & 0xf;
362 if (identity->product != KROSUS)
363 goto identification_error;
365 if ((identity->version & 0x3) == SOC) {
366 identity->in_soc = 1;
367 switch (identity->version) {
368 case SOC_8090_P1G_11R1:
369 dprintk("SOC 8090 P1-G11R1 Has been detected");
372 case SOC_8090_P1G_21R1:
373 dprintk("SOC 8090 P1-G21R1 Has been detected");
376 case SOC_7090_P1G_11R1:
377 dprintk("SOC 7090 P1-G11R1 Has been detected");
380 case SOC_7090_P1G_21R1:
381 dprintk("SOC 7090 P1-G21R1 Has been detected");
385 goto identification_error;
388 switch ((identity->version >> 5) & 0x7) {
390 dprintk("MP001 : 9090/8096");
393 dprintk("MP005 : Single Sband");
396 dprintk("MP008 : diversity VHF-UHF-LBAND");
399 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
402 goto identification_error;
405 switch (identity->version & 0x1f) {
407 dprintk("P1G_21R2 detected");
411 dprintk("P1G detected");
415 dprintk("P1D/E/F detected");
418 dprintk("P1C detected");
421 dprintk("P1-A/B detected: driver is deactivated - not available");
422 goto identification_error;
425 goto identification_error;
431 identification_error:
435 static int dib0090_fw_identify(struct dvb_frontend *fe)
437 struct dib0090_fw_state *state = fe->tuner_priv;
438 struct dib0090_identity *identity = &state->identity;
440 u16 v = dib0090_fw_read_reg(state, 0x1a);
442 identity->in_soc = 0;
444 dprintk("FE: Tuner identification (Version = 0x%04x)", v);
446 /* without PLL lock info */
447 v &= ~KROSUS_PLL_LOCKED;
449 identity->version = v & 0xff;
450 identity->product = (v >> 8) & 0xf;
452 if (identity->product != KROSUS)
453 goto identification_error;
455 if ((identity->version & 0x3) == SOC) {
456 identity->in_soc = 1;
457 switch (identity->version) {
458 case SOC_8090_P1G_11R1:
459 dprintk("SOC 8090 P1-G11R1 Has been detected");
462 case SOC_8090_P1G_21R1:
463 dprintk("SOC 8090 P1-G21R1 Has been detected");
466 case SOC_7090_P1G_11R1:
467 dprintk("SOC 7090 P1-G11R1 Has been detected");
470 case SOC_7090_P1G_21R1:
471 dprintk("SOC 7090 P1-G21R1 Has been detected");
475 goto identification_error;
478 switch ((identity->version >> 5) & 0x7) {
480 dprintk("MP001 : 9090/8096");
483 dprintk("MP005 : Single Sband");
486 dprintk("MP008 : diversity VHF-UHF-LBAND");
489 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
492 goto identification_error;
495 switch (identity->version & 0x1f) {
497 dprintk("P1G_21R2 detected");
501 dprintk("P1G detected");
505 dprintk("P1D/E/F detected");
508 dprintk("P1C detected");
511 dprintk("P1-A/B detected: driver is deactivated - not available");
512 goto identification_error;
515 goto identification_error;
521 identification_error:
525 static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
527 struct dib0090_state *state = fe->tuner_priv;
531 dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
535 dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
536 /* adcClkOutRatio=8->7, release reset */
537 dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
538 if (cfg->clkoutdrive != 0)
539 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
540 | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
542 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
543 | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
545 /* Read Pll current config * */
546 PllCfg = dib0090_read_reg(state, 0x21);
548 /** Reconfigure PLL if current setting is different from default setting **/
549 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
550 && !cfg->io.pll_bypass) {
552 /* Set Bypass mode */
554 dib0090_write_reg(state, 0x21, PllCfg);
557 PllCfg &= ~(1 << 13);
558 dib0090_write_reg(state, 0x21, PllCfg);
560 /*** Set new Pll configuration in bypass and reset state ***/
561 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
562 dib0090_write_reg(state, 0x21, PllCfg);
564 /* Remove Reset Pll */
566 dib0090_write_reg(state, 0x21, PllCfg);
568 /*** Wait for PLL lock ***/
571 v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
577 dprintk("Pll: Unable to lock Pll");
581 /* Finally Remove Bypass mode */
582 PllCfg &= ~(1 << 15);
583 dib0090_write_reg(state, 0x21, PllCfg);
586 if (cfg->io.pll_bypass) {
587 PllCfg |= (cfg->io.pll_bypass << 15);
588 dib0090_write_reg(state, 0x21, PllCfg);
592 static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
594 struct dib0090_fw_state *state = fe->tuner_priv;
599 dprintk("fw reset digital");
602 dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
603 dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
605 dib0090_fw_write_reg(state, 0x20,
606 ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
608 v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
609 if (cfg->clkoutdrive != 0)
610 v |= cfg->clkoutdrive << 5;
615 dib0090_fw_write_reg(state, 0x23, v);
617 /* Read Pll current config * */
618 PllCfg = dib0090_fw_read_reg(state, 0x21);
620 /** Reconfigure PLL if current setting is different from default setting **/
621 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
623 /* Set Bypass mode */
625 dib0090_fw_write_reg(state, 0x21, PllCfg);
628 PllCfg &= ~(1 << 13);
629 dib0090_fw_write_reg(state, 0x21, PllCfg);
631 /*** Set new Pll configuration in bypass and reset state ***/
632 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
633 dib0090_fw_write_reg(state, 0x21, PllCfg);
635 /* Remove Reset Pll */
637 dib0090_fw_write_reg(state, 0x21, PllCfg);
639 /*** Wait for PLL lock ***/
642 v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
648 dprintk("Pll: Unable to lock Pll");
652 /* Finally Remove Bypass mode */
653 PllCfg &= ~(1 << 15);
654 dib0090_fw_write_reg(state, 0x21, PllCfg);
657 if (cfg->io.pll_bypass) {
658 PllCfg |= (cfg->io.pll_bypass << 15);
659 dib0090_fw_write_reg(state, 0x21, PllCfg);
662 return dib0090_fw_identify(fe);
665 static int dib0090_wakeup(struct dvb_frontend *fe)
667 struct dib0090_state *state = fe->tuner_priv;
668 if (state->config->sleep)
669 state->config->sleep(fe, 0);
671 /* enable dataTX in case we have been restarted in the wrong moment */
672 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
676 static int dib0090_sleep(struct dvb_frontend *fe)
678 struct dib0090_state *state = fe->tuner_priv;
679 if (state->config->sleep)
680 state->config->sleep(fe, 1);
684 void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
686 struct dib0090_state *state = fe->tuner_priv;
688 dib0090_write_reg(state, 0x04, 0);
690 dib0090_write_reg(state, 0x04, 1);
693 EXPORT_SYMBOL(dib0090_dcc_freq);
695 static const u16 bb_ramp_pwm_normal_socs[] = {
696 550, /* max BB gain in 10th of dB */
697 (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
699 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
700 (0 << 9) | 208, /* BB_RAMP4 */
701 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
702 (0 << 9) | 440, /* BB_RAMP6 */
705 static const u16 rf_ramp_pwm_cband_7090p[] = {
706 280, /* max RF gain in 10th of dB */
707 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
708 504, /* ramp_max = maximum X used on the ramp */
709 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
710 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
711 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
712 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
713 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
714 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
715 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
716 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
719 static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
720 186, /* max RF gain in 10th of dB */
721 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
722 746, /* ramp_max = maximum X used on the ramp */
723 (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
724 (0 << 10) | 746, /* RF_RAMP6, LNA 1 */
725 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
726 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
727 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
728 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
729 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
730 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
733 static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
734 86, /* max RF gain in 10th of dB */
735 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
736 345, /* ramp_max = maximum X used on the ramp */
737 (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
738 (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
739 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
740 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
741 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
742 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
743 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
744 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
747 static const u16 rf_ramp_pwm_cband_8090[] = {
748 345, /* max RF gain in 10th of dB */
749 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
750 1000, /* ramp_max = maximum X used on the ramp */
751 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
752 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
753 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
754 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
755 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
756 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
757 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
758 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
761 static const u16 rf_ramp_pwm_uhf_7090[] = {
762 407, /* max RF gain in 10th of dB */
763 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
764 529, /* ramp_max = maximum X used on the ramp */
765 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
766 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
767 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
768 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
769 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
770 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
771 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
772 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
775 static const u16 rf_ramp_pwm_uhf_8090[] = {
776 388, /* max RF gain in 10th of dB */
777 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
778 1008, /* ramp_max = maximum X used on the ramp */
779 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
780 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
781 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
782 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
783 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
784 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
785 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
786 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
789 /* GENERAL PWM ramp definition for all other Krosus */
790 static const u16 bb_ramp_pwm_normal[] = {
791 500, /* max BB gain in 10th of dB */
792 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
794 (2 << 9) | 0, /* BB_RAMP3 = 21dB */
795 (0 << 9) | 168, /* BB_RAMP4 */
796 (2 << 9) | 168, /* BB_RAMP5 = 29dB */
797 (0 << 9) | 400, /* BB_RAMP6 */
800 static const u16 bb_ramp_pwm_boost[] = {
801 550, /* max BB gain in 10th of dB */
802 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
804 (2 << 9) | 0, /* BB_RAMP3 = 26dB */
805 (0 << 9) | 208, /* BB_RAMP4 */
806 (2 << 9) | 208, /* BB_RAMP5 = 29dB */
807 (0 << 9) | 440, /* BB_RAMP6 */
810 static const u16 rf_ramp_pwm_cband[] = {
811 314, /* max RF gain in 10th of dB */
812 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
813 1023, /* ramp_max = maximum X used on the ramp */
814 (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
815 (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
816 (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
817 (0 << 10) | 742, /* RF_RAMP6, LNA 2 */
818 (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
819 (0 << 10) | 468, /* RF_RAMP8, LNA 3 */
820 (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
821 (0 << 10) | 233, /* GAIN_4_2, LNA 4 */
824 static const u16 rf_ramp_pwm_vhf[] = {
825 398, /* max RF gain in 10th of dB */
826 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
827 954, /* ramp_max = maximum X used on the ramp */
828 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
829 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
830 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
831 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
832 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
833 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
834 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
835 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
838 static const u16 rf_ramp_pwm_uhf[] = {
839 398, /* max RF gain in 10th of dB */
840 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
841 954, /* ramp_max = maximum X used on the ramp */
842 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
843 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
844 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
845 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
846 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
847 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
848 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
849 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
852 static const u16 rf_ramp_pwm_sband[] = {
853 253, /* max RF gain in 10th of dB */
854 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
856 (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
857 (0 << 10) | 508, /* RF_RAMP4, LNA 1 */
858 (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
859 (0 << 10) | 961, /* RF_RAMP6, LNA 2 */
860 (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
861 (0 << 10) | 0, /* RF_RAMP8, LNA 3 */
862 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
863 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
870 static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
875 for (i = 0; i < num; i++) {
876 if (val > slopes[i].range)
877 rest = slopes[i].range;
880 ret += (rest * slopes[i].slope) / slopes[i].range;
886 static const struct slope dib0090_wbd_slopes[3] = {
887 {66, 120}, /* -64,-52: offset - 65 */
888 {600, 170}, /* -52,-35: 65 - 665 */
889 {170, 250}, /* -45,-10: 665 - 835 */
892 static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
895 if (wbd < state->wbd_offset)
898 wbd -= state->wbd_offset;
899 /* -64dB is the floor */
900 return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
903 static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
907 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
909 if (state->current_band == BAND_VHF)
911 #ifndef FIRMWARE_FIREFLY
912 if (state->current_band == BAND_VHF)
913 offset = state->config->wbd_vhf_offset;
914 if (state->current_band == BAND_CBAND)
915 offset = state->config->wbd_cband_offset;
918 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
919 dprintk("wbd-target: %d dB", (u32) state->wbd_target);
922 static const int gain_reg_addr[4] = {
923 0x08, 0x0a, 0x0f, 0x01
926 static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
929 u16 i, v, gain_reg[4] = { 0 }, gain;
932 if (top_delta < -511)
938 top_delta *= (1 << WBD_ALPHA);
939 gain_delta *= (1 << GAIN_ALPHA);
942 if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
943 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
945 state->rf_gain_limit += top_delta;
947 if (state->rf_gain_limit < 0) /*underflow */
948 state->rf_gain_limit = 0;
950 /* use gain as a temporary variable and correct current_gain */
951 gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
952 if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
953 state->current_gain = gain;
955 state->current_gain += gain_delta;
956 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
957 if (state->current_gain < 0)
958 state->current_gain = 0;
960 /* now split total gain to rf and bb gain */
961 gain = state->current_gain >> GAIN_ALPHA;
963 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
964 if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
965 rf = state->rf_gain_limit >> WBD_ALPHA;
967 if (bb > state->bb_ramp[0])
968 bb = state->bb_ramp[0];
969 } else { /* high signal level -> all gains put on RF */
978 /* Start with RF gains */
979 g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
981 for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
982 if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
983 v = 0; /* force the gain to write for the current amp to be null */
984 else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
985 v = g[2]; /* force this amp to be full gain */
986 else /* compute the value to set to this amp because we are somewhere in his range */
987 v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
989 if (i == 0) /* LNA 1 reg mapping */
991 else if (i == 1) /* LNA 2 reg mapping */
992 gain_reg[0] |= v << 7;
993 else if (i == 2) /* LNA 3 reg mapping */
995 else if (i == 3) /* LNA 4 reg mapping */
996 gain_reg[1] |= v << 7;
997 else if (i == 4) /* CBAND LNA reg mapping */
998 gain_reg[2] = v | state->rf_lt_def;
999 else if (i == 5) /* BB gain 1 reg mapping */
1000 gain_reg[3] = v << 3;
1001 else if (i == 6) /* BB gain 2 reg mapping */
1002 gain_reg[3] |= v << 8;
1004 g += 3; /* go to next gain bloc */
1006 /* When RF is finished, start with BB */
1008 g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
1012 gain_reg[3] |= state->bb_1_def;
1013 gain_reg[3] |= ((bb % 10) * 100) / 125;
1016 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
1017 gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
1020 /* Write the amplifier regs */
1021 for (i = 0; i < 4; i++) {
1023 if (force || state->gain_reg[i] != v) {
1024 state->gain_reg[i] = v;
1025 dib0090_write_reg(state, gain_reg_addr[i], v);
1030 static void dib0090_set_boost(struct dib0090_state *state, int onoff)
1032 state->bb_1_def &= 0xdfff;
1033 state->bb_1_def |= onoff << 13;
1036 static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
1038 state->rf_ramp = cfg;
1041 static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
1043 state->rf_ramp = cfg;
1045 dib0090_write_reg(state, 0x2a, 0xffff);
1047 dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
1049 dib0090_write_regs(state, 0x2c, cfg + 3, 6);
1050 dib0090_write_regs(state, 0x3e, cfg + 9, 2);
1053 static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
1055 state->bb_ramp = cfg;
1056 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1059 static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
1061 state->bb_ramp = cfg;
1063 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1065 dib0090_write_reg(state, 0x33, 0xffff);
1066 dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
1067 dib0090_write_regs(state, 0x35, cfg + 3, 4);
1070 void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
1072 struct dib0090_state *state = fe->tuner_priv;
1073 u16 *bb_ramp = (u16 *)&bb_ramp_pwm_normal; /* default baseband config */
1074 u16 *rf_ramp = NULL;
1075 u8 en_pwm_rf_mux = 1;
1078 if (state->config->use_pwm_agc) {
1079 if (state->current_band == BAND_CBAND) {
1080 if (state->identity.in_soc) {
1081 bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1082 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1083 rf_ramp = (u16 *)&rf_ramp_pwm_cband_8090;
1084 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
1085 if (state->config->is_dib7090e) {
1086 if (state->rf_ramp == NULL)
1087 rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1089 rf_ramp = (u16 *)state->rf_ramp;
1091 rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090p;
1094 rf_ramp = (u16 *)&rf_ramp_pwm_cband;
1097 if (state->current_band == BAND_VHF) {
1098 if (state->identity.in_soc) {
1099 bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1100 /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1102 rf_ramp = (u16 *)&rf_ramp_pwm_vhf;
1103 } else if (state->current_band == BAND_UHF) {
1104 if (state->identity.in_soc) {
1105 bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1106 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1107 rf_ramp = (u16 *)&rf_ramp_pwm_uhf_8090;
1108 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1109 rf_ramp = (u16 *)&rf_ramp_pwm_uhf_7090;
1111 rf_ramp = (u16 *)&rf_ramp_pwm_uhf;
1114 dib0090_set_rframp_pwm(state, rf_ramp);
1115 dib0090_set_bbramp_pwm(state, bb_ramp);
1117 /* activate the ramp generator using PWM control */
1118 dprintk("ramp RF gain = %d BAND = %s version = %d", state->rf_ramp[0], (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND", state->identity.version & 0x1f);
1120 if ((state->rf_ramp[0] == 0) || (state->current_band == BAND_CBAND && (state->identity.version & 0x1f) <= P1D_E_F)) {
1121 dprintk("DE-Engage mux for direct gain reg control");
1124 dprintk("Engage mux for PWM control");
1126 dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
1128 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1129 if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1130 dib0090_write_reg(state, 0x04, 3);
1132 dib0090_write_reg(state, 0x04, 1);
1133 dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
1136 EXPORT_SYMBOL(dib0090_pwm_gain_reset);
1138 void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
1140 struct dib0090_state *state = fe->tuner_priv;
1141 if (DC_servo_cutoff < 4)
1142 dib0090_write_reg(state, 0x04, DC_servo_cutoff);
1144 EXPORT_SYMBOL(dib0090_set_dc_servo);
1146 static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
1148 u16 adc_val = dib0090_read_reg(state, 0x1d);
1149 if (state->identity.in_soc)
1154 int dib0090_gain_control(struct dvb_frontend *fe)
1156 struct dib0090_state *state = fe->tuner_priv;
1157 enum frontend_tune_state *tune_state = &state->tune_state;
1161 u8 apply_gain_immediatly = 1;
1162 s16 wbd_error = 0, adc_error = 0;
1164 if (*tune_state == CT_AGC_START) {
1165 state->agc_freeze = 0;
1166 dib0090_write_reg(state, 0x04, 0x0);
1168 #ifdef CONFIG_BAND_SBAND
1169 if (state->current_band == BAND_SBAND) {
1170 dib0090_set_rframp(state, rf_ramp_sband);
1171 dib0090_set_bbramp(state, bb_ramp_boost);
1174 #ifdef CONFIG_BAND_VHF
1175 if (state->current_band == BAND_VHF && !state->identity.p1g) {
1176 dib0090_set_rframp(state, rf_ramp_pwm_vhf);
1177 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1180 #ifdef CONFIG_BAND_CBAND
1181 if (state->current_band == BAND_CBAND && !state->identity.p1g) {
1182 dib0090_set_rframp(state, rf_ramp_pwm_cband);
1183 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1186 if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
1187 dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
1188 dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
1190 dib0090_set_rframp(state, rf_ramp_pwm_uhf);
1191 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1194 dib0090_write_reg(state, 0x32, 0);
1195 dib0090_write_reg(state, 0x39, 0);
1197 dib0090_wbd_target(state, state->current_rf);
1199 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
1200 state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
1202 *tune_state = CT_AGC_STEP_0;
1203 } else if (!state->agc_freeze) {
1204 s16 wbd = 0, i, cnt;
1207 wbd_val = dib0090_get_slow_adc_val(state);
1209 if (*tune_state == CT_AGC_STEP_0)
1214 for (i = 0; i < cnt; i++) {
1215 wbd_val = dib0090_get_slow_adc_val(state);
1216 wbd += dib0090_wbd_to_db(state, wbd_val);
1219 wbd_error = state->wbd_target - wbd;
1221 if (*tune_state == CT_AGC_STEP_0) {
1222 if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
1223 #ifdef CONFIG_BAND_CBAND
1224 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1225 u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
1226 if (state->current_band == BAND_CBAND && ltg2) {
1228 state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
1232 state->agc_step = 0;
1233 *tune_state = CT_AGC_STEP_1;
1236 /* calc the adc power */
1237 adc = state->config->get_adc_power(fe);
1238 adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
1240 adc_error = (s16) (((s32) ADC_TARGET) - adc);
1241 #ifdef CONFIG_STANDARD_DAB
1242 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
1245 #ifdef CONFIG_STANDARD_DVBT
1246 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
1247 (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
1250 #ifdef CONFIG_SYS_ISDBT
1251 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
1254 ((state->fe->dtv_property_cache.layer[0].modulation ==
1256 || (state->fe->dtv_property_cache.
1257 layer[0].modulation == QAM_16)))
1259 ((state->fe->dtv_property_cache.layer[1].segment_count >
1262 ((state->fe->dtv_property_cache.layer[1].modulation ==
1264 || (state->fe->dtv_property_cache.
1265 layer[1].modulation == QAM_16)))
1267 ((state->fe->dtv_property_cache.layer[2].segment_count >
1270 ((state->fe->dtv_property_cache.layer[2].modulation ==
1272 || (state->fe->dtv_property_cache.
1273 layer[2].modulation == QAM_16)))
1279 if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
1280 if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
1282 #ifdef CONFIG_STANDARD_DAB
1283 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
1284 dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1285 dib0090_write_reg(state, 0x04, 0x0);
1289 dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1290 dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1293 *tune_state = CT_AGC_STOP;
1296 /* everything higher than or equal to CT_AGC_STOP means tracking */
1297 ret = 100; /* 10ms interval */
1298 apply_gain_immediatly = 0;
1303 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1304 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
1305 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
1310 if (!state->agc_freeze)
1311 dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
1315 EXPORT_SYMBOL(dib0090_gain_control);
1317 void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
1319 struct dib0090_state *state = fe->tuner_priv;
1321 *rf = state->gain[0];
1323 *bb = state->gain[1];
1325 *rf_gain_limit = state->rf_gain_limit;
1327 *rflt = (state->rf_lt_def >> 10) & 0x7;
1330 EXPORT_SYMBOL(dib0090_get_current_gain);
1332 u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
1334 struct dib0090_state *state = fe->tuner_priv;
1335 u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
1336 s32 current_temp = state->temperature;
1337 s32 wbd_thot, wbd_tcold;
1338 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1340 while (f_MHz > wbd->max_freq)
1343 dprintk("using wbd-table-entry with max freq %d", wbd->max_freq);
1345 if (current_temp < 0)
1347 if (current_temp > 128)
1350 state->wbdmux &= ~(7 << 13);
1351 if (wbd->wbd_gain != 0)
1352 state->wbdmux |= (wbd->wbd_gain << 13);
1354 state->wbdmux |= (4 << 13);
1356 dib0090_write_reg(state, 0x10, state->wbdmux);
1358 wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
1359 wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
1361 wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
1363 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
1364 dprintk("wbd-target: %d dB", (u32) state->wbd_target);
1365 dprintk("wbd offset applied is %d", wbd_tcold);
1367 return state->wbd_offset + wbd_tcold;
1369 EXPORT_SYMBOL(dib0090_get_wbd_target);
1371 u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1373 struct dib0090_state *state = fe->tuner_priv;
1374 return state->wbd_offset;
1376 EXPORT_SYMBOL(dib0090_get_wbd_offset);
1378 int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
1380 struct dib0090_state *state = fe->tuner_priv;
1382 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
1383 | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
1387 EXPORT_SYMBOL(dib0090_set_switch);
1389 int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
1391 struct dib0090_state *state = fe->tuner_priv;
1393 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
1394 | ((onoff & 1) << 15));
1397 EXPORT_SYMBOL(dib0090_set_vga);
1399 int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
1401 struct dib0090_state *state = fe->tuner_priv;
1403 if ((!state->identity.p1g) || (!state->identity.in_soc)
1404 || ((state->identity.version != SOC_7090_P1G_21R1)
1405 && (state->identity.version != SOC_7090_P1G_11R1))) {
1406 dprintk("%s() function can only be used for dib7090P", __func__);
1410 if (cfg_sensitivity)
1411 state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1413 state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci;
1414 dib0090_pwm_gain_reset(fe);
1418 EXPORT_SYMBOL(dib0090_update_rframp_7090);
1420 static const u16 dib0090_defaults[] = {
1460 EN_UHF | EN_CRYSTAL,
1468 static const u16 dib0090_p1g_additionnal_defaults[] = {
1483 static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
1487 l = pgm_read_word(n++);
1489 r = pgm_read_word(n++);
1491 dib0090_write_reg(state, r, pgm_read_word(n++));
1494 l = pgm_read_word(n++);
1498 #define CAP_VALUE_MIN (u8) 9
1499 #define CAP_VALUE_MAX (u8) 40
1500 #define HR_MIN (u8) 25
1501 #define HR_MAX (u8) 40
1502 #define POLY_MIN (u8) 0
1503 #define POLY_MAX (u8) 8
1505 static void dib0090_set_EFUSE(struct dib0090_state *state)
1511 e2 = dib0090_read_reg(state, 0x26);
1512 e4 = dib0090_read_reg(state, 0x28);
1514 if ((state->identity.version == P1D_E_F) ||
1515 (state->identity.version == P1G) || (e2 == 0xffff)) {
1517 dib0090_write_reg(state, 0x22, 0x10);
1518 cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
1520 if ((cal < 670) || (cal == 1023))
1522 n = 165 - ((cal * 10)>>6) ;
1523 e2 = e4 = (3<<12) | (34<<6) | (n);
1527 e2 &= e4; /* Remove the redundancy */
1531 n = (e2 >> 12) & 0xf;
1532 h = (e2 >> 6) & 0x3f;
1534 if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
1538 if ((h >= HR_MAX) || (h <= HR_MIN))
1540 if ((n >= POLY_MAX) || (n <= POLY_MIN))
1543 dib0090_write_reg(state, 0x13, (h << 10));
1544 e2 = (n << 11) | ((h >> 2)<<6) | c;
1545 dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
1549 static int dib0090_reset(struct dvb_frontend *fe)
1551 struct dib0090_state *state = fe->tuner_priv;
1553 dib0090_reset_digital(fe, state->config);
1554 if (dib0090_identify(fe) < 0)
1557 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1558 if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */
1562 if (!state->identity.in_soc) {
1563 if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
1564 dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1566 dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1569 dib0090_set_default_config(state, dib0090_defaults);
1571 if (state->identity.in_soc)
1572 dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
1574 if (state->identity.p1g)
1575 dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
1577 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1578 if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
1579 dib0090_set_EFUSE(state);
1581 /* Congigure in function of the crystal */
1582 if (state->config->force_crystal_mode != 0)
1583 dib0090_write_reg(state, 0x14,
1584 state->config->force_crystal_mode & 3);
1585 else if (state->config->io.clock_khz >= 24000)
1586 dib0090_write_reg(state, 0x14, 1);
1588 dib0090_write_reg(state, 0x14, 2);
1589 dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
1591 state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1596 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1597 #define INTERN_WAIT 10
1598 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1600 int ret = INTERN_WAIT * 10;
1602 switch (*tune_state) {
1603 case CT_TUNER_STEP_2:
1604 /* Turns to positive */
1605 dib0090_write_reg(state, 0x1f, 0x7);
1606 *tune_state = CT_TUNER_STEP_3;
1609 case CT_TUNER_STEP_3:
1610 state->adc_diff = dib0090_read_reg(state, 0x1d);
1612 /* Turns to negative */
1613 dib0090_write_reg(state, 0x1f, 0x4);
1614 *tune_state = CT_TUNER_STEP_4;
1617 case CT_TUNER_STEP_4:
1618 state->adc_diff -= dib0090_read_reg(state, 0x1d);
1619 *tune_state = CT_TUNER_STEP_5;
1630 struct dc_calibration {
1638 static const struct dc_calibration dc_table[] = {
1639 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1640 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1641 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1642 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1643 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1644 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1648 static const struct dc_calibration dc_p1g_table[] = {
1649 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1650 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1651 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1652 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1653 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1654 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1655 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1659 static void dib0090_set_trim(struct dib0090_state *state)
1663 if (state->dc->addr == 0x07)
1668 *val &= ~(0x1f << state->dc->offset);
1669 *val |= state->step << state->dc->offset;
1671 dib0090_write_reg(state, state->dc->addr, *val);
1674 static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1679 switch (*tune_state) {
1680 case CT_TUNER_START:
1681 dprintk("Start DC offset calibration");
1683 /* force vcm2 = 0.8V */
1685 state->bb7 = 0x040d;
1687 /* the LNA AND LO are off */
1688 reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */
1689 dib0090_write_reg(state, 0x24, reg);
1691 state->wbdmux = dib0090_read_reg(state, 0x10);
1692 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
1693 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
1695 state->dc = dc_table;
1697 if (state->identity.p1g)
1698 state->dc = dc_p1g_table;
1701 case CT_TUNER_STEP_0:
1702 dprintk("Start/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q");
1703 dib0090_write_reg(state, 0x01, state->dc->bb1);
1704 dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
1707 state->min_adc_diff = 1023;
1708 *tune_state = CT_TUNER_STEP_1;
1712 case CT_TUNER_STEP_1:
1713 dib0090_set_trim(state);
1714 *tune_state = CT_TUNER_STEP_2;
1717 case CT_TUNER_STEP_2:
1718 case CT_TUNER_STEP_3:
1719 case CT_TUNER_STEP_4:
1720 ret = dib0090_get_offset(state, tune_state);
1723 case CT_TUNER_STEP_5: /* found an offset */
1724 dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step);
1725 if (state->step == 0 && state->adc_diff < 0) {
1726 state->min_adc_diff = -1023;
1727 dprintk("Change of sign of the minimum adc diff");
1730 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step);
1732 /* first turn for this frequency */
1733 if (state->step == 0) {
1734 if (state->dc->pga && state->adc_diff < 0)
1736 if (state->dc->pga == 0 && state->adc_diff > 0)
1740 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1741 if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
1742 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1744 state->min_adc_diff = state->adc_diff;
1745 *tune_state = CT_TUNER_STEP_1;
1747 /* the minimum was what we have seen in the step before */
1748 if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
1749 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
1753 dib0090_set_trim(state);
1754 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step);
1757 if (state->dc->addr == 0) /* done */
1758 *tune_state = CT_TUNER_STEP_6;
1760 *tune_state = CT_TUNER_STEP_0;
1765 case CT_TUNER_STEP_6:
1766 dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
1767 dib0090_write_reg(state, 0x1f, 0x7);
1768 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
1769 state->calibrate &= ~DC_CAL;
1776 static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1779 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1781 switch (*tune_state) {
1782 case CT_TUNER_START:
1783 while (state->current_rf / 1000 > wbd->max_freq)
1785 if (wbd->wbd_gain != 0)
1786 wbd_gain = wbd->wbd_gain;
1789 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1790 if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
1795 if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */
1796 *tune_state = CT_TUNER_START;
1797 state->calibrate &= ~WBD_CAL;
1801 dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
1803 dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
1804 *tune_state = CT_TUNER_STEP_0;
1805 state->wbd_calibration_gain = wbd_gain;
1806 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1808 case CT_TUNER_STEP_0:
1809 state->wbd_offset = dib0090_get_slow_adc_val(state);
1810 dprintk("WBD calibration offset = %d", state->wbd_offset);
1811 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
1812 state->calibrate &= ~WBD_CAL;
1821 static void dib0090_set_bandwidth(struct dib0090_state *state)
1825 if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
1827 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
1829 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
1834 state->bb_1_def &= 0x3fff;
1835 state->bb_1_def |= tmp;
1837 dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
1839 dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1840 dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1841 if (state->identity.in_soc) {
1842 dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1844 dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1845 dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1849 static const struct dib0090_pll dib0090_pll_table[] = {
1850 #ifdef CONFIG_BAND_CBAND
1851 {56000, 0, 9, 48, 6},
1852 {70000, 1, 9, 48, 6},
1853 {87000, 0, 8, 32, 4},
1854 {105000, 1, 8, 32, 4},
1855 {115000, 0, 7, 24, 6},
1856 {140000, 1, 7, 24, 6},
1857 {170000, 0, 6, 16, 4},
1859 #ifdef CONFIG_BAND_VHF
1860 {200000, 1, 6, 16, 4},
1861 {230000, 0, 5, 12, 6},
1862 {280000, 1, 5, 12, 6},
1863 {340000, 0, 4, 8, 4},
1864 {380000, 1, 4, 8, 4},
1865 {450000, 0, 3, 6, 6},
1867 #ifdef CONFIG_BAND_UHF
1868 {580000, 1, 3, 6, 6},
1869 {700000, 0, 2, 4, 4},
1870 {860000, 1, 2, 4, 4},
1872 #ifdef CONFIG_BAND_LBAND
1873 {1800000, 1, 0, 2, 4},
1875 #ifdef CONFIG_BAND_SBAND
1876 {2900000, 0, 14, 1, 4},
1880 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
1882 #ifdef CONFIG_BAND_CBAND
1883 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1884 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1885 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1887 #ifdef CONFIG_BAND_UHF
1888 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1889 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1890 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1891 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1892 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1893 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1895 #ifdef CONFIG_BAND_LBAND
1896 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1897 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1898 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1900 #ifdef CONFIG_BAND_SBAND
1901 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1902 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1906 static const struct dib0090_tuning dib0090_tuning_table[] = {
1908 #ifdef CONFIG_BAND_CBAND
1909 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1911 #ifdef CONFIG_BAND_VHF
1912 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1913 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1914 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1916 #ifdef CONFIG_BAND_UHF
1917 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1918 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1919 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1920 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1921 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1922 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1924 #ifdef CONFIG_BAND_LBAND
1925 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1926 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1927 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1929 #ifdef CONFIG_BAND_SBAND
1930 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1931 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1935 static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
1936 #ifdef CONFIG_BAND_CBAND
1937 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
1939 #ifdef CONFIG_BAND_VHF
1940 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1941 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1942 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1944 #ifdef CONFIG_BAND_UHF
1945 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1946 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1947 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1948 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1949 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1950 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1951 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1953 #ifdef CONFIG_BAND_LBAND
1954 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1955 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1956 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1958 #ifdef CONFIG_BAND_SBAND
1959 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1960 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1964 static const struct dib0090_pll dib0090_p1g_pll_table[] = {
1965 #ifdef CONFIG_BAND_CBAND
1966 {57000, 0, 11, 48, 6},
1967 {70000, 1, 11, 48, 6},
1968 {86000, 0, 10, 32, 4},
1969 {105000, 1, 10, 32, 4},
1970 {115000, 0, 9, 24, 6},
1971 {140000, 1, 9, 24, 6},
1972 {170000, 0, 8, 16, 4},
1974 #ifdef CONFIG_BAND_VHF
1975 {200000, 1, 8, 16, 4},
1976 {230000, 0, 7, 12, 6},
1977 {280000, 1, 7, 12, 6},
1978 {340000, 0, 6, 8, 4},
1979 {380000, 1, 6, 8, 4},
1980 {455000, 0, 5, 6, 6},
1982 #ifdef CONFIG_BAND_UHF
1983 {580000, 1, 5, 6, 6},
1984 {680000, 0, 4, 4, 4},
1985 {860000, 1, 4, 4, 4},
1987 #ifdef CONFIG_BAND_LBAND
1988 {1800000, 1, 2, 2, 4},
1990 #ifdef CONFIG_BAND_SBAND
1991 {2900000, 0, 1, 1, 6},
1995 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
1996 #ifdef CONFIG_BAND_CBAND
1997 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1998 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1999 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2001 #ifdef CONFIG_BAND_UHF
2002 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2003 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2004 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2005 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2006 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2007 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2009 #ifdef CONFIG_BAND_LBAND
2010 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2011 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2012 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2014 #ifdef CONFIG_BAND_SBAND
2015 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
2016 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
2020 static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
2021 #ifdef CONFIG_BAND_CBAND
2022 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2023 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2024 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2025 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2029 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
2030 #ifdef CONFIG_BAND_CBAND
2031 { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2032 { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2033 { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2034 { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
2035 { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2036 { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
2040 int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
2043 struct dib0090_state *state = fe->tuner_priv;
2044 const struct dib0090_tuning *tune =
2045 dib0090_tuning_table_cband_7090e_sensitivity;
2046 const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
2047 { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2048 { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
2049 { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
2052 if ((!state->identity.p1g) || (!state->identity.in_soc)
2053 || ((state->identity.version != SOC_7090_P1G_21R1)
2054 && (state->identity.version != SOC_7090_P1G_11R1))) {
2055 dprintk("%s() function can only be used for dib7090", __func__);
2059 if (cfg_sensitivity)
2060 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2062 tune = dib0090_tuning_table_cband_7090e_aci;
2064 while (state->rf_request > tune->max_freq)
2067 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
2068 | (tune->lna_bias & 0x7fff));
2069 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
2070 | ((tune->lna_tune << 6) & 0x07c0));
2073 EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
2075 static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2083 u8 force_soft_search = 0;
2085 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
2086 force_soft_search = 1;
2088 if (*tune_state == CT_TUNER_START) {
2089 dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
2090 dib0090_write_reg(state, 0x10, 0x2B1);
2091 dib0090_write_reg(state, 0x1e, 0x0032);
2093 if (!state->tuner_is_tuned) {
2094 /* prepare a complete captrim */
2095 if (!state->identity.p1g || force_soft_search)
2096 state->step = state->captrim = state->fcaptrim = 64;
2098 state->current_rf = state->rf_request;
2099 } else { /* we are already tuned to this frequency - the configuration is correct */
2100 if (!state->identity.p1g || force_soft_search) {
2101 /* do a minimal captrim even if the frequency has not changed */
2103 state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
2106 state->adc_diff = 3000;
2107 *tune_state = CT_TUNER_STEP_0;
2109 } else if (*tune_state == CT_TUNER_STEP_0) {
2110 if (state->identity.p1g && !force_soft_search) {
2113 dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
2114 dib0090_read_reg(state, 0x40);
2118 dib0090_write_reg(state, 0x18, lo4 | state->captrim);
2120 if (state->identity.in_soc)
2123 *tune_state = CT_TUNER_STEP_1;
2125 } else if (*tune_state == CT_TUNER_STEP_1) {
2126 if (state->identity.p1g && !force_soft_search) {
2127 dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
2128 dib0090_read_reg(state, 0x40);
2130 state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
2131 dprintk("***Final Captrim= 0x%x", state->fcaptrim);
2132 *tune_state = CT_TUNER_STEP_3;
2135 /* MERGE for all krosus before P1G */
2136 adc = dib0090_get_slow_adc_val(state);
2137 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
2139 if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2144 if (adc >= adc_target) {
2148 adc = adc_target - adc;
2152 if (adc < state->adc_diff) {
2153 dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
2154 state->adc_diff = adc;
2155 state->fcaptrim = state->captrim;
2158 state->captrim += step_sign * state->step;
2159 if (state->step >= 1)
2160 *tune_state = CT_TUNER_STEP_0;
2162 *tune_state = CT_TUNER_STEP_2;
2166 } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
2167 /*write the final cptrim config */
2168 dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
2170 *tune_state = CT_TUNER_STEP_3;
2172 } else if (*tune_state == CT_TUNER_STEP_3) {
2173 state->calibrate &= ~CAPTRIM_CAL;
2174 *tune_state = CT_TUNER_STEP_0;
2180 static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2185 switch (*tune_state) {
2186 case CT_TUNER_START:
2187 state->wbdmux = dib0090_read_reg(state, 0x10);
2188 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
2190 state->bias = dib0090_read_reg(state, 0x13);
2191 dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
2193 *tune_state = CT_TUNER_STEP_0;
2194 /* wait for the WBDMUX to switch and for the ADC to sample */
2197 case CT_TUNER_STEP_0:
2198 state->adc_diff = dib0090_get_slow_adc_val(state);
2199 dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
2200 *tune_state = CT_TUNER_STEP_1;
2203 case CT_TUNER_STEP_1:
2204 val = dib0090_get_slow_adc_val(state);
2205 state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
2207 dprintk("temperature: %d C", state->temperature - 30);
2209 *tune_state = CT_TUNER_STEP_2;
2212 case CT_TUNER_STEP_2:
2213 dib0090_write_reg(state, 0x13, state->bias);
2214 dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
2216 *tune_state = CT_TUNER_START;
2217 state->calibrate &= ~TEMP_CAL;
2218 if (state->config->analog_output == 0)
2219 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2230 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2231 static int dib0090_tune(struct dvb_frontend *fe)
2233 struct dib0090_state *state = fe->tuner_priv;
2234 const struct dib0090_tuning *tune = state->current_tune_table_index;
2235 const struct dib0090_pll *pll = state->current_pll_table_index;
2236 enum frontend_tune_state *tune_state = &state->tune_state;
2238 u16 lo5, lo6, Den, tmp;
2239 u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
2240 int ret = 10; /* 1ms is the default delay most of the time */
2243 /************************* VCO ***************************/
2244 /* Default values for FG */
2245 /* from these are needed : */
2246 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2248 /* in any case we first need to do a calibration if needed */
2249 if (*tune_state == CT_TUNER_START) {
2250 /* deactivate DataTX before some calibrations */
2251 if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
2252 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
2254 /* Activate DataTX in case a calibration has been done before */
2255 if (state->config->analog_output == 0)
2256 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2259 if (state->calibrate & DC_CAL)
2260 return dib0090_dc_offset_calibration(state, tune_state);
2261 else if (state->calibrate & WBD_CAL) {
2262 if (state->current_rf == 0)
2263 state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
2264 return dib0090_wbd_calibration(state, tune_state);
2265 } else if (state->calibrate & TEMP_CAL)
2266 return dib0090_get_temperature(state, tune_state);
2267 else if (state->calibrate & CAPTRIM_CAL)
2268 return dib0090_captrim_search(state, tune_state);
2270 if (*tune_state == CT_TUNER_START) {
2271 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2272 if (state->config->use_pwm_agc && state->identity.in_soc) {
2273 tmp = dib0090_read_reg(state, 0x39);
2274 if ((tmp >> 10) & 0x1)
2275 dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
2278 state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
2280 state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
2281 BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
2282 freq_offset_khz_vhf);
2284 /* in ISDB-T 1seg we shift tuning frequency */
2285 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
2286 && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
2287 const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
2288 u8 found_offset = 0;
2289 u32 margin_khz = 100;
2291 if (LUT_offset != NULL) {
2292 while (LUT_offset->RF_freq != 0xffff) {
2293 if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
2294 && (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
2295 && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
2296 state->rf_request += LUT_offset->offset_khz;
2304 if (found_offset == 0)
2305 state->rf_request += 400;
2307 if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
2308 state->tuner_is_tuned = 0;
2309 state->current_rf = 0;
2310 state->current_standard = 0;
2312 tune = dib0090_tuning_table;
2313 if (state->identity.p1g)
2314 tune = dib0090_p1g_tuning_table;
2316 tmp = (state->identity.version >> 5) & 0x7;
2318 if (state->identity.in_soc) {
2319 if (state->config->force_cband_input) { /* Use the CBAND input for all band */
2320 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
2321 || state->current_band & BAND_UHF) {
2322 state->current_band = BAND_CBAND;
2323 if (state->config->is_dib7090e)
2324 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2326 tune = dib0090_tuning_table_cband_7090;
2328 } else { /* Use the CBAND input for all band under UHF */
2329 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
2330 state->current_band = BAND_CBAND;
2331 if (state->config->is_dib7090e)
2332 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2334 tune = dib0090_tuning_table_cband_7090;
2338 if (tmp == 0x4 || tmp == 0x7) {
2339 /* CBAND tuner version for VHF */
2340 if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
2341 state->current_band = BAND_CBAND; /* Force CBAND */
2343 tune = dib0090_tuning_table_fm_vhf_on_cband;
2344 if (state->identity.p1g)
2345 tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
2349 pll = dib0090_pll_table;
2350 if (state->identity.p1g)
2351 pll = dib0090_p1g_pll_table;
2353 /* Look for the interval */
2354 while (state->rf_request > tune->max_freq)
2356 while (state->rf_request > pll->max_freq)
2359 state->current_tune_table_index = tune;
2360 state->current_pll_table_index = pll;
2362 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
2364 VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
2366 FREF = state->config->io.clock_khz;
2367 if (state->config->fref_clock_ratio != 0)
2368 FREF /= state->config->fref_clock_ratio;
2370 FBDiv = (VCOF_kHz / pll->topresc / FREF);
2371 Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
2375 else if (Rest < 2 * LPF)
2377 else if (Rest > (FREF - LPF)) {
2380 } else if (Rest > (FREF - 2 * LPF))
2381 Rest = FREF - 2 * LPF;
2382 Rest = (Rest * 6528) / (FREF / 10);
2385 /* external loop filter, otherwise:
2386 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2397 else if (state->config->analog_output)
2403 if (state->identity.p1g) { /* Bias is done automatically in P1G */
2404 if (state->identity.in_soc) {
2405 if (state->identity.version == SOC_8090_P1G_11R1)
2413 lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
2415 if (!state->config->io.pll_int_loop_filt) {
2416 if (state->identity.in_soc)
2418 else if (state->identity.p1g || (Rest == 0))
2423 lo6 = (state->config->io.pll_int_loop_filt << 3);
2428 if (state->config->analog_output)
2429 lo6 |= (1 << 2) | 2;
2431 if (state->identity.in_soc)
2432 lo6 |= (1 << 2) | 2;
2434 lo6 |= (1 << 2) | 2;
2438 dib0090_write_reg(state, 0x15, (u16) FBDiv);
2439 if (state->config->fref_clock_ratio != 0)
2440 dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
2442 dib0090_write_reg(state, 0x16, (Den << 8) | 1);
2443 dib0090_write_reg(state, 0x17, (u16) Rest);
2444 dib0090_write_reg(state, 0x19, lo5);
2445 dib0090_write_reg(state, 0x1c, lo6);
2447 lo6 = tune->tuner_enable;
2448 if (state->config->analog_output)
2449 lo6 = (lo6 & 0xff9f) | 0x2;
2451 dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
2455 state->current_rf = state->rf_request;
2456 state->current_standard = state->fe->dtv_property_cache.delivery_system;
2459 state->calibrate = CAPTRIM_CAL; /* captrim serach now */
2462 else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2463 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
2465 while (state->current_rf / 1000 > wbd->max_freq)
2468 dib0090_write_reg(state, 0x1e, 0x07ff);
2469 dprintk("Final Captrim: %d", (u32) state->fcaptrim);
2470 dprintk("HFDIV code: %d", (u32) pll->hfdiv_code);
2471 dprintk("VCO = %d", (u32) pll->vco_band);
2472 dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
2473 dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz);
2474 dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
2475 dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
2476 (u32) dib0090_read_reg(state, 0x1c) & 0x3);
2478 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2482 if (wbd->wbd_gain != 0)
2485 state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
2486 dib0090_write_reg(state, 0x10, state->wbdmux);
2488 if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
2489 dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune);
2490 dib0090_write_reg(state, 0x09, tune->lna_bias);
2491 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
2493 dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
2495 dib0090_write_reg(state, 0x0c, tune->v2i);
2496 dib0090_write_reg(state, 0x0d, tune->mix);
2497 dib0090_write_reg(state, 0x0e, tune->load);
2498 *tune_state = CT_TUNER_STEP_1;
2500 } else if (*tune_state == CT_TUNER_STEP_1) {
2501 /* initialize the lt gain register */
2502 state->rf_lt_def = 0x7c00;
2504 dib0090_set_bandwidth(state);
2505 state->tuner_is_tuned = 1;
2507 state->calibrate |= WBD_CAL;
2508 state->calibrate |= TEMP_CAL;
2509 *tune_state = CT_TUNER_STOP;
2511 ret = FE_CALLBACK_TIME_NEVER;
2515 static int dib0090_release(struct dvb_frontend *fe)
2517 kfree(fe->tuner_priv);
2518 fe->tuner_priv = NULL;
2522 enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
2524 struct dib0090_state *state = fe->tuner_priv;
2526 return state->tune_state;
2529 EXPORT_SYMBOL(dib0090_get_tune_state);
2531 int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2533 struct dib0090_state *state = fe->tuner_priv;
2535 state->tune_state = tune_state;
2539 EXPORT_SYMBOL(dib0090_set_tune_state);
2541 static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
2543 struct dib0090_state *state = fe->tuner_priv;
2545 *frequency = 1000 * state->current_rf;
2549 static int dib0090_set_params(struct dvb_frontend *fe)
2551 struct dib0090_state *state = fe->tuner_priv;
2554 state->tune_state = CT_TUNER_START;
2557 ret = dib0090_tune(fe);
2558 if (ret == FE_CALLBACK_TIME_NEVER)
2562 * Despite dib0090_tune returns time at a 0.1 ms range,
2563 * the actual sleep time depends on CONFIG_HZ. The worse case
2564 * is when CONFIG_HZ=100. In such case, the minimum granularity
2565 * is 10ms. On some real field tests, the tuner sometimes don't
2566 * lock when this timer is lower than 10ms. So, enforce a 10ms
2567 * granularity and use usleep_range() instead of msleep().
2569 ret = 10 * (ret + 99)/100;
2570 usleep_range(ret * 1000, (ret + 1) * 1000);
2571 } while (state->tune_state != CT_TUNER_STOP);
2576 static const struct dvb_tuner_ops dib0090_ops = {
2578 .name = "DiBcom DiB0090",
2579 .frequency_min = 45000000,
2580 .frequency_max = 860000000,
2581 .frequency_step = 1000,
2583 .release = dib0090_release,
2585 .init = dib0090_wakeup,
2586 .sleep = dib0090_sleep,
2587 .set_params = dib0090_set_params,
2588 .get_frequency = dib0090_get_frequency,
2591 static const struct dvb_tuner_ops dib0090_fw_ops = {
2593 .name = "DiBcom DiB0090",
2594 .frequency_min = 45000000,
2595 .frequency_max = 860000000,
2596 .frequency_step = 1000,
2598 .release = dib0090_release,
2603 .get_frequency = NULL,
2606 static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
2607 {470, 0, 250, 0, 100, 4},
2608 {860, 51, 866, 21, 375, 4},
2609 {1700, 0, 800, 0, 850, 4},
2610 {2900, 0, 250, 0, 100, 6},
2611 {0xFFFF, 0, 0, 0, 0, 0},
2614 struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2616 struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
2620 st->config = config;
2623 mutex_init(&st->i2c_buffer_lock);
2624 fe->tuner_priv = st;
2626 if (config->wbd == NULL)
2627 st->current_wbd_table = dib0090_wbd_table_default;
2629 st->current_wbd_table = config->wbd;
2631 if (dib0090_reset(fe) != 0)
2634 printk(KERN_INFO "DiB0090: successfully identified\n");
2635 memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
2640 fe->tuner_priv = NULL;
2644 EXPORT_SYMBOL(dib0090_register);
2646 struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2648 struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
2652 st->config = config;
2655 mutex_init(&st->i2c_buffer_lock);
2656 fe->tuner_priv = st;
2658 if (dib0090_fw_reset_digital(fe, st->config) != 0)
2661 dprintk("DiB0090 FW: successfully identified");
2662 memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
2667 fe->tuner_priv = NULL;
2670 EXPORT_SYMBOL(dib0090_fw_register);
2672 MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2673 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
2674 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2675 MODULE_LICENSE("GPL");