]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/dvb-frontends/drxd_hard.c
Merge branch 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[karo-tx-linux.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include "dvb_frontend.h"
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT    1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58         CSCD_INIT = 0,
59         CSCD_SET,
60         CSCD_SAVED
61 };
62
63 enum CDrxdState {
64         DRXD_UNINITIALIZED = 0,
65         DRXD_STOPPED,
66         DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70         AGC_CTRL_AUTO = 0,
71         AGC_CTRL_USER,
72         AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76         OM_Default,
77         OM_DVBT_Diversity_Front,
78         OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82         enum AGC_CTRL_MODE ctrlMode;
83         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
84         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
85         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
86         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
87         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
88
89         u16 R1;
90         u16 R2;
91         u16 R3;
92 };
93
94 struct SNoiseCal {
95         int cpOpt;
96         short cpNexpOfs;
97         short tdCal2k;
98         short tdCal8k;
99 };
100
101 enum app_env {
102         APPENV_STATIC = 0,
103         APPENV_PORTABLE = 1,
104         APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108         IFFILTER_SAW = 0,
109         IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113         struct dvb_frontend frontend;
114         struct dvb_frontend_ops ops;
115         struct dtv_frontend_properties props;
116
117         const struct firmware *fw;
118         struct device *dev;
119
120         struct i2c_adapter *i2c;
121         void *priv;
122         struct drxd_config config;
123
124         int i2c_access;
125         int init_done;
126         struct mutex mutex;
127
128         u8 chip_adr;
129         u16 hi_cfg_timing_div;
130         u16 hi_cfg_bridge_delay;
131         u16 hi_cfg_wakeup_key;
132         u16 hi_cfg_ctrl;
133
134         u16 intermediate_freq;
135         u16 osc_clock_freq;
136
137         enum CSCDState cscd_state;
138         enum CDrxdState drxd_state;
139
140         u16 sys_clock_freq;
141         s16 osc_clock_deviation;
142         u16 expected_sys_clock_freq;
143
144         u16 insert_rs_byte;
145         u16 enable_parallel;
146
147         int operation_mode;
148
149         struct SCfgAgc if_agc_cfg;
150         struct SCfgAgc rf_agc_cfg;
151
152         struct SNoiseCal noise_cal;
153
154         u32 fe_fs_add_incr;
155         u32 org_fe_fs_add_incr;
156         u16 current_fe_if_incr;
157
158         u16 m_FeAgRegAgPwd;
159         u16 m_FeAgRegAgAgcSio;
160
161         u16 m_EcOcRegOcModeLop;
162         u16 m_EcOcRegSncSncLvl;
163         u8 *m_InitAtomicRead;
164         u8 *m_HiI2cPatch;
165
166         u8 *m_ResetCEFR;
167         u8 *m_InitFE_1;
168         u8 *m_InitFE_2;
169         u8 *m_InitCP;
170         u8 *m_InitCE;
171         u8 *m_InitEQ;
172         u8 *m_InitSC;
173         u8 *m_InitEC;
174         u8 *m_ResetECRAM;
175         u8 *m_InitDiversityFront;
176         u8 *m_InitDiversityEnd;
177         u8 *m_DisableDiversity;
178         u8 *m_StartDiversityFront;
179         u8 *m_StartDiversityEnd;
180
181         u8 *m_DiversityDelay8MHZ;
182         u8 *m_DiversityDelay6MHZ;
183
184         u8 *microcode;
185         u32 microcode_length;
186
187         int type_A;
188         int PGA;
189         int diversity;
190         int tuner_mirrors;
191
192         enum app_env app_env_default;
193         enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205         if (i2c_transfer(adap, &msg, 1) != 1)
206                 return -1;
207         return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213         struct i2c_msg msgs[2] = {
214                 {
215                         .addr = adr, .flags = 0,
216                         .buf = msg, .len = len
217                 }, {
218                         .addr = adr, .flags = I2C_M_RD,
219                         .buf = answ, .len = alen
220                 }
221         };
222         if (i2c_transfer(adap, msgs, 2) != 2)
223                 return -1;
224         return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229         u64 tmp64;
230
231         tmp64 = (u64)a * (u64)b;
232         do_div(tmp64, c);
233
234         return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239         u8 adr = state->config.demod_address;
240         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242         };
243         u8 mm2[2];
244         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245                 return -1;
246         if (data)
247                 *data = mm2[0] | (mm2[1] << 8);
248         return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253         u8 adr = state->config.demod_address;
254         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256         };
257         u8 mm2[4];
258
259         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260                 return -1;
261         if (data)
262                 *data =
263                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264         return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269         u8 adr = state->config.demod_address;
270         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272                 data & 0xff, (data >> 8) & 0xff
273         };
274
275         if (i2c_write(state->i2c, adr, mm, 6) < 0)
276                 return -1;
277         return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282         u8 adr = state->config.demod_address;
283         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285                 data & 0xff, (data >> 8) & 0xff,
286                 (data >> 16) & 0xff, (data >> 24) & 0xff
287         };
288
289         if (i2c_write(state->i2c, adr, mm, 8) < 0)
290                 return -1;
291         return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295                        u32 reg, u8 *data, u32 len, u8 flags)
296 {
297         u8 adr = state->config.demod_address;
298         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300         };
301         int i;
302
303         for (i = 0; i < len; i++)
304                 mm[4 + i] = data[i];
305         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306                 printk(KERN_ERR "error in write_chunk\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315         while (BlockSize > 0) {
316                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319                         return -1;
320                 pBlock += Chunk;
321                 Address += (Chunk >> 1);
322                 BlockSize -= Chunk;
323         }
324         return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329         int status = 0;
330
331         if (pTable == NULL)
332                 return 0;
333
334         while (!status) {
335                 u16 Length;
336                 u32 Address = pTable[0] | (pTable[1] << 8) |
337                     (pTable[2] << 16) | (pTable[3] << 24);
338
339                 if (Address == 0xFFFFFFFF)
340                         break;
341                 pTable += sizeof(u32);
342
343                 Length = pTable[0] | (pTable[1] << 8);
344                 pTable += sizeof(u16);
345                 if (!Length)
346                         break;
347                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348                 pTable += (Length * 2);
349         }
350         return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359         return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364         return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369         int status;
370         enum app_env AppEnv = state->app_env_default;
371
372         do {
373                 status = WriteTable(state, state->m_InitCE);
374                 if (status < 0)
375                         break;
376
377                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378                     state->operation_mode == OM_DVBT_Diversity_End) {
379                         AppEnv = state->app_env_diversity;
380                 }
381                 if (AppEnv == APPENV_STATIC) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383                         if (status < 0)
384                                 break;
385                 } else if (AppEnv == APPENV_PORTABLE) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395                         if (status < 0)
396                                 break;
397                 }
398
399                 /* start ce */
400                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401                 if (status < 0)
402                         break;
403         } while (0);
404         return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409         int status = 0;
410         u16 ocSyncLvl = 0;
411         u16 ocModeLop = state->m_EcOcRegOcModeLop;
412         u16 dtoIncLop = 0;
413         u16 dtoIncHip = 0;
414
415         do {
416                 /* Store output configuration */
417                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418                 if (status < 0)
419                         break;
420                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422                 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424                 /* Flush FIFO (byte-boundary) at fixed rate */
425                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426                 if (status < 0)
427                         break;
428                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429                 if (status < 0)
430                         break;
431                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432                 if (status < 0)
433                         break;
434                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435                 if (status < 0)
436                         break;
437                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443                 if (status < 0)
444                         break;
445
446                 msleep(1);
447                 /* Output pins to '0' */
448                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449                 if (status < 0)
450                         break;
451
452                 /* Force the OC out of sync */
453                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455                 if (status < 0)
456                         break;
457                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
460                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461                 if (status < 0)
462                         break;
463                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464                 if (status < 0)
465                         break;
466                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467                 if (status < 0)
468                         break;
469         } while (0);
470
471         return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476         int status = 0;
477
478         do {
479                 /* Stop OC */
480                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481                 if (status < 0)
482                         break;
483
484                 /* Restore output configuration */
485                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486                 if (status < 0)
487                         break;
488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Output pins active again */
493                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494                 if (status < 0)
495                         break;
496
497                 /* Start OC */
498                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499                 if (status < 0)
500                         break;
501         } while (0);
502         return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507         return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512         return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517         return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522         return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529         u16 ScRaRamLock = 0;
530         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531                                     SC_RA_RAM_LOCK_FEC__M |
532                                     SC_RA_RAM_LOCK_DEMOD__M);
533         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534                                    SC_RA_RAM_LOCK_DEMOD__M);
535         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537         int status;
538
539         *pLockStatus = 0;
540
541         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542         if (status < 0) {
543                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544                 return status;
545         }
546
547         if (state->drxd_state != DRXD_STARTED)
548                 return 0;
549
550         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551                 *pLockStatus |= DRX_LOCK_MPEG;
552                 CorrectSysClockDeviation(state);
553         }
554
555         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556                 *pLockStatus |= DRX_LOCK_FEC;
557
558         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559                 *pLockStatus |= DRX_LOCK_DEMOD;
560         return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567         int status;
568
569         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570                 return -1;
571
572         if (cfg->ctrlMode == AGC_CTRL_USER) {
573                 do {
574                         u16 FeAgRegPm1AgcWri;
575                         u16 FeAgRegAgModeLop;
576
577                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578                         if (status < 0)
579                                 break;
580                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583                         if (status < 0)
584                                 break;
585
586                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587                                                   FE_AG_REG_PM1_AGC_WRI__M);
588                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589                         if (status < 0)
590                                 break;
591                 } while (0);
592         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597                     )
598                         return -1;
599                 do {
600                         u16 FeAgRegAgModeLop;
601                         u16 FeAgRegEgcSetLvl;
602                         u16 slope, offset;
603
604                         /* == Mode == */
605
606                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607                         if (status < 0)
608                                 break;
609                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610                         FeAgRegAgModeLop |=
611                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613                         if (status < 0)
614                                 break;
615
616                         /* == Settle level == */
617
618                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619                                                   FE_AG_REG_EGC_SET_LVL__M);
620                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Min/Max == */
625
626                         slope = (u16) ((cfg->maxOutputLevel -
627                                         cfg->minOutputLevel) / 2);
628                         offset = (u16) ((cfg->maxOutputLevel +
629                                          cfg->minOutputLevel) / 2 - 511);
630
631                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632                         if (status < 0)
633                                 break;
634                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635                         if (status < 0)
636                                 break;
637
638                         /* == Speed == */
639                         {
640                                 const u16 maxRur = 8;
641                                 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
642                                 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
643                                         17, 18, 18, 19,
644                                         20, 21, 22, 23,
645                                         24, 26, 27, 28,
646                                         29, 31
647                                 };
648
649                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
650                                     (maxRur + 1);
651                                 u16 fineSpeed = (u16) (cfg->speed -
652                                                        ((cfg->speed /
653                                                          fineSteps) *
654                                                         fineSteps));
655                                 u16 invRurCount = (u16) (cfg->speed /
656                                                          fineSteps);
657                                 u16 rurCount;
658                                 if (invRurCount > maxRur) {
659                                         rurCount = 0;
660                                         fineSpeed += fineSteps;
661                                 } else {
662                                         rurCount = maxRur - invRurCount;
663                                 }
664
665                                 /*
666                                    fastInc = default *
667                                    (2^(fineSpeed/fineSteps))
668                                    => range[default...2*default>
669                                    slowInc = default *
670                                    (2^(fineSpeed/fineSteps))
671                                  */
672                                 {
673                                         u16 fastIncrDec =
674                                             fastIncrDecLUT[fineSpeed /
675                                                            ((fineSteps /
676                                                              (14 + 1)) + 1)];
677                                         u16 slowIncrDec =
678                                             slowIncrDecLUT[fineSpeed /
679                                                            (fineSteps /
680                                                             (3 + 1))];
681
682                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
683                                         if (status < 0)
684                                                 break;
685                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
686                                         if (status < 0)
687                                                 break;
688                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
689                                         if (status < 0)
690                                                 break;
691                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
692                                         if (status < 0)
693                                                 break;
694                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
695                                         if (status < 0)
696                                                 break;
697                                 }
698                         }
699                 } while (0);
700
701         } else {
702                 /* No OFF mode for IF control */
703                 return -1;
704         }
705         return status;
706 }
707
708 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
709 {
710         int status = 0;
711
712         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
713                 return -1;
714
715         if (cfg->ctrlMode == AGC_CTRL_USER) {
716                 do {
717                         u16 AgModeLop = 0;
718                         u16 level = (cfg->outputLevel);
719
720                         if (level == DRXD_FE_CTRL_MAX)
721                                 level++;
722
723                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
724                         if (status < 0)
725                                 break;
726
727                         /*==== Mode ====*/
728
729                         /* Powerdown PD2, WRI source */
730                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
731                         state->m_FeAgRegAgPwd |=
732                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
733                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
734                         if (status < 0)
735                                 break;
736
737                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
738                         if (status < 0)
739                                 break;
740                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
741                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
742                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
743                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
744                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
745                         if (status < 0)
746                                 break;
747
748                         /* enable AGC2 pin */
749                         {
750                                 u16 FeAgRegAgAgcSio = 0;
751                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
752                                 if (status < 0)
753                                         break;
754                                 FeAgRegAgAgcSio &=
755                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
756                                 FeAgRegAgAgcSio |=
757                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
758                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
759                                 if (status < 0)
760                                         break;
761                         }
762
763                 } while (0);
764         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
765                 u16 AgModeLop = 0;
766
767                 do {
768                         u16 level;
769                         /* Automatic control */
770                         /* Powerup PD2, AGC2 as output, TGC source */
771                         (state->m_FeAgRegAgPwd) &=
772                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
773                         (state->m_FeAgRegAgPwd) |=
774                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
775                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
776                         if (status < 0)
777                                 break;
778
779                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
780                         if (status < 0)
781                                 break;
782                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
783                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
784                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
785                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
786                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
787                         if (status < 0)
788                                 break;
789                         /* Settle level */
790                         level = (((cfg->settleLevel) >> 4) &
791                                  FE_AG_REG_TGC_SET_LVL__M);
792                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
793                         if (status < 0)
794                                 break;
795
796                         /* Min/max: don't care */
797
798                         /* Speed: TODO */
799
800                         /* enable AGC2 pin */
801                         {
802                                 u16 FeAgRegAgAgcSio = 0;
803                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
804                                 if (status < 0)
805                                         break;
806                                 FeAgRegAgAgcSio &=
807                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
808                                 FeAgRegAgAgcSio |=
809                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
810                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
811                                 if (status < 0)
812                                         break;
813                         }
814
815                 } while (0);
816         } else {
817                 u16 AgModeLop = 0;
818
819                 do {
820                         /* No RF AGC control */
821                         /* Powerdown PD2, AGC2 as output, WRI source */
822                         (state->m_FeAgRegAgPwd) &=
823                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
824                         (state->m_FeAgRegAgPwd) |=
825                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
826                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
827                         if (status < 0)
828                                 break;
829
830                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
831                         if (status < 0)
832                                 break;
833                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
834                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
835                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
836                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
837                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
838                         if (status < 0)
839                                 break;
840
841                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
842                         {
843                                 u16 FeAgRegAgAgcSio = 0;
844                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
845                                 if (status < 0)
846                                         break;
847                                 FeAgRegAgAgcSio &=
848                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
849                                 FeAgRegAgAgcSio |=
850                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
851                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
852                                 if (status < 0)
853                                         break;
854                         }
855                 } while (0);
856         }
857         return status;
858 }
859
860 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
861 {
862         int status = 0;
863
864         *pValue = 0;
865         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
866                 u16 Value;
867                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
868                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
869                 if (status >= 0) {
870                         /*           3.3V
871                            |
872                            R1
873                            |
874                            Vin - R3 - * -- Vout
875                            |
876                            R2
877                            |
878                            GND
879                          */
880                         u32 R1 = state->if_agc_cfg.R1;
881                         u32 R2 = state->if_agc_cfg.R2;
882                         u32 R3 = state->if_agc_cfg.R3;
883
884                         u32 Vmax, Rpar, Vmin, Vout;
885
886                         if (R2 == 0 && (R1 == 0 || R3 == 0))
887                                 return 0;
888
889                         Vmax = (3300 * R2) / (R1 + R2);
890                         Rpar = (R2 * R3) / (R3 + R2);
891                         Vmin = (3300 * Rpar) / (R1 + Rpar);
892                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
893
894                         *pValue = Vout;
895                 }
896         }
897         return status;
898 }
899
900 static int load_firmware(struct drxd_state *state, const char *fw_name)
901 {
902         const struct firmware *fw;
903
904         if (request_firmware(&fw, fw_name, state->dev) < 0) {
905                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
906                 return -EIO;
907         }
908
909         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
910         if (state->microcode == NULL) {
911                 release_firmware(fw);
912                 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
913                 return -ENOMEM;
914         }
915
916         state->microcode_length = fw->size;
917         release_firmware(fw);
918         return 0;
919 }
920
921 static int DownloadMicrocode(struct drxd_state *state,
922                              const u8 *pMCImage, u32 Length)
923 {
924         u8 *pSrc;
925         u32 Address;
926         u16 nBlocks;
927         u16 BlockSize;
928         u32 offset = 0;
929         int i, status = 0;
930
931         pSrc = (u8 *) pMCImage;
932         /* We're not using Flags */
933         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
934         pSrc += sizeof(u16);
935         offset += sizeof(u16);
936         nBlocks = (pSrc[0] << 8) | pSrc[1];
937         pSrc += sizeof(u16);
938         offset += sizeof(u16);
939
940         for (i = 0; i < nBlocks; i++) {
941                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
942                     (pSrc[2] << 8) | pSrc[3];
943                 pSrc += sizeof(u32);
944                 offset += sizeof(u32);
945
946                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
947                 pSrc += sizeof(u16);
948                 offset += sizeof(u16);
949
950                 /* We're not using Flags */
951                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
952                 pSrc += sizeof(u16);
953                 offset += sizeof(u16);
954
955                 /* We're not using BlockCRC */
956                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
957                 pSrc += sizeof(u16);
958                 offset += sizeof(u16);
959
960                 status = WriteBlock(state, Address, BlockSize,
961                                     pSrc, DRX_I2C_CLEARCRC);
962                 if (status < 0)
963                         break;
964                 pSrc += BlockSize;
965                 offset += BlockSize;
966         }
967
968         return status;
969 }
970
971 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
972 {
973         u32 nrRetries = 0;
974         u16 waitCmd;
975         int status;
976
977         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978         if (status < 0)
979                 return status;
980
981         do {
982                 nrRetries += 1;
983                 if (nrRetries > DRXD_MAX_RETRIES) {
984                         status = -1;
985                         break;
986                 }
987                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
988         } while (waitCmd != 0);
989
990         if (status >= 0)
991                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992         return status;
993 }
994
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997         int status = 0;
998
999         mutex_lock(&state->mutex);
1000         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005
1006         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007
1008         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012         else
1013                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014         mutex_unlock(&state->mutex);
1015         return status;
1016 }
1017
1018 static int InitHI(struct drxd_state *state)
1019 {
1020         state->hi_cfg_wakeup_key = (state->chip_adr);
1021         /* port/bridge/power down ctrl */
1022         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023         return HI_CfgCommand(state);
1024 }
1025
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028         int status;
1029
1030         mutex_lock(&state->mutex);
1031         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033         if (status == 0)
1034                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035         mutex_unlock(&state->mutex);
1036         msleep(1);
1037         return status;
1038 }
1039
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043         if (bEnableBridge)
1044                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045         else
1046                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047
1048         return HI_CfgCommand(state);
1049 }
1050
1051 #define HI_TR_WRITE      0x9
1052 #define HI_TR_READ       0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST  0x4
1055
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060         int status;
1061         int i = 0;
1062
1063         /* Parameter check */
1064         if ((!pData) || ((DataSize & 1) != 0))
1065                 return -1;
1066
1067         mutex_lock(&state->mutex);
1068
1069         do {
1070                 /* Instruct HI to read n bytes */
1071                 /* TODO use proper names forthese egisters */
1072                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073                 if (status < 0)
1074                         break;
1075                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076                 if (status < 0)
1077                         break;
1078                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079                 if (status < 0)
1080                         break;
1081                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082                 if (status < 0)
1083                         break;
1084                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085                 if (status < 0)
1086                         break;
1087
1088                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089                 if (status < 0)
1090                         break;
1091
1092         } while (0);
1093
1094         if (status >= 0) {
1095                 for (i = 0; i < (DataSize / 2); i += 1) {
1096                         u16 word;
1097
1098                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099                                         &word, 0);
1100                         if (status < 0)
1101                                 break;
1102                         pData[2 * i] = (u8) (word & 0xFF);
1103                         pData[(2 * i) + 1] = (u8) (word >> 8);
1104                 }
1105         }
1106         mutex_unlock(&state->mutex);
1107         return status;
1108 }
1109
1110 static int AtomicReadReg32(struct drxd_state *state,
1111                            u32 Addr, u32 *pData, u8 Flags)
1112 {
1113         u8 buf[sizeof(u32)];
1114         int status;
1115
1116         if (!pData)
1117                 return -1;
1118         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119         *pData = (((u32) buf[0]) << 0) +
1120             (((u32) buf[1]) << 8) +
1121             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122         return status;
1123 }
1124 #endif
1125
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128         return Write16(state, HI_COMM_EXEC__A,
1129                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134         if (state->type_A) {
1135                 /* disable? monitor bus observe @ EC_OC */
1136                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137         }
1138
1139         /* do inverse broadcast, followed by explicit write to HI */
1140         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142         return 0;
1143 }
1144
1145 static int InitCC(struct drxd_state *state)
1146 {
1147         if (state->osc_clock_freq == 0 ||
1148             state->osc_clock_freq > 20000 ||
1149             (state->osc_clock_freq % 4000) != 0) {
1150                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1151                 return -1;
1152         }
1153
1154         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1155         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1156                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1157         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1158         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1159         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1160
1161         return 0;
1162 }
1163
1164 static int ResetECOD(struct drxd_state *state)
1165 {
1166         int status = 0;
1167
1168         if (state->type_A)
1169                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1170         else
1171                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1172
1173         if (!(status < 0))
1174                 status = WriteTable(state, state->m_ResetECRAM);
1175         if (!(status < 0))
1176                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1177         return status;
1178 }
1179
1180 /* Configure PGA switch */
1181
1182 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1183 {
1184         int status;
1185         u16 AgModeLop = 0;
1186         u16 AgModeHip = 0;
1187         do {
1188                 if (pgaSwitch) {
1189                         /* PGA on */
1190                         /* fine gain */
1191                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1192                         if (status < 0)
1193                                 break;
1194                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1195                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1196                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1197                         if (status < 0)
1198                                 break;
1199
1200                         /* coarse gain */
1201                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1202                         if (status < 0)
1203                                 break;
1204                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1205                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1206                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1207                         if (status < 0)
1208                                 break;
1209
1210                         /* enable fine and coarse gain, enable AAF,
1211                            no ext resistor */
1212                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1213                         if (status < 0)
1214                                 break;
1215                 } else {
1216                         /* PGA off, bypass */
1217
1218                         /* fine gain */
1219                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1220                         if (status < 0)
1221                                 break;
1222                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1223                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1224                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1225                         if (status < 0)
1226                                 break;
1227
1228                         /* coarse gain */
1229                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1230                         if (status < 0)
1231                                 break;
1232                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1233                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1234                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1235                         if (status < 0)
1236                                 break;
1237
1238                         /* disable fine and coarse gain, enable AAF,
1239                            no ext resistor */
1240                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1241                         if (status < 0)
1242                                 break;
1243                 }
1244         } while (0);
1245         return status;
1246 }
1247
1248 static int InitFE(struct drxd_state *state)
1249 {
1250         int status;
1251
1252         do {
1253                 status = WriteTable(state, state->m_InitFE_1);
1254                 if (status < 0)
1255                         break;
1256
1257                 if (state->type_A) {
1258                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1259                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1260                                          0);
1261                 } else {
1262                         if (state->PGA)
1263                                 status = SetCfgPga(state, 0);
1264                         else
1265                                 status =
1266                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1267                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268                                             0);
1269                 }
1270
1271                 if (status < 0)
1272                         break;
1273                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1274                 if (status < 0)
1275                         break;
1276                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1277                 if (status < 0)
1278                         break;
1279
1280                 status = WriteTable(state, state->m_InitFE_2);
1281                 if (status < 0)
1282                         break;
1283
1284         } while (0);
1285
1286         return status;
1287 }
1288
1289 static int InitFT(struct drxd_state *state)
1290 {
1291         /*
1292            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1293            SC stuff
1294          */
1295         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1296 }
1297
1298 static int SC_WaitForReady(struct drxd_state *state)
1299 {
1300         u16 curCmd;
1301         int i;
1302
1303         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1304                 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1305                 if (status == 0 || curCmd == 0)
1306                         return status;
1307         }
1308         return -1;
1309 }
1310
1311 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1312 {
1313         int status = 0;
1314         u16 errCode;
1315
1316         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1317         SC_WaitForReady(state);
1318
1319         Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1320
1321         if (errCode == 0xFFFF) {
1322                 printk(KERN_ERR "Command Error\n");
1323                 status = -1;
1324         }
1325
1326         return status;
1327 }
1328
1329 static int SC_ProcStartCommand(struct drxd_state *state,
1330                                u16 subCmd, u16 param0, u16 param1)
1331 {
1332         int status = 0;
1333         u16 scExec;
1334
1335         mutex_lock(&state->mutex);
1336         do {
1337                 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1338                 if (scExec != 1) {
1339                         status = -1;
1340                         break;
1341                 }
1342                 SC_WaitForReady(state);
1343                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1344                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1345                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1346
1347                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1348         } while (0);
1349         mutex_unlock(&state->mutex);
1350         return status;
1351 }
1352
1353 static int SC_SetPrefParamCommand(struct drxd_state *state,
1354                                   u16 subCmd, u16 param0, u16 param1)
1355 {
1356         int status;
1357
1358         mutex_lock(&state->mutex);
1359         do {
1360                 status = SC_WaitForReady(state);
1361                 if (status < 0)
1362                         break;
1363                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1364                 if (status < 0)
1365                         break;
1366                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1367                 if (status < 0)
1368                         break;
1369                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1370                 if (status < 0)
1371                         break;
1372
1373                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1374                 if (status < 0)
1375                         break;
1376         } while (0);
1377         mutex_unlock(&state->mutex);
1378         return status;
1379 }
1380
1381 #if 0
1382 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1383 {
1384         int status = 0;
1385
1386         mutex_lock(&state->mutex);
1387         do {
1388                 status = SC_WaitForReady(state);
1389                 if (status < 0)
1390                         break;
1391                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1392                 if (status < 0)
1393                         break;
1394                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1395                 if (status < 0)
1396                         break;
1397         } while (0);
1398         mutex_unlock(&state->mutex);
1399         return status;
1400 }
1401 #endif
1402
1403 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1404 {
1405         int status;
1406
1407         do {
1408                 u16 EcOcRegIprInvMpg = 0;
1409                 u16 EcOcRegOcModeLop = 0;
1410                 u16 EcOcRegOcModeHip = 0;
1411                 u16 EcOcRegOcMpgSio = 0;
1412
1413                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1414
1415                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1416                         if (bEnableOutput) {
1417                                 EcOcRegOcModeHip |=
1418                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1419                         } else
1420                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1421                         EcOcRegOcModeLop |=
1422                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1423                 } else {
1424                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1425
1426                         if (bEnableOutput)
1427                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1428                         else
1429                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1430
1431                         /* Don't Insert RS Byte */
1432                         if (state->insert_rs_byte) {
1433                                 EcOcRegOcModeLop &=
1434                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1435                                 EcOcRegOcModeHip &=
1436                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1437                                 EcOcRegOcModeHip |=
1438                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1439                         } else {
1440                                 EcOcRegOcModeLop |=
1441                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1442                                 EcOcRegOcModeHip &=
1443                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1444                                 EcOcRegOcModeHip |=
1445                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1446                         }
1447
1448                         /* Mode = Parallel */
1449                         if (state->enable_parallel)
1450                                 EcOcRegOcModeLop &=
1451                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1452                         else
1453                                 EcOcRegOcModeLop |=
1454                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1455                 }
1456                 /* Invert Data */
1457                 /* EcOcRegIprInvMpg |= 0x00FF; */
1458                 EcOcRegIprInvMpg &= (~(0x00FF));
1459
1460                 /* Invert Error ( we don't use the pin ) */
1461                 /*  EcOcRegIprInvMpg |= 0x0100; */
1462                 EcOcRegIprInvMpg &= (~(0x0100));
1463
1464                 /* Invert Start ( we don't use the pin ) */
1465                 /* EcOcRegIprInvMpg |= 0x0200; */
1466                 EcOcRegIprInvMpg &= (~(0x0200));
1467
1468                 /* Invert Valid ( we don't use the pin ) */
1469                 /* EcOcRegIprInvMpg |= 0x0400; */
1470                 EcOcRegIprInvMpg &= (~(0x0400));
1471
1472                 /* Invert Clock */
1473                 /* EcOcRegIprInvMpg |= 0x0800; */
1474                 EcOcRegIprInvMpg &= (~(0x0800));
1475
1476                 /* EcOcRegOcModeLop =0x05; */
1477                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1478                 if (status < 0)
1479                         break;
1480                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1481                 if (status < 0)
1482                         break;
1483                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1484                 if (status < 0)
1485                         break;
1486                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1487                 if (status < 0)
1488                         break;
1489         } while (0);
1490         return status;
1491 }
1492
1493 static int SetDeviceTypeId(struct drxd_state *state)
1494 {
1495         int status = 0;
1496         u16 deviceId = 0;
1497
1498         do {
1499                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1500                 if (status < 0)
1501                         break;
1502                 /* TODO: why twice? */
1503                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504                 if (status < 0)
1505                         break;
1506                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1507
1508                 state->type_A = 0;
1509                 state->PGA = 0;
1510                 state->diversity = 0;
1511                 if (deviceId == 0) {    /* on A2 only 3975 available */
1512                         state->type_A = 1;
1513                         printk(KERN_INFO "DRX3975D-A2\n");
1514                 } else {
1515                         deviceId >>= 12;
1516                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1517                         switch (deviceId) {
1518                         case 4:
1519                                 state->diversity = 1;
1520                         case 3:
1521                         case 7:
1522                                 state->PGA = 1;
1523                                 break;
1524                         case 6:
1525                                 state->diversity = 1;
1526                         case 5:
1527                         case 8:
1528                                 break;
1529                         default:
1530                                 status = -1;
1531                                 break;
1532                         }
1533                 }
1534         } while (0);
1535
1536         if (status < 0)
1537                 return status;
1538
1539         /* Init Table selection */
1540         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1541         state->m_InitSC = DRXD_InitSC;
1542         state->m_ResetECRAM = DRXD_ResetECRAM;
1543         if (state->type_A) {
1544                 state->m_ResetCEFR = DRXD_ResetCEFR;
1545                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1546                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1547                 state->m_InitCP = DRXD_InitCPA2;
1548                 state->m_InitCE = DRXD_InitCEA2;
1549                 state->m_InitEQ = DRXD_InitEQA2;
1550                 state->m_InitEC = DRXD_InitECA2;
1551                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1552                         return -EIO;
1553         } else {
1554                 state->m_ResetCEFR = NULL;
1555                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1556                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1557                 state->m_InitCP = DRXD_InitCPB1;
1558                 state->m_InitCE = DRXD_InitCEB1;
1559                 state->m_InitEQ = DRXD_InitEQB1;
1560                 state->m_InitEC = DRXD_InitECB1;
1561                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1562                         return -EIO;
1563         }
1564         if (state->diversity) {
1565                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1566                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1567                 state->m_DisableDiversity = DRXD_DisableDiversity;
1568                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1569                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1570                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1571                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1572         } else {
1573                 state->m_InitDiversityFront = NULL;
1574                 state->m_InitDiversityEnd = NULL;
1575                 state->m_DisableDiversity = NULL;
1576                 state->m_StartDiversityFront = NULL;
1577                 state->m_StartDiversityEnd = NULL;
1578                 state->m_DiversityDelay8MHZ = NULL;
1579                 state->m_DiversityDelay6MHZ = NULL;
1580         }
1581
1582         return status;
1583 }
1584
1585 static int CorrectSysClockDeviation(struct drxd_state *state)
1586 {
1587         int status;
1588         s32 incr = 0;
1589         s32 nomincr = 0;
1590         u32 bandwidth = 0;
1591         u32 sysClockInHz = 0;
1592         u32 sysClockFreq = 0;   /* in kHz */
1593         s16 oscClockDeviation;
1594         s16 Diff;
1595
1596         do {
1597                 /* Retrieve bandwidth and incr, sanity check */
1598
1599                 /* These accesses should be AtomicReadReg32, but that
1600                    causes trouble (at least for diversity */
1601                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1602                 if (status < 0)
1603                         break;
1604                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1605                 if (status < 0)
1606                         break;
1607
1608                 if (state->type_A) {
1609                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1610                                 break;
1611                 } else {
1612                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1613                                 break;
1614                 }
1615
1616                 switch (state->props.bandwidth_hz) {
1617                 case 8000000:
1618                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1619                         break;
1620                 case 7000000:
1621                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1622                         break;
1623                 case 6000000:
1624                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1625                         break;
1626                 default:
1627                         return -1;
1628                         break;
1629                 }
1630
1631                 /* Compute new sysclock value
1632                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1633                 incr += (1 << 23);
1634                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1635                 sysClockFreq = (u32) (sysClockInHz / 1000);
1636                 /* rounding */
1637                 if ((sysClockInHz % 1000) > 500)
1638                         sysClockFreq++;
1639
1640                 /* Compute clock deviation in ppm */
1641                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1642                                              (s32)
1643                                              (state->expected_sys_clock_freq)) *
1644                                             1000000L) /
1645                                            (s32)
1646                                            (state->expected_sys_clock_freq));
1647
1648                 Diff = oscClockDeviation - state->osc_clock_deviation;
1649                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1650                 if (Diff >= -200 && Diff <= 200) {
1651                         state->sys_clock_freq = (u16) sysClockFreq;
1652                         if (oscClockDeviation != state->osc_clock_deviation) {
1653                                 if (state->config.osc_deviation) {
1654                                         state->config.osc_deviation(state->priv,
1655                                                                     oscClockDeviation,
1656                                                                     1);
1657                                         state->osc_clock_deviation =
1658                                             oscClockDeviation;
1659                                 }
1660                         }
1661                         /* switch OFF SRMM scan in SC */
1662                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1663                         if (status < 0)
1664                                 break;
1665                         /* overrule FE_IF internal value for
1666                            proper re-locking */
1667                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1668                         if (status < 0)
1669                                 break;
1670                         state->cscd_state = CSCD_SAVED;
1671                 }
1672         } while (0);
1673
1674         return status;
1675 }
1676
1677 static int DRX_Stop(struct drxd_state *state)
1678 {
1679         int status;
1680
1681         if (state->drxd_state != DRXD_STARTED)
1682                 return 0;
1683
1684         do {
1685                 if (state->cscd_state != CSCD_SAVED) {
1686                         u32 lock;
1687                         status = DRX_GetLockStatus(state, &lock);
1688                         if (status < 0)
1689                                 break;
1690                 }
1691
1692                 status = StopOC(state);
1693                 if (status < 0)
1694                         break;
1695
1696                 state->drxd_state = DRXD_STOPPED;
1697
1698                 status = ConfigureMPEGOutput(state, 0);
1699                 if (status < 0)
1700                         break;
1701
1702                 if (state->type_A) {
1703                         /* Stop relevant processors off the device */
1704                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1705                         if (status < 0)
1706                                 break;
1707
1708                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1709                         if (status < 0)
1710                                 break;
1711                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1712                         if (status < 0)
1713                                 break;
1714                 } else {
1715                         /* Stop all processors except HI & CC & FE */
1716                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717                         if (status < 0)
1718                                 break;
1719                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                         if (status < 0)
1721                                 break;
1722                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723                         if (status < 0)
1724                                 break;
1725                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726                         if (status < 0)
1727                                 break;
1728                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729                         if (status < 0)
1730                                 break;
1731                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732                         if (status < 0)
1733                                 break;
1734                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1735                         if (status < 0)
1736                                 break;
1737                 }
1738
1739         } while (0);
1740         return status;
1741 }
1742
1743 #if 0   /* Currently unused */
1744 static int SetOperationMode(struct drxd_state *state, int oMode)
1745 {
1746         int status;
1747
1748         do {
1749                 if (state->drxd_state != DRXD_STOPPED) {
1750                         status = -1;
1751                         break;
1752                 }
1753
1754                 if (oMode == state->operation_mode) {
1755                         status = 0;
1756                         break;
1757                 }
1758
1759                 if (oMode != OM_Default && !state->diversity) {
1760                         status = -1;
1761                         break;
1762                 }
1763
1764                 switch (oMode) {
1765                 case OM_DVBT_Diversity_Front:
1766                         status = WriteTable(state, state->m_InitDiversityFront);
1767                         break;
1768                 case OM_DVBT_Diversity_End:
1769                         status = WriteTable(state, state->m_InitDiversityEnd);
1770                         break;
1771                 case OM_Default:
1772                         /* We need to check how to
1773                            get DRXD out of diversity */
1774                 default:
1775                         status = WriteTable(state, state->m_DisableDiversity);
1776                         break;
1777                 }
1778         } while (0);
1779
1780         if (!status)
1781                 state->operation_mode = oMode;
1782         return status;
1783 }
1784 #endif
1785
1786 static int StartDiversity(struct drxd_state *state)
1787 {
1788         int status = 0;
1789         u16 rcControl;
1790
1791         do {
1792                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1793                         status = WriteTable(state, state->m_StartDiversityFront);
1794                         if (status < 0)
1795                                 break;
1796                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1797                         status = WriteTable(state, state->m_StartDiversityEnd);
1798                         if (status < 0)
1799                                 break;
1800                         if (state->props.bandwidth_hz == 8000000) {
1801                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1802                                 if (status < 0)
1803                                         break;
1804                         } else {
1805                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1806                                 if (status < 0)
1807                                         break;
1808                         }
1809
1810                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1811                         if (status < 0)
1812                                 break;
1813                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1814                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1815                             /*  combining enabled */
1816                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1817                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1818                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1819                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1820                         if (status < 0)
1821                                 break;
1822                 }
1823         } while (0);
1824         return status;
1825 }
1826
1827 static int SetFrequencyShift(struct drxd_state *state,
1828                              u32 offsetFreq, int channelMirrored)
1829 {
1830         int negativeShift = (state->tuner_mirrors == channelMirrored);
1831
1832         /* Handle all mirroring
1833          *
1834          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1835          * feFsRegAddInc to 28 bits below
1836          * (if the result before masking is more than 28 bits, this means
1837          *  that the ADC is mirroring.
1838          * The masking is in fact the aliasing of the ADC)
1839          *
1840          */
1841
1842         /* Compute register value, unsigned computation */
1843         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1844                                          offsetFreq,
1845                                          1 << 28, state->sys_clock_freq);
1846         /* Remove integer part */
1847         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1848         if (negativeShift)
1849                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1850
1851         /* Save the frequency shift without tunerOffset compensation
1852            for CtrlGetChannel. */
1853         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1854                                              1 << 28, state->sys_clock_freq);
1855         /* Remove integer part */
1856         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1857         if (negativeShift)
1858                 state->org_fe_fs_add_incr = ((1L << 28) -
1859                                              state->org_fe_fs_add_incr);
1860
1861         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1862                        state->fe_fs_add_incr, 0);
1863 }
1864
1865 static int SetCfgNoiseCalibration(struct drxd_state *state,
1866                                   struct SNoiseCal *noiseCal)
1867 {
1868         u16 beOptEna;
1869         int status = 0;
1870
1871         do {
1872                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1873                 if (status < 0)
1874                         break;
1875                 if (noiseCal->cpOpt) {
1876                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1877                 } else {
1878                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1879                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1880                         if (status < 0)
1881                                 break;
1882                 }
1883                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1884                 if (status < 0)
1885                         break;
1886
1887                 if (!state->type_A) {
1888                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1889                         if (status < 0)
1890                                 break;
1891                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1892                         if (status < 0)
1893                                 break;
1894                 }
1895         } while (0);
1896
1897         return status;
1898 }
1899
1900 static int DRX_Start(struct drxd_state *state, s32 off)
1901 {
1902         struct dtv_frontend_properties *p = &state->props;
1903         int status;
1904
1905         u16 transmissionParams = 0;
1906         u16 operationMode = 0;
1907         u16 qpskTdTpsPwr = 0;
1908         u16 qam16TdTpsPwr = 0;
1909         u16 qam64TdTpsPwr = 0;
1910         u32 feIfIncr = 0;
1911         u32 bandwidth = 0;
1912         int mirrorFreqSpect;
1913
1914         u16 qpskSnCeGain = 0;
1915         u16 qam16SnCeGain = 0;
1916         u16 qam64SnCeGain = 0;
1917         u16 qpskIsGainMan = 0;
1918         u16 qam16IsGainMan = 0;
1919         u16 qam64IsGainMan = 0;
1920         u16 qpskIsGainExp = 0;
1921         u16 qam16IsGainExp = 0;
1922         u16 qam64IsGainExp = 0;
1923         u16 bandwidthParam = 0;
1924
1925         if (off < 0)
1926                 off = (off - 500) / 1000;
1927         else
1928                 off = (off + 500) / 1000;
1929
1930         do {
1931                 if (state->drxd_state != DRXD_STOPPED)
1932                         return -1;
1933                 status = ResetECOD(state);
1934                 if (status < 0)
1935                         break;
1936                 if (state->type_A) {
1937                         status = InitSC(state);
1938                         if (status < 0)
1939                                 break;
1940                 } else {
1941                         status = InitFT(state);
1942                         if (status < 0)
1943                                 break;
1944                         status = InitCP(state);
1945                         if (status < 0)
1946                                 break;
1947                         status = InitCE(state);
1948                         if (status < 0)
1949                                 break;
1950                         status = InitEQ(state);
1951                         if (status < 0)
1952                                 break;
1953                         status = InitSC(state);
1954                         if (status < 0)
1955                                 break;
1956                 }
1957
1958                 /* Restore current IF & RF AGC settings */
1959
1960                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1961                 if (status < 0)
1962                         break;
1963                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1964                 if (status < 0)
1965                         break;
1966
1967                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1968
1969                 switch (p->transmission_mode) {
1970                 default:        /* Not set, detect it automatically */
1971                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1972                         /* fall through , try first guess DRX_FFTMODE_8K */
1973                 case TRANSMISSION_MODE_8K:
1974                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1975                         if (state->type_A) {
1976                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1977                                 if (status < 0)
1978                                         break;
1979                                 qpskSnCeGain = 99;
1980                                 qam16SnCeGain = 83;
1981                                 qam64SnCeGain = 67;
1982                         }
1983                         break;
1984                 case TRANSMISSION_MODE_2K:
1985                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1986                         if (state->type_A) {
1987                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1988                                 if (status < 0)
1989                                         break;
1990                                 qpskSnCeGain = 97;
1991                                 qam16SnCeGain = 71;
1992                                 qam64SnCeGain = 65;
1993                         }
1994                         break;
1995                 }
1996
1997                 switch (p->guard_interval) {
1998                 case GUARD_INTERVAL_1_4:
1999                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2000                         break;
2001                 case GUARD_INTERVAL_1_8:
2002                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2003                         break;
2004                 case GUARD_INTERVAL_1_16:
2005                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2006                         break;
2007                 case GUARD_INTERVAL_1_32:
2008                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2009                         break;
2010                 default:        /* Not set, detect it automatically */
2011                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2012                         /* try first guess 1/4 */
2013                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2014                         break;
2015                 }
2016
2017                 switch (p->hierarchy) {
2018                 case HIERARCHY_1:
2019                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2020                         if (state->type_A) {
2021                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2022                                 if (status < 0)
2023                                         break;
2024                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2025                                 if (status < 0)
2026                                         break;
2027
2028                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2029                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2030                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2031
2032                                 qpskIsGainMan =
2033                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2034                                 qam16IsGainMan =
2035                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2036                                 qam64IsGainMan =
2037                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2038
2039                                 qpskIsGainExp =
2040                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2041                                 qam16IsGainExp =
2042                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2043                                 qam64IsGainExp =
2044                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2045                         }
2046                         break;
2047
2048                 case HIERARCHY_2:
2049                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2050                         if (state->type_A) {
2051                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2052                                 if (status < 0)
2053                                         break;
2054                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2055                                 if (status < 0)
2056                                         break;
2057
2058                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2059                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2060                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2061
2062                                 qpskIsGainMan =
2063                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2064                                 qam16IsGainMan =
2065                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2066                                 qam64IsGainMan =
2067                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2068
2069                                 qpskIsGainExp =
2070                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2071                                 qam16IsGainExp =
2072                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2073                                 qam64IsGainExp =
2074                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2075                         }
2076                         break;
2077                 case HIERARCHY_4:
2078                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2079                         if (state->type_A) {
2080                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2081                                 if (status < 0)
2082                                         break;
2083                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2084                                 if (status < 0)
2085                                         break;
2086
2087                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2088                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2089                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2090
2091                                 qpskIsGainMan =
2092                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2093                                 qam16IsGainMan =
2094                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2095                                 qam64IsGainMan =
2096                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2097
2098                                 qpskIsGainExp =
2099                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2100                                 qam16IsGainExp =
2101                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2102                                 qam64IsGainExp =
2103                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2104                         }
2105                         break;
2106                 case HIERARCHY_AUTO:
2107                 default:
2108                         /* Not set, detect it automatically, start with none */
2109                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2110                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2111                         if (state->type_A) {
2112                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2113                                 if (status < 0)
2114                                         break;
2115                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2116                                 if (status < 0)
2117                                         break;
2118
2119                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2120                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2121                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2122
2123                                 qpskIsGainMan =
2124                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2125                                 qam16IsGainMan =
2126                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2127                                 qam64IsGainMan =
2128                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2129
2130                                 qpskIsGainExp =
2131                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2132                                 qam16IsGainExp =
2133                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2134                                 qam64IsGainExp =
2135                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2136                         }
2137                         break;
2138                 }
2139                 status = status;
2140                 if (status < 0)
2141                         break;
2142
2143                 switch (p->modulation) {
2144                 default:
2145                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2146                         /* fall through , try first guess
2147                            DRX_CONSTELLATION_QAM64 */
2148                 case QAM_64:
2149                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2150                         if (state->type_A) {
2151                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2152                                 if (status < 0)
2153                                         break;
2154                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2155                                 if (status < 0)
2156                                         break;
2157                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2158                                 if (status < 0)
2159                                         break;
2160                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2161                                 if (status < 0)
2162                                         break;
2163                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2164                                 if (status < 0)
2165                                         break;
2166
2167                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2168                                 if (status < 0)
2169                                         break;
2170                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2171                                 if (status < 0)
2172                                         break;
2173                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2174                                 if (status < 0)
2175                                         break;
2176                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2177                                 if (status < 0)
2178                                         break;
2179                         }
2180                         break;
2181                 case QPSK:
2182                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2183                         if (state->type_A) {
2184                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2185                                 if (status < 0)
2186                                         break;
2187                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2188                                 if (status < 0)
2189                                         break;
2190                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2191                                 if (status < 0)
2192                                         break;
2193                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2194                                 if (status < 0)
2195                                         break;
2196                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2197                                 if (status < 0)
2198                                         break;
2199
2200                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2201                                 if (status < 0)
2202                                         break;
2203                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2204                                 if (status < 0)
2205                                         break;
2206                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2207                                 if (status < 0)
2208                                         break;
2209                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2210                                 if (status < 0)
2211                                         break;
2212                         }
2213                         break;
2214
2215                 case QAM_16:
2216                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2217                         if (state->type_A) {
2218                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2219                                 if (status < 0)
2220                                         break;
2221                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2222                                 if (status < 0)
2223                                         break;
2224                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2225                                 if (status < 0)
2226                                         break;
2227                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2228                                 if (status < 0)
2229                                         break;
2230                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2231                                 if (status < 0)
2232                                         break;
2233
2234                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2235                                 if (status < 0)
2236                                         break;
2237                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2238                                 if (status < 0)
2239                                         break;
2240                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2241                                 if (status < 0)
2242                                         break;
2243                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2244                                 if (status < 0)
2245                                         break;
2246                         }
2247                         break;
2248
2249                 }
2250                 status = status;
2251                 if (status < 0)
2252                         break;
2253
2254                 switch (DRX_CHANNEL_HIGH) {
2255                 default:
2256                 case DRX_CHANNEL_AUTO:
2257                 case DRX_CHANNEL_LOW:
2258                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2259                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2260                         if (status < 0)
2261                                 break;
2262                         break;
2263                 case DRX_CHANNEL_HIGH:
2264                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2265                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2266                         if (status < 0)
2267                                 break;
2268                         break;
2269
2270                 }
2271
2272                 switch (p->code_rate_HP) {
2273                 case FEC_1_2:
2274                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2275                         if (state->type_A) {
2276                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2277                                 if (status < 0)
2278                                         break;
2279                         }
2280                         break;
2281                 default:
2282                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2283                 case FEC_2_3:
2284                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2285                         if (state->type_A) {
2286                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2287                                 if (status < 0)
2288                                         break;
2289                         }
2290                         break;
2291                 case FEC_3_4:
2292                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2293                         if (state->type_A) {
2294                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2295                                 if (status < 0)
2296                                         break;
2297                         }
2298                         break;
2299                 case FEC_5_6:
2300                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2301                         if (state->type_A) {
2302                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2303                                 if (status < 0)
2304                                         break;
2305                         }
2306                         break;
2307                 case FEC_7_8:
2308                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2309                         if (state->type_A) {
2310                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2311                                 if (status < 0)
2312                                         break;
2313                         }
2314                         break;
2315                 }
2316                 status = status;
2317                 if (status < 0)
2318                         break;
2319
2320                 /* First determine real bandwidth (Hz) */
2321                 /* Also set delay for impulse noise cruncher (only A2) */
2322                 /* Also set parameters for EC_OC fix, note
2323                    EC_OC_REG_TMD_HIL_MAR is changed
2324                    by SC for fix for some 8K,1/8 guard but is restored by
2325                    InitEC and ResetEC
2326                    functions */
2327                 switch (p->bandwidth_hz) {
2328                 case 0:
2329                         p->bandwidth_hz = 8000000;
2330                         /* fall through */
2331                 case 8000000:
2332                         /* (64/7)*(8/8)*1000000 */
2333                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2334
2335                         bandwidthParam = 0;
2336                         status = Write16(state,
2337                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2338                         break;
2339                 case 7000000:
2340                         /* (64/7)*(7/8)*1000000 */
2341                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2342                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2343                         status = Write16(state,
2344                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2345                         break;
2346                 case 6000000:
2347                         /* (64/7)*(6/8)*1000000 */
2348                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2349                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2350                         status = Write16(state,
2351                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2352                         break;
2353                 default:
2354                         status = -EINVAL;
2355                 }
2356                 if (status < 0)
2357                         break;
2358
2359                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2360                 if (status < 0)
2361                         break;
2362
2363                 {
2364                         u16 sc_config;
2365                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2366                         if (status < 0)
2367                                 break;
2368
2369                         /* enable SLAVE mode in 2k 1/32 to
2370                            prevent timing change glitches */
2371                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2372                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2373                                 /* enable slave */
2374                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2375                         } else {
2376                                 /* disable slave */
2377                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2378                         }
2379                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2380                         if (status < 0)
2381                                 break;
2382                 }
2383
2384                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2385                 if (status < 0)
2386                         break;
2387
2388                 if (state->cscd_state == CSCD_INIT) {
2389                         /* switch on SRMM scan in SC */
2390                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2391                         if (status < 0)
2392                                 break;
2393 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2394                         state->cscd_state = CSCD_SET;
2395                 }
2396
2397                 /* Now compute FE_IF_REG_INCR */
2398                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2399                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2400                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2401                                     (1ULL << 21), bandwidth) - (1 << 23);
2402                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2403                 if (status < 0)
2404                         break;
2405                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2406                 if (status < 0)
2407                         break;
2408                 /* Bandwidth setting done */
2409
2410                 /* Mirror & frequency offset */
2411                 SetFrequencyShift(state, off, mirrorFreqSpect);
2412
2413                 /* Start SC, write channel settings to SC */
2414
2415                 /* Enable SC after setting all other parameters */
2416                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2417                 if (status < 0)
2418                         break;
2419                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2420                 if (status < 0)
2421                         break;
2422
2423                 /* Write SC parameter registers, operation mode */
2424 #if 1
2425                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2426                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2427                                  SC_RA_RAM_OP_AUTO_CONST__M |
2428                                  SC_RA_RAM_OP_AUTO_HIER__M |
2429                                  SC_RA_RAM_OP_AUTO_RATE__M);
2430 #endif
2431                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2432                 if (status < 0)
2433                         break;
2434
2435                 /* Start correct processes to get in lock */
2436                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2437                 if (status < 0)
2438                         break;
2439
2440                 status = StartOC(state);
2441                 if (status < 0)
2442                         break;
2443
2444                 if (state->operation_mode != OM_Default) {
2445                         status = StartDiversity(state);
2446                         if (status < 0)
2447                                 break;
2448                 }
2449
2450                 state->drxd_state = DRXD_STARTED;
2451         } while (0);
2452
2453         return status;
2454 }
2455
2456 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2457 {
2458         u32 ulRfAgcOutputLevel = 0xffffffff;
2459         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2460         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2461         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2462         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2463         u32 ulRfAgcMode = 0;    /*2;   Off */
2464         u32 ulRfAgcR1 = 820;
2465         u32 ulRfAgcR2 = 2200;
2466         u32 ulRfAgcR3 = 150;
2467         u32 ulIfAgcMode = 0;    /* Auto */
2468         u32 ulIfAgcOutputLevel = 0xffffffff;
2469         u32 ulIfAgcSettleLevel = 0xffffffff;
2470         u32 ulIfAgcMinLevel = 0xffffffff;
2471         u32 ulIfAgcMaxLevel = 0xffffffff;
2472         u32 ulIfAgcSpeed = 0xffffffff;
2473         u32 ulIfAgcR1 = 820;
2474         u32 ulIfAgcR2 = 2200;
2475         u32 ulIfAgcR3 = 150;
2476         u32 ulClock = state->config.clock;
2477         u32 ulSerialMode = 0;
2478         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2479         u32 ulHiI2cDelay = HI_I2C_DELAY;
2480         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2481         u32 ulHiI2cPatch = 0;
2482         u32 ulEnvironment = APPENV_PORTABLE;
2483         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2484         u32 ulIFFilter = IFFILTER_SAW;
2485
2486         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2487         state->if_agc_cfg.outputLevel = 0;
2488         state->if_agc_cfg.settleLevel = 140;
2489         state->if_agc_cfg.minOutputLevel = 0;
2490         state->if_agc_cfg.maxOutputLevel = 1023;
2491         state->if_agc_cfg.speed = 904;
2492
2493         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2494                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2495                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2496         }
2497
2498         if (ulIfAgcMode == 0 &&
2499             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2500             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2501             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2502             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2503                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2504                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2505                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2506                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2507                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2508         }
2509
2510         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2511         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2512         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2513
2514         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2515         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2516         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2517
2518         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2519         /* rest of the RFAgcCfg structure currently unused */
2520         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2521                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2522                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2523         }
2524
2525         if (ulRfAgcMode == 0 &&
2526             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2527             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2528             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2529             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2530                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2531                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2532                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2533                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2534                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2535         }
2536
2537         if (ulRfAgcMode == 2)
2538                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2539
2540         if (ulEnvironment <= 2)
2541                 state->app_env_default = (enum app_env)
2542                     (ulEnvironment);
2543         if (ulEnvironmentDiversity <= 2)
2544                 state->app_env_diversity = (enum app_env)
2545                     (ulEnvironmentDiversity);
2546
2547         if (ulIFFilter == IFFILTER_DISCRETE) {
2548                 /* discrete filter */
2549                 state->noise_cal.cpOpt = 0;
2550                 state->noise_cal.cpNexpOfs = 40;
2551                 state->noise_cal.tdCal2k = -40;
2552                 state->noise_cal.tdCal8k = -24;
2553         } else {
2554                 /* SAW filter */
2555                 state->noise_cal.cpOpt = 1;
2556                 state->noise_cal.cpNexpOfs = 0;
2557                 state->noise_cal.tdCal2k = -21;
2558                 state->noise_cal.tdCal8k = -24;
2559         }
2560         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2561
2562         state->chip_adr = (state->config.demod_address << 1) | 1;
2563         switch (ulHiI2cPatch) {
2564         case 1:
2565                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2566                 break;
2567         case 3:
2568                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2569                 break;
2570         default:
2571                 state->m_HiI2cPatch = NULL;
2572         }
2573
2574         /* modify tuner and clock attributes */
2575         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2576         /* expected system clock frequency in kHz */
2577         state->expected_sys_clock_freq = 48000;
2578         /* real system clock frequency in kHz */
2579         state->sys_clock_freq = 48000;
2580         state->osc_clock_freq = (u16) ulClock;
2581         state->osc_clock_deviation = 0;
2582         state->cscd_state = CSCD_INIT;
2583         state->drxd_state = DRXD_UNINITIALIZED;
2584
2585         state->PGA = 0;
2586         state->type_A = 0;
2587         state->tuner_mirrors = 0;
2588
2589         /* modify MPEG output attributes */
2590         state->insert_rs_byte = state->config.insert_rs_byte;
2591         state->enable_parallel = (ulSerialMode != 1);
2592
2593         /* Timing div, 250ns/Psys */
2594         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2595
2596         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2597                                           ulHiI2cDelay) / 1000;
2598         /* Bridge delay, uses oscilator clock */
2599         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2600         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2601                                             ulHiI2cBridgeDelay) / 1000;
2602
2603         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2604         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2605         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2606         return 0;
2607 }
2608
2609 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2610 {
2611         int status = 0;
2612         u32 driverVersion;
2613
2614         if (state->init_done)
2615                 return 0;
2616
2617         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2618
2619         do {
2620                 state->operation_mode = OM_Default;
2621
2622                 status = SetDeviceTypeId(state);
2623                 if (status < 0)
2624                         break;
2625
2626                 /* Apply I2c address patch to B1 */
2627                 if (!state->type_A && state->m_HiI2cPatch != NULL) {
2628                         status = WriteTable(state, state->m_HiI2cPatch);
2629                         if (status < 0)
2630                                 break;
2631                 }
2632
2633                 if (state->type_A) {
2634                         /* HI firmware patch for UIO readout,
2635                            avoid clearing of result register */
2636                         status = Write16(state, 0x43012D, 0x047f, 0);
2637                         if (status < 0)
2638                                 break;
2639                 }
2640
2641                 status = HI_ResetCommand(state);
2642                 if (status < 0)
2643                         break;
2644
2645                 status = StopAllProcessors(state);
2646                 if (status < 0)
2647                         break;
2648                 status = InitCC(state);
2649                 if (status < 0)
2650                         break;
2651
2652                 state->osc_clock_deviation = 0;
2653
2654                 if (state->config.osc_deviation)
2655                         state->osc_clock_deviation =
2656                             state->config.osc_deviation(state->priv, 0, 0);
2657                 {
2658                         /* Handle clock deviation */
2659                         s32 devB;
2660                         s32 devA = (s32) (state->osc_clock_deviation) *
2661                             (s32) (state->expected_sys_clock_freq);
2662                         /* deviation in kHz */
2663                         s32 deviation = (devA / (1000000L));
2664                         /* rounding, signed */
2665                         if (devA > 0)
2666                                 devB = (2);
2667                         else
2668                                 devB = (-2);
2669                         if ((devB * (devA % 1000000L) > 1000000L)) {
2670                                 /* add +1 or -1 */
2671                                 deviation += (devB / 2);
2672                         }
2673
2674                         state->sys_clock_freq =
2675                             (u16) ((state->expected_sys_clock_freq) +
2676                                    deviation);
2677                 }
2678                 status = InitHI(state);
2679                 if (status < 0)
2680                         break;
2681                 status = InitAtomicRead(state);
2682                 if (status < 0)
2683                         break;
2684
2685                 status = EnableAndResetMB(state);
2686                 if (status < 0)
2687                         break;
2688                 if (state->type_A) {
2689                         status = ResetCEFR(state);
2690                         if (status < 0)
2691                                 break;
2692                 }
2693                 if (fw) {
2694                         status = DownloadMicrocode(state, fw, fw_size);
2695                         if (status < 0)
2696                                 break;
2697                 } else {
2698                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2699                         if (status < 0)
2700                                 break;
2701                 }
2702
2703                 if (state->PGA) {
2704                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2705                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2706                 } else {
2707                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2708                 }
2709
2710                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2711
2712                 status = InitFE(state);
2713                 if (status < 0)
2714                         break;
2715                 status = InitFT(state);
2716                 if (status < 0)
2717                         break;
2718                 status = InitCP(state);
2719                 if (status < 0)
2720                         break;
2721                 status = InitCE(state);
2722                 if (status < 0)
2723                         break;
2724                 status = InitEQ(state);
2725                 if (status < 0)
2726                         break;
2727                 status = InitEC(state);
2728                 if (status < 0)
2729                         break;
2730                 status = InitSC(state);
2731                 if (status < 0)
2732                         break;
2733
2734                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2735                 if (status < 0)
2736                         break;
2737                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2738                 if (status < 0)
2739                         break;
2740
2741                 state->cscd_state = CSCD_INIT;
2742                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2743                 if (status < 0)
2744                         break;
2745                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2746                 if (status < 0)
2747                         break;
2748
2749                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2750                                  (VERSION_MAJOR % 10)) << 24;
2751                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2752                                   (VERSION_MINOR % 10)) << 16;
2753                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2754                     ((VERSION_PATCH / 100) << 8) +
2755                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2756
2757                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2758                 if (status < 0)
2759                         break;
2760
2761                 status = StopOC(state);
2762                 if (status < 0)
2763                         break;
2764
2765                 state->drxd_state = DRXD_STOPPED;
2766                 state->init_done = 1;
2767                 status = 0;
2768         } while (0);
2769         return status;
2770 }
2771
2772 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2773 {
2774         DRX_GetLockStatus(state, pLockStatus);
2775
2776         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2777         if (*pLockStatus & DRX_LOCK_FEC) {
2778                 ConfigureMPEGOutput(state, 1);
2779                 /* Get status again, in case we have MPEG lock now */
2780                 /*DRX_GetLockStatus(state, pLockStatus); */
2781         }
2782
2783         return 0;
2784 }
2785
2786 /****************************************************************************/
2787 /****************************************************************************/
2788 /****************************************************************************/
2789
2790 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2791 {
2792         struct drxd_state *state = fe->demodulator_priv;
2793         u32 value;
2794         int res;
2795
2796         res = ReadIFAgc(state, &value);
2797         if (res < 0)
2798                 *strength = 0;
2799         else
2800                 *strength = 0xffff - (value << 4);
2801         return 0;
2802 }
2803
2804 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2805 {
2806         struct drxd_state *state = fe->demodulator_priv;
2807         u32 lock;
2808
2809         DRXD_status(state, &lock);
2810         *status = 0;
2811         /* No MPEG lock in V255 firmware, bug ? */
2812 #if 1
2813         if (lock & DRX_LOCK_MPEG)
2814                 *status |= FE_HAS_LOCK;
2815 #else
2816         if (lock & DRX_LOCK_FEC)
2817                 *status |= FE_HAS_LOCK;
2818 #endif
2819         if (lock & DRX_LOCK_FEC)
2820                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2821         if (lock & DRX_LOCK_DEMOD)
2822                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2823
2824         return 0;
2825 }
2826
2827 static int drxd_init(struct dvb_frontend *fe)
2828 {
2829         struct drxd_state *state = fe->demodulator_priv;
2830
2831         return DRXD_init(state, NULL, 0);
2832 }
2833
2834 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2835 {
2836         struct drxd_state *state = fe->demodulator_priv;
2837
2838         if (state->config.disable_i2c_gate_ctrl == 1)
2839                 return 0;
2840
2841         return DRX_ConfigureI2CBridge(state, onoff);
2842 }
2843
2844 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2845                                   struct dvb_frontend_tune_settings *sets)
2846 {
2847         sets->min_delay_ms = 10000;
2848         sets->max_drift = 0;
2849         sets->step_size = 0;
2850         return 0;
2851 }
2852
2853 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2854 {
2855         *ber = 0;
2856         return 0;
2857 }
2858
2859 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2860 {
2861         *snr = 0;
2862         return 0;
2863 }
2864
2865 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2866 {
2867         *ucblocks = 0;
2868         return 0;
2869 }
2870
2871 static int drxd_sleep(struct dvb_frontend *fe)
2872 {
2873         struct drxd_state *state = fe->demodulator_priv;
2874
2875         ConfigureMPEGOutput(state, 0);
2876         return 0;
2877 }
2878
2879 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2880 {
2881         return drxd_config_i2c(fe, enable);
2882 }
2883
2884 static int drxd_set_frontend(struct dvb_frontend *fe)
2885 {
2886         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2887         struct drxd_state *state = fe->demodulator_priv;
2888         s32 off = 0;
2889
2890         state->props = *p;
2891         DRX_Stop(state);
2892
2893         if (fe->ops.tuner_ops.set_params) {
2894                 fe->ops.tuner_ops.set_params(fe);
2895                 if (fe->ops.i2c_gate_ctrl)
2896                         fe->ops.i2c_gate_ctrl(fe, 0);
2897         }
2898
2899         msleep(200);
2900
2901         return DRX_Start(state, off);
2902 }
2903
2904 static void drxd_release(struct dvb_frontend *fe)
2905 {
2906         struct drxd_state *state = fe->demodulator_priv;
2907
2908         kfree(state);
2909 }
2910
2911 static const struct dvb_frontend_ops drxd_ops = {
2912         .delsys = { SYS_DVBT},
2913         .info = {
2914                  .name = "Micronas DRXD DVB-T",
2915                  .frequency_min = 47125000,
2916                  .frequency_max = 855250000,
2917                  .frequency_stepsize = 166667,
2918                  .frequency_tolerance = 0,
2919                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2920                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2921                  FE_CAN_FEC_AUTO |
2922                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2923                  FE_CAN_QAM_AUTO |
2924                  FE_CAN_TRANSMISSION_MODE_AUTO |
2925                  FE_CAN_GUARD_INTERVAL_AUTO |
2926                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2927
2928         .release = drxd_release,
2929         .init = drxd_init,
2930         .sleep = drxd_sleep,
2931         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2932
2933         .set_frontend = drxd_set_frontend,
2934         .get_tune_settings = drxd_get_tune_settings,
2935
2936         .read_status = drxd_read_status,
2937         .read_ber = drxd_read_ber,
2938         .read_signal_strength = drxd_read_signal_strength,
2939         .read_snr = drxd_read_snr,
2940         .read_ucblocks = drxd_read_ucblocks,
2941 };
2942
2943 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2944                                  void *priv, struct i2c_adapter *i2c,
2945                                  struct device *dev)
2946 {
2947         struct drxd_state *state = NULL;
2948
2949         state = kzalloc(sizeof(*state), GFP_KERNEL);
2950         if (!state)
2951                 return NULL;
2952
2953         state->ops = drxd_ops;
2954         state->dev = dev;
2955         state->config = *config;
2956         state->i2c = i2c;
2957         state->priv = priv;
2958
2959         mutex_init(&state->mutex);
2960
2961         if (Read16(state, 0, NULL, 0) < 0)
2962                 goto error;
2963
2964         state->frontend.ops = drxd_ops;
2965         state->frontend.demodulator_priv = state;
2966         ConfigureMPEGOutput(state, 0);
2967         /* add few initialization to allow gate control */
2968         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2969         InitHI(state);
2970
2971         return &state->frontend;
2972
2973 error:
2974         printk(KERN_ERR "drxd: not found\n");
2975         kfree(state);
2976         return NULL;
2977 }
2978 EXPORT_SYMBOL(drxd_attach);
2979
2980 MODULE_DESCRIPTION("DRXD driver");
2981 MODULE_AUTHOR("Micronas");
2982 MODULE_LICENSE("GPL");