]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/dvb-frontends/mb86a20s.c
[media] mb86a20s: always initialize a return value
[karo-tx-linux.git] / drivers / media / dvb-frontends / mb86a20s.c
1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22
23 #define NUM_LAYERS 3
24
25 enum mb86a20s_bandwidth {
26         MB86A20S_13SEG = 0,
27         MB86A20S_13SEG_PARTIAL = 1,
28         MB86A20S_1SEG = 2,
29         MB86A20S_3SEG = 3,
30 };
31
32 static u8 mb86a20s_subchannel[] = {
33         0xb0, 0xc0, 0xd0, 0xe0,
34         0xf0, 0x00, 0x10, 0x20,
35 };
36
37 struct mb86a20s_state {
38         struct i2c_adapter *i2c;
39         const struct mb86a20s_config *config;
40         u32 last_frequency;
41
42         struct dvb_frontend frontend;
43
44         u32 if_freq;
45         enum mb86a20s_bandwidth bw;
46         bool inversion;
47         u32 subchannel;
48
49         u32 estimated_rate[NUM_LAYERS];
50         unsigned long get_strength_time;
51
52         bool need_init;
53 };
54
55 struct regdata {
56         u8 reg;
57         u8 data;
58 };
59
60 #define BER_SAMPLING_RATE       1       /* Seconds */
61
62 /*
63  * Initialization sequence: Use whatevere default values that PV SBTVD
64  * does on its initialisation, obtained via USB snoop
65  */
66 static struct regdata mb86a20s_init1[] = {
67         { 0x70, 0x0f },
68         { 0x70, 0xff },
69         { 0x08, 0x01 },
70         { 0x50, 0xd1 }, { 0x51, 0x20 },
71 };
72
73 static struct regdata mb86a20s_init2[] = {
74         { 0x50, 0xd1 }, { 0x51, 0x22 },
75         { 0x39, 0x01 },
76         { 0x71, 0x00 },
77         { 0x3b, 0x21 },
78         { 0x3c, 0x3a },
79         { 0x01, 0x0d },
80         { 0x04, 0x08 }, { 0x05, 0x05 },
81         { 0x04, 0x0e }, { 0x05, 0x00 },
82         { 0x04, 0x0f }, { 0x05, 0x14 },
83         { 0x04, 0x0b }, { 0x05, 0x8c },
84         { 0x04, 0x00 }, { 0x05, 0x00 },
85         { 0x04, 0x01 }, { 0x05, 0x07 },
86         { 0x04, 0x02 }, { 0x05, 0x0f },
87         { 0x04, 0x03 }, { 0x05, 0xa0 },
88         { 0x04, 0x09 }, { 0x05, 0x00 },
89         { 0x04, 0x0a }, { 0x05, 0xff },
90         { 0x04, 0x27 }, { 0x05, 0x64 },
91         { 0x04, 0x28 }, { 0x05, 0x00 },
92         { 0x04, 0x1e }, { 0x05, 0xff },
93         { 0x04, 0x29 }, { 0x05, 0x0a },
94         { 0x04, 0x32 }, { 0x05, 0x0a },
95         { 0x04, 0x14 }, { 0x05, 0x02 },
96         { 0x04, 0x04 }, { 0x05, 0x00 },
97         { 0x04, 0x05 }, { 0x05, 0x22 },
98         { 0x04, 0x06 }, { 0x05, 0x0e },
99         { 0x04, 0x07 }, { 0x05, 0xd8 },
100         { 0x04, 0x12 }, { 0x05, 0x00 },
101         { 0x04, 0x13 }, { 0x05, 0xff },
102
103         /*
104          * On this demod, when the bit count reaches the count below,
105          * it collects the bit error count. The bit counters are initialized
106          * to 65535 here. This warrants that all of them will be quickly
107          * calculated when device gets locked. As TMCC is parsed, the values
108          * will be adjusted later in the driver's code.
109          */
110         { 0x52, 0x01 },                         /* Turn on BER before Viterbi */
111         { 0x50, 0xa7 }, { 0x51, 0x00 },
112         { 0x50, 0xa8 }, { 0x51, 0xff },
113         { 0x50, 0xa9 }, { 0x51, 0xff },
114         { 0x50, 0xaa }, { 0x51, 0x00 },
115         { 0x50, 0xab }, { 0x51, 0xff },
116         { 0x50, 0xac }, { 0x51, 0xff },
117         { 0x50, 0xad }, { 0x51, 0x00 },
118         { 0x50, 0xae }, { 0x51, 0xff },
119         { 0x50, 0xaf }, { 0x51, 0xff },
120
121         /*
122          * On this demod, post BER counts blocks. When the count reaches the
123          * value below, it collects the block error count. The block counters
124          * are initialized to 127 here. This warrants that all of them will be
125          * quickly calculated when device gets locked. As TMCC is parsed, the
126          * values will be adjusted later in the driver's code.
127          */
128         { 0x5e, 0x07 },                         /* Turn on BER after Viterbi */
129         { 0x50, 0xdc }, { 0x51, 0x00 },
130         { 0x50, 0xdd }, { 0x51, 0x7f },
131         { 0x50, 0xde }, { 0x51, 0x00 },
132         { 0x50, 0xdf }, { 0x51, 0x7f },
133         { 0x50, 0xe0 }, { 0x51, 0x00 },
134         { 0x50, 0xe1 }, { 0x51, 0x7f },
135
136         /*
137          * On this demod, when the block count reaches the count below,
138          * it collects the block error count. The block counters are initialized
139          * to 127 here. This warrants that all of them will be quickly
140          * calculated when device gets locked. As TMCC is parsed, the values
141          * will be adjusted later in the driver's code.
142          */
143         { 0x50, 0xb0 }, { 0x51, 0x07 },         /* Enable PER */
144         { 0x50, 0xb2 }, { 0x51, 0x00 },
145         { 0x50, 0xb3 }, { 0x51, 0x7f },
146         { 0x50, 0xb4 }, { 0x51, 0x00 },
147         { 0x50, 0xb5 }, { 0x51, 0x7f },
148         { 0x50, 0xb6 }, { 0x51, 0x00 },
149         { 0x50, 0xb7 }, { 0x51, 0x7f },
150
151         { 0x50, 0x50 }, { 0x51, 0x02 },         /* MER manual mode */
152         { 0x50, 0x51 }, { 0x51, 0x04 },         /* MER symbol 4 */
153         { 0x45, 0x04 },                         /* CN symbol 4 */
154         { 0x48, 0x04 },                         /* CN manual mode */
155         { 0x50, 0xd5 }, { 0x51, 0x01 },
156         { 0x50, 0xd6 }, { 0x51, 0x1f },
157         { 0x50, 0xd2 }, { 0x51, 0x03 },
158         { 0x50, 0xd7 }, { 0x51, 0x3f },
159         { 0x1c, 0x01 },
160         { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
161         { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
162         { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
163         { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
164         { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
165         { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
166         { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
167         { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
168         { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
169         { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
170         { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
171         { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
172         { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
173         { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
174         { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
175         { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
176         { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
177         { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
178         { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
179         { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
180         { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
181         { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
182         { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
183         { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
184         { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
185         { 0x50, 0x1e }, { 0x51, 0x5d },
186         { 0x50, 0x22 }, { 0x51, 0x00 },
187         { 0x50, 0x23 }, { 0x51, 0xc8 },
188         { 0x50, 0x24 }, { 0x51, 0x00 },
189         { 0x50, 0x25 }, { 0x51, 0xf0 },
190         { 0x50, 0x26 }, { 0x51, 0x00 },
191         { 0x50, 0x27 }, { 0x51, 0xc3 },
192         { 0x50, 0x39 }, { 0x51, 0x02 },
193         { 0x50, 0xd5 }, { 0x51, 0x01 },
194         { 0xd0, 0x00 },
195 };
196
197 static struct regdata mb86a20s_reset_reception[] = {
198         { 0x70, 0xf0 },
199         { 0x70, 0xff },
200         { 0x08, 0x01 },
201         { 0x08, 0x00 },
202 };
203
204 static struct regdata mb86a20s_per_ber_reset[] = {
205         { 0x53, 0x00 }, /* pre BER Counter reset */
206         { 0x53, 0x07 },
207
208         { 0x5f, 0x00 }, /* post BER Counter reset */
209         { 0x5f, 0x07 },
210
211         { 0x50, 0xb1 }, /* PER Counter reset */
212         { 0x51, 0x07 },
213         { 0x51, 0x00 },
214 };
215
216 /*
217  * I2C read/write functions and macros
218  */
219
220 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
221                              u8 i2c_addr, u8 reg, u8 data)
222 {
223         u8 buf[] = { reg, data };
224         struct i2c_msg msg = {
225                 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
226         };
227         int rc;
228
229         rc = i2c_transfer(state->i2c, &msg, 1);
230         if (rc != 1) {
231                 dev_err(&state->i2c->dev,
232                         "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
233                         __func__, rc, reg, data);
234                 return rc;
235         }
236
237         return 0;
238 }
239
240 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
241                                      u8 i2c_addr, struct regdata *rd, int size)
242 {
243         int i, rc;
244
245         for (i = 0; i < size; i++) {
246                 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
247                                            rd[i].data);
248                 if (rc < 0)
249                         return rc;
250         }
251         return 0;
252 }
253
254 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
255                                 u8 i2c_addr, u8 reg)
256 {
257         u8 val;
258         int rc;
259         struct i2c_msg msg[] = {
260                 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
261                 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
262         };
263
264         rc = i2c_transfer(state->i2c, msg, 2);
265
266         if (rc != 2) {
267                 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
268                         __func__, reg, rc);
269                 return (rc < 0) ? rc : -EIO;
270         }
271
272         return val;
273 }
274
275 #define mb86a20s_readreg(state, reg) \
276         mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
277 #define mb86a20s_writereg(state, reg, val) \
278         mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
279 #define mb86a20s_writeregdata(state, regdata) \
280         mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
281         regdata, ARRAY_SIZE(regdata))
282
283 /*
284  * Ancillary internal routines (likely compiled inlined)
285  *
286  * The functions below assume that gateway lock has already obtained
287  */
288
289 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
290 {
291         struct mb86a20s_state *state = fe->demodulator_priv;
292         int val;
293
294         *status = 0;
295
296         val = mb86a20s_readreg(state, 0x0a);
297         if (val < 0)
298                 return val;
299
300         val &= 0xf;
301         if (val >= 2)
302                 *status |= FE_HAS_SIGNAL;
303
304         if (val >= 4)
305                 *status |= FE_HAS_CARRIER;
306
307         if (val >= 5)
308                 *status |= FE_HAS_VITERBI;
309
310         if (val >= 7)
311                 *status |= FE_HAS_SYNC;
312
313         /*
314          * Actually, on state S8, it starts receiving TS, but the TS
315          * output is only on normal state after the transition to S9.
316          */
317         if (val >= 9)
318                 *status |= FE_HAS_LOCK;
319
320         dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
321                  __func__, *status, val);
322
323         return val;
324 }
325
326 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
327 {
328         struct mb86a20s_state *state = fe->demodulator_priv;
329         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
330         int rc;
331         unsigned rf_max, rf_min, rf;
332
333         if (state->get_strength_time &&
334            (!time_after(jiffies, state->get_strength_time)))
335                 return c->strength.stat[0].uvalue;
336
337         /* Reset its value if an error happen */
338         c->strength.stat[0].uvalue = 0;
339
340         /* Does a binary search to get RF strength */
341         rf_max = 0xfff;
342         rf_min = 0;
343         do {
344                 rf = (rf_max + rf_min) / 2;
345                 rc = mb86a20s_writereg(state, 0x04, 0x1f);
346                 if (rc < 0)
347                         return rc;
348                 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
349                 if (rc < 0)
350                         return rc;
351                 rc = mb86a20s_writereg(state, 0x04, 0x20);
352                 if (rc < 0)
353                         return rc;
354                 rc = mb86a20s_writereg(state, 0x05, rf);
355                 if (rc < 0)
356                         return rc;
357
358                 rc = mb86a20s_readreg(state, 0x02);
359                 if (rc < 0)
360                         return rc;
361                 if (rc & 0x08)
362                         rf_min = (rf_max + rf_min) / 2;
363                 else
364                         rf_max = (rf_max + rf_min) / 2;
365                 if (rf_max - rf_min < 4) {
366                         rf = (rf_max + rf_min) / 2;
367
368                         /* Rescale it from 2^12 (4096) to 2^16 */
369                         rf = rf << (16 - 12);
370                         if (rf)
371                                 rf |= (1 << 12) - 1;
372
373                         dev_dbg(&state->i2c->dev,
374                                 "%s: signal strength = %d (%d < RF=%d < %d)\n",
375                                 __func__, rf, rf_min, rf >> 4, rf_max);
376                         c->strength.stat[0].uvalue = rf;
377                         state->get_strength_time = jiffies +
378                                                    msecs_to_jiffies(1000);
379                         return 0;
380                 }
381         } while (1);
382 }
383
384 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
385                                    unsigned layer)
386 {
387         int rc;
388         static unsigned char reg[] = {
389                 [0] = 0x86,     /* Layer A */
390                 [1] = 0x8a,     /* Layer B */
391                 [2] = 0x8e,     /* Layer C */
392         };
393
394         if (layer >= ARRAY_SIZE(reg))
395                 return -EINVAL;
396         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
397         if (rc < 0)
398                 return rc;
399         rc = mb86a20s_readreg(state, 0x6e);
400         if (rc < 0)
401                 return rc;
402         switch ((rc >> 4) & 0x07) {
403         case 0:
404                 return DQPSK;
405         case 1:
406                 return QPSK;
407         case 2:
408                 return QAM_16;
409         case 3:
410                 return QAM_64;
411         default:
412                 return QAM_AUTO;
413         }
414 }
415
416 static int mb86a20s_get_fec(struct mb86a20s_state *state,
417                             unsigned layer)
418 {
419         int rc;
420
421         static unsigned char reg[] = {
422                 [0] = 0x87,     /* Layer A */
423                 [1] = 0x8b,     /* Layer B */
424                 [2] = 0x8f,     /* Layer C */
425         };
426
427         if (layer >= ARRAY_SIZE(reg))
428                 return -EINVAL;
429         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
430         if (rc < 0)
431                 return rc;
432         rc = mb86a20s_readreg(state, 0x6e);
433         if (rc < 0)
434                 return rc;
435         switch ((rc >> 4) & 0x07) {
436         case 0:
437                 return FEC_1_2;
438         case 1:
439                 return FEC_2_3;
440         case 2:
441                 return FEC_3_4;
442         case 3:
443                 return FEC_5_6;
444         case 4:
445                 return FEC_7_8;
446         default:
447                 return FEC_AUTO;
448         }
449 }
450
451 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
452                                      unsigned layer)
453 {
454         int rc;
455         int interleaving[] = {
456                 0, 1, 2, 4, 8
457         };
458
459         static unsigned char reg[] = {
460                 [0] = 0x88,     /* Layer A */
461                 [1] = 0x8c,     /* Layer B */
462                 [2] = 0x90,     /* Layer C */
463         };
464
465         if (layer >= ARRAY_SIZE(reg))
466                 return -EINVAL;
467         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
468         if (rc < 0)
469                 return rc;
470         rc = mb86a20s_readreg(state, 0x6e);
471         if (rc < 0)
472                 return rc;
473
474         return interleaving[(rc >> 4) & 0x07];
475 }
476
477 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
478                                       unsigned layer)
479 {
480         int rc, count;
481         static unsigned char reg[] = {
482                 [0] = 0x89,     /* Layer A */
483                 [1] = 0x8d,     /* Layer B */
484                 [2] = 0x91,     /* Layer C */
485         };
486
487         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
488
489         if (layer >= ARRAY_SIZE(reg))
490                 return -EINVAL;
491
492         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
493         if (rc < 0)
494                 return rc;
495         rc = mb86a20s_readreg(state, 0x6e);
496         if (rc < 0)
497                 return rc;
498         count = (rc >> 4) & 0x0f;
499
500         dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
501
502         return count;
503 }
504
505 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
506 {
507         struct mb86a20s_state *state = fe->demodulator_priv;
508         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
509
510         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
511
512         /* Fixed parameters */
513         c->delivery_system = SYS_ISDBT;
514         c->bandwidth_hz = 6000000;
515
516         /* Initialize values that will be later autodetected */
517         c->isdbt_layer_enabled = 0;
518         c->transmission_mode = TRANSMISSION_MODE_AUTO;
519         c->guard_interval = GUARD_INTERVAL_AUTO;
520         c->isdbt_sb_mode = 0;
521         c->isdbt_sb_segment_count = 0;
522 }
523
524 /*
525  * Estimates the bit rate using the per-segment bit rate given by
526  * ABNT/NBR 15601 spec (table 4).
527  */
528 static u32 isdbt_rate[3][5][4] = {
529         {       /* DQPSK/QPSK */
530                 {  280850,  312060,  330420,  340430 }, /* 1/2 */
531                 {  374470,  416080,  440560,  453910 }, /* 2/3 */
532                 {  421280,  468090,  495630,  510650 }, /* 3/4 */
533                 {  468090,  520100,  550700,  567390 }, /* 5/6 */
534                 {  491500,  546110,  578230,  595760 }, /* 7/8 */
535         }, {    /* QAM16 */
536                 {  561710,  624130,  660840,  680870 }, /* 1/2 */
537                 {  748950,  832170,  881120,  907820 }, /* 2/3 */
538                 {  842570,  936190,  991260, 1021300 }, /* 3/4 */
539                 {  936190, 1040210, 1101400, 1134780 }, /* 5/6 */
540                 {  983000, 1092220, 1156470, 1191520 }, /* 7/8 */
541         }, {    /* QAM64 */
542                 {  842570,  936190,  991260, 1021300 }, /* 1/2 */
543                 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
544                 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
545                 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
546                 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
547         }
548 };
549
550 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
551                                    u32 modulation, u32 forward_error_correction,
552                                    u32 guard_interval,
553                                    u32 segment)
554 {
555         struct mb86a20s_state *state = fe->demodulator_priv;
556         u32 rate;
557         int mod, fec, guard;
558
559         /*
560          * If modulation/fec/guard is not detected, the default is
561          * to consider the lowest bit rate, to avoid taking too long time
562          * to get BER.
563          */
564         switch (modulation) {
565         case DQPSK:
566         case QPSK:
567         default:
568                 mod = 0;
569                 break;
570         case QAM_16:
571                 mod = 1;
572                 break;
573         case QAM_64:
574                 mod = 2;
575                 break;
576         }
577
578         switch (forward_error_correction) {
579         default:
580         case FEC_1_2:
581         case FEC_AUTO:
582                 fec = 0;
583                 break;
584         case FEC_2_3:
585                 fec = 1;
586                 break;
587         case FEC_3_4:
588                 fec = 2;
589                 break;
590         case FEC_5_6:
591                 fec = 3;
592                 break;
593         case FEC_7_8:
594                 fec = 4;
595                 break;
596         }
597
598         switch (guard_interval) {
599         default:
600         case GUARD_INTERVAL_1_4:
601                 guard = 0;
602                 break;
603         case GUARD_INTERVAL_1_8:
604                 guard = 1;
605                 break;
606         case GUARD_INTERVAL_1_16:
607                 guard = 2;
608                 break;
609         case GUARD_INTERVAL_1_32:
610                 guard = 3;
611                 break;
612         }
613
614         /* Samples BER at BER_SAMPLING_RATE seconds */
615         rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
616
617         /* Avoids sampling too quickly or to overflow the register */
618         if (rate < 256)
619                 rate = 256;
620         else if (rate > (1 << 24) - 1)
621                 rate = (1 << 24) - 1;
622
623         dev_dbg(&state->i2c->dev,
624                 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
625                 __func__, 'A' + layer,
626                 segment * isdbt_rate[mod][fec][guard]/1000,
627                 rate, rate);
628
629         state->estimated_rate[layer] = rate;
630 }
631
632 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
633 {
634         struct mb86a20s_state *state = fe->demodulator_priv;
635         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
636         int layer, rc;
637
638         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
639
640         /* Reset frontend cache to default values */
641         mb86a20s_reset_frontend_cache(fe);
642
643         /* Check for partial reception */
644         rc = mb86a20s_writereg(state, 0x6d, 0x85);
645         if (rc < 0)
646                 return rc;
647         rc = mb86a20s_readreg(state, 0x6e);
648         if (rc < 0)
649                 return rc;
650         c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
651
652         /* Get per-layer data */
653
654         for (layer = 0; layer < NUM_LAYERS; layer++) {
655                 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
656                         __func__, 'A' + layer);
657
658                 rc = mb86a20s_get_segment_count(state, layer);
659                 if (rc < 0)
660                         goto noperlayer_error;
661                 if (rc >= 0 && rc < 14) {
662                         c->layer[layer].segment_count = rc;
663                 } else {
664                         c->layer[layer].segment_count = 0;
665                         state->estimated_rate[layer] = 0;
666                         continue;
667                 }
668                 c->isdbt_layer_enabled |= 1 << layer;
669                 rc = mb86a20s_get_modulation(state, layer);
670                 if (rc < 0)
671                         goto noperlayer_error;
672                 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
673                         __func__, rc);
674                 c->layer[layer].modulation = rc;
675                 rc = mb86a20s_get_fec(state, layer);
676                 if (rc < 0)
677                         goto noperlayer_error;
678                 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
679                         __func__, rc);
680                 c->layer[layer].fec = rc;
681                 rc = mb86a20s_get_interleaving(state, layer);
682                 if (rc < 0)
683                         goto noperlayer_error;
684                 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
685                         __func__, rc);
686                 c->layer[layer].interleaving = rc;
687                 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
688                                        c->layer[layer].fec,
689                                        c->guard_interval,
690                                        c->layer[layer].segment_count);
691         }
692
693         rc = mb86a20s_writereg(state, 0x6d, 0x84);
694         if (rc < 0)
695                 return rc;
696         if ((rc & 0x60) == 0x20) {
697                 c->isdbt_sb_mode = 1;
698                 /* At least, one segment should exist */
699                 if (!c->isdbt_sb_segment_count)
700                         c->isdbt_sb_segment_count = 1;
701         }
702
703         /* Get transmission mode and guard interval */
704         rc = mb86a20s_readreg(state, 0x07);
705         if (rc < 0)
706                 return rc;
707         c->transmission_mode = TRANSMISSION_MODE_AUTO;
708         if ((rc & 0x60) == 0x20) {
709                 /* Only modes 2 and 3 are supported */
710                 switch ((rc >> 2) & 0x03) {
711                 case 1:
712                         c->transmission_mode = TRANSMISSION_MODE_4K;
713                         break;
714                 case 2:
715                         c->transmission_mode = TRANSMISSION_MODE_8K;
716                         break;
717                 }
718         }
719         c->guard_interval = GUARD_INTERVAL_AUTO;
720         if (!(rc & 0x10)) {
721                 /* Guard interval 1/32 is not supported */
722                 switch (rc & 0x3) {
723                 case 0:
724                         c->guard_interval = GUARD_INTERVAL_1_4;
725                         break;
726                 case 1:
727                         c->guard_interval = GUARD_INTERVAL_1_8;
728                         break;
729                 case 2:
730                         c->guard_interval = GUARD_INTERVAL_1_16;
731                         break;
732                 }
733         }
734         return 0;
735
736 noperlayer_error:
737
738         /* per-layer info is incomplete; discard all per-layer */
739         c->isdbt_layer_enabled = 0;
740
741         return rc;
742 }
743
744 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
745 {
746         struct mb86a20s_state *state = fe->demodulator_priv;
747         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
748         int rc, val;
749
750         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
751
752         /* Reset the counters, if the channel changed */
753         if (state->last_frequency != c->frequency) {
754                 memset(&c->cnr, 0, sizeof(c->cnr));
755                 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
756                 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
757                 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
758                 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
759                 memset(&c->block_error, 0, sizeof(c->block_error));
760                 memset(&c->block_count, 0, sizeof(c->block_count));
761
762                 state->last_frequency = c->frequency;
763         }
764
765         /* Clear status for most stats */
766
767         /* BER/PER counter reset */
768         rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
769         if (rc < 0)
770                 goto err;
771
772         /* CNR counter reset */
773         rc = mb86a20s_readreg(state, 0x45);
774         if (rc < 0)
775                 goto err;
776         val = rc;
777         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
778         if (rc < 0)
779                 goto err;
780         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
781         if (rc < 0)
782                 goto err;
783
784         /* MER counter reset */
785         rc = mb86a20s_writereg(state, 0x50, 0x50);
786         if (rc < 0)
787                 goto err;
788         rc = mb86a20s_readreg(state, 0x51);
789         if (rc < 0)
790                 goto err;
791         val = rc;
792         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
793         if (rc < 0)
794                 goto err;
795         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
796         if (rc < 0)
797                 goto err;
798
799         goto ok;
800 err:
801         dev_err(&state->i2c->dev,
802                 "%s: Can't reset FE statistics (error %d).\n",
803                 __func__, rc);
804 ok:
805         return rc;
806 }
807
808 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
809                                 unsigned layer,
810                                 u32 *error, u32 *count)
811 {
812         struct mb86a20s_state *state = fe->demodulator_priv;
813         int rc, val;
814
815         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
816
817         if (layer >= NUM_LAYERS)
818                 return -EINVAL;
819
820         /* Check if the BER measures are already available */
821         rc = mb86a20s_readreg(state, 0x54);
822         if (rc < 0)
823                 return rc;
824
825         /* Check if data is available for that layer */
826         if (!(rc & (1 << layer))) {
827                 dev_dbg(&state->i2c->dev,
828                         "%s: preBER for layer %c is not available yet.\n",
829                         __func__, 'A' + layer);
830                 return -EBUSY;
831         }
832
833         /* Read Bit Error Count */
834         rc = mb86a20s_readreg(state, 0x55 + layer * 3);
835         if (rc < 0)
836                 return rc;
837         *error = rc << 16;
838         rc = mb86a20s_readreg(state, 0x56 + layer * 3);
839         if (rc < 0)
840                 return rc;
841         *error |= rc << 8;
842         rc = mb86a20s_readreg(state, 0x57 + layer * 3);
843         if (rc < 0)
844                 return rc;
845         *error |= rc;
846
847         dev_dbg(&state->i2c->dev,
848                 "%s: bit error before Viterbi for layer %c: %d.\n",
849                 __func__, 'A' + layer, *error);
850
851         /* Read Bit Count */
852         rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
853         if (rc < 0)
854                 return rc;
855         rc = mb86a20s_readreg(state, 0x51);
856         if (rc < 0)
857                 return rc;
858         *count = rc << 16;
859         rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
860         if (rc < 0)
861                 return rc;
862         rc = mb86a20s_readreg(state, 0x51);
863         if (rc < 0)
864                 return rc;
865         *count |= rc << 8;
866         rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
867         if (rc < 0)
868                 return rc;
869         rc = mb86a20s_readreg(state, 0x51);
870         if (rc < 0)
871                 return rc;
872         *count |= rc;
873
874         dev_dbg(&state->i2c->dev,
875                 "%s: bit count before Viterbi for layer %c: %d.\n",
876                 __func__, 'A' + layer, *count);
877
878
879         /*
880          * As we get TMCC data from the frontend, we can better estimate the
881          * BER bit counters, in order to do the BER measure during a longer
882          * time. Use those data, if available, to update the bit count
883          * measure.
884          */
885
886         if (state->estimated_rate[layer]
887             && state->estimated_rate[layer] != *count) {
888                 dev_dbg(&state->i2c->dev,
889                         "%s: updating layer %c preBER counter to %d.\n",
890                         __func__, 'A' + layer, state->estimated_rate[layer]);
891
892                 /* Turn off BER before Viterbi */
893                 rc = mb86a20s_writereg(state, 0x52, 0x00);
894
895                 /* Update counter for this layer */
896                 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
897                 if (rc < 0)
898                         return rc;
899                 rc = mb86a20s_writereg(state, 0x51,
900                                        state->estimated_rate[layer] >> 16);
901                 if (rc < 0)
902                         return rc;
903                 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
904                 if (rc < 0)
905                         return rc;
906                 rc = mb86a20s_writereg(state, 0x51,
907                                        state->estimated_rate[layer] >> 8);
908                 if (rc < 0)
909                         return rc;
910                 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
911                 if (rc < 0)
912                         return rc;
913                 rc = mb86a20s_writereg(state, 0x51,
914                                        state->estimated_rate[layer]);
915                 if (rc < 0)
916                         return rc;
917
918                 /* Turn on BER before Viterbi */
919                 rc = mb86a20s_writereg(state, 0x52, 0x01);
920
921                 /* Reset all preBER counters */
922                 rc = mb86a20s_writereg(state, 0x53, 0x00);
923                 if (rc < 0)
924                         return rc;
925                 rc = mb86a20s_writereg(state, 0x53, 0x07);
926         } else {
927                 /* Reset counter to collect new data */
928                 rc = mb86a20s_readreg(state, 0x53);
929                 if (rc < 0)
930                         return rc;
931                 val = rc;
932                 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
933                 if (rc < 0)
934                         return rc;
935                 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
936         }
937
938         return rc;
939 }
940
941 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
942                                  unsigned layer,
943                                   u32 *error, u32 *count)
944 {
945         struct mb86a20s_state *state = fe->demodulator_priv;
946         u32 counter, collect_rate;
947         int rc, val;
948
949         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
950
951         if (layer >= NUM_LAYERS)
952                 return -EINVAL;
953
954         /* Check if the BER measures are already available */
955         rc = mb86a20s_readreg(state, 0x60);
956         if (rc < 0)
957                 return rc;
958
959         /* Check if data is available for that layer */
960         if (!(rc & (1 << layer))) {
961                 dev_dbg(&state->i2c->dev,
962                         "%s: post BER for layer %c is not available yet.\n",
963                         __func__, 'A' + layer);
964                 return -EBUSY;
965         }
966
967         /* Read Bit Error Count */
968         rc = mb86a20s_readreg(state, 0x64 + layer * 3);
969         if (rc < 0)
970                 return rc;
971         *error = rc << 16;
972         rc = mb86a20s_readreg(state, 0x65 + layer * 3);
973         if (rc < 0)
974                 return rc;
975         *error |= rc << 8;
976         rc = mb86a20s_readreg(state, 0x66 + layer * 3);
977         if (rc < 0)
978                 return rc;
979         *error |= rc;
980
981         dev_dbg(&state->i2c->dev,
982                 "%s: post bit error for layer %c: %d.\n",
983                 __func__, 'A' + layer, *error);
984
985         /* Read Bit Count */
986         rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
987         if (rc < 0)
988                 return rc;
989         rc = mb86a20s_readreg(state, 0x51);
990         if (rc < 0)
991                 return rc;
992         counter = rc << 8;
993         rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
994         if (rc < 0)
995                 return rc;
996         rc = mb86a20s_readreg(state, 0x51);
997         if (rc < 0)
998                 return rc;
999         counter |= rc;
1000         *count = counter * 204 * 8;
1001
1002         dev_dbg(&state->i2c->dev,
1003                 "%s: post bit count for layer %c: %d.\n",
1004                 __func__, 'A' + layer, *count);
1005
1006         /*
1007          * As we get TMCC data from the frontend, we can better estimate the
1008          * BER bit counters, in order to do the BER measure during a longer
1009          * time. Use those data, if available, to update the bit count
1010          * measure.
1011          */
1012
1013         if (!state->estimated_rate[layer])
1014                 goto reset_measurement;
1015
1016         collect_rate = state->estimated_rate[layer] / 204 / 8;
1017         if (collect_rate < 32)
1018                 collect_rate = 32;
1019         if (collect_rate > 65535)
1020                 collect_rate = 65535;
1021         if (collect_rate != counter) {
1022                 dev_dbg(&state->i2c->dev,
1023                         "%s: updating postBER counter on layer %c to %d.\n",
1024                         __func__, 'A' + layer, collect_rate);
1025
1026                 /* Turn off BER after Viterbi */
1027                 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1028
1029                 /* Update counter for this layer */
1030                 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1031                 if (rc < 0)
1032                         return rc;
1033                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1034                 if (rc < 0)
1035                         return rc;
1036                 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1037                 if (rc < 0)
1038                         return rc;
1039                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1040                 if (rc < 0)
1041                         return rc;
1042
1043                 /* Turn on BER after Viterbi */
1044                 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1045
1046                 /* Reset all preBER counters */
1047                 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1048                 if (rc < 0)
1049                         return rc;
1050                 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1051
1052                 return rc;
1053         }
1054
1055 reset_measurement:
1056         /* Reset counter to collect new data */
1057         rc = mb86a20s_readreg(state, 0x5f);
1058         if (rc < 0)
1059                 return rc;
1060         val = rc;
1061         rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1062         if (rc < 0)
1063                 return rc;
1064         rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1065
1066         return rc;
1067 }
1068
1069 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1070                             unsigned layer,
1071                             u32 *error, u32 *count)
1072 {
1073         struct mb86a20s_state *state = fe->demodulator_priv;
1074         int rc, val;
1075         u32 collect_rate;
1076         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1077
1078         if (layer >= NUM_LAYERS)
1079                 return -EINVAL;
1080
1081         /* Check if the PER measures are already available */
1082         rc = mb86a20s_writereg(state, 0x50, 0xb8);
1083         if (rc < 0)
1084                 return rc;
1085         rc = mb86a20s_readreg(state, 0x51);
1086         if (rc < 0)
1087                 return rc;
1088
1089         /* Check if data is available for that layer */
1090
1091         if (!(rc & (1 << layer))) {
1092                 dev_dbg(&state->i2c->dev,
1093                         "%s: block counts for layer %c aren't available yet.\n",
1094                         __func__, 'A' + layer);
1095                 return -EBUSY;
1096         }
1097
1098         /* Read Packet error Count */
1099         rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1100         if (rc < 0)
1101                 return rc;
1102         rc = mb86a20s_readreg(state, 0x51);
1103         if (rc < 0)
1104                 return rc;
1105         *error = rc << 8;
1106         rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1107         if (rc < 0)
1108                 return rc;
1109         rc = mb86a20s_readreg(state, 0x51);
1110         if (rc < 0)
1111                 return rc;
1112         *error |= rc;
1113         dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1114                 __func__, 'A' + layer, *error);
1115
1116         /* Read Bit Count */
1117         rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1118         if (rc < 0)
1119                 return rc;
1120         rc = mb86a20s_readreg(state, 0x51);
1121         if (rc < 0)
1122                 return rc;
1123         *count = rc << 8;
1124         rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1125         if (rc < 0)
1126                 return rc;
1127         rc = mb86a20s_readreg(state, 0x51);
1128         if (rc < 0)
1129                 return rc;
1130         *count |= rc;
1131
1132         dev_dbg(&state->i2c->dev,
1133                 "%s: block count for layer %c: %d.\n",
1134                 __func__, 'A' + layer, *count);
1135
1136         /*
1137          * As we get TMCC data from the frontend, we can better estimate the
1138          * BER bit counters, in order to do the BER measure during a longer
1139          * time. Use those data, if available, to update the bit count
1140          * measure.
1141          */
1142
1143         if (!state->estimated_rate[layer])
1144                 goto reset_measurement;
1145
1146         collect_rate = state->estimated_rate[layer] / 204 / 8;
1147         if (collect_rate < 32)
1148                 collect_rate = 32;
1149         if (collect_rate > 65535)
1150                 collect_rate = 65535;
1151
1152         if (collect_rate != *count) {
1153                 dev_dbg(&state->i2c->dev,
1154                         "%s: updating PER counter on layer %c to %d.\n",
1155                         __func__, 'A' + layer, collect_rate);
1156
1157                 /* Stop PER measurement */
1158                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1159                 if (rc < 0)
1160                         return rc;
1161                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1162                 if (rc < 0)
1163                         return rc;
1164
1165                 /* Update this layer's counter */
1166                 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1167                 if (rc < 0)
1168                         return rc;
1169                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1170                 if (rc < 0)
1171                         return rc;
1172                 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1173                 if (rc < 0)
1174                         return rc;
1175                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1176                 if (rc < 0)
1177                         return rc;
1178
1179                 /* start PER measurement */
1180                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1181                 if (rc < 0)
1182                         return rc;
1183                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1184                 if (rc < 0)
1185                         return rc;
1186
1187                 /* Reset all counters to collect new data */
1188                 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1189                 if (rc < 0)
1190                         return rc;
1191                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1192                 if (rc < 0)
1193                         return rc;
1194                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1195
1196                 return rc;
1197         }
1198
1199 reset_measurement:
1200         /* Reset counter to collect new data */
1201         rc = mb86a20s_writereg(state, 0x50, 0xb1);
1202         if (rc < 0)
1203                 return rc;
1204         rc = mb86a20s_readreg(state, 0x51);
1205         if (rc < 0)
1206                 return rc;
1207         val = rc;
1208         rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1209         if (rc < 0)
1210                 return rc;
1211         rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1212
1213         return rc;
1214 }
1215
1216 struct linear_segments {
1217         unsigned x, y;
1218 };
1219
1220 /*
1221  * All tables below return a dB/1000 measurement
1222  */
1223
1224 static const struct linear_segments cnr_to_db_table[] = {
1225         { 19648,     0},
1226         { 18187,  1000},
1227         { 16534,  2000},
1228         { 14823,  3000},
1229         { 13161,  4000},
1230         { 11622,  5000},
1231         { 10279,  6000},
1232         {  9089,  7000},
1233         {  8042,  8000},
1234         {  7137,  9000},
1235         {  6342, 10000},
1236         {  5641, 11000},
1237         {  5030, 12000},
1238         {  4474, 13000},
1239         {  3988, 14000},
1240         {  3556, 15000},
1241         {  3180, 16000},
1242         {  2841, 17000},
1243         {  2541, 18000},
1244         {  2276, 19000},
1245         {  2038, 20000},
1246         {  1800, 21000},
1247         {  1625, 22000},
1248         {  1462, 23000},
1249         {  1324, 24000},
1250         {  1175, 25000},
1251         {  1063, 26000},
1252         {   980, 27000},
1253         {   907, 28000},
1254         {   840, 29000},
1255         {   788, 30000},
1256 };
1257
1258 static const struct linear_segments cnr_64qam_table[] = {
1259         { 3922688,     0},
1260         { 3920384,  1000},
1261         { 3902720,  2000},
1262         { 3894784,  3000},
1263         { 3882496,  4000},
1264         { 3872768,  5000},
1265         { 3858944,  6000},
1266         { 3851520,  7000},
1267         { 3838976,  8000},
1268         { 3829248,  9000},
1269         { 3818240, 10000},
1270         { 3806976, 11000},
1271         { 3791872, 12000},
1272         { 3767040, 13000},
1273         { 3720960, 14000},
1274         { 3637504, 15000},
1275         { 3498496, 16000},
1276         { 3296000, 17000},
1277         { 3031040, 18000},
1278         { 2715392, 19000},
1279         { 2362624, 20000},
1280         { 1963264, 21000},
1281         { 1649664, 22000},
1282         { 1366784, 23000},
1283         { 1120768, 24000},
1284         {  890880, 25000},
1285         {  723456, 26000},
1286         {  612096, 27000},
1287         {  518912, 28000},
1288         {  448256, 29000},
1289         {  388864, 30000},
1290 };
1291
1292 static const struct linear_segments cnr_16qam_table[] = {
1293         { 5314816,     0},
1294         { 5219072,  1000},
1295         { 5118720,  2000},
1296         { 4998912,  3000},
1297         { 4875520,  4000},
1298         { 4736000,  5000},
1299         { 4604160,  6000},
1300         { 4458752,  7000},
1301         { 4300288,  8000},
1302         { 4092928,  9000},
1303         { 3836160, 10000},
1304         { 3521024, 11000},
1305         { 3155968, 12000},
1306         { 2756864, 13000},
1307         { 2347008, 14000},
1308         { 1955072, 15000},
1309         { 1593600, 16000},
1310         { 1297920, 17000},
1311         { 1043968, 18000},
1312         {  839680, 19000},
1313         {  672256, 20000},
1314         {  523008, 21000},
1315         {  424704, 22000},
1316         {  345088, 23000},
1317         {  280064, 24000},
1318         {  221440, 25000},
1319         {  179712, 26000},
1320         {  151040, 27000},
1321         {  128512, 28000},
1322         {  110080, 29000},
1323         {   95744, 30000},
1324 };
1325
1326 static const struct linear_segments cnr_qpsk_table[] = {
1327         { 2834176,     0},
1328         { 2683648,  1000},
1329         { 2536960,  2000},
1330         { 2391808,  3000},
1331         { 2133248,  4000},
1332         { 1906176,  5000},
1333         { 1666560,  6000},
1334         { 1422080,  7000},
1335         { 1189632,  8000},
1336         {  976384,  9000},
1337         {  790272, 10000},
1338         {  633344, 11000},
1339         {  505600, 12000},
1340         {  402944, 13000},
1341         {  320768, 14000},
1342         {  255488, 15000},
1343         {  204032, 16000},
1344         {  163072, 17000},
1345         {  130304, 18000},
1346         {  105216, 19000},
1347         {   83456, 20000},
1348         {   65024, 21000},
1349         {   52480, 22000},
1350         {   42752, 23000},
1351         {   34560, 24000},
1352         {   27136, 25000},
1353         {   22016, 26000},
1354         {   18432, 27000},
1355         {   15616, 28000},
1356         {   13312, 29000},
1357         {   11520, 30000},
1358 };
1359
1360 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1361                              unsigned len)
1362 {
1363         u64 tmp64;
1364         u32 dx, dy;
1365         int i, ret;
1366
1367         if (value >= segments[0].x)
1368                 return segments[0].y;
1369         if (value < segments[len-1].x)
1370                 return segments[len-1].y;
1371
1372         for (i = 1; i < len - 1; i++) {
1373                 /* If value is identical, no need to interpolate */
1374                 if (value == segments[i].x)
1375                         return segments[i].y;
1376                 if (value > segments[i].x)
1377                         break;
1378         }
1379
1380         /* Linear interpolation between the two (x,y) points */
1381         dy = segments[i].y - segments[i - 1].y;
1382         dx = segments[i - 1].x - segments[i].x;
1383         tmp64 = value - segments[i].x;
1384         tmp64 *= dy;
1385         do_div(tmp64, dx);
1386         ret = segments[i].y - tmp64;
1387
1388         return ret;
1389 }
1390
1391 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1392 {
1393         struct mb86a20s_state *state = fe->demodulator_priv;
1394         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1395         u32 cnr_linear, cnr;
1396         int rc, val;
1397
1398         /* Check if CNR is available */
1399         rc = mb86a20s_readreg(state, 0x45);
1400         if (rc < 0)
1401                 return rc;
1402
1403         if (!(rc & 0x40)) {
1404                 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1405                          __func__);
1406                 return -EBUSY;
1407         }
1408         val = rc;
1409
1410         rc = mb86a20s_readreg(state, 0x46);
1411         if (rc < 0)
1412                 return rc;
1413         cnr_linear = rc << 8;
1414
1415         rc = mb86a20s_readreg(state, 0x46);
1416         if (rc < 0)
1417                 return rc;
1418         cnr_linear |= rc;
1419
1420         cnr = interpolate_value(cnr_linear,
1421                                 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1422
1423         c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1424         c->cnr.stat[0].svalue = cnr;
1425
1426         dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1427                 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1428
1429         /* CNR counter reset */
1430         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1431         if (rc < 0)
1432                 return rc;
1433         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1434
1435         return rc;
1436 }
1437
1438 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1439 {
1440         struct mb86a20s_state *state = fe->demodulator_priv;
1441         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1442         u32 mer, cnr;
1443         int rc, val, layer;
1444         const struct linear_segments *segs;
1445         unsigned segs_len;
1446
1447         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1448
1449         /* Check if the measures are already available */
1450         rc = mb86a20s_writereg(state, 0x50, 0x5b);
1451         if (rc < 0)
1452                 return rc;
1453         rc = mb86a20s_readreg(state, 0x51);
1454         if (rc < 0)
1455                 return rc;
1456
1457         /* Check if data is available */
1458         if (!(rc & 0x01)) {
1459                 dev_dbg(&state->i2c->dev,
1460                         "%s: MER measures aren't available yet.\n", __func__);
1461                 return -EBUSY;
1462         }
1463
1464         /* Read all layers */
1465         for (layer = 0; layer < NUM_LAYERS; layer++) {
1466                 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1467                         c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1468                         continue;
1469                 }
1470
1471                 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1472                 if (rc < 0)
1473                         return rc;
1474                 rc = mb86a20s_readreg(state, 0x51);
1475                 if (rc < 0)
1476                         return rc;
1477                 mer = rc << 16;
1478                 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1479                 if (rc < 0)
1480                         return rc;
1481                 rc = mb86a20s_readreg(state, 0x51);
1482                 if (rc < 0)
1483                         return rc;
1484                 mer |= rc << 8;
1485                 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1486                 if (rc < 0)
1487                         return rc;
1488                 rc = mb86a20s_readreg(state, 0x51);
1489                 if (rc < 0)
1490                         return rc;
1491                 mer |= rc;
1492
1493                 switch (c->layer[layer].modulation) {
1494                 case DQPSK:
1495                 case QPSK:
1496                         segs = cnr_qpsk_table;
1497                         segs_len = ARRAY_SIZE(cnr_qpsk_table);
1498                         break;
1499                 case QAM_16:
1500                         segs = cnr_16qam_table;
1501                         segs_len = ARRAY_SIZE(cnr_16qam_table);
1502                         break;
1503                 default:
1504                 case QAM_64:
1505                         segs = cnr_64qam_table;
1506                         segs_len = ARRAY_SIZE(cnr_64qam_table);
1507                         break;
1508                 }
1509                 cnr = interpolate_value(mer, segs, segs_len);
1510
1511                 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1512                 c->cnr.stat[1 + layer].svalue = cnr;
1513
1514                 dev_dbg(&state->i2c->dev,
1515                         "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1516                         __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1517
1518         }
1519
1520         /* Start a new MER measurement */
1521         /* MER counter reset */
1522         rc = mb86a20s_writereg(state, 0x50, 0x50);
1523         if (rc < 0)
1524                 return rc;
1525         rc = mb86a20s_readreg(state, 0x51);
1526         if (rc < 0)
1527                 return rc;
1528         val = rc;
1529
1530         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1531         if (rc < 0)
1532                 return rc;
1533         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1534         if (rc < 0)
1535                 return rc;
1536
1537         return 0;
1538 }
1539
1540 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1541 {
1542         struct mb86a20s_state *state = fe->demodulator_priv;
1543         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1544         int layer;
1545
1546         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1547
1548         /* Fill the length of each status counter */
1549
1550         /* Only global stats */
1551         c->strength.len = 1;
1552
1553         /* Per-layer stats - 3 layers + global */
1554         c->cnr.len = NUM_LAYERS + 1;
1555         c->pre_bit_error.len = NUM_LAYERS + 1;
1556         c->pre_bit_count.len = NUM_LAYERS + 1;
1557         c->post_bit_error.len = NUM_LAYERS + 1;
1558         c->post_bit_count.len = NUM_LAYERS + 1;
1559         c->block_error.len = NUM_LAYERS + 1;
1560         c->block_count.len = NUM_LAYERS + 1;
1561
1562         /* Signal is always available */
1563         c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1564         c->strength.stat[0].uvalue = 0;
1565
1566         /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1567         for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1568                 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1569                 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1570                 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1571                 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1572                 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1573                 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1574                 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1575         }
1576 }
1577
1578 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1579 {
1580         struct mb86a20s_state *state = fe->demodulator_priv;
1581         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1582         int rc = 0, layer;
1583         u32 bit_error = 0, bit_count = 0;
1584         u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1585         u32 t_post_bit_error = 0, t_post_bit_count = 0;
1586         u32 block_error = 0, block_count = 0;
1587         u32 t_block_error = 0, t_block_count = 0;
1588         int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1589         int per_layers = 0;
1590
1591         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1592
1593         mb86a20s_get_main_CNR(fe);
1594
1595         /* Get per-layer stats */
1596         mb86a20s_get_blk_error_layer_CNR(fe);
1597
1598         /*
1599          * At state 7, only CNR is available
1600          * For BER measures, state=9 is required
1601          * FIXME: we may get MER measures with state=8
1602          */
1603         if (status_nr < 9)
1604                 return 0;
1605
1606         for (layer = 0; layer < NUM_LAYERS; layer++) {
1607                 if (c->isdbt_layer_enabled & (1 << layer)) {
1608                         /* Layer is active and has rc segments */
1609                         active_layers++;
1610
1611                         /* Handle BER before vterbi */
1612                         rc = mb86a20s_get_pre_ber(fe, layer,
1613                                                   &bit_error, &bit_count);
1614                         if (rc >= 0) {
1615                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1616                                 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1617                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1618                                 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1619                         } else if (rc != -EBUSY) {
1620                                 /*
1621                                         * If an I/O error happened,
1622                                         * measures are now unavailable
1623                                         */
1624                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1625                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1626                                 dev_err(&state->i2c->dev,
1627                                         "%s: Can't get BER for layer %c (error %d).\n",
1628                                         __func__, 'A' + layer, rc);
1629                         }
1630                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1631                                 pre_ber_layers++;
1632
1633                         /* Handle BER post vterbi */
1634                         rc = mb86a20s_get_post_ber(fe, layer,
1635                                                    &bit_error, &bit_count);
1636                         if (rc >= 0) {
1637                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1638                                 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1639                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1640                                 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1641                         } else if (rc != -EBUSY) {
1642                                 /*
1643                                         * If an I/O error happened,
1644                                         * measures are now unavailable
1645                                         */
1646                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1647                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1648                                 dev_err(&state->i2c->dev,
1649                                         "%s: Can't get BER for layer %c (error %d).\n",
1650                                         __func__, 'A' + layer, rc);
1651                         }
1652                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1653                                 post_ber_layers++;
1654
1655                         /* Handle Block errors for PER/UCB reports */
1656                         rc = mb86a20s_get_blk_error(fe, layer,
1657                                                 &block_error,
1658                                                 &block_count);
1659                         if (rc >= 0) {
1660                                 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1661                                 c->block_error.stat[1 + layer].uvalue += block_error;
1662                                 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1663                                 c->block_count.stat[1 + layer].uvalue += block_count;
1664                         } else if (rc != -EBUSY) {
1665                                 /*
1666                                         * If an I/O error happened,
1667                                         * measures are now unavailable
1668                                         */
1669                                 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1670                                 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1671                                 dev_err(&state->i2c->dev,
1672                                         "%s: Can't get PER for layer %c (error %d).\n",
1673                                         __func__, 'A' + layer, rc);
1674
1675                         }
1676                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1677                                 per_layers++;
1678
1679                         /* Update total preBER */
1680                         t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1681                         t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1682
1683                         /* Update total postBER */
1684                         t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1685                         t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1686
1687                         /* Update total PER */
1688                         t_block_error += c->block_error.stat[1 + layer].uvalue;
1689                         t_block_count += c->block_count.stat[1 + layer].uvalue;
1690                 }
1691         }
1692
1693         /*
1694          * Start showing global count if at least one error count is
1695          * available.
1696          */
1697         if (pre_ber_layers) {
1698                 /*
1699                  * At least one per-layer BER measure was read. We can now
1700                  * calculate the total BER
1701                  *
1702                  * Total Bit Error/Count is calculated as the sum of the
1703                  * bit errors on all active layers.
1704                  */
1705                 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1706                 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1707                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1708                 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1709         } else {
1710                 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1711                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1712         }
1713
1714         /*
1715          * Start showing global count if at least one error count is
1716          * available.
1717          */
1718         if (post_ber_layers) {
1719                 /*
1720                  * At least one per-layer BER measure was read. We can now
1721                  * calculate the total BER
1722                  *
1723                  * Total Bit Error/Count is calculated as the sum of the
1724                  * bit errors on all active layers.
1725                  */
1726                 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1727                 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1728                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1729                 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1730         } else {
1731                 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1732                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1733         }
1734
1735         if (per_layers) {
1736                 /*
1737                  * At least one per-layer UCB measure was read. We can now
1738                  * calculate the total UCB
1739                  *
1740                  * Total block Error/Count is calculated as the sum of the
1741                  * block errors on all active layers.
1742                  */
1743                 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1744                 c->block_error.stat[0].uvalue = t_block_error;
1745                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1746                 c->block_count.stat[0].uvalue = t_block_count;
1747         } else {
1748                 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1749                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1750         }
1751
1752         return rc;
1753 }
1754
1755 /*
1756  * The functions below are called via DVB callbacks, so they need to
1757  * properly use the I2C gate control
1758  */
1759
1760 static int mb86a20s_initfe(struct dvb_frontend *fe)
1761 {
1762         struct mb86a20s_state *state = fe->demodulator_priv;
1763         u64 pll;
1764         u32 fclk;
1765         int rc;
1766         u8  regD5 = 1, reg71, reg09 = 0x3a;
1767
1768         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1769
1770         if (fe->ops.i2c_gate_ctrl)
1771                 fe->ops.i2c_gate_ctrl(fe, 0);
1772
1773         /* Initialize the frontend */
1774         rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1775         if (rc < 0)
1776                 goto err;
1777
1778         if (!state->inversion)
1779                 reg09 |= 0x04;
1780         rc = mb86a20s_writereg(state, 0x09, reg09);
1781         if (rc < 0)
1782                 goto err;
1783         if (!state->bw)
1784                 reg71 = 1;
1785         else
1786                 reg71 = 0;
1787         rc = mb86a20s_writereg(state, 0x39, reg71);
1788         if (rc < 0)
1789                 goto err;
1790         rc = mb86a20s_writereg(state, 0x71, state->bw);
1791         if (rc < 0)
1792                 goto err;
1793         if (state->subchannel) {
1794                 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1795                 if (rc < 0)
1796                         goto err;
1797         }
1798
1799         fclk = state->config->fclk;
1800         if (!fclk)
1801                 fclk = 32571428;
1802
1803         /* Adjust IF frequency to match tuner */
1804         if (fe->ops.tuner_ops.get_if_frequency)
1805                 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1806
1807         if (!state->if_freq)
1808                 state->if_freq = 3300000;
1809
1810         pll = (((u64)1) << 34) * state->if_freq;
1811         do_div(pll, 63 * fclk);
1812         pll = (1 << 25) - pll;
1813         rc = mb86a20s_writereg(state, 0x28, 0x2a);
1814         if (rc < 0)
1815                 goto err;
1816         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1817         if (rc < 0)
1818                 goto err;
1819         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1820         if (rc < 0)
1821                 goto err;
1822         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1823         if (rc < 0)
1824                 goto err;
1825         dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1826                 __func__, fclk, state->if_freq, (long long)pll);
1827
1828         /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1829         pll = state->if_freq * 1677721600L;
1830         do_div(pll, 1628571429L);
1831         rc = mb86a20s_writereg(state, 0x28, 0x20);
1832         if (rc < 0)
1833                 goto err;
1834         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1835         if (rc < 0)
1836                 goto err;
1837         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1838         if (rc < 0)
1839                 goto err;
1840         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1841         if (rc < 0)
1842                 goto err;
1843         dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1844                 __func__, state->if_freq, (long long)pll);
1845
1846         if (!state->config->is_serial)
1847                 regD5 &= ~1;
1848
1849         rc = mb86a20s_writereg(state, 0x50, 0xd5);
1850         if (rc < 0)
1851                 goto err;
1852         rc = mb86a20s_writereg(state, 0x51, regD5);
1853         if (rc < 0)
1854                 goto err;
1855
1856         rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1857         if (rc < 0)
1858                 goto err;
1859
1860
1861 err:
1862         if (fe->ops.i2c_gate_ctrl)
1863                 fe->ops.i2c_gate_ctrl(fe, 1);
1864
1865         if (rc < 0) {
1866                 state->need_init = true;
1867                 dev_info(&state->i2c->dev,
1868                          "mb86a20s: Init failed. Will try again later\n");
1869         } else {
1870                 state->need_init = false;
1871                 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1872         }
1873         return rc;
1874 }
1875
1876 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1877 {
1878         struct mb86a20s_state *state = fe->demodulator_priv;
1879         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1880         int rc, if_freq;
1881         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1882
1883         if (!c->isdbt_layer_enabled)
1884                 c->isdbt_layer_enabled = 7;
1885
1886         if (c->isdbt_layer_enabled == 1)
1887                 state->bw = MB86A20S_1SEG;
1888         else if (c->isdbt_partial_reception)
1889                 state->bw = MB86A20S_13SEG_PARTIAL;
1890         else
1891                 state->bw = MB86A20S_13SEG;
1892
1893         if (c->inversion == INVERSION_ON)
1894                 state->inversion = true;
1895         else
1896                 state->inversion = false;
1897
1898         if (!c->isdbt_sb_mode) {
1899                 state->subchannel = 0;
1900         } else {
1901                 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1902                         c->isdbt_sb_subchannel = 0;
1903
1904                 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1905         }
1906
1907         /*
1908          * Gate should already be opened, but it doesn't hurt to
1909          * double-check
1910          */
1911         if (fe->ops.i2c_gate_ctrl)
1912                 fe->ops.i2c_gate_ctrl(fe, 1);
1913         fe->ops.tuner_ops.set_params(fe);
1914
1915         if (fe->ops.tuner_ops.get_if_frequency)
1916                 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1917
1918         /*
1919          * Make it more reliable: if, for some reason, the initial
1920          * device initialization doesn't happen, initialize it when
1921          * a SBTVD parameters are adjusted.
1922          *
1923          * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1924          * the agc callback logic is not called during DVB attach time,
1925          * causing mb86a20s to not be initialized with Kworld SBTVD.
1926          * So, this hack is needed, in order to make Kworld SBTVD to work.
1927          *
1928          * It is also needed to change the IF after the initial init.
1929          *
1930          * HACK: Always init the frontend when set_frontend is called:
1931          * it was noticed that, on some devices, it fails to lock on a
1932          * different channel. So, it is better to reset everything, even
1933          * wasting some time, than to loose channel lock.
1934          */
1935         mb86a20s_initfe(fe);
1936
1937         if (fe->ops.i2c_gate_ctrl)
1938                 fe->ops.i2c_gate_ctrl(fe, 0);
1939
1940         rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1941         mb86a20s_reset_counters(fe);
1942         mb86a20s_stats_not_ready(fe);
1943
1944         if (fe->ops.i2c_gate_ctrl)
1945                 fe->ops.i2c_gate_ctrl(fe, 1);
1946
1947         return rc;
1948 }
1949
1950 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1951                                           enum fe_status *status)
1952 {
1953         struct mb86a20s_state *state = fe->demodulator_priv;
1954         int rc, status_nr;
1955
1956         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1957
1958         if (fe->ops.i2c_gate_ctrl)
1959                 fe->ops.i2c_gate_ctrl(fe, 0);
1960
1961         /* Get lock */
1962         status_nr = mb86a20s_read_status(fe, status);
1963         if (status_nr < 7) {
1964                 mb86a20s_stats_not_ready(fe);
1965                 mb86a20s_reset_frontend_cache(fe);
1966         }
1967         if (status_nr < 0) {
1968                 dev_err(&state->i2c->dev,
1969                         "%s: Can't read frontend lock status\n", __func__);
1970                 rc = status_nr;
1971                 goto error;
1972         }
1973
1974         /* Get signal strength */
1975         rc = mb86a20s_read_signal_strength(fe);
1976         if (rc < 0) {
1977                 dev_err(&state->i2c->dev,
1978                         "%s: Can't reset VBER registers.\n", __func__);
1979                 mb86a20s_stats_not_ready(fe);
1980                 mb86a20s_reset_frontend_cache(fe);
1981
1982                 rc = 0;         /* Status is OK */
1983                 goto error;
1984         }
1985
1986         if (status_nr >= 7) {
1987                 /* Get TMCC info*/
1988                 rc = mb86a20s_get_frontend(fe);
1989                 if (rc < 0) {
1990                         dev_err(&state->i2c->dev,
1991                                 "%s: Can't get FE TMCC data.\n", __func__);
1992                         rc = 0;         /* Status is OK */
1993                         goto error;
1994                 }
1995
1996                 /* Get statistics */
1997                 rc = mb86a20s_get_stats(fe, status_nr);
1998                 if (rc < 0 && rc != -EBUSY) {
1999                         dev_err(&state->i2c->dev,
2000                                 "%s: Can't get FE statistics.\n", __func__);
2001                         rc = 0;
2002                         goto error;
2003                 }
2004                 rc = 0; /* Don't return EBUSY to userspace */
2005         }
2006         goto ok;
2007
2008 error:
2009         mb86a20s_stats_not_ready(fe);
2010
2011 ok:
2012         if (fe->ops.i2c_gate_ctrl)
2013                 fe->ops.i2c_gate_ctrl(fe, 1);
2014
2015         return rc;
2016 }
2017
2018 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2019                                                     u16 *strength)
2020 {
2021         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2022
2023
2024         *strength = c->strength.stat[0].uvalue;
2025
2026         return 0;
2027 }
2028
2029 static int mb86a20s_tune(struct dvb_frontend *fe,
2030                         bool re_tune,
2031                         unsigned int mode_flags,
2032                         unsigned int *delay,
2033                         enum fe_status *status)
2034 {
2035         struct mb86a20s_state *state = fe->demodulator_priv;
2036         int rc = 0;
2037
2038         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2039
2040         if (re_tune)
2041                 rc = mb86a20s_set_frontend(fe);
2042
2043         if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2044                 mb86a20s_read_status_and_stats(fe, status);
2045
2046         return rc;
2047 }
2048
2049 static void mb86a20s_release(struct dvb_frontend *fe)
2050 {
2051         struct mb86a20s_state *state = fe->demodulator_priv;
2052
2053         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2054
2055         kfree(state);
2056 }
2057
2058 static int mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2059 {
2060         return DVBFE_ALGO_HW;
2061 }
2062
2063 static struct dvb_frontend_ops mb86a20s_ops;
2064
2065 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2066                                     struct i2c_adapter *i2c)
2067 {
2068         struct mb86a20s_state *state;
2069         u8      rev;
2070
2071         dev_dbg(&i2c->dev, "%s called.\n", __func__);
2072
2073         /* allocate memory for the internal state */
2074         state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2075         if (state == NULL) {
2076                 dev_err(&i2c->dev,
2077                         "%s: unable to allocate memory for state\n", __func__);
2078                 goto error;
2079         }
2080
2081         /* setup the state */
2082         state->config = config;
2083         state->i2c = i2c;
2084
2085         /* create dvb_frontend */
2086         memcpy(&state->frontend.ops, &mb86a20s_ops,
2087                 sizeof(struct dvb_frontend_ops));
2088         state->frontend.demodulator_priv = state;
2089
2090         /* Check if it is a mb86a20s frontend */
2091         rev = mb86a20s_readreg(state, 0);
2092
2093         if (rev == 0x13) {
2094                 dev_info(&i2c->dev,
2095                          "Detected a Fujitsu mb86a20s frontend\n");
2096         } else {
2097                 dev_dbg(&i2c->dev,
2098                         "Frontend revision %d is unknown - aborting.\n",
2099                        rev);
2100                 goto error;
2101         }
2102
2103         return &state->frontend;
2104
2105 error:
2106         kfree(state);
2107         return NULL;
2108 }
2109 EXPORT_SYMBOL(mb86a20s_attach);
2110
2111 static struct dvb_frontend_ops mb86a20s_ops = {
2112         .delsys = { SYS_ISDBT },
2113         /* Use dib8000 values per default */
2114         .info = {
2115                 .name = "Fujitsu mb86A20s",
2116                 .caps = FE_CAN_RECOVER  |
2117                         FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2118                         FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2119                         FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2120                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2121                         FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2122                 /* Actually, those values depend on the used tuner */
2123                 .frequency_min = 45000000,
2124                 .frequency_max = 864000000,
2125                 .frequency_stepsize = 62500,
2126         },
2127
2128         .release = mb86a20s_release,
2129
2130         .init = mb86a20s_initfe,
2131         .set_frontend = mb86a20s_set_frontend,
2132         .read_status = mb86a20s_read_status_and_stats,
2133         .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2134         .tune = mb86a20s_tune,
2135         .get_frontend_algo = mb86a20s_get_frontend_algo,
2136 };
2137
2138 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2139 MODULE_AUTHOR("Mauro Carvalho Chehab");
2140 MODULE_LICENSE("GPL");