]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/i2c/smiapp/smiapp-core.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[karo-tx-linux.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 /*
2  * drivers/media/i2c/smiapp/smiapp-core.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2010--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
8  *
9  * Based on smiapp driver by Vimarsh Zutshi
10  * Based on jt8ev1.c by Vimarsh Zutshi
11  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2 as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25  * 02110-1301 USA
26  *
27  */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/v4l2-mediabus.h>
37 #include <media/v4l2-device.h>
38
39 #include "smiapp.h"
40
41 #define SMIAPP_ALIGN_DIM(dim, flags)    \
42         ((flags) & V4L2_SEL_FLAG_GE     \
43          ? ALIGN((dim), 2)              \
44          : (dim) & ~1)
45
46 /*
47  * smiapp_module_idents - supported camera modules
48  */
49 static const struct smiapp_module_ident smiapp_module_idents[] = {
50         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
51         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
52         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
53         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
54         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
55         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
56         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
57         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
58         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
59         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
60         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
61 };
62
63 /*
64  *
65  * Dynamic Capability Identification
66  *
67  */
68
69 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
70 {
71         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
72         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
73         unsigned int i;
74         int rval;
75         int line_count = 0;
76         int embedded_start = -1, embedded_end = -1;
77         int image_start = 0;
78
79         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
80                            &fmt_model_type);
81         if (rval)
82                 return rval;
83
84         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
85                            &fmt_model_subtype);
86         if (rval)
87                 return rval;
88
89         ncol_desc = (fmt_model_subtype
90                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
91                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
92         nrow_desc = fmt_model_subtype
93                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
94
95         dev_dbg(&client->dev, "format_model_type %s\n",
96                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
97                 ? "2 byte" :
98                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
99                 ? "4 byte" : "is simply bad");
100
101         for (i = 0; i < ncol_desc + nrow_desc; i++) {
102                 u32 desc;
103                 u32 pixelcode;
104                 u32 pixels;
105                 char *which;
106                 char *what;
107
108                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
109                         rval = smiapp_read(
110                                 sensor,
111                                 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
112                                 &desc);
113                         if (rval)
114                                 return rval;
115
116                         pixelcode =
117                                 (desc
118                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
119                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
120                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
121                 } else if (fmt_model_type
122                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
123                         rval = smiapp_read(
124                                 sensor,
125                                 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
126                                 &desc);
127                         if (rval)
128                                 return rval;
129
130                         pixelcode =
131                                 (desc
132                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
133                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
134                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
135                 } else {
136                         dev_dbg(&client->dev,
137                                 "invalid frame format model type %d\n",
138                                 fmt_model_type);
139                         return -EINVAL;
140                 }
141
142                 if (i < ncol_desc)
143                         which = "columns";
144                 else
145                         which = "rows";
146
147                 switch (pixelcode) {
148                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
149                         what = "embedded";
150                         break;
151                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
152                         what = "dummy";
153                         break;
154                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
155                         what = "black";
156                         break;
157                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
158                         what = "dark";
159                         break;
160                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
161                         what = "visible";
162                         break;
163                 default:
164                         what = "invalid";
165                         dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
166                         break;
167                 }
168
169                 dev_dbg(&client->dev, "%s pixels: %d %s\n",
170                         what, pixels, which);
171
172                 if (i < ncol_desc)
173                         continue;
174
175                 /* Handle row descriptors */
176                 if (pixelcode
177                     == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
178                         embedded_start = line_count;
179                 } else {
180                         if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
181                             || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
182                                 image_start = line_count;
183                         if (embedded_start != -1 && embedded_end == -1)
184                                 embedded_end = line_count;
185                 }
186                 line_count += pixels;
187         }
188
189         if (embedded_start == -1 || embedded_end == -1) {
190                 embedded_start = 0;
191                 embedded_end = 0;
192         }
193
194         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
195                 embedded_start, embedded_end);
196         dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
197
198         return 0;
199 }
200
201 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
202 {
203         struct smiapp_pll *pll = &sensor->pll;
204         int rval;
205
206         rval = smiapp_write(
207                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
208         if (rval < 0)
209                 return rval;
210
211         rval = smiapp_write(
212                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
213         if (rval < 0)
214                 return rval;
215
216         rval = smiapp_write(
217                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
218         if (rval < 0)
219                 return rval;
220
221         rval = smiapp_write(
222                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
223         if (rval < 0)
224                 return rval;
225
226         /* Lane op clock ratio does not apply here. */
227         rval = smiapp_write(
228                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
229                 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
230         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
231                 return rval;
232
233         rval = smiapp_write(
234                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
235         if (rval < 0)
236                 return rval;
237
238         return smiapp_write(
239                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
240 }
241
242 static int smiapp_pll_update(struct smiapp_sensor *sensor)
243 {
244         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
245         struct smiapp_pll_limits lim = {
246                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
247                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
248                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
249                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
250                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
251                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
252                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
253                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
254
255                 .min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
256                 .max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
257                 .min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
258                 .max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
259                 .min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
260                 .max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
261                 .min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
262                 .max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
263
264                 .min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
265                 .max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
266                 .min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
267                 .max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
268                 .min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
269                 .max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
270                 .min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
271                 .max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
272
273                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
274                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
275         };
276         struct smiapp_pll *pll = &sensor->pll;
277         int rval;
278
279         memset(&sensor->pll, 0, sizeof(sensor->pll));
280
281         pll->lanes = sensor->platform_data->lanes;
282         pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
283
284         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
285                 /*
286                  * Fill in operational clock divisors limits from the
287                  * video timing ones. On profile 0 sensors the
288                  * requirements regarding them are essentially the
289                  * same as on VT ones.
290                  */
291                 lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div;
292                 lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div;
293                 lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div;
294                 lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div;
295                 lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz;
296                 lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz;
297                 lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz;
298                 lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz;
299                 /* Profile 0 sensors have no separate OP clock branch. */
300                 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
301         }
302
303         if (smiapp_needs_quirk(sensor,
304                                SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
305                 pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
306
307         pll->binning_horizontal = sensor->binning_horizontal;
308         pll->binning_vertical = sensor->binning_vertical;
309         pll->link_freq =
310                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
311         pll->scale_m = sensor->scale_m;
312         pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
313         pll->bits_per_pixel = sensor->csi_format->compressed;
314
315         rval = smiapp_pll_calculate(&client->dev, &lim, pll);
316         if (rval < 0)
317                 return rval;
318
319         sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
320         sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
321
322         return 0;
323 }
324
325
326 /*
327  *
328  * V4L2 Controls handling
329  *
330  */
331
332 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
333 {
334         struct v4l2_ctrl *ctrl = sensor->exposure;
335         int max;
336
337         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
338                 + sensor->vblank->val
339                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
340
341         ctrl->maximum = max;
342         if (ctrl->default_value > max)
343                 ctrl->default_value = max;
344         if (ctrl->val > max)
345                 ctrl->val = max;
346         if (ctrl->cur.val > max)
347                 ctrl->cur.val = max;
348 }
349
350 /*
351  * Order matters.
352  *
353  * 1. Bits-per-pixel, descending.
354  * 2. Bits-per-pixel compressed, descending.
355  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
356  *    orders must be defined.
357  */
358 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
359         { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
360         { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
361         { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
362         { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
363         { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
364         { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
365         { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
366         { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
367         { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
368         { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
369         { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
370         { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
371         { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
372         { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
373         { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
374         { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
375 };
376
377 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
378
379 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
380                                  - (unsigned long)smiapp_csi_data_formats) \
381                                 / sizeof(*smiapp_csi_data_formats))
382
383 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
384 {
385         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
386         int flip = 0;
387
388         if (sensor->hflip) {
389                 if (sensor->hflip->val)
390                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
391
392                 if (sensor->vflip->val)
393                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
394         }
395
396         flip ^= sensor->hvflip_inv_mask;
397
398         dev_dbg(&client->dev, "flip %d\n", flip);
399         return sensor->default_pixel_order ^ flip;
400 }
401
402 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
403 {
404         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
405         unsigned int csi_format_idx =
406                 to_csi_format_idx(sensor->csi_format) & ~3;
407         unsigned int internal_csi_format_idx =
408                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
409         unsigned int pixel_order = smiapp_pixel_order(sensor);
410
411         sensor->mbus_frame_fmts =
412                 sensor->default_mbus_frame_fmts << pixel_order;
413         sensor->csi_format =
414                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
415         sensor->internal_csi_format =
416                 &smiapp_csi_data_formats[internal_csi_format_idx
417                                          + pixel_order];
418
419         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
420                >= ARRAY_SIZE(smiapp_csi_data_formats));
421         BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
422
423         dev_dbg(&client->dev, "new pixel order %s\n",
424                 pixel_order_str[pixel_order]);
425 }
426
427 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
428 {
429         struct smiapp_sensor *sensor =
430                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
431                         ->sensor;
432         u32 orient = 0;
433         int exposure;
434         int rval;
435
436         switch (ctrl->id) {
437         case V4L2_CID_ANALOGUE_GAIN:
438                 return smiapp_write(
439                         sensor,
440                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
441
442         case V4L2_CID_EXPOSURE:
443                 return smiapp_write(
444                         sensor,
445                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
446
447         case V4L2_CID_HFLIP:
448         case V4L2_CID_VFLIP:
449                 if (sensor->streaming)
450                         return -EBUSY;
451
452                 if (sensor->hflip->val)
453                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
454
455                 if (sensor->vflip->val)
456                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
457
458                 orient ^= sensor->hvflip_inv_mask;
459                 rval = smiapp_write(sensor,
460                                     SMIAPP_REG_U8_IMAGE_ORIENTATION,
461                                     orient);
462                 if (rval < 0)
463                         return rval;
464
465                 smiapp_update_mbus_formats(sensor);
466
467                 return 0;
468
469         case V4L2_CID_VBLANK:
470                 exposure = sensor->exposure->val;
471
472                 __smiapp_update_exposure_limits(sensor);
473
474                 if (exposure > sensor->exposure->maximum) {
475                         sensor->exposure->val =
476                                 sensor->exposure->maximum;
477                         rval = smiapp_set_ctrl(
478                                 sensor->exposure);
479                         if (rval < 0)
480                                 return rval;
481                 }
482
483                 return smiapp_write(
484                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
485                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
486                         + ctrl->val);
487
488         case V4L2_CID_HBLANK:
489                 return smiapp_write(
490                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
491                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
492                         + ctrl->val);
493
494         case V4L2_CID_LINK_FREQ:
495                 if (sensor->streaming)
496                         return -EBUSY;
497
498                 return smiapp_pll_update(sensor);
499
500         default:
501                 return -EINVAL;
502         }
503 }
504
505 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
506         .s_ctrl = smiapp_set_ctrl,
507 };
508
509 static int smiapp_init_controls(struct smiapp_sensor *sensor)
510 {
511         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
512         unsigned int max;
513         int rval;
514
515         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
516         if (rval)
517                 return rval;
518         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
519
520         sensor->analog_gain = v4l2_ctrl_new_std(
521                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
522                 V4L2_CID_ANALOGUE_GAIN,
523                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
524                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
525                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
526                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
527
528         /* Exposure limits will be updated soon, use just something here. */
529         sensor->exposure = v4l2_ctrl_new_std(
530                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
531                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
532
533         sensor->hflip = v4l2_ctrl_new_std(
534                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
535                 V4L2_CID_HFLIP, 0, 1, 1, 0);
536         sensor->vflip = v4l2_ctrl_new_std(
537                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
538                 V4L2_CID_VFLIP, 0, 1, 1, 0);
539
540         sensor->vblank = v4l2_ctrl_new_std(
541                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
542                 V4L2_CID_VBLANK, 0, 1, 1, 0);
543
544         if (sensor->vblank)
545                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
546
547         sensor->hblank = v4l2_ctrl_new_std(
548                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
549                 V4L2_CID_HBLANK, 0, 1, 1, 0);
550
551         if (sensor->hblank)
552                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
553
554         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
555                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
556                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
557
558         if (sensor->pixel_array->ctrl_handler.error) {
559                 dev_err(&client->dev,
560                         "pixel array controls initialization failed (%d)\n",
561                         sensor->pixel_array->ctrl_handler.error);
562                 rval = sensor->pixel_array->ctrl_handler.error;
563                 goto error;
564         }
565
566         sensor->pixel_array->sd.ctrl_handler =
567                 &sensor->pixel_array->ctrl_handler;
568
569         v4l2_ctrl_cluster(2, &sensor->hflip);
570
571         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
572         if (rval)
573                 goto error;
574         sensor->src->ctrl_handler.lock = &sensor->mutex;
575
576         for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
577
578         sensor->link_freq = v4l2_ctrl_new_int_menu(
579                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
580                 V4L2_CID_LINK_FREQ, max, 0,
581                 sensor->platform_data->op_sys_clock);
582
583         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
584                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
585                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
586
587         if (sensor->src->ctrl_handler.error) {
588                 dev_err(&client->dev,
589                         "src controls initialization failed (%d)\n",
590                         sensor->src->ctrl_handler.error);
591                 rval = sensor->src->ctrl_handler.error;
592                 goto error;
593         }
594
595         sensor->src->sd.ctrl_handler =
596                 &sensor->src->ctrl_handler;
597
598         return 0;
599
600 error:
601         v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
602         v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
603
604         return rval;
605 }
606
607 static void smiapp_free_controls(struct smiapp_sensor *sensor)
608 {
609         unsigned int i;
610
611         for (i = 0; i < sensor->ssds_used; i++)
612                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
613 }
614
615 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
616                              unsigned int n)
617 {
618         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
619         unsigned int i;
620         u32 val;
621         int rval;
622
623         for (i = 0; i < n; i++) {
624                 rval = smiapp_read(
625                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
626                 if (rval)
627                         return rval;
628                 sensor->limits[limit[i]] = val;
629                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
630                         smiapp_reg_limits[limit[i]].addr,
631                         smiapp_reg_limits[limit[i]].what, val, val);
632         }
633
634         return 0;
635 }
636
637 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
638 {
639         unsigned int i;
640         int rval;
641
642         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
643                 rval = smiapp_get_limits(sensor, &i, 1);
644                 if (rval < 0)
645                         return rval;
646         }
647
648         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
649                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
650
651         return 0;
652 }
653
654 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
655 {
656         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
657         static u32 const limits[] = {
658                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
659                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
660                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
661                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
662                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
663                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
664                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
665         };
666         static u32 const limits_replace[] = {
667                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
668                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
669                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
670                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
671                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
672                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
673                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
674         };
675         unsigned int i;
676         int rval;
677
678         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
679             SMIAPP_BINNING_CAPABILITY_NO) {
680                 for (i = 0; i < ARRAY_SIZE(limits); i++)
681                         sensor->limits[limits[i]] =
682                                 sensor->limits[limits_replace[i]];
683
684                 return 0;
685         }
686
687         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
688         if (rval < 0)
689                 return rval;
690
691         /*
692          * Sanity check whether the binning limits are valid. If not,
693          * use the non-binning ones.
694          */
695         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
696             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
697             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
698                 return 0;
699
700         for (i = 0; i < ARRAY_SIZE(limits); i++) {
701                 dev_dbg(&client->dev,
702                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
703                         smiapp_reg_limits[limits[i]].addr,
704                         smiapp_reg_limits[limits[i]].what,
705                         sensor->limits[limits_replace[i]],
706                         sensor->limits[limits_replace[i]]);
707                 sensor->limits[limits[i]] =
708                         sensor->limits[limits_replace[i]];
709         }
710
711         return 0;
712 }
713
714 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
715 {
716         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
717         unsigned int type, n;
718         unsigned int i, pixel_order;
719         int rval;
720
721         rval = smiapp_read(
722                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
723         if (rval)
724                 return rval;
725
726         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
727
728         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
729                            &pixel_order);
730         if (rval)
731                 return rval;
732
733         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
734                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
735                 return -EINVAL;
736         }
737
738         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
739                 pixel_order_str[pixel_order]);
740
741         switch (type) {
742         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
743                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
744                 break;
745         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
746                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
747                 break;
748         default:
749                 return -EINVAL;
750         }
751
752         sensor->default_pixel_order = pixel_order;
753         sensor->mbus_frame_fmts = 0;
754
755         for (i = 0; i < n; i++) {
756                 unsigned int fmt, j;
757
758                 rval = smiapp_read(
759                         sensor,
760                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
761                 if (rval)
762                         return rval;
763
764                 dev_dbg(&client->dev, "bpp %d, compressed %d\n",
765                         fmt >> 8, (u8)fmt);
766
767                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
768                         const struct smiapp_csi_data_format *f =
769                                 &smiapp_csi_data_formats[j];
770
771                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
772                                 continue;
773
774                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
775                                 continue;
776
777                         dev_dbg(&client->dev, "jolly good! %d\n", j);
778
779                         sensor->default_mbus_frame_fmts |= 1 << j;
780                         if (!sensor->csi_format
781                             || f->width > sensor->csi_format->width
782                             || (f->width == sensor->csi_format->width
783                                 && f->compressed
784                                 > sensor->csi_format->compressed)) {
785                                 sensor->csi_format = f;
786                                 sensor->internal_csi_format = f;
787                         }
788                 }
789         }
790
791         if (!sensor->csi_format) {
792                 dev_err(&client->dev, "no supported mbus code found\n");
793                 return -EINVAL;
794         }
795
796         smiapp_update_mbus_formats(sensor);
797
798         return 0;
799 }
800
801 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
802 {
803         struct v4l2_ctrl *vblank = sensor->vblank;
804         struct v4l2_ctrl *hblank = sensor->hblank;
805
806         vblank->minimum =
807                 max_t(int,
808                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
809                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
810                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
811         vblank->maximum =
812                 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
813                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
814
815         vblank->val = clamp_t(int, vblank->val,
816                               vblank->minimum, vblank->maximum);
817         vblank->default_value = vblank->minimum;
818         vblank->val = vblank->val;
819         vblank->cur.val = vblank->val;
820
821         hblank->minimum =
822                 max_t(int,
823                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
824                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
825                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
826         hblank->maximum =
827                 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
828                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
829
830         hblank->val = clamp_t(int, hblank->val,
831                               hblank->minimum, hblank->maximum);
832         hblank->default_value = hblank->minimum;
833         hblank->val = hblank->val;
834         hblank->cur.val = hblank->val;
835
836         __smiapp_update_exposure_limits(sensor);
837 }
838
839 static int smiapp_update_mode(struct smiapp_sensor *sensor)
840 {
841         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
842         unsigned int binning_mode;
843         int rval;
844
845         dev_dbg(&client->dev, "frame size: %dx%d\n",
846                 sensor->src->crop[SMIAPP_PAD_SRC].width,
847                 sensor->src->crop[SMIAPP_PAD_SRC].height);
848         dev_dbg(&client->dev, "csi format width: %d\n",
849                 sensor->csi_format->width);
850
851         /* Binning has to be set up here; it affects limits */
852         if (sensor->binning_horizontal == 1 &&
853             sensor->binning_vertical == 1) {
854                 binning_mode = 0;
855         } else {
856                 u8 binning_type =
857                         (sensor->binning_horizontal << 4)
858                         | sensor->binning_vertical;
859
860                 rval = smiapp_write(
861                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
862                 if (rval < 0)
863                         return rval;
864
865                 binning_mode = 1;
866         }
867         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
868         if (rval < 0)
869                 return rval;
870
871         /* Get updated limits due to binning */
872         rval = smiapp_get_limits_binning(sensor);
873         if (rval < 0)
874                 return rval;
875
876         rval = smiapp_pll_update(sensor);
877         if (rval < 0)
878                 return rval;
879
880         /* Output from pixel array, including blanking */
881         smiapp_update_blanking(sensor);
882
883         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
884         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
885
886         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
887                 sensor->pll.vt_pix_clk_freq_hz /
888                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
889                   + sensor->hblank->val) *
890                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
891                   + sensor->vblank->val) / 100));
892
893         return 0;
894 }
895
896 /*
897  *
898  * SMIA++ NVM handling
899  *
900  */
901 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
902                            unsigned char *nvm)
903 {
904         u32 i, s, p, np, v;
905         int rval = 0, rval2;
906
907         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
908         for (p = 0; p < np; p++) {
909                 rval = smiapp_write(
910                         sensor,
911                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
912                 if (rval)
913                         goto out;
914
915                 rval = smiapp_write(sensor,
916                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
917                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
918                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
919                 if (rval)
920                         goto out;
921
922                 for (i = 0; i < 1000; i++) {
923                         rval = smiapp_read(
924                                 sensor,
925                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
926
927                         if (rval)
928                                 goto out;
929
930                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
931                                 break;
932
933                         if (--i == 0) {
934                                 rval = -ETIMEDOUT;
935                                 goto out;
936                         }
937
938                 }
939
940                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
941                         rval = smiapp_read(
942                                 sensor,
943                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
944                                 &v);
945                         if (rval)
946                                 goto out;
947
948                         *nvm++ = v;
949                 }
950         }
951
952 out:
953         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
954         if (rval < 0)
955                 return rval;
956         else
957                 return rval2;
958 }
959
960 /*
961  *
962  * SMIA++ CCI address control
963  *
964  */
965 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
966 {
967         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
968         int rval;
969         u32 val;
970
971         client->addr = sensor->platform_data->i2c_addr_dfl;
972
973         rval = smiapp_write(sensor,
974                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
975                             sensor->platform_data->i2c_addr_alt << 1);
976         if (rval)
977                 return rval;
978
979         client->addr = sensor->platform_data->i2c_addr_alt;
980
981         /* verify addr change went ok */
982         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
983         if (rval)
984                 return rval;
985
986         if (val != sensor->platform_data->i2c_addr_alt << 1)
987                 return -ENODEV;
988
989         return 0;
990 }
991
992 /*
993  *
994  * SMIA++ Mode Control
995  *
996  */
997 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
998 {
999         struct smiapp_flash_strobe_parms *strobe_setup;
1000         unsigned int ext_freq = sensor->platform_data->ext_clk;
1001         u32 tmp;
1002         u32 strobe_adjustment;
1003         u32 strobe_width_high_rs;
1004         int rval;
1005
1006         strobe_setup = sensor->platform_data->strobe_setup;
1007
1008         /*
1009          * How to calculate registers related to strobe length. Please
1010          * do not change, or if you do at least know what you're
1011          * doing. :-)
1012          *
1013          * Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25
1014          *
1015          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1016          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1017          *
1018          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1019          * flash_strobe_adjustment E N, [1 - 0xff]
1020          *
1021          * The formula above is written as below to keep it on one
1022          * line:
1023          *
1024          * l / 10^6 = w / e * a
1025          *
1026          * Let's mark w * a by x:
1027          *
1028          * x = w * a
1029          *
1030          * Thus, we get:
1031          *
1032          * x = l * e / 10^6
1033          *
1034          * The strobe width must be at least as long as requested,
1035          * thus rounding upwards is needed.
1036          *
1037          * x = (l * e + 10^6 - 1) / 10^6
1038          * -----------------------------
1039          *
1040          * Maximum possible accuracy is wanted at all times. Thus keep
1041          * a as small as possible.
1042          *
1043          * Calculate a, assuming maximum w, with rounding upwards:
1044          *
1045          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1046          * -------------------------------------
1047          *
1048          * Thus, we also get w, with that a, with rounding upwards:
1049          *
1050          * w = (x + a - 1) / a
1051          * -------------------
1052          *
1053          * To get limits:
1054          *
1055          * x E [1, (2^16 - 1) * (2^8 - 1)]
1056          *
1057          * Substituting maximum x to the original formula (with rounding),
1058          * the maximum l is thus
1059          *
1060          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1061          *
1062          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1063          * --------------------------------------------------
1064          *
1065          * flash_strobe_length must be clamped between 1 and
1066          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1067          *
1068          * Then,
1069          *
1070          * flash_strobe_adjustment = ((flash_strobe_length *
1071          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1072          *
1073          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1074          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1075          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1076          */
1077         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1078                       1000000 + 1, ext_freq);
1079         strobe_setup->strobe_width_high_us =
1080                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1081
1082         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1083                         1000000 - 1), 1000000ULL);
1084         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1085         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1086                                 strobe_adjustment;
1087
1088         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1089                             strobe_setup->mode);
1090         if (rval < 0)
1091                 goto out;
1092
1093         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1094                             strobe_adjustment);
1095         if (rval < 0)
1096                 goto out;
1097
1098         rval = smiapp_write(
1099                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1100                 strobe_width_high_rs);
1101         if (rval < 0)
1102                 goto out;
1103
1104         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1105                             strobe_setup->strobe_delay);
1106         if (rval < 0)
1107                 goto out;
1108
1109         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1110                             strobe_setup->stobe_start_point);
1111         if (rval < 0)
1112                 goto out;
1113
1114         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1115                             strobe_setup->trigger);
1116
1117 out:
1118         sensor->platform_data->strobe_setup->trigger = 0;
1119
1120         return rval;
1121 }
1122
1123 /* -----------------------------------------------------------------------------
1124  * Power management
1125  */
1126
1127 static int smiapp_power_on(struct smiapp_sensor *sensor)
1128 {
1129         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1130         unsigned int sleep;
1131         int rval;
1132
1133         rval = regulator_enable(sensor->vana);
1134         if (rval) {
1135                 dev_err(&client->dev, "failed to enable vana regulator\n");
1136                 return rval;
1137         }
1138         usleep_range(1000, 1000);
1139
1140         if (sensor->platform_data->set_xclk)
1141                 rval = sensor->platform_data->set_xclk(
1142                         &sensor->src->sd, sensor->platform_data->ext_clk);
1143         else
1144                 rval = clk_enable(sensor->ext_clk);
1145         if (rval < 0) {
1146                 dev_dbg(&client->dev, "failed to set xclk\n");
1147                 goto out_xclk_fail;
1148         }
1149         usleep_range(1000, 1000);
1150
1151         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1152                 gpio_set_value(sensor->platform_data->xshutdown, 1);
1153
1154         sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1155         usleep_range(sleep, sleep);
1156
1157         /*
1158          * Failures to respond to the address change command have been noticed.
1159          * Those failures seem to be caused by the sensor requiring a longer
1160          * boot time than advertised. An additional 10ms delay seems to work
1161          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1162          * unnecessary. The failures need to be investigated to find a proper
1163          * fix, and a delay will likely need to be added here if the I2C write
1164          * retry hack is reverted before the root cause of the boot time issue
1165          * is found.
1166          */
1167
1168         if (sensor->platform_data->i2c_addr_alt) {
1169                 rval = smiapp_change_cci_addr(sensor);
1170                 if (rval) {
1171                         dev_err(&client->dev, "cci address change error\n");
1172                         goto out_cci_addr_fail;
1173                 }
1174         }
1175
1176         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1177                             SMIAPP_SOFTWARE_RESET);
1178         if (rval < 0) {
1179                 dev_err(&client->dev, "software reset failed\n");
1180                 goto out_cci_addr_fail;
1181         }
1182
1183         if (sensor->platform_data->i2c_addr_alt) {
1184                 rval = smiapp_change_cci_addr(sensor);
1185                 if (rval) {
1186                         dev_err(&client->dev, "cci address change error\n");
1187                         goto out_cci_addr_fail;
1188                 }
1189         }
1190
1191         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1192                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1193         if (rval) {
1194                 dev_err(&client->dev, "compression mode set failed\n");
1195                 goto out_cci_addr_fail;
1196         }
1197
1198         rval = smiapp_write(
1199                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1200                 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1201         if (rval) {
1202                 dev_err(&client->dev, "extclk frequency set failed\n");
1203                 goto out_cci_addr_fail;
1204         }
1205
1206         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1207                             sensor->platform_data->lanes - 1);
1208         if (rval) {
1209                 dev_err(&client->dev, "csi lane mode set failed\n");
1210                 goto out_cci_addr_fail;
1211         }
1212
1213         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1214                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1215         if (rval) {
1216                 dev_err(&client->dev, "fast standby set failed\n");
1217                 goto out_cci_addr_fail;
1218         }
1219
1220         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1221                             sensor->platform_data->csi_signalling_mode);
1222         if (rval) {
1223                 dev_err(&client->dev, "csi signalling mode set failed\n");
1224                 goto out_cci_addr_fail;
1225         }
1226
1227         /* DPHY control done by sensor based on requested link rate */
1228         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1229                             SMIAPP_DPHY_CTRL_UI);
1230         if (rval < 0)
1231                 return rval;
1232
1233         rval = smiapp_call_quirk(sensor, post_poweron);
1234         if (rval) {
1235                 dev_err(&client->dev, "post_poweron quirks failed\n");
1236                 goto out_cci_addr_fail;
1237         }
1238
1239         /* Are we still initialising...? If yes, return here. */
1240         if (!sensor->pixel_array)
1241                 return 0;
1242
1243         rval = v4l2_ctrl_handler_setup(
1244                 &sensor->pixel_array->ctrl_handler);
1245         if (rval)
1246                 goto out_cci_addr_fail;
1247
1248         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1249         if (rval)
1250                 goto out_cci_addr_fail;
1251
1252         mutex_lock(&sensor->mutex);
1253         rval = smiapp_update_mode(sensor);
1254         mutex_unlock(&sensor->mutex);
1255         if (rval < 0)
1256                 goto out_cci_addr_fail;
1257
1258         return 0;
1259
1260 out_cci_addr_fail:
1261         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1262                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1263         if (sensor->platform_data->set_xclk)
1264                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1265         else
1266                 clk_disable(sensor->ext_clk);
1267
1268 out_xclk_fail:
1269         regulator_disable(sensor->vana);
1270         return rval;
1271 }
1272
1273 static void smiapp_power_off(struct smiapp_sensor *sensor)
1274 {
1275         /*
1276          * Currently power/clock to lens are enable/disabled separately
1277          * but they are essentially the same signals. So if the sensor is
1278          * powered off while the lens is powered on the sensor does not
1279          * really see a power off and next time the cci address change
1280          * will fail. So do a soft reset explicitly here.
1281          */
1282         if (sensor->platform_data->i2c_addr_alt)
1283                 smiapp_write(sensor,
1284                              SMIAPP_REG_U8_SOFTWARE_RESET,
1285                              SMIAPP_SOFTWARE_RESET);
1286
1287         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1288                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1289         if (sensor->platform_data->set_xclk)
1290                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1291         else
1292                 clk_disable(sensor->ext_clk);
1293         usleep_range(5000, 5000);
1294         regulator_disable(sensor->vana);
1295         sensor->streaming = 0;
1296 }
1297
1298 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1299 {
1300         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1301         int ret = 0;
1302
1303         mutex_lock(&sensor->power_mutex);
1304
1305         /*
1306          * If the power count is modified from 0 to != 0 or from != 0
1307          * to 0, update the power state.
1308          */
1309         if (!sensor->power_count == !on)
1310                 goto out;
1311
1312         if (on) {
1313                 /* Power on and perform initialisation. */
1314                 ret = smiapp_power_on(sensor);
1315                 if (ret < 0)
1316                         goto out;
1317         } else {
1318                 smiapp_power_off(sensor);
1319         }
1320
1321         /* Update the power count. */
1322         sensor->power_count += on ? 1 : -1;
1323         WARN_ON(sensor->power_count < 0);
1324
1325 out:
1326         mutex_unlock(&sensor->power_mutex);
1327         return ret;
1328 }
1329
1330 /* -----------------------------------------------------------------------------
1331  * Video stream management
1332  */
1333
1334 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1335 {
1336         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1337         int rval;
1338
1339         mutex_lock(&sensor->mutex);
1340
1341         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1342                             (sensor->csi_format->width << 8) |
1343                             sensor->csi_format->compressed);
1344         if (rval)
1345                 goto out;
1346
1347         rval = smiapp_pll_configure(sensor);
1348         if (rval)
1349                 goto out;
1350
1351         /* Analog crop start coordinates */
1352         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1353                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1354         if (rval < 0)
1355                 goto out;
1356
1357         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1358                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1359         if (rval < 0)
1360                 goto out;
1361
1362         /* Analog crop end coordinates */
1363         rval = smiapp_write(
1364                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1365                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1366                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1367         if (rval < 0)
1368                 goto out;
1369
1370         rval = smiapp_write(
1371                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1372                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1373                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1374         if (rval < 0)
1375                 goto out;
1376
1377         /*
1378          * Output from pixel array, including blanking, is set using
1379          * controls below. No need to set here.
1380          */
1381
1382         /* Digital crop */
1383         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1384             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1385                 rval = smiapp_write(
1386                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1387                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1388                 if (rval < 0)
1389                         goto out;
1390
1391                 rval = smiapp_write(
1392                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1393                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1394                 if (rval < 0)
1395                         goto out;
1396
1397                 rval = smiapp_write(
1398                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1399                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1400                 if (rval < 0)
1401                         goto out;
1402
1403                 rval = smiapp_write(
1404                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1405                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1406                 if (rval < 0)
1407                         goto out;
1408         }
1409
1410         /* Scaling */
1411         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1412             != SMIAPP_SCALING_CAPABILITY_NONE) {
1413                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1414                                     sensor->scaling_mode);
1415                 if (rval < 0)
1416                         goto out;
1417
1418                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1419                                     sensor->scale_m);
1420                 if (rval < 0)
1421                         goto out;
1422         }
1423
1424         /* Output size from sensor */
1425         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1426                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1427         if (rval < 0)
1428                 goto out;
1429         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1430                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1431         if (rval < 0)
1432                 goto out;
1433
1434         if ((sensor->flash_capability &
1435              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1436               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1437             sensor->platform_data->strobe_setup != NULL &&
1438             sensor->platform_data->strobe_setup->trigger != 0) {
1439                 rval = smiapp_setup_flash_strobe(sensor);
1440                 if (rval)
1441                         goto out;
1442         }
1443
1444         rval = smiapp_call_quirk(sensor, pre_streamon);
1445         if (rval) {
1446                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1447                 goto out;
1448         }
1449
1450         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1451                             SMIAPP_MODE_SELECT_STREAMING);
1452
1453 out:
1454         mutex_unlock(&sensor->mutex);
1455
1456         return rval;
1457 }
1458
1459 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1460 {
1461         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1462         int rval;
1463
1464         mutex_lock(&sensor->mutex);
1465         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1466                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1467         if (rval)
1468                 goto out;
1469
1470         rval = smiapp_call_quirk(sensor, post_streamoff);
1471         if (rval)
1472                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1473
1474 out:
1475         mutex_unlock(&sensor->mutex);
1476         return rval;
1477 }
1478
1479 /* -----------------------------------------------------------------------------
1480  * V4L2 subdev video operations
1481  */
1482
1483 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1484 {
1485         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1486         int rval;
1487
1488         if (sensor->streaming == enable)
1489                 return 0;
1490
1491         if (enable) {
1492                 sensor->streaming = 1;
1493                 rval = smiapp_start_streaming(sensor);
1494                 if (rval < 0)
1495                         sensor->streaming = 0;
1496         } else {
1497                 rval = smiapp_stop_streaming(sensor);
1498                 sensor->streaming = 0;
1499         }
1500
1501         return rval;
1502 }
1503
1504 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1505                                  struct v4l2_subdev_fh *fh,
1506                                  struct v4l2_subdev_mbus_code_enum *code)
1507 {
1508         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1509         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1510         unsigned int i;
1511         int idx = -1;
1512         int rval = -EINVAL;
1513
1514         mutex_lock(&sensor->mutex);
1515
1516         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1517                 subdev->name, code->pad, code->index);
1518
1519         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1520                 if (code->index)
1521                         goto out;
1522
1523                 code->code = sensor->internal_csi_format->code;
1524                 rval = 0;
1525                 goto out;
1526         }
1527
1528         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1529                 if (sensor->mbus_frame_fmts & (1 << i))
1530                         idx++;
1531
1532                 if (idx == code->index) {
1533                         code->code = smiapp_csi_data_formats[i].code;
1534                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1535                                 code->index, i, code->code);
1536                         rval = 0;
1537                         break;
1538                 }
1539         }
1540
1541 out:
1542         mutex_unlock(&sensor->mutex);
1543
1544         return rval;
1545 }
1546
1547 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1548                                   unsigned int pad)
1549 {
1550         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1551
1552         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1553                 return sensor->csi_format->code;
1554         else
1555                 return sensor->internal_csi_format->code;
1556 }
1557
1558 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1559                                struct v4l2_subdev_fh *fh,
1560                                struct v4l2_subdev_format *fmt)
1561 {
1562         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1563
1564         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1565                 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1566         } else {
1567                 struct v4l2_rect *r;
1568
1569                 if (fmt->pad == ssd->source_pad)
1570                         r = &ssd->crop[ssd->source_pad];
1571                 else
1572                         r = &ssd->sink_fmt;
1573
1574                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1575                 fmt->format.width = r->width;
1576                 fmt->format.height = r->height;
1577         }
1578
1579         return 0;
1580 }
1581
1582 static int smiapp_get_format(struct v4l2_subdev *subdev,
1583                              struct v4l2_subdev_fh *fh,
1584                              struct v4l2_subdev_format *fmt)
1585 {
1586         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1587         int rval;
1588
1589         mutex_lock(&sensor->mutex);
1590         rval = __smiapp_get_format(subdev, fh, fmt);
1591         mutex_unlock(&sensor->mutex);
1592
1593         return rval;
1594 }
1595
1596 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1597                                     struct v4l2_subdev_fh *fh,
1598                                     struct v4l2_rect **crops,
1599                                     struct v4l2_rect **comps, int which)
1600 {
1601         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1602         unsigned int i;
1603
1604         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1605                 if (crops)
1606                         for (i = 0; i < subdev->entity.num_pads; i++)
1607                                 crops[i] = &ssd->crop[i];
1608                 if (comps)
1609                         *comps = &ssd->compose;
1610         } else {
1611                 if (crops) {
1612                         for (i = 0; i < subdev->entity.num_pads; i++) {
1613                                 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1614                                 BUG_ON(!crops[i]);
1615                         }
1616                 }
1617                 if (comps) {
1618                         *comps = v4l2_subdev_get_try_compose(fh,
1619                                                              SMIAPP_PAD_SINK);
1620                         BUG_ON(!*comps);
1621                 }
1622         }
1623 }
1624
1625 /* Changes require propagation only on sink pad. */
1626 static void smiapp_propagate(struct v4l2_subdev *subdev,
1627                              struct v4l2_subdev_fh *fh, int which,
1628                              int target)
1629 {
1630         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1631         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1632         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1633
1634         smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1635
1636         switch (target) {
1637         case V4L2_SEL_TGT_CROP:
1638                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1639                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1640                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1641                         if (ssd == sensor->scaler) {
1642                                 sensor->scale_m =
1643                                         sensor->limits[
1644                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1645                                 sensor->scaling_mode =
1646                                         SMIAPP_SCALING_MODE_NONE;
1647                         } else if (ssd == sensor->binner) {
1648                                 sensor->binning_horizontal = 1;
1649                                 sensor->binning_vertical = 1;
1650                         }
1651                 }
1652                 /* Fall through */
1653         case V4L2_SEL_TGT_COMPOSE:
1654                 *crops[SMIAPP_PAD_SRC] = *comp;
1655                 break;
1656         default:
1657                 BUG();
1658         }
1659 }
1660
1661 static const struct smiapp_csi_data_format
1662 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1663 {
1664         const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1665         unsigned int i;
1666
1667         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1668                 if (sensor->mbus_frame_fmts & (1 << i)
1669                     && smiapp_csi_data_formats[i].code == code)
1670                         return &smiapp_csi_data_formats[i];
1671         }
1672
1673         return csi_format;
1674 }
1675
1676 static int smiapp_set_format(struct v4l2_subdev *subdev,
1677                              struct v4l2_subdev_fh *fh,
1678                              struct v4l2_subdev_format *fmt)
1679 {
1680         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1681         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1682         struct v4l2_rect *crops[SMIAPP_PADS];
1683
1684         mutex_lock(&sensor->mutex);
1685
1686         /*
1687          * Media bus code is changeable on src subdev's source pad. On
1688          * other source pads we just get format here.
1689          */
1690         if (fmt->pad == ssd->source_pad) {
1691                 u32 code = fmt->format.code;
1692                 int rval = __smiapp_get_format(subdev, fh, fmt);
1693
1694                 if (!rval && subdev == &sensor->src->sd) {
1695                         const struct smiapp_csi_data_format *csi_format =
1696                                 smiapp_validate_csi_data_format(sensor, code);
1697                         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1698                                 sensor->csi_format = csi_format;
1699                         fmt->format.code = csi_format->code;
1700                 }
1701
1702                 mutex_unlock(&sensor->mutex);
1703                 return rval;
1704         }
1705
1706         /* Sink pad. Width and height are changeable here. */
1707         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1708         fmt->format.width &= ~1;
1709         fmt->format.height &= ~1;
1710
1711         fmt->format.width =
1712                 clamp(fmt->format.width,
1713                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1714                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1715         fmt->format.height =
1716                 clamp(fmt->format.height,
1717                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1718                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1719
1720         smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1721
1722         crops[ssd->sink_pad]->left = 0;
1723         crops[ssd->sink_pad]->top = 0;
1724         crops[ssd->sink_pad]->width = fmt->format.width;
1725         crops[ssd->sink_pad]->height = fmt->format.height;
1726         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1727                 ssd->sink_fmt = *crops[ssd->sink_pad];
1728         smiapp_propagate(subdev, fh, fmt->which,
1729                          V4L2_SEL_TGT_CROP);
1730
1731         mutex_unlock(&sensor->mutex);
1732
1733         return 0;
1734 }
1735
1736 /*
1737  * Calculate goodness of scaled image size compared to expected image
1738  * size and flags provided.
1739  */
1740 #define SCALING_GOODNESS                100000
1741 #define SCALING_GOODNESS_EXTREME        100000000
1742 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1743                             int h, int ask_h, u32 flags)
1744 {
1745         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1746         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1747         int val = 0;
1748
1749         w &= ~1;
1750         ask_w &= ~1;
1751         h &= ~1;
1752         ask_h &= ~1;
1753
1754         if (flags & V4L2_SEL_FLAG_GE) {
1755                 if (w < ask_w)
1756                         val -= SCALING_GOODNESS;
1757                 if (h < ask_h)
1758                         val -= SCALING_GOODNESS;
1759         }
1760
1761         if (flags & V4L2_SEL_FLAG_LE) {
1762                 if (w > ask_w)
1763                         val -= SCALING_GOODNESS;
1764                 if (h > ask_h)
1765                         val -= SCALING_GOODNESS;
1766         }
1767
1768         val -= abs(w - ask_w);
1769         val -= abs(h - ask_h);
1770
1771         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1772                 val -= SCALING_GOODNESS_EXTREME;
1773
1774         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1775                 w, ask_h, h, ask_h, val);
1776
1777         return val;
1778 }
1779
1780 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1781                                       struct v4l2_subdev_fh *fh,
1782                                       struct v4l2_subdev_selection *sel,
1783                                       struct v4l2_rect **crops,
1784                                       struct v4l2_rect *comp)
1785 {
1786         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1787         unsigned int i;
1788         unsigned int binh = 1, binv = 1;
1789         unsigned int best = scaling_goodness(
1790                 subdev,
1791                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1792                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1793
1794         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1795                 int this = scaling_goodness(
1796                         subdev,
1797                         crops[SMIAPP_PAD_SINK]->width
1798                         / sensor->binning_subtypes[i].horizontal,
1799                         sel->r.width,
1800                         crops[SMIAPP_PAD_SINK]->height
1801                         / sensor->binning_subtypes[i].vertical,
1802                         sel->r.height, sel->flags);
1803
1804                 if (this > best) {
1805                         binh = sensor->binning_subtypes[i].horizontal;
1806                         binv = sensor->binning_subtypes[i].vertical;
1807                         best = this;
1808                 }
1809         }
1810         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1811                 sensor->binning_vertical = binv;
1812                 sensor->binning_horizontal = binh;
1813         }
1814
1815         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1816         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1817 }
1818
1819 /*
1820  * Calculate best scaling ratio and mode for given output resolution.
1821  *
1822  * Try all of these: horizontal ratio, vertical ratio and smallest
1823  * size possible (horizontally).
1824  *
1825  * Also try whether horizontal scaler or full scaler gives a better
1826  * result.
1827  */
1828 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1829                                       struct v4l2_subdev_fh *fh,
1830                                       struct v4l2_subdev_selection *sel,
1831                                       struct v4l2_rect **crops,
1832                                       struct v4l2_rect *comp)
1833 {
1834         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1835         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1836         u32 min, max, a, b, max_m;
1837         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1838         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1839         u32 try[4];
1840         u32 ntry = 0;
1841         unsigned int i;
1842         int best = INT_MIN;
1843
1844         sel->r.width = min_t(unsigned int, sel->r.width,
1845                              crops[SMIAPP_PAD_SINK]->width);
1846         sel->r.height = min_t(unsigned int, sel->r.height,
1847                               crops[SMIAPP_PAD_SINK]->height);
1848
1849         a = crops[SMIAPP_PAD_SINK]->width
1850                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1851         b = crops[SMIAPP_PAD_SINK]->height
1852                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1853         max_m = crops[SMIAPP_PAD_SINK]->width
1854                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1855                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1856
1857         a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1858                 max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1859         b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1860                 max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1861         max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1862                     max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1863
1864         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1865
1866         min = min(max_m, min(a, b));
1867         max = min(max_m, max(a, b));
1868
1869         try[ntry] = min;
1870         ntry++;
1871         if (min != max) {
1872                 try[ntry] = max;
1873                 ntry++;
1874         }
1875         if (max != max_m) {
1876                 try[ntry] = min + 1;
1877                 ntry++;
1878                 if (min != max) {
1879                         try[ntry] = max + 1;
1880                         ntry++;
1881                 }
1882         }
1883
1884         for (i = 0; i < ntry; i++) {
1885                 int this = scaling_goodness(
1886                         subdev,
1887                         crops[SMIAPP_PAD_SINK]->width
1888                         / try[i]
1889                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1890                         sel->r.width,
1891                         crops[SMIAPP_PAD_SINK]->height,
1892                         sel->r.height,
1893                         sel->flags);
1894
1895                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1896
1897                 if (this > best) {
1898                         scale_m = try[i];
1899                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1900                         best = this;
1901                 }
1902
1903                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1904                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1905                         continue;
1906
1907                 this = scaling_goodness(
1908                         subdev, crops[SMIAPP_PAD_SINK]->width
1909                         / try[i]
1910                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1911                         sel->r.width,
1912                         crops[SMIAPP_PAD_SINK]->height
1913                         / try[i]
1914                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1915                         sel->r.height,
1916                         sel->flags);
1917
1918                 if (this > best) {
1919                         scale_m = try[i];
1920                         mode = SMIAPP_SCALING_MODE_BOTH;
1921                         best = this;
1922                 }
1923         }
1924
1925         sel->r.width =
1926                 (crops[SMIAPP_PAD_SINK]->width
1927                  / scale_m
1928                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1929         if (mode == SMIAPP_SCALING_MODE_BOTH)
1930                 sel->r.height =
1931                         (crops[SMIAPP_PAD_SINK]->height
1932                          / scale_m
1933                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1934                         & ~1;
1935         else
1936                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1937
1938         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1939                 sensor->scale_m = scale_m;
1940                 sensor->scaling_mode = mode;
1941         }
1942 }
1943 /* We're only called on source pads. This function sets scaling. */
1944 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1945                               struct v4l2_subdev_fh *fh,
1946                               struct v4l2_subdev_selection *sel)
1947 {
1948         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1949         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1950         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1951
1952         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1953
1954         sel->r.top = 0;
1955         sel->r.left = 0;
1956
1957         if (ssd == sensor->binner)
1958                 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1959         else
1960                 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1961
1962         *comp = sel->r;
1963         smiapp_propagate(subdev, fh, sel->which,
1964                          V4L2_SEL_TGT_COMPOSE);
1965
1966         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1967                 return smiapp_update_mode(sensor);
1968
1969         return 0;
1970 }
1971
1972 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1973                                   struct v4l2_subdev_selection *sel)
1974 {
1975         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1976         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1977
1978         /* We only implement crop in three places. */
1979         switch (sel->target) {
1980         case V4L2_SEL_TGT_CROP:
1981         case V4L2_SEL_TGT_CROP_BOUNDS:
1982                 if (ssd == sensor->pixel_array
1983                     && sel->pad == SMIAPP_PA_PAD_SRC)
1984                         return 0;
1985                 if (ssd == sensor->src
1986                     && sel->pad == SMIAPP_PAD_SRC)
1987                         return 0;
1988                 if (ssd == sensor->scaler
1989                     && sel->pad == SMIAPP_PAD_SINK
1990                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1991                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1992                         return 0;
1993                 return -EINVAL;
1994         case V4L2_SEL_TGT_COMPOSE:
1995         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1996                 if (sel->pad == ssd->source_pad)
1997                         return -EINVAL;
1998                 if (ssd == sensor->binner)
1999                         return 0;
2000                 if (ssd == sensor->scaler
2001                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2002                     != SMIAPP_SCALING_CAPABILITY_NONE)
2003                         return 0;
2004                 /* Fall through */
2005         default:
2006                 return -EINVAL;
2007         }
2008 }
2009
2010 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2011                            struct v4l2_subdev_fh *fh,
2012                            struct v4l2_subdev_selection *sel)
2013 {
2014         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2015         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2016         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2017         struct v4l2_rect _r;
2018
2019         smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2020
2021         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2022                 if (sel->pad == ssd->sink_pad)
2023                         src_size = &ssd->sink_fmt;
2024                 else
2025                         src_size = &ssd->compose;
2026         } else {
2027                 if (sel->pad == ssd->sink_pad) {
2028                         _r.left = 0;
2029                         _r.top = 0;
2030                         _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2031                                 ->width;
2032                         _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2033                                 ->height;
2034                         src_size = &_r;
2035                 } else {
2036                         src_size =
2037                                 v4l2_subdev_get_try_compose(
2038                                         fh, ssd->sink_pad);
2039                 }
2040         }
2041
2042         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2043                 sel->r.left = 0;
2044                 sel->r.top = 0;
2045         }
2046
2047         sel->r.width = min(sel->r.width, src_size->width);
2048         sel->r.height = min(sel->r.height, src_size->height);
2049
2050         sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
2051         sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
2052
2053         *crops[sel->pad] = sel->r;
2054
2055         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2056                 smiapp_propagate(subdev, fh, sel->which,
2057                                  V4L2_SEL_TGT_CROP);
2058
2059         return 0;
2060 }
2061
2062 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2063                                   struct v4l2_subdev_fh *fh,
2064                                   struct v4l2_subdev_selection *sel)
2065 {
2066         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2067         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2068         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2069         struct v4l2_rect sink_fmt;
2070         int ret;
2071
2072         ret = __smiapp_sel_supported(subdev, sel);
2073         if (ret)
2074                 return ret;
2075
2076         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2077
2078         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2079                 sink_fmt = ssd->sink_fmt;
2080         } else {
2081                 struct v4l2_mbus_framefmt *fmt =
2082                         v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2083
2084                 sink_fmt.left = 0;
2085                 sink_fmt.top = 0;
2086                 sink_fmt.width = fmt->width;
2087                 sink_fmt.height = fmt->height;
2088         }
2089
2090         switch (sel->target) {
2091         case V4L2_SEL_TGT_CROP_BOUNDS:
2092                 if (ssd == sensor->pixel_array) {
2093                         sel->r.width =
2094                                 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2095                         sel->r.height =
2096                                 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2097                 } else if (sel->pad == ssd->sink_pad) {
2098                         sel->r = sink_fmt;
2099                 } else {
2100                         sel->r = *comp;
2101                 }
2102                 break;
2103         case V4L2_SEL_TGT_CROP:
2104         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2105                 sel->r = *crops[sel->pad];
2106                 break;
2107         case V4L2_SEL_TGT_COMPOSE:
2108                 sel->r = *comp;
2109                 break;
2110         }
2111
2112         return 0;
2113 }
2114
2115 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2116                                 struct v4l2_subdev_fh *fh,
2117                                 struct v4l2_subdev_selection *sel)
2118 {
2119         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2120         int rval;
2121
2122         mutex_lock(&sensor->mutex);
2123         rval = __smiapp_get_selection(subdev, fh, sel);
2124         mutex_unlock(&sensor->mutex);
2125
2126         return rval;
2127 }
2128 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2129                                 struct v4l2_subdev_fh *fh,
2130                                 struct v4l2_subdev_selection *sel)
2131 {
2132         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2133         int ret;
2134
2135         ret = __smiapp_sel_supported(subdev, sel);
2136         if (ret)
2137                 return ret;
2138
2139         mutex_lock(&sensor->mutex);
2140
2141         sel->r.left = max(0, sel->r.left & ~1);
2142         sel->r.top = max(0, sel->r.top & ~1);
2143         sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
2144         sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
2145
2146         sel->r.width = max_t(unsigned int,
2147                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2148                              sel->r.width);
2149         sel->r.height = max_t(unsigned int,
2150                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2151                               sel->r.height);
2152
2153         switch (sel->target) {
2154         case V4L2_SEL_TGT_CROP:
2155                 ret = smiapp_set_crop(subdev, fh, sel);
2156                 break;
2157         case V4L2_SEL_TGT_COMPOSE:
2158                 ret = smiapp_set_compose(subdev, fh, sel);
2159                 break;
2160         default:
2161                 BUG();
2162         }
2163
2164         mutex_unlock(&sensor->mutex);
2165         return ret;
2166 }
2167
2168 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2169 {
2170         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2171
2172         *frames = sensor->frame_skip;
2173         return 0;
2174 }
2175
2176 /* -----------------------------------------------------------------------------
2177  * sysfs attributes
2178  */
2179
2180 static ssize_t
2181 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2182                       char *buf)
2183 {
2184         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2185         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2186         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2187         unsigned int nbytes;
2188
2189         if (!sensor->dev_init_done)
2190                 return -EBUSY;
2191
2192         if (!sensor->nvm_size) {
2193                 /* NVM not read yet - read it now */
2194                 sensor->nvm_size = sensor->platform_data->nvm_size;
2195                 if (smiapp_set_power(subdev, 1) < 0)
2196                         return -ENODEV;
2197                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2198                         dev_err(&client->dev, "nvm read failed\n");
2199                         return -ENODEV;
2200                 }
2201                 smiapp_set_power(subdev, 0);
2202         }
2203         /*
2204          * NVM is still way below a PAGE_SIZE, so we can safely
2205          * assume this for now.
2206          */
2207         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2208         memcpy(buf, sensor->nvm, nbytes);
2209
2210         return nbytes;
2211 }
2212 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2213
2214 static ssize_t
2215 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2216                         char *buf)
2217 {
2218         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2219         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2220         struct smiapp_module_info *minfo = &sensor->minfo;
2221
2222         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2223                         minfo->manufacturer_id, minfo->model_id,
2224                         minfo->revision_number_major) + 1;
2225 }
2226
2227 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2228
2229 /* -----------------------------------------------------------------------------
2230  * V4L2 subdev core operations
2231  */
2232
2233 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2234 {
2235         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2236         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2237         struct smiapp_module_info *minfo = &sensor->minfo;
2238         unsigned int i;
2239         int rval = 0;
2240
2241         minfo->name = SMIAPP_NAME;
2242
2243         /* Module info */
2244         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2245                                  &minfo->manufacturer_id);
2246         if (!rval)
2247                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2248                                          &minfo->model_id);
2249         if (!rval)
2250                 rval = smiapp_read_8only(sensor,
2251                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2252                                          &minfo->revision_number_major);
2253         if (!rval)
2254                 rval = smiapp_read_8only(sensor,
2255                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2256                                          &minfo->revision_number_minor);
2257         if (!rval)
2258                 rval = smiapp_read_8only(sensor,
2259                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2260                                          &minfo->module_year);
2261         if (!rval)
2262                 rval = smiapp_read_8only(sensor,
2263                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2264                                          &minfo->module_month);
2265         if (!rval)
2266                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2267                                          &minfo->module_day);
2268
2269         /* Sensor info */
2270         if (!rval)
2271                 rval = smiapp_read_8only(sensor,
2272                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2273                                          &minfo->sensor_manufacturer_id);
2274         if (!rval)
2275                 rval = smiapp_read_8only(sensor,
2276                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2277                                          &minfo->sensor_model_id);
2278         if (!rval)
2279                 rval = smiapp_read_8only(sensor,
2280                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2281                                          &minfo->sensor_revision_number);
2282         if (!rval)
2283                 rval = smiapp_read_8only(sensor,
2284                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2285                                          &minfo->sensor_firmware_version);
2286
2287         /* SMIA */
2288         if (!rval)
2289                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2290                                          &minfo->smia_version);
2291         if (!rval)
2292                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2293                                          &minfo->smiapp_version);
2294
2295         if (rval) {
2296                 dev_err(&client->dev, "sensor detection failed\n");
2297                 return -ENODEV;
2298         }
2299
2300         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2301                 minfo->manufacturer_id, minfo->model_id);
2302
2303         dev_dbg(&client->dev,
2304                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2305                 minfo->revision_number_major, minfo->revision_number_minor,
2306                 minfo->module_year, minfo->module_month, minfo->module_day);
2307
2308         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2309                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2310
2311         dev_dbg(&client->dev,
2312                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2313                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2314
2315         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2316                 minfo->smia_version, minfo->smiapp_version);
2317
2318         /*
2319          * Some modules have bad data in the lvalues below. Hope the
2320          * rvalues have better stuff. The lvalues are module
2321          * parameters whereas the rvalues are sensor parameters.
2322          */
2323         if (!minfo->manufacturer_id && !minfo->model_id) {
2324                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2325                 minfo->model_id = minfo->sensor_model_id;
2326                 minfo->revision_number_major = minfo->sensor_revision_number;
2327         }
2328
2329         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2330                 if (smiapp_module_idents[i].manufacturer_id
2331                     != minfo->manufacturer_id)
2332                         continue;
2333                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2334                         continue;
2335                 if (smiapp_module_idents[i].flags
2336                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2337                         if (smiapp_module_idents[i].revision_number_major
2338                             < minfo->revision_number_major)
2339                                 continue;
2340                 } else {
2341                         if (smiapp_module_idents[i].revision_number_major
2342                             != minfo->revision_number_major)
2343                                 continue;
2344                 }
2345
2346                 minfo->name = smiapp_module_idents[i].name;
2347                 minfo->quirk = smiapp_module_idents[i].quirk;
2348                 break;
2349         }
2350
2351         if (i >= ARRAY_SIZE(smiapp_module_idents))
2352                 dev_warn(&client->dev,
2353                          "no quirks for this module; let's hope it's fully compliant\n");
2354
2355         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2356                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2357                 minfo->revision_number_major);
2358
2359         strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2360
2361         return 0;
2362 }
2363
2364 static const struct v4l2_subdev_ops smiapp_ops;
2365 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2366 static const struct media_entity_operations smiapp_entity_ops;
2367
2368 static int smiapp_registered(struct v4l2_subdev *subdev)
2369 {
2370         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2371         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2372         struct smiapp_subdev *last = NULL;
2373         u32 tmp;
2374         unsigned int i;
2375         int rval;
2376
2377         sensor->vana = devm_regulator_get(&client->dev, "VANA");
2378         if (IS_ERR(sensor->vana)) {
2379                 dev_err(&client->dev, "could not get regulator for vana\n");
2380                 return -ENODEV;
2381         }
2382
2383         if (!sensor->platform_data->set_xclk) {
2384                 sensor->ext_clk = devm_clk_get(&client->dev,
2385                                         sensor->platform_data->ext_clk_name);
2386                 if (IS_ERR(sensor->ext_clk)) {
2387                         dev_err(&client->dev, "could not get clock %s\n",
2388                                 sensor->platform_data->ext_clk_name);
2389                         return -ENODEV;
2390                 }
2391
2392                 rval = clk_set_rate(sensor->ext_clk,
2393                                     sensor->platform_data->ext_clk);
2394                 if (rval < 0) {
2395                         dev_err(&client->dev,
2396                                 "unable to set clock %s freq to %u\n",
2397                                 sensor->platform_data->ext_clk_name,
2398                                 sensor->platform_data->ext_clk);
2399                         return -ENODEV;
2400                 }
2401         }
2402
2403         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2404                 if (gpio_request_one(sensor->platform_data->xshutdown, 0,
2405                                      "SMIA++ xshutdown") != 0) {
2406                         dev_err(&client->dev,
2407                                 "unable to acquire reset gpio %d\n",
2408                                 sensor->platform_data->xshutdown);
2409                         return -ENODEV;
2410                 }
2411         }
2412
2413         rval = smiapp_power_on(sensor);
2414         if (rval) {
2415                 rval = -ENODEV;
2416                 goto out_smiapp_power_on;
2417         }
2418
2419         rval = smiapp_identify_module(subdev);
2420         if (rval) {
2421                 rval = -ENODEV;
2422                 goto out_power_off;
2423         }
2424
2425         rval = smiapp_get_all_limits(sensor);
2426         if (rval) {
2427                 rval = -ENODEV;
2428                 goto out_power_off;
2429         }
2430
2431         /*
2432          * Handle Sensor Module orientation on the board.
2433          *
2434          * The application of H-FLIP and V-FLIP on the sensor is modified by
2435          * the sensor orientation on the board.
2436          *
2437          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2438          * both H-FLIP and V-FLIP for normal operation which also implies
2439          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2440          * controls will need to be internally inverted.
2441          *
2442          * Rotation also changes the bayer pattern.
2443          */
2444         if (sensor->platform_data->module_board_orient ==
2445             SMIAPP_MODULE_BOARD_ORIENT_180)
2446                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2447                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2448
2449         rval = smiapp_get_mbus_formats(sensor);
2450         if (rval) {
2451                 rval = -ENODEV;
2452                 goto out_power_off;
2453         }
2454
2455         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2456                 u32 val;
2457
2458                 rval = smiapp_read(sensor,
2459                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2460                 if (rval < 0) {
2461                         rval = -ENODEV;
2462                         goto out_power_off;
2463                 }
2464                 sensor->nbinning_subtypes = min_t(u8, val,
2465                                                   SMIAPP_BINNING_SUBTYPES);
2466
2467                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2468                         rval = smiapp_read(
2469                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2470                         if (rval < 0) {
2471                                 rval = -ENODEV;
2472                                 goto out_power_off;
2473                         }
2474                         sensor->binning_subtypes[i] =
2475                                 *(struct smiapp_binning_subtype *)&val;
2476
2477                         dev_dbg(&client->dev, "binning %xx%x\n",
2478                                 sensor->binning_subtypes[i].horizontal,
2479                                 sensor->binning_subtypes[i].vertical);
2480                 }
2481         }
2482         sensor->binning_horizontal = 1;
2483         sensor->binning_vertical = 1;
2484
2485         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2486                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2487                 rval = -ENOENT;
2488                 goto out_power_off;
2489         }
2490         /* SMIA++ NVM initialization - it will be read from the sensor
2491          * when it is first requested by userspace.
2492          */
2493         if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2494                 sensor->nvm = devm_kzalloc(&client->dev,
2495                                 sensor->platform_data->nvm_size, GFP_KERNEL);
2496                 if (sensor->nvm == NULL) {
2497                         dev_err(&client->dev, "nvm buf allocation failed\n");
2498                         rval = -ENOMEM;
2499                         goto out_ident_release;
2500                 }
2501
2502                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2503                         dev_err(&client->dev, "sysfs nvm entry failed\n");
2504                         rval = -EBUSY;
2505                         goto out_ident_release;
2506                 }
2507         }
2508
2509         rval = smiapp_call_quirk(sensor, limits);
2510         if (rval) {
2511                 dev_err(&client->dev, "limits quirks failed\n");
2512                 goto out_nvm_release;
2513         }
2514
2515         /* We consider this as profile 0 sensor if any of these are zero. */
2516         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2517             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2518             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2519             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2520                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2521         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2522                    != SMIAPP_SCALING_CAPABILITY_NONE) {
2523                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2524                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2525                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2526                 else
2527                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2528                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2529                 sensor->ssds_used++;
2530         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2531                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2532                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2533                 sensor->ssds_used++;
2534         }
2535         sensor->binner = &sensor->ssds[sensor->ssds_used];
2536         sensor->ssds_used++;
2537         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2538         sensor->ssds_used++;
2539
2540         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2541
2542         for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2543                 struct {
2544                         struct smiapp_subdev *ssd;
2545                         char *name;
2546                 } const __this[] = {
2547                         { sensor->scaler, "scaler", },
2548                         { sensor->binner, "binner", },
2549                         { sensor->pixel_array, "pixel array", },
2550                 }, *_this = &__this[i];
2551                 struct smiapp_subdev *this = _this->ssd;
2552
2553                 if (!this)
2554                         continue;
2555
2556                 if (this != sensor->src)
2557                         v4l2_subdev_init(&this->sd, &smiapp_ops);
2558
2559                 this->sensor = sensor;
2560
2561                 if (this == sensor->pixel_array) {
2562                         this->npads = 1;
2563                 } else {
2564                         this->npads = 2;
2565                         this->source_pad = 1;
2566                 }
2567
2568                 snprintf(this->sd.name,
2569                          sizeof(this->sd.name), "%s %s",
2570                          sensor->minfo.name, _this->name);
2571
2572                 this->sink_fmt.width =
2573                         sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2574                 this->sink_fmt.height =
2575                         sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2576                 this->compose.width = this->sink_fmt.width;
2577                 this->compose.height = this->sink_fmt.height;
2578                 this->crop[this->source_pad] = this->compose;
2579                 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2580                 if (this != sensor->pixel_array) {
2581                         this->crop[this->sink_pad] = this->compose;
2582                         this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2583                 }
2584
2585                 this->sd.entity.ops = &smiapp_entity_ops;
2586
2587                 if (last == NULL) {
2588                         last = this;
2589                         continue;
2590                 }
2591
2592                 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2593                 this->sd.internal_ops = &smiapp_internal_ops;
2594                 this->sd.owner = NULL;
2595                 v4l2_set_subdevdata(&this->sd, client);
2596
2597                 rval = media_entity_init(&this->sd.entity,
2598                                          this->npads, this->pads, 0);
2599                 if (rval) {
2600                         dev_err(&client->dev,
2601                                 "media_entity_init failed\n");
2602                         goto out_nvm_release;
2603                 }
2604
2605                 rval = media_entity_create_link(&this->sd.entity,
2606                                                 this->source_pad,
2607                                                 &last->sd.entity,
2608                                                 last->sink_pad,
2609                                                 MEDIA_LNK_FL_ENABLED |
2610                                                 MEDIA_LNK_FL_IMMUTABLE);
2611                 if (rval) {
2612                         dev_err(&client->dev,
2613                                 "media_entity_create_link failed\n");
2614                         goto out_nvm_release;
2615                 }
2616
2617                 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2618                                                    &this->sd);
2619                 if (rval) {
2620                         dev_err(&client->dev,
2621                                 "v4l2_device_register_subdev failed\n");
2622                         goto out_nvm_release;
2623                 }
2624
2625                 last = this;
2626         }
2627
2628         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2629
2630         sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2631
2632         /* final steps */
2633         smiapp_read_frame_fmt(sensor);
2634         rval = smiapp_init_controls(sensor);
2635         if (rval < 0)
2636                 goto out_nvm_release;
2637
2638         rval = smiapp_update_mode(sensor);
2639         if (rval) {
2640                 dev_err(&client->dev, "update mode failed\n");
2641                 goto out_nvm_release;
2642         }
2643
2644         sensor->streaming = false;
2645         sensor->dev_init_done = true;
2646
2647         /* check flash capability */
2648         rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2649         sensor->flash_capability = tmp;
2650         if (rval)
2651                 goto out_nvm_release;
2652
2653         smiapp_power_off(sensor);
2654
2655         return 0;
2656
2657 out_nvm_release:
2658         device_remove_file(&client->dev, &dev_attr_nvm);
2659
2660 out_ident_release:
2661         device_remove_file(&client->dev, &dev_attr_ident);
2662
2663 out_power_off:
2664         smiapp_power_off(sensor);
2665
2666 out_smiapp_power_on:
2667         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2668                 gpio_free(sensor->platform_data->xshutdown);
2669
2670         return rval;
2671 }
2672
2673 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2674 {
2675         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2676         struct smiapp_sensor *sensor = ssd->sensor;
2677         u32 mbus_code =
2678                 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2679         unsigned int i;
2680
2681         mutex_lock(&sensor->mutex);
2682
2683         for (i = 0; i < ssd->npads; i++) {
2684                 struct v4l2_mbus_framefmt *try_fmt =
2685                         v4l2_subdev_get_try_format(fh, i);
2686                 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2687                 struct v4l2_rect *try_comp;
2688
2689                 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2690                 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2691                 try_fmt->code = mbus_code;
2692
2693                 try_crop->top = 0;
2694                 try_crop->left = 0;
2695                 try_crop->width = try_fmt->width;
2696                 try_crop->height = try_fmt->height;
2697
2698                 if (ssd != sensor->pixel_array)
2699                         continue;
2700
2701                 try_comp = v4l2_subdev_get_try_compose(fh, i);
2702                 *try_comp = *try_crop;
2703         }
2704
2705         mutex_unlock(&sensor->mutex);
2706
2707         return smiapp_set_power(sd, 1);
2708 }
2709
2710 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2711 {
2712         return smiapp_set_power(sd, 0);
2713 }
2714
2715 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2716         .s_stream = smiapp_set_stream,
2717 };
2718
2719 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2720         .s_power = smiapp_set_power,
2721 };
2722
2723 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2724         .enum_mbus_code = smiapp_enum_mbus_code,
2725         .get_fmt = smiapp_get_format,
2726         .set_fmt = smiapp_set_format,
2727         .get_selection = smiapp_get_selection,
2728         .set_selection = smiapp_set_selection,
2729 };
2730
2731 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2732         .g_skip_frames = smiapp_get_skip_frames,
2733 };
2734
2735 static const struct v4l2_subdev_ops smiapp_ops = {
2736         .core = &smiapp_core_ops,
2737         .video = &smiapp_video_ops,
2738         .pad = &smiapp_pad_ops,
2739         .sensor = &smiapp_sensor_ops,
2740 };
2741
2742 static const struct media_entity_operations smiapp_entity_ops = {
2743         .link_validate = v4l2_subdev_link_validate,
2744 };
2745
2746 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2747         .registered = smiapp_registered,
2748         .open = smiapp_open,
2749         .close = smiapp_close,
2750 };
2751
2752 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2753         .open = smiapp_open,
2754         .close = smiapp_close,
2755 };
2756
2757 /* -----------------------------------------------------------------------------
2758  * I2C Driver
2759  */
2760
2761 #ifdef CONFIG_PM
2762
2763 static int smiapp_suspend(struct device *dev)
2764 {
2765         struct i2c_client *client = to_i2c_client(dev);
2766         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2767         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2768         bool streaming;
2769
2770         BUG_ON(mutex_is_locked(&sensor->mutex));
2771
2772         if (sensor->power_count == 0)
2773                 return 0;
2774
2775         if (sensor->streaming)
2776                 smiapp_stop_streaming(sensor);
2777
2778         streaming = sensor->streaming;
2779
2780         smiapp_power_off(sensor);
2781
2782         /* save state for resume */
2783         sensor->streaming = streaming;
2784
2785         return 0;
2786 }
2787
2788 static int smiapp_resume(struct device *dev)
2789 {
2790         struct i2c_client *client = to_i2c_client(dev);
2791         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2792         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2793         int rval;
2794
2795         if (sensor->power_count == 0)
2796                 return 0;
2797
2798         rval = smiapp_power_on(sensor);
2799         if (rval)
2800                 return rval;
2801
2802         if (sensor->streaming)
2803                 rval = smiapp_start_streaming(sensor);
2804
2805         return rval;
2806 }
2807
2808 #else
2809
2810 #define smiapp_suspend  NULL
2811 #define smiapp_resume   NULL
2812
2813 #endif /* CONFIG_PM */
2814
2815 static int smiapp_probe(struct i2c_client *client,
2816                         const struct i2c_device_id *devid)
2817 {
2818         struct smiapp_sensor *sensor;
2819
2820         if (client->dev.platform_data == NULL)
2821                 return -ENODEV;
2822
2823         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2824         if (sensor == NULL)
2825                 return -ENOMEM;
2826
2827         sensor->platform_data = client->dev.platform_data;
2828         mutex_init(&sensor->mutex);
2829         mutex_init(&sensor->power_mutex);
2830         sensor->src = &sensor->ssds[sensor->ssds_used];
2831
2832         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2833         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2834         sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2835         sensor->src->sensor = sensor;
2836
2837         sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2838         return media_entity_init(&sensor->src->sd.entity, 2,
2839                                  sensor->src->pads, 0);
2840 }
2841
2842 static int __exit smiapp_remove(struct i2c_client *client)
2843 {
2844         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2845         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2846         unsigned int i;
2847
2848         if (sensor->power_count) {
2849                 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2850                         gpio_set_value(sensor->platform_data->xshutdown, 0);
2851                 if (sensor->platform_data->set_xclk)
2852                         sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2853                 else
2854                         clk_disable(sensor->ext_clk);
2855                 sensor->power_count = 0;
2856         }
2857
2858         device_remove_file(&client->dev, &dev_attr_ident);
2859         if (sensor->nvm)
2860                 device_remove_file(&client->dev, &dev_attr_nvm);
2861
2862         for (i = 0; i < sensor->ssds_used; i++) {
2863                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2864                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2865         }
2866         smiapp_free_controls(sensor);
2867         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2868                 gpio_free(sensor->platform_data->xshutdown);
2869
2870         return 0;
2871 }
2872
2873 static const struct i2c_device_id smiapp_id_table[] = {
2874         { SMIAPP_NAME, 0 },
2875         { },
2876 };
2877 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2878
2879 static const struct dev_pm_ops smiapp_pm_ops = {
2880         .suspend        = smiapp_suspend,
2881         .resume         = smiapp_resume,
2882 };
2883
2884 static struct i2c_driver smiapp_i2c_driver = {
2885         .driver = {
2886                 .name = SMIAPP_NAME,
2887                 .pm = &smiapp_pm_ops,
2888         },
2889         .probe  = smiapp_probe,
2890         .remove = __exit_p(smiapp_remove),
2891         .id_table = smiapp_id_table,
2892 };
2893
2894 module_i2c_driver(smiapp_i2c_driver);
2895
2896 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
2897 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2898 MODULE_LICENSE("GPL");