]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/rc/nuvoton-cir.c
xen/hvc: constify hv_ops structures
[karo-tx-linux.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 static const struct nvt_chip nvt_chips[] = {
43         { "w83667hg", NVT_W83667HG },
44         { "NCT6775F", NVT_6775F },
45         { "NCT6776F", NVT_6776F },
46         { "NCT6779D", NVT_6779D },
47 };
48
49 static inline bool is_w83667hg(struct nvt_dev *nvt)
50 {
51         return nvt->chip_ver == NVT_W83667HG;
52 }
53
54 /* write val to config reg */
55 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
56 {
57         outb(reg, nvt->cr_efir);
58         outb(val, nvt->cr_efdr);
59 }
60
61 /* read val from config reg */
62 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
63 {
64         outb(reg, nvt->cr_efir);
65         return inb(nvt->cr_efdr);
66 }
67
68 /* update config register bit without changing other bits */
69 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
70 {
71         u8 tmp = nvt_cr_read(nvt, reg) | val;
72         nvt_cr_write(nvt, tmp, reg);
73 }
74
75 /* clear config register bit without changing other bits */
76 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
77 {
78         u8 tmp = nvt_cr_read(nvt, reg) & ~val;
79         nvt_cr_write(nvt, tmp, reg);
80 }
81
82 /* enter extended function mode */
83 static inline void nvt_efm_enable(struct nvt_dev *nvt)
84 {
85         /* Enabling Extended Function Mode explicitly requires writing 2x */
86         outb(EFER_EFM_ENABLE, nvt->cr_efir);
87         outb(EFER_EFM_ENABLE, nvt->cr_efir);
88 }
89
90 /* exit extended function mode */
91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
92 {
93         outb(EFER_EFM_DISABLE, nvt->cr_efir);
94 }
95
96 /*
97  * When you want to address a specific logical device, write its logical
98  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
99  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
100  */
101 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
102 {
103         outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
104         outb(ldev, nvt->cr_efdr);
105 }
106
107 /* write val to cir config register */
108 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
109 {
110         outb(val, nvt->cir_addr + offset);
111 }
112
113 /* read val from cir config register */
114 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
115 {
116         u8 val;
117
118         val = inb(nvt->cir_addr + offset);
119
120         return val;
121 }
122
123 /* write val to cir wake register */
124 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
125                                           u8 val, u8 offset)
126 {
127         outb(val, nvt->cir_wake_addr + offset);
128 }
129
130 /* read val from cir wake config register */
131 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
132 {
133         u8 val;
134
135         val = inb(nvt->cir_wake_addr + offset);
136
137         return val;
138 }
139
140 /* dump current cir register contents */
141 static void cir_dump_regs(struct nvt_dev *nvt)
142 {
143         nvt_efm_enable(nvt);
144         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
145
146         pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
147         pr_info(" * CR CIR ACTIVE :   0x%x\n",
148                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
149         pr_info(" * CR CIR BASE ADDR: 0x%x\n",
150                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
151                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
152         pr_info(" * CR CIR IRQ NUM:   0x%x\n",
153                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
154
155         nvt_efm_disable(nvt);
156
157         pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
158         pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
159         pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
160         pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
161         pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
162         pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
163         pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
164         pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
165         pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
166         pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
167         pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
168         pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
169         pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
170         pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
171         pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
172         pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
173         pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
174 }
175
176 /* dump current cir wake register contents */
177 static void cir_wake_dump_regs(struct nvt_dev *nvt)
178 {
179         u8 i, fifo_len;
180
181         nvt_efm_enable(nvt);
182         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
183
184         pr_info("%s: Dump CIR WAKE logical device registers:\n",
185                 NVT_DRIVER_NAME);
186         pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
187                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
188         pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
189                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
190                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
191         pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
192                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
193
194         nvt_efm_disable(nvt);
195
196         pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
197         pr_info(" * IRCON:          0x%x\n",
198                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
199         pr_info(" * IRSTS:          0x%x\n",
200                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
201         pr_info(" * IREN:           0x%x\n",
202                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
203         pr_info(" * FIFO CMP DEEP:  0x%x\n",
204                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
205         pr_info(" * FIFO CMP TOL:   0x%x\n",
206                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
207         pr_info(" * FIFO COUNT:     0x%x\n",
208                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
209         pr_info(" * SLCH:           0x%x\n",
210                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
211         pr_info(" * SLCL:           0x%x\n",
212                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
213         pr_info(" * FIFOCON:        0x%x\n",
214                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
215         pr_info(" * SRXFSTS:        0x%x\n",
216                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
217         pr_info(" * SAMPLE RX FIFO: 0x%x\n",
218                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
219         pr_info(" * WR FIFO DATA:   0x%x\n",
220                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
221         pr_info(" * RD FIFO ONLY:   0x%x\n",
222                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
223         pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
224                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
225         pr_info(" * FIFO IGNORE:    0x%x\n",
226                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
227         pr_info(" * IRFSM:          0x%x\n",
228                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
229
230         fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
231         pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
232         pr_info("* Contents =");
233         for (i = 0; i < fifo_len; i++)
234                 pr_cont(" %02x",
235                         nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
236         pr_cont("\n");
237 }
238
239 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
240 {
241         int i;
242
243         for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
244                 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
245                         nvt->chip_ver = nvt_chips[i].chip_ver;
246                         return nvt_chips[i].name;
247                 }
248
249         return NULL;
250 }
251
252
253 /* detect hardware features */
254 static void nvt_hw_detect(struct nvt_dev *nvt)
255 {
256         const char *chip_name;
257         int chip_id;
258
259         nvt_efm_enable(nvt);
260
261         /* Check if we're wired for the alternate EFER setup */
262         nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
263         if (nvt->chip_major == 0xff) {
264                 nvt->cr_efir = CR_EFIR2;
265                 nvt->cr_efdr = CR_EFDR2;
266                 nvt_efm_enable(nvt);
267                 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
268         }
269
270         nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
271
272         chip_id = nvt->chip_major << 8 | nvt->chip_minor;
273         chip_name = nvt_find_chip(nvt, chip_id);
274
275         /* warn, but still let the driver load, if we don't know this chip */
276         if (!chip_name)
277                 dev_warn(&nvt->pdev->dev,
278                          "unknown chip, id: 0x%02x 0x%02x, it may not work...",
279                          nvt->chip_major, nvt->chip_minor);
280         else
281                 dev_info(&nvt->pdev->dev,
282                          "found %s or compatible: chip id: 0x%02x 0x%02x",
283                          chip_name, nvt->chip_major, nvt->chip_minor);
284
285         nvt_efm_disable(nvt);
286 }
287
288 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
289 {
290         u8 val, psreg, psmask, psval;
291
292         if (is_w83667hg(nvt)) {
293                 psreg = CR_MULTIFUNC_PIN_SEL;
294                 psmask = MULTIFUNC_PIN_SEL_MASK;
295                 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
296         } else {
297                 psreg = CR_OUTPUT_PIN_SEL;
298                 psmask = OUTPUT_PIN_SEL_MASK;
299                 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
300         }
301
302         /* output pin selection: enable CIR, with WB sensor enabled */
303         val = nvt_cr_read(nvt, psreg);
304         val &= psmask;
305         val |= psval;
306         nvt_cr_write(nvt, val, psreg);
307
308         /* Select CIR logical device and enable */
309         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
310         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
311
312         nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
313         nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
314
315         nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
316
317         nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
318                 nvt->cir_addr, nvt->cir_irq);
319 }
320
321 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
322 {
323         /* Select ACPI logical device, enable it and CIR Wake */
324         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
325         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
326
327         /* Enable CIR Wake via PSOUT# (Pin60) */
328         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
329
330         /* enable pme interrupt of cir wakeup event */
331         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
332
333         /* Select CIR Wake logical device and enable */
334         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
335         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
336
337         nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
338         nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
339
340         nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
341
342         nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
343                 nvt->cir_wake_addr, nvt->cir_wake_irq);
344 }
345
346 /* clear out the hardware's cir rx fifo */
347 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
348 {
349         u8 val;
350
351         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
352         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
353 }
354
355 /* clear out the hardware's cir wake rx fifo */
356 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
357 {
358         u8 val;
359
360         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
361         nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
362                                CIR_WAKE_FIFOCON);
363 }
364
365 /* clear out the hardware's cir tx fifo */
366 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
367 {
368         u8 val;
369
370         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
371         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
372 }
373
374 /* enable RX Trigger Level Reach and Packet End interrupts */
375 static void nvt_set_cir_iren(struct nvt_dev *nvt)
376 {
377         u8 iren;
378
379         iren = CIR_IREN_RTR | CIR_IREN_PE;
380         nvt_cir_reg_write(nvt, iren, CIR_IREN);
381 }
382
383 static void nvt_cir_regs_init(struct nvt_dev *nvt)
384 {
385         /* set sample limit count (PE interrupt raised when reached) */
386         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
387         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
388
389         /* set fifo irq trigger levels */
390         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
391                           CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
392
393         /*
394          * Enable TX and RX, specify carrier on = low, off = high, and set
395          * sample period (currently 50us)
396          */
397         nvt_cir_reg_write(nvt,
398                           CIR_IRCON_TXEN | CIR_IRCON_RXEN |
399                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
400                           CIR_IRCON);
401
402         /* clear hardware rx and tx fifos */
403         nvt_clear_cir_fifo(nvt);
404         nvt_clear_tx_fifo(nvt);
405
406         /* clear any and all stray interrupts */
407         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
408
409         /* and finally, enable interrupts */
410         nvt_set_cir_iren(nvt);
411 }
412
413 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
414 {
415         /* set number of bytes needed for wake from s3 (default 65) */
416         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
417                                CIR_WAKE_FIFO_CMP_DEEP);
418
419         /* set tolerance/variance allowed per byte during wake compare */
420         nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
421                                CIR_WAKE_FIFO_CMP_TOL);
422
423         /* set sample limit count (PE interrupt raised when reached) */
424         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
425         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
426
427         /* set cir wake fifo rx trigger level (currently 67) */
428         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
429                                CIR_WAKE_FIFOCON);
430
431         /*
432          * Enable TX and RX, specific carrier on = low, off = high, and set
433          * sample period (currently 50us)
434          */
435         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
436                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
437                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
438                                CIR_WAKE_IRCON);
439
440         /* clear cir wake rx fifo */
441         nvt_clear_cir_wake_fifo(nvt);
442
443         /* clear any and all stray interrupts */
444         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
445 }
446
447 static void nvt_enable_wake(struct nvt_dev *nvt)
448 {
449         nvt_efm_enable(nvt);
450
451         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
452         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
453         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
454
455         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
456         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
457
458         nvt_efm_disable(nvt);
459
460         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
461                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
462                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
463                                CIR_WAKE_IRCON);
464         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
465         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
466 }
467
468 #if 0 /* Currently unused */
469 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
470 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
471 {
472         u32 count, carrier, duration = 0;
473         int i;
474
475         count = nvt_cir_reg_read(nvt, CIR_FCCL) |
476                 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
477
478         for (i = 0; i < nvt->pkts; i++) {
479                 if (nvt->buf[i] & BUF_PULSE_BIT)
480                         duration += nvt->buf[i] & BUF_LEN_MASK;
481         }
482
483         duration *= SAMPLE_PERIOD;
484
485         if (!count || !duration) {
486                 dev_notice(&nvt->pdev->dev,
487                            "Unable to determine carrier! (c:%u, d:%u)",
488                            count, duration);
489                 return 0;
490         }
491
492         carrier = MS_TO_NS(count) / duration;
493
494         if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
495                 nvt_dbg("WTF? Carrier frequency out of range!");
496
497         nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
498                 carrier, count, duration);
499
500         return carrier;
501 }
502 #endif
503 /*
504  * set carrier frequency
505  *
506  * set carrier on 2 registers: CP & CC
507  * always set CP as 0x81
508  * set CC by SPEC, CC = 3MHz/carrier - 1
509  */
510 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
511 {
512         struct nvt_dev *nvt = dev->priv;
513         u16 val;
514
515         if (carrier == 0)
516                 return -EINVAL;
517
518         nvt_cir_reg_write(nvt, 1, CIR_CP);
519         val = 3000000 / (carrier) - 1;
520         nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
521
522         nvt_dbg("cp: 0x%x cc: 0x%x\n",
523                 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
524
525         return 0;
526 }
527
528 /*
529  * nvt_tx_ir
530  *
531  * 1) clean TX fifo first (handled by AP)
532  * 2) copy data from user space
533  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
534  * 4) send 9 packets to TX FIFO to open TTR
535  * in interrupt_handler:
536  * 5) send all data out
537  * go back to write():
538  * 6) disable TX interrupts, re-enable RX interupts
539  *
540  * The key problem of this function is user space data may larger than
541  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
542  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
543  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
544  * set TXFCONT as 0xff, until buf_count less than 0xff.
545  */
546 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
547 {
548         struct nvt_dev *nvt = dev->priv;
549         unsigned long flags;
550         unsigned int i;
551         u8 iren;
552         int ret;
553
554         spin_lock_irqsave(&nvt->tx.lock, flags);
555
556         ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
557         nvt->tx.buf_count = (ret * sizeof(unsigned));
558
559         memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
560
561         nvt->tx.cur_buf_num = 0;
562
563         /* save currently enabled interrupts */
564         iren = nvt_cir_reg_read(nvt, CIR_IREN);
565
566         /* now disable all interrupts, save TFU & TTR */
567         nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
568
569         nvt->tx.tx_state = ST_TX_REPLY;
570
571         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
572                           CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
573
574         /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
575         for (i = 0; i < 9; i++)
576                 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
577
578         spin_unlock_irqrestore(&nvt->tx.lock, flags);
579
580         wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
581
582         spin_lock_irqsave(&nvt->tx.lock, flags);
583         nvt->tx.tx_state = ST_TX_NONE;
584         spin_unlock_irqrestore(&nvt->tx.lock, flags);
585
586         /* restore enabled interrupts to prior state */
587         nvt_cir_reg_write(nvt, iren, CIR_IREN);
588
589         return ret;
590 }
591
592 /* dump contents of the last rx buffer we got from the hw rx fifo */
593 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
594 {
595         int i;
596
597         printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
598         for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
599                 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
600         printk(KERN_CONT "\n");
601 }
602
603 /*
604  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
605  * trigger decode when appropriate.
606  *
607  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
608  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
609  * (default 50us) intervals for that pulse/space. A discrete signal is
610  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
611  * to signal more IR coming (repeats) or end of IR, respectively. We store
612  * sample data in the raw event kfifo until we see 0x7<something> (except f)
613  * or 0x80, at which time, we trigger a decode operation.
614  */
615 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
616 {
617         DEFINE_IR_RAW_EVENT(rawir);
618         u8 sample;
619         int i;
620
621         nvt_dbg_verbose("%s firing", __func__);
622
623         if (debug)
624                 nvt_dump_rx_buf(nvt);
625
626         nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
627
628         init_ir_raw_event(&rawir);
629
630         for (i = 0; i < nvt->pkts; i++) {
631                 sample = nvt->buf[i];
632
633                 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
634                 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
635                                           * SAMPLE_PERIOD);
636
637                 nvt_dbg("Storing %s with duration %d",
638                         rawir.pulse ? "pulse" : "space", rawir.duration);
639
640                 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
641
642                 /*
643                  * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
644                  * indicates end of IR signal, but new data incoming. In both
645                  * cases, it means we're ready to call ir_raw_event_handle
646                  */
647                 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
648                         nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
649                         ir_raw_event_handle(nvt->rdev);
650                 }
651         }
652
653         nvt->pkts = 0;
654
655         nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
656         ir_raw_event_handle(nvt->rdev);
657
658         nvt_dbg_verbose("%s done", __func__);
659 }
660
661 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
662 {
663         dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
664
665         nvt->pkts = 0;
666         nvt_clear_cir_fifo(nvt);
667         ir_raw_event_reset(nvt->rdev);
668 }
669
670 /* copy data from hardware rx fifo into driver buffer */
671 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
672 {
673         unsigned long flags;
674         u8 fifocount, val;
675         unsigned int b_idx;
676         bool overrun = false;
677         int i;
678
679         /* Get count of how many bytes to read from RX FIFO */
680         fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
681         /* if we get 0xff, probably means the logical dev is disabled */
682         if (fifocount == 0xff)
683                 return;
684         /* watch out for a fifo overrun condition */
685         else if (fifocount > RX_BUF_LEN) {
686                 overrun = true;
687                 fifocount = RX_BUF_LEN;
688         }
689
690         nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
691
692         spin_lock_irqsave(&nvt->nvt_lock, flags);
693
694         b_idx = nvt->pkts;
695
696         /* This should never happen, but lets check anyway... */
697         if (b_idx + fifocount > RX_BUF_LEN) {
698                 nvt_process_rx_ir_data(nvt);
699                 b_idx = 0;
700         }
701
702         /* Read fifocount bytes from CIR Sample RX FIFO register */
703         for (i = 0; i < fifocount; i++) {
704                 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
705                 nvt->buf[b_idx + i] = val;
706         }
707
708         nvt->pkts += fifocount;
709         nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
710
711         nvt_process_rx_ir_data(nvt);
712
713         if (overrun)
714                 nvt_handle_rx_fifo_overrun(nvt);
715
716         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
717 }
718
719 static void nvt_cir_log_irqs(u8 status, u8 iren)
720 {
721         nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
722                 status, iren,
723                 status & CIR_IRSTS_RDR  ? " RDR"        : "",
724                 status & CIR_IRSTS_RTR  ? " RTR"        : "",
725                 status & CIR_IRSTS_PE   ? " PE"         : "",
726                 status & CIR_IRSTS_RFO  ? " RFO"        : "",
727                 status & CIR_IRSTS_TE   ? " TE"         : "",
728                 status & CIR_IRSTS_TTR  ? " TTR"        : "",
729                 status & CIR_IRSTS_TFU  ? " TFU"        : "",
730                 status & CIR_IRSTS_GH   ? " GH"         : "",
731                 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
732                            CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
733                            CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
734 }
735
736 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
737 {
738         unsigned long flags;
739         bool tx_inactive;
740         u8 tx_state;
741
742         spin_lock_irqsave(&nvt->tx.lock, flags);
743         tx_state = nvt->tx.tx_state;
744         spin_unlock_irqrestore(&nvt->tx.lock, flags);
745
746         tx_inactive = (tx_state == ST_TX_NONE);
747
748         return tx_inactive;
749 }
750
751 /* interrupt service routine for incoming and outgoing CIR data */
752 static irqreturn_t nvt_cir_isr(int irq, void *data)
753 {
754         struct nvt_dev *nvt = data;
755         u8 status, iren, cur_state;
756         unsigned long flags;
757
758         nvt_dbg_verbose("%s firing", __func__);
759
760         nvt_efm_enable(nvt);
761         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
762         nvt_efm_disable(nvt);
763
764         /*
765          * Get IR Status register contents. Write 1 to ack/clear
766          *
767          * bit: reg name      - description
768          *   7: CIR_IRSTS_RDR - RX Data Ready
769          *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
770          *   5: CIR_IRSTS_PE  - Packet End
771          *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
772          *   3: CIR_IRSTS_TE  - TX FIFO Empty
773          *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
774          *   1: CIR_IRSTS_TFU - TX FIFO Underrun
775          *   0: CIR_IRSTS_GH  - Min Length Detected
776          */
777         status = nvt_cir_reg_read(nvt, CIR_IRSTS);
778         if (!status) {
779                 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
780                 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
781                 return IRQ_NONE;
782         }
783
784         /* ack/clear all irq flags we've got */
785         nvt_cir_reg_write(nvt, status, CIR_IRSTS);
786         nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
787
788         /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
789         iren = nvt_cir_reg_read(nvt, CIR_IREN);
790         if (!iren) {
791                 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
792                 return IRQ_NONE;
793         }
794
795         nvt_cir_log_irqs(status, iren);
796
797         if (status & CIR_IRSTS_RTR) {
798                 /* FIXME: add code for study/learn mode */
799                 /* We only do rx if not tx'ing */
800                 if (nvt_cir_tx_inactive(nvt))
801                         nvt_get_rx_ir_data(nvt);
802         }
803
804         if (status & CIR_IRSTS_PE) {
805                 if (nvt_cir_tx_inactive(nvt))
806                         nvt_get_rx_ir_data(nvt);
807
808                 spin_lock_irqsave(&nvt->nvt_lock, flags);
809
810                 cur_state = nvt->study_state;
811
812                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
813
814                 if (cur_state == ST_STUDY_NONE)
815                         nvt_clear_cir_fifo(nvt);
816         }
817
818         if (status & CIR_IRSTS_TE)
819                 nvt_clear_tx_fifo(nvt);
820
821         if (status & CIR_IRSTS_TTR) {
822                 unsigned int pos, count;
823                 u8 tmp;
824
825                 spin_lock_irqsave(&nvt->tx.lock, flags);
826
827                 pos = nvt->tx.cur_buf_num;
828                 count = nvt->tx.buf_count;
829
830                 /* Write data into the hardware tx fifo while pos < count */
831                 if (pos < count) {
832                         nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
833                         nvt->tx.cur_buf_num++;
834                 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
835                 } else {
836                         tmp = nvt_cir_reg_read(nvt, CIR_IREN);
837                         nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
838                 }
839
840                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
841
842         }
843
844         if (status & CIR_IRSTS_TFU) {
845                 spin_lock_irqsave(&nvt->tx.lock, flags);
846                 if (nvt->tx.tx_state == ST_TX_REPLY) {
847                         nvt->tx.tx_state = ST_TX_REQUEST;
848                         wake_up(&nvt->tx.queue);
849                 }
850                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
851         }
852
853         nvt_dbg_verbose("%s done", __func__);
854         return IRQ_HANDLED;
855 }
856
857 /* Interrupt service routine for CIR Wake */
858 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
859 {
860         u8 status, iren, val;
861         struct nvt_dev *nvt = data;
862         unsigned long flags;
863
864         nvt_dbg_wake("%s firing", __func__);
865
866         status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
867         if (!status)
868                 return IRQ_NONE;
869
870         if (status & CIR_WAKE_IRSTS_IR_PENDING)
871                 nvt_clear_cir_wake_fifo(nvt);
872
873         nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
874         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
875
876         /* Interrupt may be shared with CIR, bail if Wake not enabled */
877         iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
878         if (!iren) {
879                 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
880                 return IRQ_HANDLED;
881         }
882
883         if ((status & CIR_WAKE_IRSTS_PE) &&
884             (nvt->wake_state == ST_WAKE_START)) {
885                 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
886                         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
887                         nvt_dbg("setting wake up key: 0x%x", val);
888                 }
889
890                 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
891                 spin_lock_irqsave(&nvt->nvt_lock, flags);
892                 nvt->wake_state = ST_WAKE_FINISH;
893                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
894         }
895
896         nvt_dbg_wake("%s done", __func__);
897         return IRQ_HANDLED;
898 }
899
900 static void nvt_enable_cir(struct nvt_dev *nvt)
901 {
902         /* set function enable flags */
903         nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
904                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
905                           CIR_IRCON);
906
907         nvt_efm_enable(nvt);
908
909         /* enable the CIR logical device */
910         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
911         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
912
913         nvt_efm_disable(nvt);
914
915         /* clear all pending interrupts */
916         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
917
918         /* enable interrupts */
919         nvt_set_cir_iren(nvt);
920 }
921
922 static void nvt_disable_cir(struct nvt_dev *nvt)
923 {
924         /* disable CIR interrupts */
925         nvt_cir_reg_write(nvt, 0, CIR_IREN);
926
927         /* clear any and all pending interrupts */
928         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
929
930         /* clear all function enable flags */
931         nvt_cir_reg_write(nvt, 0, CIR_IRCON);
932
933         /* clear hardware rx and tx fifos */
934         nvt_clear_cir_fifo(nvt);
935         nvt_clear_tx_fifo(nvt);
936
937         nvt_efm_enable(nvt);
938
939         /* disable the CIR logical device */
940         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
941         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
942
943         nvt_efm_disable(nvt);
944 }
945
946 static int nvt_open(struct rc_dev *dev)
947 {
948         struct nvt_dev *nvt = dev->priv;
949         unsigned long flags;
950
951         spin_lock_irqsave(&nvt->nvt_lock, flags);
952         nvt_enable_cir(nvt);
953         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
954
955         return 0;
956 }
957
958 static void nvt_close(struct rc_dev *dev)
959 {
960         struct nvt_dev *nvt = dev->priv;
961         unsigned long flags;
962
963         spin_lock_irqsave(&nvt->nvt_lock, flags);
964         nvt_disable_cir(nvt);
965         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
966 }
967
968 /* Allocate memory, probe hardware, and initialize everything */
969 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
970 {
971         struct nvt_dev *nvt;
972         struct rc_dev *rdev;
973         int ret = -ENOMEM;
974
975         nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
976         if (!nvt)
977                 return ret;
978
979         /* input device for IR remote (and tx) */
980         rdev = rc_allocate_device();
981         if (!rdev)
982                 goto exit_free_dev_rdev;
983
984         ret = -ENODEV;
985         /* activate pnp device */
986         if (pnp_activate_dev(pdev) < 0) {
987                 dev_err(&pdev->dev, "Could not activate PNP device!\n");
988                 goto exit_free_dev_rdev;
989         }
990
991         /* validate pnp resources */
992         if (!pnp_port_valid(pdev, 0) ||
993             pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
994                 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
995                 goto exit_free_dev_rdev;
996         }
997
998         if (!pnp_irq_valid(pdev, 0)) {
999                 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1000                 goto exit_free_dev_rdev;
1001         }
1002
1003         if (!pnp_port_valid(pdev, 1) ||
1004             pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1005                 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1006                 goto exit_free_dev_rdev;
1007         }
1008
1009         nvt->cir_addr = pnp_port_start(pdev, 0);
1010         nvt->cir_irq  = pnp_irq(pdev, 0);
1011
1012         nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1013         /* irq is always shared between cir and cir wake */
1014         nvt->cir_wake_irq  = nvt->cir_irq;
1015
1016         nvt->cr_efir = CR_EFIR;
1017         nvt->cr_efdr = CR_EFDR;
1018
1019         spin_lock_init(&nvt->nvt_lock);
1020         spin_lock_init(&nvt->tx.lock);
1021
1022         pnp_set_drvdata(pdev, nvt);
1023         nvt->pdev = pdev;
1024
1025         init_waitqueue_head(&nvt->tx.queue);
1026
1027         nvt_hw_detect(nvt);
1028
1029         /* Initialize CIR & CIR Wake Logical Devices */
1030         nvt_efm_enable(nvt);
1031         nvt_cir_ldev_init(nvt);
1032         nvt_cir_wake_ldev_init(nvt);
1033         nvt_efm_disable(nvt);
1034
1035         /* Initialize CIR & CIR Wake Config Registers */
1036         nvt_cir_regs_init(nvt);
1037         nvt_cir_wake_regs_init(nvt);
1038
1039         /* Set up the rc device */
1040         rdev->priv = nvt;
1041         rdev->driver_type = RC_DRIVER_IR_RAW;
1042         rdev->allowed_protocols = RC_BIT_ALL;
1043         rdev->open = nvt_open;
1044         rdev->close = nvt_close;
1045         rdev->tx_ir = nvt_tx_ir;
1046         rdev->s_tx_carrier = nvt_set_tx_carrier;
1047         rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1048         rdev->input_phys = "nuvoton/cir0";
1049         rdev->input_id.bustype = BUS_HOST;
1050         rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1051         rdev->input_id.product = nvt->chip_major;
1052         rdev->input_id.version = nvt->chip_minor;
1053         rdev->dev.parent = &pdev->dev;
1054         rdev->driver_name = NVT_DRIVER_NAME;
1055         rdev->map_name = RC_MAP_RC6_MCE;
1056         rdev->timeout = MS_TO_NS(100);
1057         /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1058         rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1059 #if 0
1060         rdev->min_timeout = XYZ;
1061         rdev->max_timeout = XYZ;
1062         /* tx bits */
1063         rdev->tx_resolution = XYZ;
1064 #endif
1065         nvt->rdev = rdev;
1066
1067         ret = rc_register_device(rdev);
1068         if (ret)
1069                 goto exit_free_dev_rdev;
1070
1071         ret = -EBUSY;
1072         /* now claim resources */
1073         if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1074                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1075                 goto exit_unregister_device;
1076
1077         if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1078                              IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1079                 goto exit_unregister_device;
1080
1081         if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1082                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1083                 goto exit_unregister_device;
1084
1085         if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
1086                              nvt_cir_wake_isr, IRQF_SHARED,
1087                              NVT_DRIVER_NAME, (void *)nvt))
1088                 goto exit_unregister_device;
1089
1090         device_init_wakeup(&pdev->dev, true);
1091
1092         dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1093         if (debug) {
1094                 cir_dump_regs(nvt);
1095                 cir_wake_dump_regs(nvt);
1096         }
1097
1098         return 0;
1099
1100 exit_unregister_device:
1101         rc_unregister_device(rdev);
1102         rdev = NULL;
1103 exit_free_dev_rdev:
1104         rc_free_device(rdev);
1105
1106         return ret;
1107 }
1108
1109 static void nvt_remove(struct pnp_dev *pdev)
1110 {
1111         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1112         unsigned long flags;
1113
1114         spin_lock_irqsave(&nvt->nvt_lock, flags);
1115         /* disable CIR */
1116         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1117         nvt_disable_cir(nvt);
1118         /* enable CIR Wake (for IR power-on) */
1119         nvt_enable_wake(nvt);
1120         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1121
1122         rc_unregister_device(nvt->rdev);
1123 }
1124
1125 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1126 {
1127         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1128         unsigned long flags;
1129
1130         nvt_dbg("%s called", __func__);
1131
1132         /* zero out misc state tracking */
1133         spin_lock_irqsave(&nvt->nvt_lock, flags);
1134         nvt->study_state = ST_STUDY_NONE;
1135         nvt->wake_state = ST_WAKE_NONE;
1136         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1137
1138         spin_lock_irqsave(&nvt->tx.lock, flags);
1139         nvt->tx.tx_state = ST_TX_NONE;
1140         spin_unlock_irqrestore(&nvt->tx.lock, flags);
1141
1142         /* disable all CIR interrupts */
1143         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1144
1145         nvt_efm_enable(nvt);
1146
1147         /* disable cir logical dev */
1148         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1149         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1150
1151         nvt_efm_disable(nvt);
1152
1153         /* make sure wake is enabled */
1154         nvt_enable_wake(nvt);
1155
1156         return 0;
1157 }
1158
1159 static int nvt_resume(struct pnp_dev *pdev)
1160 {
1161         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1162
1163         nvt_dbg("%s called", __func__);
1164
1165         /* open interrupt */
1166         nvt_set_cir_iren(nvt);
1167
1168         /* Enable CIR logical device */
1169         nvt_efm_enable(nvt);
1170         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1171         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1172
1173         nvt_efm_disable(nvt);
1174
1175         nvt_cir_regs_init(nvt);
1176         nvt_cir_wake_regs_init(nvt);
1177
1178         return 0;
1179 }
1180
1181 static void nvt_shutdown(struct pnp_dev *pdev)
1182 {
1183         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1184         nvt_enable_wake(nvt);
1185 }
1186
1187 static const struct pnp_device_id nvt_ids[] = {
1188         { "WEC0530", 0 },   /* CIR */
1189         { "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1190         { "", 0 },
1191 };
1192
1193 static struct pnp_driver nvt_driver = {
1194         .name           = NVT_DRIVER_NAME,
1195         .id_table       = nvt_ids,
1196         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1197         .probe          = nvt_probe,
1198         .remove         = nvt_remove,
1199         .suspend        = nvt_suspend,
1200         .resume         = nvt_resume,
1201         .shutdown       = nvt_shutdown,
1202 };
1203
1204 module_param(debug, int, S_IRUGO | S_IWUSR);
1205 MODULE_PARM_DESC(debug, "Enable debugging output");
1206
1207 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1208 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1209
1210 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1211 MODULE_LICENSE("GPL");
1212
1213 module_pnp_driver(nvt_driver);