]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/v4l2-core/v4l2-dv-timings.c
drm/amdgpu: use kmemdup rather than duplicating its implementation
[karo-tx-linux.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 /*
2  * v4l2-dv-timings - dv-timings helper functions
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
28 #include <linux/math64.h>
29
30 MODULE_AUTHOR("Hans Verkuil");
31 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
32 MODULE_LICENSE("GPL");
33
34 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
35         V4L2_DV_BT_CEA_640X480P59_94,
36         V4L2_DV_BT_CEA_720X480I59_94,
37         V4L2_DV_BT_CEA_720X480P59_94,
38         V4L2_DV_BT_CEA_720X576I50,
39         V4L2_DV_BT_CEA_720X576P50,
40         V4L2_DV_BT_CEA_1280X720P24,
41         V4L2_DV_BT_CEA_1280X720P25,
42         V4L2_DV_BT_CEA_1280X720P30,
43         V4L2_DV_BT_CEA_1280X720P50,
44         V4L2_DV_BT_CEA_1280X720P60,
45         V4L2_DV_BT_CEA_1920X1080P24,
46         V4L2_DV_BT_CEA_1920X1080P25,
47         V4L2_DV_BT_CEA_1920X1080P30,
48         V4L2_DV_BT_CEA_1920X1080I50,
49         V4L2_DV_BT_CEA_1920X1080P50,
50         V4L2_DV_BT_CEA_1920X1080I60,
51         V4L2_DV_BT_CEA_1920X1080P60,
52         V4L2_DV_BT_DMT_640X350P85,
53         V4L2_DV_BT_DMT_640X400P85,
54         V4L2_DV_BT_DMT_720X400P85,
55         V4L2_DV_BT_DMT_640X480P72,
56         V4L2_DV_BT_DMT_640X480P75,
57         V4L2_DV_BT_DMT_640X480P85,
58         V4L2_DV_BT_DMT_800X600P56,
59         V4L2_DV_BT_DMT_800X600P60,
60         V4L2_DV_BT_DMT_800X600P72,
61         V4L2_DV_BT_DMT_800X600P75,
62         V4L2_DV_BT_DMT_800X600P85,
63         V4L2_DV_BT_DMT_800X600P120_RB,
64         V4L2_DV_BT_DMT_848X480P60,
65         V4L2_DV_BT_DMT_1024X768I43,
66         V4L2_DV_BT_DMT_1024X768P60,
67         V4L2_DV_BT_DMT_1024X768P70,
68         V4L2_DV_BT_DMT_1024X768P75,
69         V4L2_DV_BT_DMT_1024X768P85,
70         V4L2_DV_BT_DMT_1024X768P120_RB,
71         V4L2_DV_BT_DMT_1152X864P75,
72         V4L2_DV_BT_DMT_1280X768P60_RB,
73         V4L2_DV_BT_DMT_1280X768P60,
74         V4L2_DV_BT_DMT_1280X768P75,
75         V4L2_DV_BT_DMT_1280X768P85,
76         V4L2_DV_BT_DMT_1280X768P120_RB,
77         V4L2_DV_BT_DMT_1280X800P60_RB,
78         V4L2_DV_BT_DMT_1280X800P60,
79         V4L2_DV_BT_DMT_1280X800P75,
80         V4L2_DV_BT_DMT_1280X800P85,
81         V4L2_DV_BT_DMT_1280X800P120_RB,
82         V4L2_DV_BT_DMT_1280X960P60,
83         V4L2_DV_BT_DMT_1280X960P85,
84         V4L2_DV_BT_DMT_1280X960P120_RB,
85         V4L2_DV_BT_DMT_1280X1024P60,
86         V4L2_DV_BT_DMT_1280X1024P75,
87         V4L2_DV_BT_DMT_1280X1024P85,
88         V4L2_DV_BT_DMT_1280X1024P120_RB,
89         V4L2_DV_BT_DMT_1360X768P60,
90         V4L2_DV_BT_DMT_1360X768P120_RB,
91         V4L2_DV_BT_DMT_1366X768P60,
92         V4L2_DV_BT_DMT_1366X768P60_RB,
93         V4L2_DV_BT_DMT_1400X1050P60_RB,
94         V4L2_DV_BT_DMT_1400X1050P60,
95         V4L2_DV_BT_DMT_1400X1050P75,
96         V4L2_DV_BT_DMT_1400X1050P85,
97         V4L2_DV_BT_DMT_1400X1050P120_RB,
98         V4L2_DV_BT_DMT_1440X900P60_RB,
99         V4L2_DV_BT_DMT_1440X900P60,
100         V4L2_DV_BT_DMT_1440X900P75,
101         V4L2_DV_BT_DMT_1440X900P85,
102         V4L2_DV_BT_DMT_1440X900P120_RB,
103         V4L2_DV_BT_DMT_1600X900P60_RB,
104         V4L2_DV_BT_DMT_1600X1200P60,
105         V4L2_DV_BT_DMT_1600X1200P65,
106         V4L2_DV_BT_DMT_1600X1200P70,
107         V4L2_DV_BT_DMT_1600X1200P75,
108         V4L2_DV_BT_DMT_1600X1200P85,
109         V4L2_DV_BT_DMT_1600X1200P120_RB,
110         V4L2_DV_BT_DMT_1680X1050P60_RB,
111         V4L2_DV_BT_DMT_1680X1050P60,
112         V4L2_DV_BT_DMT_1680X1050P75,
113         V4L2_DV_BT_DMT_1680X1050P85,
114         V4L2_DV_BT_DMT_1680X1050P120_RB,
115         V4L2_DV_BT_DMT_1792X1344P60,
116         V4L2_DV_BT_DMT_1792X1344P75,
117         V4L2_DV_BT_DMT_1792X1344P120_RB,
118         V4L2_DV_BT_DMT_1856X1392P60,
119         V4L2_DV_BT_DMT_1856X1392P75,
120         V4L2_DV_BT_DMT_1856X1392P120_RB,
121         V4L2_DV_BT_DMT_1920X1200P60_RB,
122         V4L2_DV_BT_DMT_1920X1200P60,
123         V4L2_DV_BT_DMT_1920X1200P75,
124         V4L2_DV_BT_DMT_1920X1200P85,
125         V4L2_DV_BT_DMT_1920X1200P120_RB,
126         V4L2_DV_BT_DMT_1920X1440P60,
127         V4L2_DV_BT_DMT_1920X1440P75,
128         V4L2_DV_BT_DMT_1920X1440P120_RB,
129         V4L2_DV_BT_DMT_2048X1152P60_RB,
130         V4L2_DV_BT_DMT_2560X1600P60_RB,
131         V4L2_DV_BT_DMT_2560X1600P60,
132         V4L2_DV_BT_DMT_2560X1600P75,
133         V4L2_DV_BT_DMT_2560X1600P85,
134         V4L2_DV_BT_DMT_2560X1600P120_RB,
135         V4L2_DV_BT_CEA_3840X2160P24,
136         V4L2_DV_BT_CEA_3840X2160P25,
137         V4L2_DV_BT_CEA_3840X2160P30,
138         V4L2_DV_BT_CEA_3840X2160P50,
139         V4L2_DV_BT_CEA_3840X2160P60,
140         V4L2_DV_BT_CEA_4096X2160P24,
141         V4L2_DV_BT_CEA_4096X2160P25,
142         V4L2_DV_BT_CEA_4096X2160P30,
143         V4L2_DV_BT_CEA_4096X2160P50,
144         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
145         V4L2_DV_BT_CEA_4096X2160P60,
146         { }
147 };
148 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
149
150 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
151                            const struct v4l2_dv_timings_cap *dvcap,
152                            v4l2_check_dv_timings_fnc fnc,
153                            void *fnc_handle)
154 {
155         const struct v4l2_bt_timings *bt = &t->bt;
156         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
157         u32 caps = cap->capabilities;
158
159         if (t->type != V4L2_DV_BT_656_1120)
160                 return false;
161         if (t->type != dvcap->type ||
162             bt->height < cap->min_height ||
163             bt->height > cap->max_height ||
164             bt->width < cap->min_width ||
165             bt->width > cap->max_width ||
166             bt->pixelclock < cap->min_pixelclock ||
167             bt->pixelclock > cap->max_pixelclock ||
168             (cap->standards && bt->standards &&
169              !(bt->standards & cap->standards)) ||
170             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
171             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
172                 return false;
173         return fnc == NULL || fnc(t, fnc_handle);
174 }
175 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
176
177 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
178                              const struct v4l2_dv_timings_cap *cap,
179                              v4l2_check_dv_timings_fnc fnc,
180                              void *fnc_handle)
181 {
182         u32 i, idx;
183
184         memset(t->reserved, 0, sizeof(t->reserved));
185         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
186                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
187                                           fnc, fnc_handle) &&
188                     idx++ == t->index) {
189                         t->timings = v4l2_dv_timings_presets[i];
190                         return 0;
191                 }
192         }
193         return -EINVAL;
194 }
195 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
196
197 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
198                               const struct v4l2_dv_timings_cap *cap,
199                               unsigned pclock_delta,
200                               v4l2_check_dv_timings_fnc fnc,
201                               void *fnc_handle)
202 {
203         int i;
204
205         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
206                 return false;
207
208         for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
209                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
210                                           fnc, fnc_handle) &&
211                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
212                                           pclock_delta)) {
213                         *t = v4l2_dv_timings_presets[i];
214                         return true;
215                 }
216         }
217         return false;
218 }
219 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
220
221 /**
222  * v4l2_match_dv_timings - check if two timings match
223  * @t1 - compare this v4l2_dv_timings struct...
224  * @t2 - with this struct.
225  * @pclock_delta - the allowed pixelclock deviation.
226  *
227  * Compare t1 with t2 with a given margin of error for the pixelclock.
228  */
229 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
230                            const struct v4l2_dv_timings *t2,
231                            unsigned pclock_delta)
232 {
233         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
234                 return false;
235         if (t1->bt.width == t2->bt.width &&
236             t1->bt.height == t2->bt.height &&
237             t1->bt.interlaced == t2->bt.interlaced &&
238             t1->bt.polarities == t2->bt.polarities &&
239             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
240             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
241             t1->bt.hfrontporch == t2->bt.hfrontporch &&
242             t1->bt.vfrontporch == t2->bt.vfrontporch &&
243             t1->bt.vsync == t2->bt.vsync &&
244             t1->bt.vbackporch == t2->bt.vbackporch &&
245             (!t1->bt.interlaced ||
246                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
247                  t1->bt.il_vsync == t2->bt.il_vsync &&
248                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
249                 return true;
250         return false;
251 }
252 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
253
254 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
255                            const struct v4l2_dv_timings *t, bool detailed)
256 {
257         const struct v4l2_bt_timings *bt = &t->bt;
258         u32 htot, vtot;
259
260         if (t->type != V4L2_DV_BT_656_1120)
261                 return;
262
263         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
264         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
265         if (bt->interlaced)
266                 vtot /= 2;
267
268         if (prefix == NULL)
269                 prefix = "";
270
271         pr_info("%s: %s%ux%u%s%u (%ux%u)\n", dev_prefix, prefix,
272                 bt->width, bt->height, bt->interlaced ? "i" : "p",
273                 (htot * vtot) > 0 ? ((u32)bt->pixelclock / (htot * vtot)) : 0,
274                 htot, vtot);
275
276         if (!detailed)
277                 return;
278
279         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
280                         dev_prefix, bt->hfrontporch,
281                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
282                         bt->hsync, bt->hbackporch);
283         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
284                         dev_prefix, bt->vfrontporch,
285                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
286                         bt->vsync, bt->vbackporch);
287         if (bt->interlaced)
288                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
289                         dev_prefix, bt->il_vfrontporch,
290                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
291                         bt->il_vsync, bt->il_vbackporch);
292         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
293         pr_info("%s: flags (0x%x):%s%s%s%s%s\n", dev_prefix, bt->flags,
294                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
295                         " REDUCED_BLANKING" : "",
296                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
297                         " CAN_REDUCE_FPS" : "",
298                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
299                         " REDUCED_FPS" : "",
300                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
301                         " HALF_LINE" : "",
302                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
303                         " CE_VIDEO" : "");
304         pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix, bt->standards,
305                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
306                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
307                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
308                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "");
309 }
310 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
311
312 /*
313  * CVT defines
314  * Based on Coordinated Video Timings Standard
315  * version 1.1 September 10, 2003
316  */
317
318 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
319
320 /* Normal blanking */
321 #define CVT_MIN_V_BPORCH        7       /* lines */
322 #define CVT_MIN_V_PORCH_RND     3       /* lines */
323 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
324 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
325
326 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
327 #define CVT_CELL_GRAN           8       /* character cell granularity */
328 #define CVT_M                   600     /* blanking formula gradient */
329 #define CVT_C                   40      /* blanking formula offset */
330 #define CVT_K                   128     /* blanking formula scaling factor */
331 #define CVT_J                   20      /* blanking formula scaling factor */
332 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
333 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
334
335 /* Reduced Blanking */
336 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
337 #define CVT_RB_V_FPORCH        3       /* lines  */
338 #define CVT_RB_MIN_V_BLANK   460     /* us     */
339 #define CVT_RB_H_SYNC         32       /* pixels */
340 #define CVT_RB_H_BPORCH       80       /* pixels */
341 #define CVT_RB_H_BLANK       160       /* pixels */
342
343 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
344  * @frame_height - the total height of the frame (including blanking) in lines.
345  * @hfreq - the horizontal frequency in Hz.
346  * @vsync - the height of the vertical sync in lines.
347  * @polarities - the horizontal and vertical polarities (same as struct
348  *              v4l2_bt_timings polarities).
349  * @interlaced - if this flag is true, it indicates interlaced format
350  * @fmt - the resulting timings.
351  *
352  * This function will attempt to detect if the given values correspond to a
353  * valid CVT format. If so, then it will return true, and fmt will be filled
354  * in with the found CVT timings.
355  *
356  * TODO: VESA defined a new version 2 of their reduced blanking
357  * formula. Support for that is currently missing in this CVT
358  * detection function.
359  */
360 bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync,
361                 u32 polarities, bool interlaced, struct v4l2_dv_timings *fmt)
362 {
363         int  v_fp, v_bp, h_fp, h_bp, hsync;
364         int  frame_width, image_height, image_width;
365         bool reduced_blanking;
366         unsigned pix_clk;
367
368         if (vsync < 4 || vsync > 7)
369                 return false;
370
371         if (polarities == V4L2_DV_VSYNC_POS_POL)
372                 reduced_blanking = false;
373         else if (polarities == V4L2_DV_HSYNC_POS_POL)
374                 reduced_blanking = true;
375         else
376                 return false;
377
378         if (hfreq == 0)
379                 return false;
380
381         /* Vertical */
382         if (reduced_blanking) {
383                 v_fp = CVT_RB_V_FPORCH;
384                 v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
385                 v_bp -= vsync + v_fp;
386
387                 if (v_bp < CVT_RB_MIN_V_BPORCH)
388                         v_bp = CVT_RB_MIN_V_BPORCH;
389         } else {
390                 v_fp = CVT_MIN_V_PORCH_RND;
391                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
392
393                 if (v_bp < CVT_MIN_V_BPORCH)
394                         v_bp = CVT_MIN_V_BPORCH;
395         }
396
397         if (interlaced)
398                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
399         else
400                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
401
402         if (image_height < 0)
403                 return false;
404
405         /* Aspect ratio based on vsync */
406         switch (vsync) {
407         case 4:
408                 image_width = (image_height * 4) / 3;
409                 break;
410         case 5:
411                 image_width = (image_height * 16) / 9;
412                 break;
413         case 6:
414                 image_width = (image_height * 16) / 10;
415                 break;
416         case 7:
417                 /* special case */
418                 if (image_height == 1024)
419                         image_width = (image_height * 5) / 4;
420                 else if (image_height == 768)
421                         image_width = (image_height * 15) / 9;
422                 else
423                         return false;
424                 break;
425         default:
426                 return false;
427         }
428
429         image_width = image_width & ~7;
430
431         /* Horizontal */
432         if (reduced_blanking) {
433                 pix_clk = (image_width + CVT_RB_H_BLANK) * hfreq;
434                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
435
436                 h_bp = CVT_RB_H_BPORCH;
437                 hsync = CVT_RB_H_SYNC;
438                 h_fp = CVT_RB_H_BLANK - h_bp - hsync;
439
440                 frame_width = image_width + CVT_RB_H_BLANK;
441         } else {
442                 unsigned ideal_duty_cycle_per_myriad =
443                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
444                 int h_blank;
445
446                 if (ideal_duty_cycle_per_myriad < 2000)
447                         ideal_duty_cycle_per_myriad = 2000;
448
449                 h_blank = image_width * ideal_duty_cycle_per_myriad /
450                                         (10000 - ideal_duty_cycle_per_myriad);
451                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
452
453                 pix_clk = (image_width + h_blank) * hfreq;
454                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
455
456                 h_bp = h_blank / 2;
457                 frame_width = image_width + h_blank;
458
459                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
460                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
461                 h_fp = h_blank - hsync - h_bp;
462         }
463
464         fmt->type = V4L2_DV_BT_656_1120;
465         fmt->bt.polarities = polarities;
466         fmt->bt.width = image_width;
467         fmt->bt.height = image_height;
468         fmt->bt.hfrontporch = h_fp;
469         fmt->bt.vfrontporch = v_fp;
470         fmt->bt.hsync = hsync;
471         fmt->bt.vsync = vsync;
472         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
473
474         if (!interlaced) {
475                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
476                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
477         } else {
478                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
479                                       2 * vsync) / 2;
480                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
481                                         2 * vsync - fmt->bt.vbackporch;
482                 fmt->bt.il_vfrontporch = v_fp;
483                 fmt->bt.il_vsync = vsync;
484                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
485                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
486         }
487
488         fmt->bt.pixelclock = pix_clk;
489         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
490
491         if (reduced_blanking)
492                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
493
494         return true;
495 }
496 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
497
498 /*
499  * GTF defines
500  * Based on Generalized Timing Formula Standard
501  * Version 1.1 September 2, 1999
502  */
503
504 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
505
506 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
507 #define GTF_V_FP                1       /* vertical front porch (lines) */
508 #define GTF_CELL_GRAN           8       /* character cell granularity */
509
510 /* Default */
511 #define GTF_D_M                 600     /* blanking formula gradient */
512 #define GTF_D_C                 40      /* blanking formula offset */
513 #define GTF_D_K                 128     /* blanking formula scaling factor */
514 #define GTF_D_J                 20      /* blanking formula scaling factor */
515 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
516 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
517
518 /* Secondary */
519 #define GTF_S_M                 3600    /* blanking formula gradient */
520 #define GTF_S_C                 40      /* blanking formula offset */
521 #define GTF_S_K                 128     /* blanking formula scaling factor */
522 #define GTF_S_J                 35      /* blanking formula scaling factor */
523 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
524 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
525
526 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
527  * @frame_height - the total height of the frame (including blanking) in lines.
528  * @hfreq - the horizontal frequency in Hz.
529  * @vsync - the height of the vertical sync in lines.
530  * @polarities - the horizontal and vertical polarities (same as struct
531  *              v4l2_bt_timings polarities).
532  * @interlaced - if this flag is true, it indicates interlaced format
533  * @aspect - preferred aspect ratio. GTF has no method of determining the
534  *              aspect ratio in order to derive the image width from the
535  *              image height, so it has to be passed explicitly. Usually
536  *              the native screen aspect ratio is used for this. If it
537  *              is not filled in correctly, then 16:9 will be assumed.
538  * @fmt - the resulting timings.
539  *
540  * This function will attempt to detect if the given values correspond to a
541  * valid GTF format. If so, then it will return true, and fmt will be filled
542  * in with the found GTF timings.
543  */
544 bool v4l2_detect_gtf(unsigned frame_height,
545                 unsigned hfreq,
546                 unsigned vsync,
547                 u32 polarities,
548                 bool interlaced,
549                 struct v4l2_fract aspect,
550                 struct v4l2_dv_timings *fmt)
551 {
552         int pix_clk;
553         int  v_fp, v_bp, h_fp, hsync;
554         int frame_width, image_height, image_width;
555         bool default_gtf;
556         int h_blank;
557
558         if (vsync != 3)
559                 return false;
560
561         if (polarities == V4L2_DV_VSYNC_POS_POL)
562                 default_gtf = true;
563         else if (polarities == V4L2_DV_HSYNC_POS_POL)
564                 default_gtf = false;
565         else
566                 return false;
567
568         if (hfreq == 0)
569                 return false;
570
571         /* Vertical */
572         v_fp = GTF_V_FP;
573         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
574         if (interlaced)
575                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
576         else
577                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
578
579         if (image_height < 0)
580                 return false;
581
582         if (aspect.numerator == 0 || aspect.denominator == 0) {
583                 aspect.numerator = 16;
584                 aspect.denominator = 9;
585         }
586         image_width = ((image_height * aspect.numerator) / aspect.denominator);
587         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
588
589         /* Horizontal */
590         if (default_gtf) {
591                 u64 num;
592                 u32 den;
593
594                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
595                       ((u64)image_width * GTF_D_M_PRIME * 1000));
596                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
597                       (2 * GTF_CELL_GRAN);
598                 h_blank = div_u64((num + (den >> 1)), den);
599                 h_blank *= (2 * GTF_CELL_GRAN);
600         } else {
601                 u64 num;
602                 u32 den;
603
604                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
605                       ((u64)image_width * GTF_S_M_PRIME * 1000));
606                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
607                       (2 * GTF_CELL_GRAN);
608                 h_blank = div_u64((num + (den >> 1)), den);
609                 h_blank *= (2 * GTF_CELL_GRAN);
610         }
611
612         frame_width = image_width + h_blank;
613
614         pix_clk = (image_width + h_blank) * hfreq;
615         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
616
617         hsync = (frame_width * 8 + 50) / 100;
618         hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
619
620         h_fp = h_blank / 2 - hsync;
621
622         fmt->type = V4L2_DV_BT_656_1120;
623         fmt->bt.polarities = polarities;
624         fmt->bt.width = image_width;
625         fmt->bt.height = image_height;
626         fmt->bt.hfrontporch = h_fp;
627         fmt->bt.vfrontporch = v_fp;
628         fmt->bt.hsync = hsync;
629         fmt->bt.vsync = vsync;
630         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
631
632         if (!interlaced) {
633                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
634                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
635         } else {
636                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
637                                       2 * vsync) / 2;
638                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
639                                         2 * vsync - fmt->bt.vbackporch;
640                 fmt->bt.il_vfrontporch = v_fp;
641                 fmt->bt.il_vsync = vsync;
642                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
643                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
644         }
645
646         fmt->bt.pixelclock = pix_clk;
647         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
648
649         if (!default_gtf)
650                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
651
652         return true;
653 }
654 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
655
656 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
657  *      0x15 and 0x16 from the EDID.
658  * @hor_landscape - byte 0x15 from the EDID.
659  * @vert_portrait - byte 0x16 from the EDID.
660  *
661  * Determines the aspect ratio from the EDID.
662  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
663  * "Horizontal and Vertical Screen Size or Aspect Ratio"
664  */
665 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
666 {
667         struct v4l2_fract aspect = { 16, 9 };
668         u32 tmp;
669         u8 ratio;
670
671         /* Nothing filled in, fallback to 16:9 */
672         if (!hor_landscape && !vert_portrait)
673                 return aspect;
674         /* Both filled in, so they are interpreted as the screen size in cm */
675         if (hor_landscape && vert_portrait) {
676                 aspect.numerator = hor_landscape;
677                 aspect.denominator = vert_portrait;
678                 return aspect;
679         }
680         /* Only one is filled in, so interpret them as a ratio:
681            (val + 99) / 100 */
682         ratio = hor_landscape | vert_portrait;
683         /* Change some rounded values into the exact aspect ratio */
684         if (ratio == 79) {
685                 aspect.numerator = 16;
686                 aspect.denominator = 9;
687         } else if (ratio == 34) {
688                 aspect.numerator = 4;
689                 aspect.denominator = 3;
690         } else if (ratio == 68) {
691                 aspect.numerator = 15;
692                 aspect.denominator = 9;
693         } else {
694                 aspect.numerator = hor_landscape + 99;
695                 aspect.denominator = 100;
696         }
697         if (hor_landscape)
698                 return aspect;
699         /* The aspect ratio is for portrait, so swap numerator and denominator */
700         tmp = aspect.denominator;
701         aspect.denominator = aspect.numerator;
702         aspect.numerator = tmp;
703         return aspect;
704 }
705 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);