]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/media/v4l2-core/v4l2-dv-timings.c
rcu: Remove expedited GP funnel-lock bypass
[karo-tx-linux.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 /*
2  * v4l2-dv-timings - dv-timings helper functions
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
28 #include <linux/math64.h>
29
30 MODULE_AUTHOR("Hans Verkuil");
31 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
32 MODULE_LICENSE("GPL");
33
34 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
35         V4L2_DV_BT_CEA_640X480P59_94,
36         V4L2_DV_BT_CEA_720X480I59_94,
37         V4L2_DV_BT_CEA_720X480P59_94,
38         V4L2_DV_BT_CEA_720X576I50,
39         V4L2_DV_BT_CEA_720X576P50,
40         V4L2_DV_BT_CEA_1280X720P24,
41         V4L2_DV_BT_CEA_1280X720P25,
42         V4L2_DV_BT_CEA_1280X720P30,
43         V4L2_DV_BT_CEA_1280X720P50,
44         V4L2_DV_BT_CEA_1280X720P60,
45         V4L2_DV_BT_CEA_1920X1080P24,
46         V4L2_DV_BT_CEA_1920X1080P25,
47         V4L2_DV_BT_CEA_1920X1080P30,
48         V4L2_DV_BT_CEA_1920X1080I50,
49         V4L2_DV_BT_CEA_1920X1080P50,
50         V4L2_DV_BT_CEA_1920X1080I60,
51         V4L2_DV_BT_CEA_1920X1080P60,
52         V4L2_DV_BT_DMT_640X350P85,
53         V4L2_DV_BT_DMT_640X400P85,
54         V4L2_DV_BT_DMT_720X400P85,
55         V4L2_DV_BT_DMT_640X480P72,
56         V4L2_DV_BT_DMT_640X480P75,
57         V4L2_DV_BT_DMT_640X480P85,
58         V4L2_DV_BT_DMT_800X600P56,
59         V4L2_DV_BT_DMT_800X600P60,
60         V4L2_DV_BT_DMT_800X600P72,
61         V4L2_DV_BT_DMT_800X600P75,
62         V4L2_DV_BT_DMT_800X600P85,
63         V4L2_DV_BT_DMT_800X600P120_RB,
64         V4L2_DV_BT_DMT_848X480P60,
65         V4L2_DV_BT_DMT_1024X768I43,
66         V4L2_DV_BT_DMT_1024X768P60,
67         V4L2_DV_BT_DMT_1024X768P70,
68         V4L2_DV_BT_DMT_1024X768P75,
69         V4L2_DV_BT_DMT_1024X768P85,
70         V4L2_DV_BT_DMT_1024X768P120_RB,
71         V4L2_DV_BT_DMT_1152X864P75,
72         V4L2_DV_BT_DMT_1280X768P60_RB,
73         V4L2_DV_BT_DMT_1280X768P60,
74         V4L2_DV_BT_DMT_1280X768P75,
75         V4L2_DV_BT_DMT_1280X768P85,
76         V4L2_DV_BT_DMT_1280X768P120_RB,
77         V4L2_DV_BT_DMT_1280X800P60_RB,
78         V4L2_DV_BT_DMT_1280X800P60,
79         V4L2_DV_BT_DMT_1280X800P75,
80         V4L2_DV_BT_DMT_1280X800P85,
81         V4L2_DV_BT_DMT_1280X800P120_RB,
82         V4L2_DV_BT_DMT_1280X960P60,
83         V4L2_DV_BT_DMT_1280X960P85,
84         V4L2_DV_BT_DMT_1280X960P120_RB,
85         V4L2_DV_BT_DMT_1280X1024P60,
86         V4L2_DV_BT_DMT_1280X1024P75,
87         V4L2_DV_BT_DMT_1280X1024P85,
88         V4L2_DV_BT_DMT_1280X1024P120_RB,
89         V4L2_DV_BT_DMT_1360X768P60,
90         V4L2_DV_BT_DMT_1360X768P120_RB,
91         V4L2_DV_BT_DMT_1366X768P60,
92         V4L2_DV_BT_DMT_1366X768P60_RB,
93         V4L2_DV_BT_DMT_1400X1050P60_RB,
94         V4L2_DV_BT_DMT_1400X1050P60,
95         V4L2_DV_BT_DMT_1400X1050P75,
96         V4L2_DV_BT_DMT_1400X1050P85,
97         V4L2_DV_BT_DMT_1400X1050P120_RB,
98         V4L2_DV_BT_DMT_1440X900P60_RB,
99         V4L2_DV_BT_DMT_1440X900P60,
100         V4L2_DV_BT_DMT_1440X900P75,
101         V4L2_DV_BT_DMT_1440X900P85,
102         V4L2_DV_BT_DMT_1440X900P120_RB,
103         V4L2_DV_BT_DMT_1600X900P60_RB,
104         V4L2_DV_BT_DMT_1600X1200P60,
105         V4L2_DV_BT_DMT_1600X1200P65,
106         V4L2_DV_BT_DMT_1600X1200P70,
107         V4L2_DV_BT_DMT_1600X1200P75,
108         V4L2_DV_BT_DMT_1600X1200P85,
109         V4L2_DV_BT_DMT_1600X1200P120_RB,
110         V4L2_DV_BT_DMT_1680X1050P60_RB,
111         V4L2_DV_BT_DMT_1680X1050P60,
112         V4L2_DV_BT_DMT_1680X1050P75,
113         V4L2_DV_BT_DMT_1680X1050P85,
114         V4L2_DV_BT_DMT_1680X1050P120_RB,
115         V4L2_DV_BT_DMT_1792X1344P60,
116         V4L2_DV_BT_DMT_1792X1344P75,
117         V4L2_DV_BT_DMT_1792X1344P120_RB,
118         V4L2_DV_BT_DMT_1856X1392P60,
119         V4L2_DV_BT_DMT_1856X1392P75,
120         V4L2_DV_BT_DMT_1856X1392P120_RB,
121         V4L2_DV_BT_DMT_1920X1200P60_RB,
122         V4L2_DV_BT_DMT_1920X1200P60,
123         V4L2_DV_BT_DMT_1920X1200P75,
124         V4L2_DV_BT_DMT_1920X1200P85,
125         V4L2_DV_BT_DMT_1920X1200P120_RB,
126         V4L2_DV_BT_DMT_1920X1440P60,
127         V4L2_DV_BT_DMT_1920X1440P75,
128         V4L2_DV_BT_DMT_1920X1440P120_RB,
129         V4L2_DV_BT_DMT_2048X1152P60_RB,
130         V4L2_DV_BT_DMT_2560X1600P60_RB,
131         V4L2_DV_BT_DMT_2560X1600P60,
132         V4L2_DV_BT_DMT_2560X1600P75,
133         V4L2_DV_BT_DMT_2560X1600P85,
134         V4L2_DV_BT_DMT_2560X1600P120_RB,
135         V4L2_DV_BT_CEA_3840X2160P24,
136         V4L2_DV_BT_CEA_3840X2160P25,
137         V4L2_DV_BT_CEA_3840X2160P30,
138         V4L2_DV_BT_CEA_3840X2160P50,
139         V4L2_DV_BT_CEA_3840X2160P60,
140         V4L2_DV_BT_CEA_4096X2160P24,
141         V4L2_DV_BT_CEA_4096X2160P25,
142         V4L2_DV_BT_CEA_4096X2160P30,
143         V4L2_DV_BT_CEA_4096X2160P50,
144         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
145         V4L2_DV_BT_CEA_4096X2160P60,
146         { }
147 };
148 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
149
150 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
151                            const struct v4l2_dv_timings_cap *dvcap,
152                            v4l2_check_dv_timings_fnc fnc,
153                            void *fnc_handle)
154 {
155         const struct v4l2_bt_timings *bt = &t->bt;
156         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
157         u32 caps = cap->capabilities;
158
159         if (t->type != V4L2_DV_BT_656_1120)
160                 return false;
161         if (t->type != dvcap->type ||
162             bt->height < cap->min_height ||
163             bt->height > cap->max_height ||
164             bt->width < cap->min_width ||
165             bt->width > cap->max_width ||
166             bt->pixelclock < cap->min_pixelclock ||
167             bt->pixelclock > cap->max_pixelclock ||
168             (cap->standards && bt->standards &&
169              !(bt->standards & cap->standards)) ||
170             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
171             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
172                 return false;
173         return fnc == NULL || fnc(t, fnc_handle);
174 }
175 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
176
177 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
178                              const struct v4l2_dv_timings_cap *cap,
179                              v4l2_check_dv_timings_fnc fnc,
180                              void *fnc_handle)
181 {
182         u32 i, idx;
183
184         memset(t->reserved, 0, sizeof(t->reserved));
185         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
186                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
187                                           fnc, fnc_handle) &&
188                     idx++ == t->index) {
189                         t->timings = v4l2_dv_timings_presets[i];
190                         return 0;
191                 }
192         }
193         return -EINVAL;
194 }
195 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
196
197 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
198                               const struct v4l2_dv_timings_cap *cap,
199                               unsigned pclock_delta,
200                               v4l2_check_dv_timings_fnc fnc,
201                               void *fnc_handle)
202 {
203         int i;
204
205         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
206                 return false;
207
208         for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
209                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
210                                           fnc, fnc_handle) &&
211                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
212                                           pclock_delta, false)) {
213                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
214
215                         *t = v4l2_dv_timings_presets[i];
216                         if (can_reduce_fps(&t->bt))
217                                 t->bt.flags |= flags;
218
219                         return true;
220                 }
221         }
222         return false;
223 }
224 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
225
226 /**
227  * v4l2_match_dv_timings - check if two timings match
228  * @t1 - compare this v4l2_dv_timings struct...
229  * @t2 - with this struct.
230  * @pclock_delta - the allowed pixelclock deviation.
231  * @match_reduced_fps - if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
232  * match.
233  *
234  * Compare t1 with t2 with a given margin of error for the pixelclock.
235  */
236 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
237                            const struct v4l2_dv_timings *t2,
238                            unsigned pclock_delta, bool match_reduced_fps)
239 {
240         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
241                 return false;
242         if (t1->bt.width == t2->bt.width &&
243             t1->bt.height == t2->bt.height &&
244             t1->bt.interlaced == t2->bt.interlaced &&
245             t1->bt.polarities == t2->bt.polarities &&
246             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
247             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
248             t1->bt.hfrontporch == t2->bt.hfrontporch &&
249             t1->bt.hsync == t2->bt.hsync &&
250             t1->bt.hbackporch == t2->bt.hbackporch &&
251             t1->bt.vfrontporch == t2->bt.vfrontporch &&
252             t1->bt.vsync == t2->bt.vsync &&
253             t1->bt.vbackporch == t2->bt.vbackporch &&
254             (!match_reduced_fps ||
255              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
256                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
257             (!t1->bt.interlaced ||
258                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
259                  t1->bt.il_vsync == t2->bt.il_vsync &&
260                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
261                 return true;
262         return false;
263 }
264 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
265
266 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
267                            const struct v4l2_dv_timings *t, bool detailed)
268 {
269         const struct v4l2_bt_timings *bt = &t->bt;
270         u32 htot, vtot;
271         u32 fps;
272
273         if (t->type != V4L2_DV_BT_656_1120)
274                 return;
275
276         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
277         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
278         if (bt->interlaced)
279                 vtot /= 2;
280
281         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
282                                   (htot * vtot)) : 0;
283
284         if (prefix == NULL)
285                 prefix = "";
286
287         pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
288                 bt->width, bt->height, bt->interlaced ? "i" : "p",
289                 fps / 100, fps % 100, htot, vtot);
290
291         if (!detailed)
292                 return;
293
294         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
295                         dev_prefix, bt->hfrontporch,
296                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
297                         bt->hsync, bt->hbackporch);
298         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
299                         dev_prefix, bt->vfrontporch,
300                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
301                         bt->vsync, bt->vbackporch);
302         if (bt->interlaced)
303                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
304                         dev_prefix, bt->il_vfrontporch,
305                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
306                         bt->il_vsync, bt->il_vbackporch);
307         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
308         pr_info("%s: flags (0x%x):%s%s%s%s%s%s\n", dev_prefix, bt->flags,
309                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
310                         " REDUCED_BLANKING" : "",
311                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
312                          bt->vsync == 8) ? " (V2)" : "",
313                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
314                         " CAN_REDUCE_FPS" : "",
315                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
316                         " REDUCED_FPS" : "",
317                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
318                         " HALF_LINE" : "",
319                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
320                         " CE_VIDEO" : "");
321         pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix, bt->standards,
322                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
323                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
324                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
325                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "");
326 }
327 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
328
329 /*
330  * CVT defines
331  * Based on Coordinated Video Timings Standard
332  * version 1.1 September 10, 2003
333  */
334
335 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
336 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
337
338 /* Normal blanking */
339 #define CVT_MIN_V_BPORCH        7       /* lines */
340 #define CVT_MIN_V_PORCH_RND     3       /* lines */
341 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
342 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
343
344 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
345 #define CVT_CELL_GRAN           8       /* character cell granularity */
346 #define CVT_M                   600     /* blanking formula gradient */
347 #define CVT_C                   40      /* blanking formula offset */
348 #define CVT_K                   128     /* blanking formula scaling factor */
349 #define CVT_J                   20      /* blanking formula scaling factor */
350 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
351 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
352
353 /* Reduced Blanking */
354 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
355 #define CVT_RB_V_FPORCH        3       /* lines  */
356 #define CVT_RB_MIN_V_BLANK   460       /* us     */
357 #define CVT_RB_H_SYNC         32       /* pixels */
358 #define CVT_RB_H_BLANK       160       /* pixels */
359 /* Reduce blanking Version 2 */
360 #define CVT_RB_V2_H_BLANK     80       /* pixels */
361 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
362 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
363 #define CVT_RB_V_BPORCH        6       /* lines  */
364
365 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
366  * @frame_height - the total height of the frame (including blanking) in lines.
367  * @hfreq - the horizontal frequency in Hz.
368  * @vsync - the height of the vertical sync in lines.
369  * @active_width - active width of image (does not include blanking). This
370  * information is needed only in case of version 2 of reduced blanking.
371  * In other cases, this parameter does not have any effect on timings.
372  * @polarities - the horizontal and vertical polarities (same as struct
373  *              v4l2_bt_timings polarities).
374  * @interlaced - if this flag is true, it indicates interlaced format
375  * @fmt - the resulting timings.
376  *
377  * This function will attempt to detect if the given values correspond to a
378  * valid CVT format. If so, then it will return true, and fmt will be filled
379  * in with the found CVT timings.
380  */
381 bool v4l2_detect_cvt(unsigned frame_height,
382                      unsigned hfreq,
383                      unsigned vsync,
384                      unsigned active_width,
385                      u32 polarities,
386                      bool interlaced,
387                      struct v4l2_dv_timings *fmt)
388 {
389         int  v_fp, v_bp, h_fp, h_bp, hsync;
390         int  frame_width, image_height, image_width;
391         bool reduced_blanking;
392         bool rb_v2 = false;
393         unsigned pix_clk;
394
395         if (vsync < 4 || vsync > 8)
396                 return false;
397
398         if (polarities == V4L2_DV_VSYNC_POS_POL)
399                 reduced_blanking = false;
400         else if (polarities == V4L2_DV_HSYNC_POS_POL)
401                 reduced_blanking = true;
402         else
403                 return false;
404
405         if (reduced_blanking && vsync == 8)
406                 rb_v2 = true;
407
408         if (rb_v2 && active_width == 0)
409                 return false;
410
411         if (!rb_v2 && vsync > 7)
412                 return false;
413
414         if (hfreq == 0)
415                 return false;
416
417         /* Vertical */
418         if (reduced_blanking) {
419                 if (rb_v2) {
420                         v_bp = CVT_RB_V_BPORCH;
421                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
422                         v_fp -= vsync + v_bp;
423
424                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
425                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
426                 } else {
427                         v_fp = CVT_RB_V_FPORCH;
428                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
429                         v_bp -= vsync + v_fp;
430
431                         if (v_bp < CVT_RB_MIN_V_BPORCH)
432                                 v_bp = CVT_RB_MIN_V_BPORCH;
433                 }
434         } else {
435                 v_fp = CVT_MIN_V_PORCH_RND;
436                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
437
438                 if (v_bp < CVT_MIN_V_BPORCH)
439                         v_bp = CVT_MIN_V_BPORCH;
440         }
441
442         if (interlaced)
443                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
444         else
445                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
446
447         if (image_height < 0)
448                 return false;
449
450         /* Aspect ratio based on vsync */
451         switch (vsync) {
452         case 4:
453                 image_width = (image_height * 4) / 3;
454                 break;
455         case 5:
456                 image_width = (image_height * 16) / 9;
457                 break;
458         case 6:
459                 image_width = (image_height * 16) / 10;
460                 break;
461         case 7:
462                 /* special case */
463                 if (image_height == 1024)
464                         image_width = (image_height * 5) / 4;
465                 else if (image_height == 768)
466                         image_width = (image_height * 15) / 9;
467                 else
468                         return false;
469                 break;
470         case 8:
471                 image_width = active_width;
472                 break;
473         default:
474                 return false;
475         }
476
477         if (!rb_v2)
478                 image_width = image_width & ~7;
479
480         /* Horizontal */
481         if (reduced_blanking) {
482                 int h_blank;
483                 int clk_gran;
484
485                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
486                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
487
488                 pix_clk = (image_width + h_blank) * hfreq;
489                 pix_clk = (pix_clk / clk_gran) * clk_gran;
490
491                 h_bp  = h_blank / 2;
492                 hsync = CVT_RB_H_SYNC;
493                 h_fp  = h_blank - h_bp - hsync;
494
495                 frame_width = image_width + h_blank;
496         } else {
497                 unsigned ideal_duty_cycle_per_myriad =
498                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
499                 int h_blank;
500
501                 if (ideal_duty_cycle_per_myriad < 2000)
502                         ideal_duty_cycle_per_myriad = 2000;
503
504                 h_blank = image_width * ideal_duty_cycle_per_myriad /
505                                         (10000 - ideal_duty_cycle_per_myriad);
506                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
507
508                 pix_clk = (image_width + h_blank) * hfreq;
509                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
510
511                 h_bp = h_blank / 2;
512                 frame_width = image_width + h_blank;
513
514                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
515                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
516                 h_fp = h_blank - hsync - h_bp;
517         }
518
519         fmt->type = V4L2_DV_BT_656_1120;
520         fmt->bt.polarities = polarities;
521         fmt->bt.width = image_width;
522         fmt->bt.height = image_height;
523         fmt->bt.hfrontporch = h_fp;
524         fmt->bt.vfrontporch = v_fp;
525         fmt->bt.hsync = hsync;
526         fmt->bt.vsync = vsync;
527         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
528
529         if (!interlaced) {
530                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
531                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
532         } else {
533                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
534                                       2 * vsync) / 2;
535                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
536                                         2 * vsync - fmt->bt.vbackporch;
537                 fmt->bt.il_vfrontporch = v_fp;
538                 fmt->bt.il_vsync = vsync;
539                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
540                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
541         }
542
543         fmt->bt.pixelclock = pix_clk;
544         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
545
546         if (reduced_blanking)
547                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
548
549         return true;
550 }
551 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
552
553 /*
554  * GTF defines
555  * Based on Generalized Timing Formula Standard
556  * Version 1.1 September 2, 1999
557  */
558
559 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
560
561 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
562 #define GTF_V_FP                1       /* vertical front porch (lines) */
563 #define GTF_CELL_GRAN           8       /* character cell granularity */
564
565 /* Default */
566 #define GTF_D_M                 600     /* blanking formula gradient */
567 #define GTF_D_C                 40      /* blanking formula offset */
568 #define GTF_D_K                 128     /* blanking formula scaling factor */
569 #define GTF_D_J                 20      /* blanking formula scaling factor */
570 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
571 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
572
573 /* Secondary */
574 #define GTF_S_M                 3600    /* blanking formula gradient */
575 #define GTF_S_C                 40      /* blanking formula offset */
576 #define GTF_S_K                 128     /* blanking formula scaling factor */
577 #define GTF_S_J                 35      /* blanking formula scaling factor */
578 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
579 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
580
581 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
582  * @frame_height - the total height of the frame (including blanking) in lines.
583  * @hfreq - the horizontal frequency in Hz.
584  * @vsync - the height of the vertical sync in lines.
585  * @polarities - the horizontal and vertical polarities (same as struct
586  *              v4l2_bt_timings polarities).
587  * @interlaced - if this flag is true, it indicates interlaced format
588  * @aspect - preferred aspect ratio. GTF has no method of determining the
589  *              aspect ratio in order to derive the image width from the
590  *              image height, so it has to be passed explicitly. Usually
591  *              the native screen aspect ratio is used for this. If it
592  *              is not filled in correctly, then 16:9 will be assumed.
593  * @fmt - the resulting timings.
594  *
595  * This function will attempt to detect if the given values correspond to a
596  * valid GTF format. If so, then it will return true, and fmt will be filled
597  * in with the found GTF timings.
598  */
599 bool v4l2_detect_gtf(unsigned frame_height,
600                 unsigned hfreq,
601                 unsigned vsync,
602                 u32 polarities,
603                 bool interlaced,
604                 struct v4l2_fract aspect,
605                 struct v4l2_dv_timings *fmt)
606 {
607         int pix_clk;
608         int  v_fp, v_bp, h_fp, hsync;
609         int frame_width, image_height, image_width;
610         bool default_gtf;
611         int h_blank;
612
613         if (vsync != 3)
614                 return false;
615
616         if (polarities == V4L2_DV_VSYNC_POS_POL)
617                 default_gtf = true;
618         else if (polarities == V4L2_DV_HSYNC_POS_POL)
619                 default_gtf = false;
620         else
621                 return false;
622
623         if (hfreq == 0)
624                 return false;
625
626         /* Vertical */
627         v_fp = GTF_V_FP;
628         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
629         if (interlaced)
630                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
631         else
632                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
633
634         if (image_height < 0)
635                 return false;
636
637         if (aspect.numerator == 0 || aspect.denominator == 0) {
638                 aspect.numerator = 16;
639                 aspect.denominator = 9;
640         }
641         image_width = ((image_height * aspect.numerator) / aspect.denominator);
642         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
643
644         /* Horizontal */
645         if (default_gtf) {
646                 u64 num;
647                 u32 den;
648
649                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
650                       ((u64)image_width * GTF_D_M_PRIME * 1000));
651                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
652                       (2 * GTF_CELL_GRAN);
653                 h_blank = div_u64((num + (den >> 1)), den);
654                 h_blank *= (2 * GTF_CELL_GRAN);
655         } else {
656                 u64 num;
657                 u32 den;
658
659                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
660                       ((u64)image_width * GTF_S_M_PRIME * 1000));
661                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
662                       (2 * GTF_CELL_GRAN);
663                 h_blank = div_u64((num + (den >> 1)), den);
664                 h_blank *= (2 * GTF_CELL_GRAN);
665         }
666
667         frame_width = image_width + h_blank;
668
669         pix_clk = (image_width + h_blank) * hfreq;
670         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
671
672         hsync = (frame_width * 8 + 50) / 100;
673         hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
674
675         h_fp = h_blank / 2 - hsync;
676
677         fmt->type = V4L2_DV_BT_656_1120;
678         fmt->bt.polarities = polarities;
679         fmt->bt.width = image_width;
680         fmt->bt.height = image_height;
681         fmt->bt.hfrontporch = h_fp;
682         fmt->bt.vfrontporch = v_fp;
683         fmt->bt.hsync = hsync;
684         fmt->bt.vsync = vsync;
685         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
686
687         if (!interlaced) {
688                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
689                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
690         } else {
691                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
692                                       2 * vsync) / 2;
693                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
694                                         2 * vsync - fmt->bt.vbackporch;
695                 fmt->bt.il_vfrontporch = v_fp;
696                 fmt->bt.il_vsync = vsync;
697                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
698                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
699         }
700
701         fmt->bt.pixelclock = pix_clk;
702         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
703
704         if (!default_gtf)
705                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
706
707         return true;
708 }
709 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
710
711 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
712  *      0x15 and 0x16 from the EDID.
713  * @hor_landscape - byte 0x15 from the EDID.
714  * @vert_portrait - byte 0x16 from the EDID.
715  *
716  * Determines the aspect ratio from the EDID.
717  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
718  * "Horizontal and Vertical Screen Size or Aspect Ratio"
719  */
720 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
721 {
722         struct v4l2_fract aspect = { 16, 9 };
723         u8 ratio;
724
725         /* Nothing filled in, fallback to 16:9 */
726         if (!hor_landscape && !vert_portrait)
727                 return aspect;
728         /* Both filled in, so they are interpreted as the screen size in cm */
729         if (hor_landscape && vert_portrait) {
730                 aspect.numerator = hor_landscape;
731                 aspect.denominator = vert_portrait;
732                 return aspect;
733         }
734         /* Only one is filled in, so interpret them as a ratio:
735            (val + 99) / 100 */
736         ratio = hor_landscape | vert_portrait;
737         /* Change some rounded values into the exact aspect ratio */
738         if (ratio == 79) {
739                 aspect.numerator = 16;
740                 aspect.denominator = 9;
741         } else if (ratio == 34) {
742                 aspect.numerator = 4;
743                 aspect.denominator = 3;
744         } else if (ratio == 68) {
745                 aspect.numerator = 15;
746                 aspect.denominator = 9;
747         } else {
748                 aspect.numerator = hor_landscape + 99;
749                 aspect.denominator = 100;
750         }
751         if (hor_landscape)
752                 return aspect;
753         /* The aspect ratio is for portrait, so swap numerator and denominator */
754         swap(aspect.denominator, aspect.numerator);
755         return aspect;
756 }
757 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);