]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mfd/db8500-prcmu.c
Merge tag 'mfd-3.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
[karo-tx-linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE           0x2FC
46 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
59
60 #define PRCM_AVS_VOLTAGE                0
61 #define PRCM_AVS_VOLTAGE_MASK           0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP          6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE           7
65 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
66
67 #define PRCM_BOOT_STATUS        0xFFF
68 #define PRCM_ROMCODE_A2P        0xFFE
69 #define PRCM_ROMCODE_P2A        0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
71
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73
74 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
82
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
90
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS          0
101 #define MB0H_CONFIG_WAKEUPS_EXE         1
102 #define MB0H_READ_WAKEUP_ACK            3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
104
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
115
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF    0x1
138 #define PLL_SOC0_ON     0x2
139 #define PLL_SOC1_OFF    0x4
140 #define PLL_SOC1_ON     0x8
141
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
147
148 /* Mailbox 2 headers */
149 #define MB2H_DPS        0x0
150 #define MB2H_AUTO_PWR   0x1
151
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
163
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167
168 /* Mailbox 3 headers */
169 #define MB3H_ANC        0x0
170 #define MB3H_SIDETONE   0x1
171 #define MB3H_SYSCLK     0xE
172
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
181
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT   0x0
184 #define MB4H_MEM_ST     0x1
185 #define MB4H_HOTDOG     0x12
186 #define MB4H_HOTMON     0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN   0x17
190 #define MB4H_A9WDOG_DIS  0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW                       BIT(0)
204 #define HOTMON_CONFIG_HIGH                      BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS                     0
211 #define A9WDOG_ID_MASK                          0xf
212
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN               BIT(3)
223
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233
234 /*
235  * Wakeups/IRQs
236  */
237
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267
268 static struct {
269         bool valid;
270         struct prcmu_fw_version version;
271 } fw_info;
272
273 static struct irq_domain *db8500_irq_domain;
274
275 /*
276  * This vector maps irq numbers to the bits in the bit field used in
277  * communication with the PRCMU firmware.
278  *
279  * The reason for having this is to keep the irq numbers contiguous even though
280  * the bits in the bit field are not. (The bits also have a tendency to move
281  * around, to further complicate matters.)
282  */
283 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
284 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
285 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
286         IRQ_ENTRY(RTC),
287         IRQ_ENTRY(RTT0),
288         IRQ_ENTRY(RTT1),
289         IRQ_ENTRY(HSI0),
290         IRQ_ENTRY(HSI1),
291         IRQ_ENTRY(CA_WAKE),
292         IRQ_ENTRY(USB),
293         IRQ_ENTRY(ABB),
294         IRQ_ENTRY(ABB_FIFO),
295         IRQ_ENTRY(CA_SLEEP),
296         IRQ_ENTRY(ARM),
297         IRQ_ENTRY(HOTMON_LOW),
298         IRQ_ENTRY(HOTMON_HIGH),
299         IRQ_ENTRY(MODEM_SW_RESET_REQ),
300         IRQ_ENTRY(GPIO0),
301         IRQ_ENTRY(GPIO1),
302         IRQ_ENTRY(GPIO2),
303         IRQ_ENTRY(GPIO3),
304         IRQ_ENTRY(GPIO4),
305         IRQ_ENTRY(GPIO5),
306         IRQ_ENTRY(GPIO6),
307         IRQ_ENTRY(GPIO7),
308         IRQ_ENTRY(GPIO8)
309 };
310
311 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
312 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
313 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
314         WAKEUP_ENTRY(RTC),
315         WAKEUP_ENTRY(RTT0),
316         WAKEUP_ENTRY(RTT1),
317         WAKEUP_ENTRY(HSI0),
318         WAKEUP_ENTRY(HSI1),
319         WAKEUP_ENTRY(USB),
320         WAKEUP_ENTRY(ABB),
321         WAKEUP_ENTRY(ABB_FIFO),
322         WAKEUP_ENTRY(ARM)
323 };
324
325 /*
326  * mb0_transfer - state needed for mailbox 0 communication.
327  * @lock:               The transaction lock.
328  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
329  *                      the request data.
330  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
331  * @req:                Request data that need to persist between requests.
332  */
333 static struct {
334         spinlock_t lock;
335         spinlock_t dbb_irqs_lock;
336         struct work_struct mask_work;
337         struct mutex ac_wake_lock;
338         struct completion ac_wake_work;
339         struct {
340                 u32 dbb_irqs;
341                 u32 dbb_wakeups;
342                 u32 abb_events;
343         } req;
344 } mb0_transfer;
345
346 /*
347  * mb1_transfer - state needed for mailbox 1 communication.
348  * @lock:       The transaction lock.
349  * @work:       The transaction completion structure.
350  * @ape_opp:    The current APE OPP.
351  * @ack:        Reply ("acknowledge") data.
352  */
353 static struct {
354         struct mutex lock;
355         struct completion work;
356         u8 ape_opp;
357         struct {
358                 u8 header;
359                 u8 arm_opp;
360                 u8 ape_opp;
361                 u8 ape_voltage_status;
362         } ack;
363 } mb1_transfer;
364
365 /*
366  * mb2_transfer - state needed for mailbox 2 communication.
367  * @lock:            The transaction lock.
368  * @work:            The transaction completion structure.
369  * @auto_pm_lock:    The autonomous power management configuration lock.
370  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
371  * @req:             Request data that need to persist between requests.
372  * @ack:             Reply ("acknowledge") data.
373  */
374 static struct {
375         struct mutex lock;
376         struct completion work;
377         spinlock_t auto_pm_lock;
378         bool auto_pm_enabled;
379         struct {
380                 u8 status;
381         } ack;
382 } mb2_transfer;
383
384 /*
385  * mb3_transfer - state needed for mailbox 3 communication.
386  * @lock:               The request lock.
387  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
388  * @sysclk_work:        Work structure used for sysclk requests.
389  */
390 static struct {
391         spinlock_t lock;
392         struct mutex sysclk_lock;
393         struct completion sysclk_work;
394 } mb3_transfer;
395
396 /*
397  * mb4_transfer - state needed for mailbox 4 communication.
398  * @lock:       The transaction lock.
399  * @work:       The transaction completion structure.
400  */
401 static struct {
402         struct mutex lock;
403         struct completion work;
404 } mb4_transfer;
405
406 /*
407  * mb5_transfer - state needed for mailbox 5 communication.
408  * @lock:       The transaction lock.
409  * @work:       The transaction completion structure.
410  * @ack:        Reply ("acknowledge") data.
411  */
412 static struct {
413         struct mutex lock;
414         struct completion work;
415         struct {
416                 u8 status;
417                 u8 value;
418         } ack;
419 } mb5_transfer;
420
421 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
422
423 /* Functions definition */
424 static void compute_armss_rate(void);
425
426 /* Spinlocks */
427 static DEFINE_SPINLOCK(prcmu_lock);
428 static DEFINE_SPINLOCK(clkout_lock);
429
430 /* Global var to runtime determine TCDM base for v2 or v1 */
431 static __iomem void *tcdm_base;
432
433 struct clk_mgt {
434         void __iomem *reg;
435         u32 pllsw;
436         int branch;
437         bool clk38div;
438 };
439
440 enum {
441         PLL_RAW,
442         PLL_FIX,
443         PLL_DIV
444 };
445
446 static DEFINE_SPINLOCK(clk_mgt_lock);
447
448 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
449         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
450 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
451         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
452         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
453         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
454         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
455         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
456         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
457         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
458         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
459         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
462         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
463         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
464         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
465         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
466         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
467         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
468         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
469         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
470         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
471         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
472         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
474         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
475         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
478         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
479         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
480 };
481
482 struct dsiclk {
483         u32 divsel_mask;
484         u32 divsel_shift;
485         u32 divsel;
486 };
487
488 static struct dsiclk dsiclk[2] = {
489         {
490                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
491                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
492                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493         },
494         {
495                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
496                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
497                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
498         }
499 };
500
501 struct dsiescclk {
502         u32 en;
503         u32 div_mask;
504         u32 div_shift;
505 };
506
507 static struct dsiescclk dsiescclk[3] = {
508         {
509                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
510                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
511                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
512         },
513         {
514                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
515                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
516                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
517         },
518         {
519                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
520                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
521                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
522         }
523 };
524
525
526 /*
527 * Used by MCDE to setup all necessary PRCMU registers
528 */
529 #define PRCMU_RESET_DSIPLL              0x00004000
530 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
531
532 #define PRCMU_CLK_PLL_DIV_SHIFT         0
533 #define PRCMU_CLK_PLL_SW_SHIFT          5
534 #define PRCMU_CLK_38                    (1 << 9)
535 #define PRCMU_CLK_38_SRC                (1 << 10)
536 #define PRCMU_CLK_38_DIV                (1 << 11)
537
538 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
539 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
540
541 /* DPI 50000000 Hz */
542 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
543                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
544 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
545
546 /* D=101, N=1, R=4, SELDIV2=0 */
547 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
548
549 #define PRCMU_ENABLE_PLLDSI             0x00000001
550 #define PRCMU_DISABLE_PLLDSI            0x00000000
551 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
552 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
553 /* ESC clk, div0=1, div1=1, div2=3 */
554 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
555 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
556 #define PRCMU_DSI_RESET_SW              0x00000007
557
558 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
559
560 int db8500_prcmu_enable_dsipll(void)
561 {
562         int i;
563
564         /* Clear DSIPLL_RESETN */
565         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
566         /* Unclamp DSIPLL in/out */
567         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
568
569         /* Set DSI PLL FREQ */
570         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
571         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
572         /* Enable Escape clocks */
573         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
574
575         /* Start DSI PLL */
576         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
577         /* Reset DSI PLL */
578         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
579         for (i = 0; i < 10; i++) {
580                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
581                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
582                         break;
583                 udelay(100);
584         }
585         /* Set DSIPLL_RESETN */
586         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
587         return 0;
588 }
589
590 int db8500_prcmu_disable_dsipll(void)
591 {
592         /* Disable dsi pll */
593         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
594         /* Disable  escapeclock */
595         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
596         return 0;
597 }
598
599 int db8500_prcmu_set_display_clocks(void)
600 {
601         unsigned long flags;
602
603         spin_lock_irqsave(&clk_mgt_lock, flags);
604
605         /* Grab the HW semaphore. */
606         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
607                 cpu_relax();
608
609         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
610         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
611         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
612
613         /* Release the HW semaphore. */
614         writel(0, PRCM_SEM);
615
616         spin_unlock_irqrestore(&clk_mgt_lock, flags);
617
618         return 0;
619 }
620
621 u32 db8500_prcmu_read(unsigned int reg)
622 {
623         return readl(_PRCMU_BASE + reg);
624 }
625
626 void db8500_prcmu_write(unsigned int reg, u32 value)
627 {
628         unsigned long flags;
629
630         spin_lock_irqsave(&prcmu_lock, flags);
631         writel(value, (_PRCMU_BASE + reg));
632         spin_unlock_irqrestore(&prcmu_lock, flags);
633 }
634
635 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
636 {
637         u32 val;
638         unsigned long flags;
639
640         spin_lock_irqsave(&prcmu_lock, flags);
641         val = readl(_PRCMU_BASE + reg);
642         val = ((val & ~mask) | (value & mask));
643         writel(val, (_PRCMU_BASE + reg));
644         spin_unlock_irqrestore(&prcmu_lock, flags);
645 }
646
647 struct prcmu_fw_version *prcmu_get_fw_version(void)
648 {
649         return fw_info.valid ? &fw_info.version : NULL;
650 }
651
652 bool prcmu_has_arm_maxopp(void)
653 {
654         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
655                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
656 }
657
658 /**
659  * prcmu_get_boot_status - PRCMU boot status checking
660  * Returns: the current PRCMU boot status
661  */
662 int prcmu_get_boot_status(void)
663 {
664         return readb(tcdm_base + PRCM_BOOT_STATUS);
665 }
666
667 /**
668  * prcmu_set_rc_a2p - This function is used to run few power state sequences
669  * @val: Value to be set, i.e. transition requested
670  * Returns: 0 on success, -EINVAL on invalid argument
671  *
672  * This function is used to run the following power state sequences -
673  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
674  */
675 int prcmu_set_rc_a2p(enum romcode_write val)
676 {
677         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
678                 return -EINVAL;
679         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
680         return 0;
681 }
682
683 /**
684  * prcmu_get_rc_p2a - This function is used to get power state sequences
685  * Returns: the power transition that has last happened
686  *
687  * This function can return the following transitions-
688  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
689  */
690 enum romcode_read prcmu_get_rc_p2a(void)
691 {
692         return readb(tcdm_base + PRCM_ROMCODE_P2A);
693 }
694
695 /**
696  * prcmu_get_current_mode - Return the current XP70 power mode
697  * Returns: Returns the current AP(ARM) power mode: init,
698  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
699  */
700 enum ap_pwrst prcmu_get_xp70_current_state(void)
701 {
702         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
703 }
704
705 /**
706  * prcmu_config_clkout - Configure one of the programmable clock outputs.
707  * @clkout:     The CLKOUT number (0 or 1).
708  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
709  * @div:        The divider to be applied.
710  *
711  * Configures one of the programmable clock outputs (CLKOUTs).
712  * @div should be in the range [1,63] to request a configuration, or 0 to
713  * inform that the configuration is no longer requested.
714  */
715 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
716 {
717         static int requests[2];
718         int r = 0;
719         unsigned long flags;
720         u32 val;
721         u32 bits;
722         u32 mask;
723         u32 div_mask;
724
725         BUG_ON(clkout > 1);
726         BUG_ON(div > 63);
727         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
728
729         if (!div && !requests[clkout])
730                 return -EINVAL;
731
732         switch (clkout) {
733         case 0:
734                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
735                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
736                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
737                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
738                 break;
739         case 1:
740                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
741                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
742                         PRCM_CLKOCR_CLK1TYPE);
743                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
744                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
745                 break;
746         }
747         bits &= mask;
748
749         spin_lock_irqsave(&clkout_lock, flags);
750
751         val = readl(PRCM_CLKOCR);
752         if (val & div_mask) {
753                 if (div) {
754                         if ((val & mask) != bits) {
755                                 r = -EBUSY;
756                                 goto unlock_and_return;
757                         }
758                 } else {
759                         if ((val & mask & ~div_mask) != bits) {
760                                 r = -EINVAL;
761                                 goto unlock_and_return;
762                         }
763                 }
764         }
765         writel((bits | (val & ~mask)), PRCM_CLKOCR);
766         requests[clkout] += (div ? 1 : -1);
767
768 unlock_and_return:
769         spin_unlock_irqrestore(&clkout_lock, flags);
770
771         return r;
772 }
773
774 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
775 {
776         unsigned long flags;
777
778         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
779
780         spin_lock_irqsave(&mb0_transfer.lock, flags);
781
782         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
783                 cpu_relax();
784
785         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
786         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
787         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
788         writeb((keep_ulp_clk ? 1 : 0),
789                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
790         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
791         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
792
793         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
794
795         return 0;
796 }
797
798 u8 db8500_prcmu_get_power_state_result(void)
799 {
800         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
801 }
802
803 /* This function decouple the gic from the prcmu */
804 int db8500_prcmu_gic_decouple(void)
805 {
806         u32 val = readl(PRCM_A9_MASK_REQ);
807
808         /* Set bit 0 register value to 1 */
809         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
810                PRCM_A9_MASK_REQ);
811
812         /* Make sure the register is updated */
813         readl(PRCM_A9_MASK_REQ);
814
815         /* Wait a few cycles for the gic mask completion */
816         udelay(1);
817
818         return 0;
819 }
820
821 /* This function recouple the gic with the prcmu */
822 int db8500_prcmu_gic_recouple(void)
823 {
824         u32 val = readl(PRCM_A9_MASK_REQ);
825
826         /* Set bit 0 register value to 0 */
827         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
828
829         return 0;
830 }
831
832 #define PRCMU_GIC_NUMBER_REGS 5
833
834 /*
835  * This function checks if there are pending irq on the gic. It only
836  * makes sense if the gic has been decoupled before with the
837  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
838  * disables the forwarding of the interrupt to any CPU interface. It
839  * does not prevent the interrupt from changing state, for example
840  * becoming pending, or active and pending if it is already
841  * active. Hence, we have to check the interrupt is pending *and* is
842  * active.
843  */
844 bool db8500_prcmu_gic_pending_irq(void)
845 {
846         u32 pr; /* Pending register */
847         u32 er; /* Enable register */
848         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
849         int i;
850
851         /* 5 registers. STI & PPI not skipped */
852         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
853
854                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
855                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
856
857                 if (pr & er)
858                         return true; /* There is a pending interrupt */
859         }
860
861         return false;
862 }
863
864 /*
865  * This function checks if there are pending interrupt on the
866  * prcmu which has been delegated to monitor the irqs with the
867  * db8500_prcmu_copy_gic_settings function.
868  */
869 bool db8500_prcmu_pending_irq(void)
870 {
871         u32 it, im;
872         int i;
873
874         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
875                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
876                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
877                 if (it & im)
878                         return true; /* There is a pending interrupt */
879         }
880
881         return false;
882 }
883
884 /*
885  * This function checks if the specified cpu is in in WFI. It's usage
886  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
887  * function. Of course passing smp_processor_id() to this function will
888  * always return false...
889  */
890 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
891 {
892         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
893                      PRCM_ARM_WFI_STANDBY_WFI0;
894 }
895
896 /*
897  * This function copies the gic SPI settings to the prcmu in order to
898  * monitor them and abort/finish the retention/off sequence or state.
899  */
900 int db8500_prcmu_copy_gic_settings(void)
901 {
902         u32 er; /* Enable register */
903         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
904         int i;
905
906         /* We skip the STI and PPI */
907         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
908                 er = readl_relaxed(dist_base +
909                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
910                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
911         }
912
913         return 0;
914 }
915
916 /* This function should only be called while mb0_transfer.lock is held. */
917 static void config_wakeups(void)
918 {
919         const u8 header[2] = {
920                 MB0H_CONFIG_WAKEUPS_EXE,
921                 MB0H_CONFIG_WAKEUPS_SLEEP
922         };
923         static u32 last_dbb_events;
924         static u32 last_abb_events;
925         u32 dbb_events;
926         u32 abb_events;
927         unsigned int i;
928
929         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
930         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
931
932         abb_events = mb0_transfer.req.abb_events;
933
934         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
935                 return;
936
937         for (i = 0; i < 2; i++) {
938                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
939                         cpu_relax();
940                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
941                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
942                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
943                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
944         }
945         last_dbb_events = dbb_events;
946         last_abb_events = abb_events;
947 }
948
949 void db8500_prcmu_enable_wakeups(u32 wakeups)
950 {
951         unsigned long flags;
952         u32 bits;
953         int i;
954
955         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
956
957         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
958                 if (wakeups & BIT(i))
959                         bits |= prcmu_wakeup_bit[i];
960         }
961
962         spin_lock_irqsave(&mb0_transfer.lock, flags);
963
964         mb0_transfer.req.dbb_wakeups = bits;
965         config_wakeups();
966
967         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
968 }
969
970 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
971 {
972         unsigned long flags;
973
974         spin_lock_irqsave(&mb0_transfer.lock, flags);
975
976         mb0_transfer.req.abb_events = abb_events;
977         config_wakeups();
978
979         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
980 }
981
982 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
983 {
984         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
985                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
986         else
987                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
988 }
989
990 /**
991  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
992  * @opp: The new ARM operating point to which transition is to be made
993  * Returns: 0 on success, non-zero on failure
994  *
995  * This function sets the the operating point of the ARM.
996  */
997 int db8500_prcmu_set_arm_opp(u8 opp)
998 {
999         int r;
1000
1001         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1002                 return -EINVAL;
1003
1004         r = 0;
1005
1006         mutex_lock(&mb1_transfer.lock);
1007
1008         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009                 cpu_relax();
1010
1011         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1014
1015         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1016         wait_for_completion(&mb1_transfer.work);
1017
1018         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1019                 (mb1_transfer.ack.arm_opp != opp))
1020                 r = -EIO;
1021
1022         compute_armss_rate();
1023         mutex_unlock(&mb1_transfer.lock);
1024
1025         return r;
1026 }
1027
1028 /**
1029  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1030  *
1031  * Returns: the current ARM OPP
1032  */
1033 int db8500_prcmu_get_arm_opp(void)
1034 {
1035         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1036 }
1037
1038 /**
1039  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1040  *
1041  * Returns: the current DDR OPP
1042  */
1043 int db8500_prcmu_get_ddr_opp(void)
1044 {
1045         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1046 }
1047
1048 /**
1049  * db8500_set_ddr_opp - set the appropriate DDR OPP
1050  * @opp: The new DDR operating point to which transition is to be made
1051  * Returns: 0 on success, non-zero on failure
1052  *
1053  * This function sets the operating point of the DDR.
1054  */
1055 int db8500_prcmu_set_ddr_opp(u8 opp)
1056 {
1057         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1058                 return -EINVAL;
1059         /* Changing the DDR OPP can hang the hardware pre-v21 */
1060         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1061                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1062
1063         return 0;
1064 }
1065
1066 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1067 static void request_even_slower_clocks(bool enable)
1068 {
1069         void __iomem *clock_reg[] = {
1070                 PRCM_ACLK_MGT,
1071                 PRCM_DMACLK_MGT
1072         };
1073         unsigned long flags;
1074         unsigned int i;
1075
1076         spin_lock_irqsave(&clk_mgt_lock, flags);
1077
1078         /* Grab the HW semaphore. */
1079         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1080                 cpu_relax();
1081
1082         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1083                 u32 val;
1084                 u32 div;
1085
1086                 val = readl(clock_reg[i]);
1087                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1088                 if (enable) {
1089                         if ((div <= 1) || (div > 15)) {
1090                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1091                                         div, __func__);
1092                                 goto unlock_and_return;
1093                         }
1094                         div <<= 1;
1095                 } else {
1096                         if (div <= 2)
1097                                 goto unlock_and_return;
1098                         div >>= 1;
1099                 }
1100                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1101                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1102                 writel(val, clock_reg[i]);
1103         }
1104
1105 unlock_and_return:
1106         /* Release the HW semaphore. */
1107         writel(0, PRCM_SEM);
1108
1109         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1110 }
1111
1112 /**
1113  * db8500_set_ape_opp - set the appropriate APE OPP
1114  * @opp: The new APE operating point to which transition is to be made
1115  * Returns: 0 on success, non-zero on failure
1116  *
1117  * This function sets the operating point of the APE.
1118  */
1119 int db8500_prcmu_set_ape_opp(u8 opp)
1120 {
1121         int r = 0;
1122
1123         if (opp == mb1_transfer.ape_opp)
1124                 return 0;
1125
1126         mutex_lock(&mb1_transfer.lock);
1127
1128         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1129                 request_even_slower_clocks(false);
1130
1131         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1132                 goto skip_message;
1133
1134         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135                 cpu_relax();
1136
1137         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1139         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1140                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1141
1142         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1143         wait_for_completion(&mb1_transfer.work);
1144
1145         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1146                 (mb1_transfer.ack.ape_opp != opp))
1147                 r = -EIO;
1148
1149 skip_message:
1150         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1151                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1152                 request_even_slower_clocks(true);
1153         if (!r)
1154                 mb1_transfer.ape_opp = opp;
1155
1156         mutex_unlock(&mb1_transfer.lock);
1157
1158         return r;
1159 }
1160
1161 /**
1162  * db8500_prcmu_get_ape_opp - get the current APE OPP
1163  *
1164  * Returns: the current APE OPP
1165  */
1166 int db8500_prcmu_get_ape_opp(void)
1167 {
1168         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1169 }
1170
1171 /**
1172  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1173  * @enable: true to request the higher voltage, false to drop a request.
1174  *
1175  * Calls to this function to enable and disable requests must be balanced.
1176  */
1177 int prcmu_request_ape_opp_100_voltage(bool enable)
1178 {
1179         int r = 0;
1180         u8 header;
1181         static unsigned int requests;
1182
1183         mutex_lock(&mb1_transfer.lock);
1184
1185         if (enable) {
1186                 if (0 != requests++)
1187                         goto unlock_and_return;
1188                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1189         } else {
1190                 if (requests == 0) {
1191                         r = -EIO;
1192                         goto unlock_and_return;
1193                 } else if (1 != requests--) {
1194                         goto unlock_and_return;
1195                 }
1196                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1197         }
1198
1199         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1200                 cpu_relax();
1201
1202         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1203
1204         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1205         wait_for_completion(&mb1_transfer.work);
1206
1207         if ((mb1_transfer.ack.header != header) ||
1208                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1209                 r = -EIO;
1210
1211 unlock_and_return:
1212         mutex_unlock(&mb1_transfer.lock);
1213
1214         return r;
1215 }
1216
1217 /**
1218  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1219  *
1220  * This function releases the power state requirements of a USB wakeup.
1221  */
1222 int prcmu_release_usb_wakeup_state(void)
1223 {
1224         int r = 0;
1225
1226         mutex_lock(&mb1_transfer.lock);
1227
1228         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1229                 cpu_relax();
1230
1231         writeb(MB1H_RELEASE_USB_WAKEUP,
1232                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1233
1234         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1235         wait_for_completion(&mb1_transfer.work);
1236
1237         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1238                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1239                 r = -EIO;
1240
1241         mutex_unlock(&mb1_transfer.lock);
1242
1243         return r;
1244 }
1245
1246 static int request_pll(u8 clock, bool enable)
1247 {
1248         int r = 0;
1249
1250         if (clock == PRCMU_PLLSOC0)
1251                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1252         else if (clock == PRCMU_PLLSOC1)
1253                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1254         else
1255                 return -EINVAL;
1256
1257         mutex_lock(&mb1_transfer.lock);
1258
1259         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1260                 cpu_relax();
1261
1262         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1263         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1264
1265         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1266         wait_for_completion(&mb1_transfer.work);
1267
1268         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1269                 r = -EIO;
1270
1271         mutex_unlock(&mb1_transfer.lock);
1272
1273         return r;
1274 }
1275
1276 /**
1277  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1278  * @epod_id: The EPOD to set
1279  * @epod_state: The new EPOD state
1280  *
1281  * This function sets the state of a EPOD (power domain). It may not be called
1282  * from interrupt context.
1283  */
1284 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1285 {
1286         int r = 0;
1287         bool ram_retention = false;
1288         int i;
1289
1290         /* check argument */
1291         BUG_ON(epod_id >= NUM_EPOD_ID);
1292
1293         /* set flag if retention is possible */
1294         switch (epod_id) {
1295         case EPOD_ID_SVAMMDSP:
1296         case EPOD_ID_SIAMMDSP:
1297         case EPOD_ID_ESRAM12:
1298         case EPOD_ID_ESRAM34:
1299                 ram_retention = true;
1300                 break;
1301         }
1302
1303         /* check argument */
1304         BUG_ON(epod_state > EPOD_STATE_ON);
1305         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1306
1307         /* get lock */
1308         mutex_lock(&mb2_transfer.lock);
1309
1310         /* wait for mailbox */
1311         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1312                 cpu_relax();
1313
1314         /* fill in mailbox */
1315         for (i = 0; i < NUM_EPOD_ID; i++)
1316                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1317         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1318
1319         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1320
1321         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1322
1323         /*
1324          * The current firmware version does not handle errors correctly,
1325          * and we cannot recover if there is an error.
1326          * This is expected to change when the firmware is updated.
1327          */
1328         if (!wait_for_completion_timeout(&mb2_transfer.work,
1329                         msecs_to_jiffies(20000))) {
1330                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331                         __func__);
1332                 r = -EIO;
1333                 goto unlock_and_return;
1334         }
1335
1336         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1337                 r = -EIO;
1338
1339 unlock_and_return:
1340         mutex_unlock(&mb2_transfer.lock);
1341         return r;
1342 }
1343
1344 /**
1345  * prcmu_configure_auto_pm - Configure autonomous power management.
1346  * @sleep: Configuration for ApSleep.
1347  * @idle:  Configuration for ApIdle.
1348  */
1349 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1350         struct prcmu_auto_pm_config *idle)
1351 {
1352         u32 sleep_cfg;
1353         u32 idle_cfg;
1354         unsigned long flags;
1355
1356         BUG_ON((sleep == NULL) || (idle == NULL));
1357
1358         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1359         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1360         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1361         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1362         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1363         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1364
1365         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1366         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1367         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1368         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1369         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1370         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1371
1372         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1373
1374         /*
1375          * The autonomous power management configuration is done through
1376          * fields in mailbox 2, but these fields are only used as shared
1377          * variables - i.e. there is no need to send a message.
1378          */
1379         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1380         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1381
1382         mb2_transfer.auto_pm_enabled =
1383                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1385                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1386                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1387
1388         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1389 }
1390 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1391
1392 bool prcmu_is_auto_pm_enabled(void)
1393 {
1394         return mb2_transfer.auto_pm_enabled;
1395 }
1396
1397 static int request_sysclk(bool enable)
1398 {
1399         int r;
1400         unsigned long flags;
1401
1402         r = 0;
1403
1404         mutex_lock(&mb3_transfer.sysclk_lock);
1405
1406         spin_lock_irqsave(&mb3_transfer.lock, flags);
1407
1408         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1409                 cpu_relax();
1410
1411         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1412
1413         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1414         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1415
1416         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1417
1418         /*
1419          * The firmware only sends an ACK if we want to enable the
1420          * SysClk, and it succeeds.
1421          */
1422         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1423                         msecs_to_jiffies(20000))) {
1424                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1425                         __func__);
1426                 r = -EIO;
1427         }
1428
1429         mutex_unlock(&mb3_transfer.sysclk_lock);
1430
1431         return r;
1432 }
1433
1434 static int request_timclk(bool enable)
1435 {
1436         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1437
1438         if (!enable)
1439                 val |= PRCM_TCR_STOP_TIMERS;
1440         writel(val, PRCM_TCR);
1441
1442         return 0;
1443 }
1444
1445 static int request_clock(u8 clock, bool enable)
1446 {
1447         u32 val;
1448         unsigned long flags;
1449
1450         spin_lock_irqsave(&clk_mgt_lock, flags);
1451
1452         /* Grab the HW semaphore. */
1453         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1454                 cpu_relax();
1455
1456         val = readl(clk_mgt[clock].reg);
1457         if (enable) {
1458                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1459         } else {
1460                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1461                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1462         }
1463         writel(val, clk_mgt[clock].reg);
1464
1465         /* Release the HW semaphore. */
1466         writel(0, PRCM_SEM);
1467
1468         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1469
1470         return 0;
1471 }
1472
1473 static int request_sga_clock(u8 clock, bool enable)
1474 {
1475         u32 val;
1476         int ret;
1477
1478         if (enable) {
1479                 val = readl(PRCM_CGATING_BYPASS);
1480                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481         }
1482
1483         ret = request_clock(clock, enable);
1484
1485         if (!ret && !enable) {
1486                 val = readl(PRCM_CGATING_BYPASS);
1487                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1488         }
1489
1490         return ret;
1491 }
1492
1493 static inline bool plldsi_locked(void)
1494 {
1495         return (readl(PRCM_PLLDSI_LOCKP) &
1496                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1498                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1499                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1500 }
1501
1502 static int request_plldsi(bool enable)
1503 {
1504         int r = 0;
1505         u32 val;
1506
1507         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1508                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1509                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1510
1511         val = readl(PRCM_PLLDSI_ENABLE);
1512         if (enable)
1513                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514         else
1515                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1516         writel(val, PRCM_PLLDSI_ENABLE);
1517
1518         if (enable) {
1519                 unsigned int i;
1520                 bool locked = plldsi_locked();
1521
1522                 for (i = 10; !locked && (i > 0); --i) {
1523                         udelay(100);
1524                         locked = plldsi_locked();
1525                 }
1526                 if (locked) {
1527                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1528                                 PRCM_APE_RESETN_SET);
1529                 } else {
1530                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1531                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1532                                 PRCM_MMIP_LS_CLAMP_SET);
1533                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1534                         writel(val, PRCM_PLLDSI_ENABLE);
1535                         r = -EAGAIN;
1536                 }
1537         } else {
1538                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1539         }
1540         return r;
1541 }
1542
1543 static int request_dsiclk(u8 n, bool enable)
1544 {
1545         u32 val;
1546
1547         val = readl(PRCM_DSI_PLLOUT_SEL);
1548         val &= ~dsiclk[n].divsel_mask;
1549         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1550                 dsiclk[n].divsel_shift);
1551         writel(val, PRCM_DSI_PLLOUT_SEL);
1552         return 0;
1553 }
1554
1555 static int request_dsiescclk(u8 n, bool enable)
1556 {
1557         u32 val;
1558
1559         val = readl(PRCM_DSITVCLK_DIV);
1560         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1561         writel(val, PRCM_DSITVCLK_DIV);
1562         return 0;
1563 }
1564
1565 /**
1566  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1567  * @clock:      The clock for which the request is made.
1568  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1569  *
1570  * This function should only be used by the clock implementation.
1571  * Do not use it from any other place!
1572  */
1573 int db8500_prcmu_request_clock(u8 clock, bool enable)
1574 {
1575         if (clock == PRCMU_SGACLK)
1576                 return request_sga_clock(clock, enable);
1577         else if (clock < PRCMU_NUM_REG_CLOCKS)
1578                 return request_clock(clock, enable);
1579         else if (clock == PRCMU_TIMCLK)
1580                 return request_timclk(enable);
1581         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1582                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1583         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1584                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1585         else if (clock == PRCMU_PLLDSI)
1586                 return request_plldsi(enable);
1587         else if (clock == PRCMU_SYSCLK)
1588                 return request_sysclk(enable);
1589         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1590                 return request_pll(clock, enable);
1591         else
1592                 return -EINVAL;
1593 }
1594
1595 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1596         int branch)
1597 {
1598         u64 rate;
1599         u32 val;
1600         u32 d;
1601         u32 div = 1;
1602
1603         val = readl(reg);
1604
1605         rate = src_rate;
1606         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1607
1608         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1609         if (d > 1)
1610                 div *= d;
1611
1612         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1613         if (d > 1)
1614                 div *= d;
1615
1616         if (val & PRCM_PLL_FREQ_SELDIV2)
1617                 div *= 2;
1618
1619         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1620                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1621                 ((reg == PRCM_PLLSOC0_FREQ) ||
1622                  (reg == PRCM_PLLARM_FREQ) ||
1623                  (reg == PRCM_PLLDDR_FREQ))))
1624                 div *= 2;
1625
1626         (void)do_div(rate, div);
1627
1628         return (unsigned long)rate;
1629 }
1630
1631 #define ROOT_CLOCK_RATE 38400000
1632
1633 static unsigned long clock_rate(u8 clock)
1634 {
1635         u32 val;
1636         u32 pllsw;
1637         unsigned long rate = ROOT_CLOCK_RATE;
1638
1639         val = readl(clk_mgt[clock].reg);
1640
1641         if (val & PRCM_CLK_MGT_CLK38) {
1642                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1643                         rate /= 2;
1644                 return rate;
1645         }
1646
1647         val |= clk_mgt[clock].pllsw;
1648         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1649
1650         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1651                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1652         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1653                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1654         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1655                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1656         else
1657                 return 0;
1658
1659         if ((clock == PRCMU_SGACLK) &&
1660                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1661                 u64 r = (rate * 10);
1662
1663                 (void)do_div(r, 25);
1664                 return (unsigned long)r;
1665         }
1666         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1667         if (val)
1668                 return rate / val;
1669         else
1670                 return 0;
1671 }
1672 static unsigned long latest_armss_rate;
1673 static unsigned long armss_rate(void)
1674 {
1675         return latest_armss_rate;
1676 }
1677
1678 static void compute_armss_rate(void)
1679 {
1680         u32 r;
1681         unsigned long rate;
1682
1683         r = readl(PRCM_ARM_CHGCLKREQ);
1684
1685         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1686                 /* External ARMCLKFIX clock */
1687
1688                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1689
1690                 /* Check PRCM_ARM_CHGCLKREQ divider */
1691                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1692                         rate /= 2;
1693
1694                 /* Check PRCM_ARMCLKFIX_MGT divider */
1695                 r = readl(PRCM_ARMCLKFIX_MGT);
1696                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1697                 rate /= r;
1698
1699         } else {/* ARM PLL */
1700                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1701         }
1702
1703         latest_armss_rate = rate;
1704 }
1705
1706 static unsigned long dsiclk_rate(u8 n)
1707 {
1708         u32 divsel;
1709         u32 div = 1;
1710
1711         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1712         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1713
1714         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1715                 divsel = dsiclk[n].divsel;
1716
1717         switch (divsel) {
1718         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1719                 div *= 2;
1720         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1721                 div *= 2;
1722         case PRCM_DSI_PLLOUT_SEL_PHI:
1723                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1724                         PLL_RAW) / div;
1725         default:
1726                 return 0;
1727         }
1728 }
1729
1730 static unsigned long dsiescclk_rate(u8 n)
1731 {
1732         u32 div;
1733
1734         div = readl(PRCM_DSITVCLK_DIV);
1735         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1736         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1737 }
1738
1739 unsigned long prcmu_clock_rate(u8 clock)
1740 {
1741         if (clock < PRCMU_NUM_REG_CLOCKS)
1742                 return clock_rate(clock);
1743         else if (clock == PRCMU_TIMCLK)
1744                 return ROOT_CLOCK_RATE / 16;
1745         else if (clock == PRCMU_SYSCLK)
1746                 return ROOT_CLOCK_RATE;
1747         else if (clock == PRCMU_PLLSOC0)
1748                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749         else if (clock == PRCMU_PLLSOC1)
1750                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1751         else if (clock == PRCMU_ARMSS)
1752                 return armss_rate();
1753         else if (clock == PRCMU_PLLDDR)
1754                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1755         else if (clock == PRCMU_PLLDSI)
1756                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1757                         PLL_RAW);
1758         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1759                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1760         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1761                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1762         else
1763                 return 0;
1764 }
1765
1766 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1767 {
1768         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1769                 return ROOT_CLOCK_RATE;
1770         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1771         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1772                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1773         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1774                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1775         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1776                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1777         else
1778                 return 0;
1779 }
1780
1781 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1782 {
1783         u32 div;
1784
1785         div = (src_rate / rate);
1786         if (div == 0)
1787                 return 1;
1788         if (rate < (src_rate / div))
1789                 div++;
1790         return div;
1791 }
1792
1793 static long round_clock_rate(u8 clock, unsigned long rate)
1794 {
1795         u32 val;
1796         u32 div;
1797         unsigned long src_rate;
1798         long rounded_rate;
1799
1800         val = readl(clk_mgt[clock].reg);
1801         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1802                 clk_mgt[clock].branch);
1803         div = clock_divider(src_rate, rate);
1804         if (val & PRCM_CLK_MGT_CLK38) {
1805                 if (clk_mgt[clock].clk38div) {
1806                         if (div > 2)
1807                                 div = 2;
1808                 } else {
1809                         div = 1;
1810                 }
1811         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1812                 u64 r = (src_rate * 10);
1813
1814                 (void)do_div(r, 25);
1815                 if (r <= rate)
1816                         return (unsigned long)r;
1817         }
1818         rounded_rate = (src_rate / min(div, (u32)31));
1819
1820         return rounded_rate;
1821 }
1822
1823 #define MIN_PLL_VCO_RATE 600000000ULL
1824 #define MAX_PLL_VCO_RATE 1680640000ULL
1825
1826 static long round_plldsi_rate(unsigned long rate)
1827 {
1828         long rounded_rate = 0;
1829         unsigned long src_rate;
1830         unsigned long rem;
1831         u32 r;
1832
1833         src_rate = clock_rate(PRCMU_HDMICLK);
1834         rem = rate;
1835
1836         for (r = 7; (rem > 0) && (r > 0); r--) {
1837                 u64 d;
1838
1839                 d = (r * rate);
1840                 (void)do_div(d, src_rate);
1841                 if (d < 6)
1842                         d = 6;
1843                 else if (d > 255)
1844                         d = 255;
1845                 d *= src_rate;
1846                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1847                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1848                         continue;
1849                 (void)do_div(d, r);
1850                 if (rate < d) {
1851                         if (rounded_rate == 0)
1852                                 rounded_rate = (long)d;
1853                         break;
1854                 }
1855                 if ((rate - d) < rem) {
1856                         rem = (rate - d);
1857                         rounded_rate = (long)d;
1858                 }
1859         }
1860         return rounded_rate;
1861 }
1862
1863 static long round_dsiclk_rate(unsigned long rate)
1864 {
1865         u32 div;
1866         unsigned long src_rate;
1867         long rounded_rate;
1868
1869         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1870                 PLL_RAW);
1871         div = clock_divider(src_rate, rate);
1872         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1873
1874         return rounded_rate;
1875 }
1876
1877 static long round_dsiescclk_rate(unsigned long rate)
1878 {
1879         u32 div;
1880         unsigned long src_rate;
1881         long rounded_rate;
1882
1883         src_rate = clock_rate(PRCMU_TVCLK);
1884         div = clock_divider(src_rate, rate);
1885         rounded_rate = (src_rate / min(div, (u32)255));
1886
1887         return rounded_rate;
1888 }
1889
1890 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1891 {
1892         if (clock < PRCMU_NUM_REG_CLOCKS)
1893                 return round_clock_rate(clock, rate);
1894         else if (clock == PRCMU_PLLDSI)
1895                 return round_plldsi_rate(rate);
1896         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1897                 return round_dsiclk_rate(rate);
1898         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1899                 return round_dsiescclk_rate(rate);
1900         else
1901                 return (long)prcmu_clock_rate(clock);
1902 }
1903
1904 static void set_clock_rate(u8 clock, unsigned long rate)
1905 {
1906         u32 val;
1907         u32 div;
1908         unsigned long src_rate;
1909         unsigned long flags;
1910
1911         spin_lock_irqsave(&clk_mgt_lock, flags);
1912
1913         /* Grab the HW semaphore. */
1914         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1915                 cpu_relax();
1916
1917         val = readl(clk_mgt[clock].reg);
1918         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1919                 clk_mgt[clock].branch);
1920         div = clock_divider(src_rate, rate);
1921         if (val & PRCM_CLK_MGT_CLK38) {
1922                 if (clk_mgt[clock].clk38div) {
1923                         if (div > 1)
1924                                 val |= PRCM_CLK_MGT_CLK38DIV;
1925                         else
1926                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1927                 }
1928         } else if (clock == PRCMU_SGACLK) {
1929                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1930                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1931                 if (div == 3) {
1932                         u64 r = (src_rate * 10);
1933
1934                         (void)do_div(r, 25);
1935                         if (r <= rate) {
1936                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1937                                 div = 0;
1938                         }
1939                 }
1940                 val |= min(div, (u32)31);
1941         } else {
1942                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1943                 val |= min(div, (u32)31);
1944         }
1945         writel(val, clk_mgt[clock].reg);
1946
1947         /* Release the HW semaphore. */
1948         writel(0, PRCM_SEM);
1949
1950         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1951 }
1952
1953 static int set_plldsi_rate(unsigned long rate)
1954 {
1955         unsigned long src_rate;
1956         unsigned long rem;
1957         u32 pll_freq = 0;
1958         u32 r;
1959
1960         src_rate = clock_rate(PRCMU_HDMICLK);
1961         rem = rate;
1962
1963         for (r = 7; (rem > 0) && (r > 0); r--) {
1964                 u64 d;
1965                 u64 hwrate;
1966
1967                 d = (r * rate);
1968                 (void)do_div(d, src_rate);
1969                 if (d < 6)
1970                         d = 6;
1971                 else if (d > 255)
1972                         d = 255;
1973                 hwrate = (d * src_rate);
1974                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1975                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1976                         continue;
1977                 (void)do_div(hwrate, r);
1978                 if (rate < hwrate) {
1979                         if (pll_freq == 0)
1980                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1981                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1982                         break;
1983                 }
1984                 if ((rate - hwrate) < rem) {
1985                         rem = (rate - hwrate);
1986                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1987                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1988                 }
1989         }
1990         if (pll_freq == 0)
1991                 return -EINVAL;
1992
1993         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1994         writel(pll_freq, PRCM_PLLDSI_FREQ);
1995
1996         return 0;
1997 }
1998
1999 static void set_dsiclk_rate(u8 n, unsigned long rate)
2000 {
2001         u32 val;
2002         u32 div;
2003
2004         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2005                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2006
2007         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2008                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2009                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
2010
2011         val = readl(PRCM_DSI_PLLOUT_SEL);
2012         val &= ~dsiclk[n].divsel_mask;
2013         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2014         writel(val, PRCM_DSI_PLLOUT_SEL);
2015 }
2016
2017 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2018 {
2019         u32 val;
2020         u32 div;
2021
2022         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2023         val = readl(PRCM_DSITVCLK_DIV);
2024         val &= ~dsiescclk[n].div_mask;
2025         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2026         writel(val, PRCM_DSITVCLK_DIV);
2027 }
2028
2029 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2030 {
2031         if (clock < PRCMU_NUM_REG_CLOCKS)
2032                 set_clock_rate(clock, rate);
2033         else if (clock == PRCMU_PLLDSI)
2034                 return set_plldsi_rate(rate);
2035         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2036                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2037         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2038                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2039         return 0;
2040 }
2041
2042 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2043 {
2044         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2045             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2046                 return -EINVAL;
2047
2048         mutex_lock(&mb4_transfer.lock);
2049
2050         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2051                 cpu_relax();
2052
2053         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2055                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2056         writeb(DDR_PWR_STATE_ON,
2057                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2058         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2059
2060         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2061         wait_for_completion(&mb4_transfer.work);
2062
2063         mutex_unlock(&mb4_transfer.lock);
2064
2065         return 0;
2066 }
2067
2068 int db8500_prcmu_config_hotdog(u8 threshold)
2069 {
2070         mutex_lock(&mb4_transfer.lock);
2071
2072         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2073                 cpu_relax();
2074
2075         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2076         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2077
2078         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2079         wait_for_completion(&mb4_transfer.work);
2080
2081         mutex_unlock(&mb4_transfer.lock);
2082
2083         return 0;
2084 }
2085
2086 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2087 {
2088         mutex_lock(&mb4_transfer.lock);
2089
2090         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2091                 cpu_relax();
2092
2093         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2094         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2095         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2096                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2097         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2098
2099         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2100         wait_for_completion(&mb4_transfer.work);
2101
2102         mutex_unlock(&mb4_transfer.lock);
2103
2104         return 0;
2105 }
2106
2107 static int config_hot_period(u16 val)
2108 {
2109         mutex_lock(&mb4_transfer.lock);
2110
2111         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2112                 cpu_relax();
2113
2114         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2115         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2116
2117         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2118         wait_for_completion(&mb4_transfer.work);
2119
2120         mutex_unlock(&mb4_transfer.lock);
2121
2122         return 0;
2123 }
2124
2125 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2126 {
2127         if (cycles32k == 0xFFFF)
2128                 return -EINVAL;
2129
2130         return config_hot_period(cycles32k);
2131 }
2132
2133 int db8500_prcmu_stop_temp_sense(void)
2134 {
2135         return config_hot_period(0xFFFF);
2136 }
2137
2138 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2139 {
2140
2141         mutex_lock(&mb4_transfer.lock);
2142
2143         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2144                 cpu_relax();
2145
2146         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2147         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2148         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2149         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2150
2151         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2152
2153         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2154         wait_for_completion(&mb4_transfer.work);
2155
2156         mutex_unlock(&mb4_transfer.lock);
2157
2158         return 0;
2159
2160 }
2161
2162 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2163 {
2164         BUG_ON(num == 0 || num > 0xf);
2165         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2166                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2167                             A9WDOG_AUTO_OFF_DIS);
2168 }
2169
2170 int db8500_prcmu_enable_a9wdog(u8 id)
2171 {
2172         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2173 }
2174
2175 int db8500_prcmu_disable_a9wdog(u8 id)
2176 {
2177         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2178 }
2179
2180 int db8500_prcmu_kick_a9wdog(u8 id)
2181 {
2182         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2183 }
2184
2185 /*
2186  * timeout is 28 bit, in ms.
2187  */
2188 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2189 {
2190         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2191                             (id & A9WDOG_ID_MASK) |
2192                             /*
2193                              * Put the lowest 28 bits of timeout at
2194                              * offset 4. Four first bits are used for id.
2195                              */
2196                             (u8)((timeout << 4) & 0xf0),
2197                             (u8)((timeout >> 4) & 0xff),
2198                             (u8)((timeout >> 12) & 0xff),
2199                             (u8)((timeout >> 20) & 0xff));
2200 }
2201
2202 /**
2203  * prcmu_abb_read() - Read register value(s) from the ABB.
2204  * @slave:      The I2C slave address.
2205  * @reg:        The (start) register address.
2206  * @value:      The read out value(s).
2207  * @size:       The number of registers to read.
2208  *
2209  * Reads register value(s) from the ABB.
2210  * @size has to be 1 for the current firmware version.
2211  */
2212 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2213 {
2214         int r;
2215
2216         if (size != 1)
2217                 return -EINVAL;
2218
2219         mutex_lock(&mb5_transfer.lock);
2220
2221         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222                 cpu_relax();
2223
2224         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229
2230         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231
2232         if (!wait_for_completion_timeout(&mb5_transfer.work,
2233                                 msecs_to_jiffies(20000))) {
2234                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235                         __func__);
2236                 r = -EIO;
2237         } else {
2238                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2239         }
2240
2241         if (!r)
2242                 *value = mb5_transfer.ack.value;
2243
2244         mutex_unlock(&mb5_transfer.lock);
2245
2246         return r;
2247 }
2248
2249 /**
2250  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2251  * @slave:      The I2C slave address.
2252  * @reg:        The (start) register address.
2253  * @value:      The value(s) to write.
2254  * @mask:       The mask(s) to use.
2255  * @size:       The number of registers to write.
2256  *
2257  * Writes masked register value(s) to the ABB.
2258  * For each @value, only the bits set to 1 in the corresponding @mask
2259  * will be written. The other bits are not changed.
2260  * @size has to be 1 for the current firmware version.
2261  */
2262 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2263 {
2264         int r;
2265
2266         if (size != 1)
2267                 return -EINVAL;
2268
2269         mutex_lock(&mb5_transfer.lock);
2270
2271         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2272                 cpu_relax();
2273
2274         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2275         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2276         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2277         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2278         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2279
2280         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2281
2282         if (!wait_for_completion_timeout(&mb5_transfer.work,
2283                                 msecs_to_jiffies(20000))) {
2284                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2285                         __func__);
2286                 r = -EIO;
2287         } else {
2288                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2289         }
2290
2291         mutex_unlock(&mb5_transfer.lock);
2292
2293         return r;
2294 }
2295
2296 /**
2297  * prcmu_abb_write() - Write register value(s) to the ABB.
2298  * @slave:      The I2C slave address.
2299  * @reg:        The (start) register address.
2300  * @value:      The value(s) to write.
2301  * @size:       The number of registers to write.
2302  *
2303  * Writes register value(s) to the ABB.
2304  * @size has to be 1 for the current firmware version.
2305  */
2306 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2307 {
2308         u8 mask = ~0;
2309
2310         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2311 }
2312
2313 /**
2314  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2315  */
2316 int prcmu_ac_wake_req(void)
2317 {
2318         u32 val;
2319         int ret = 0;
2320
2321         mutex_lock(&mb0_transfer.ac_wake_lock);
2322
2323         val = readl(PRCM_HOSTACCESS_REQ);
2324         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2325                 goto unlock_and_return;
2326
2327         atomic_set(&ac_wake_req_state, 1);
2328
2329         /*
2330          * Force Modem Wake-up before hostaccess_req ping-pong.
2331          * It prevents Modem to enter in Sleep while acking the hostaccess
2332          * request. The 31us delay has been calculated by HWI.
2333          */
2334         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2335         writel(val, PRCM_HOSTACCESS_REQ);
2336
2337         udelay(31);
2338
2339         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2340         writel(val, PRCM_HOSTACCESS_REQ);
2341
2342         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2343                         msecs_to_jiffies(5000))) {
2344 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2345                 db8500_prcmu_debug_dump(__func__, true, true);
2346 #endif
2347                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2348                         __func__);
2349                 ret = -EFAULT;
2350         }
2351
2352 unlock_and_return:
2353         mutex_unlock(&mb0_transfer.ac_wake_lock);
2354         return ret;
2355 }
2356
2357 /**
2358  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2359  */
2360 void prcmu_ac_sleep_req()
2361 {
2362         u32 val;
2363
2364         mutex_lock(&mb0_transfer.ac_wake_lock);
2365
2366         val = readl(PRCM_HOSTACCESS_REQ);
2367         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2368                 goto unlock_and_return;
2369
2370         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2371                 PRCM_HOSTACCESS_REQ);
2372
2373         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2374                         msecs_to_jiffies(5000))) {
2375                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2376                         __func__);
2377         }
2378
2379         atomic_set(&ac_wake_req_state, 0);
2380
2381 unlock_and_return:
2382         mutex_unlock(&mb0_transfer.ac_wake_lock);
2383 }
2384
2385 bool db8500_prcmu_is_ac_wake_requested(void)
2386 {
2387         return (atomic_read(&ac_wake_req_state) != 0);
2388 }
2389
2390 /**
2391  * db8500_prcmu_system_reset - System reset
2392  *
2393  * Saves the reset reason code and then sets the APE_SOFTRST register which
2394  * fires interrupt to fw
2395  */
2396 void db8500_prcmu_system_reset(u16 reset_code)
2397 {
2398         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2399         writel(1, PRCM_APE_SOFTRST);
2400 }
2401
2402 /**
2403  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2404  *
2405  * Retrieves the reset reason code stored by prcmu_system_reset() before
2406  * last restart.
2407  */
2408 u16 db8500_prcmu_get_reset_code(void)
2409 {
2410         return readw(tcdm_base + PRCM_SW_RST_REASON);
2411 }
2412
2413 /**
2414  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2415  */
2416 void db8500_prcmu_modem_reset(void)
2417 {
2418         mutex_lock(&mb1_transfer.lock);
2419
2420         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2421                 cpu_relax();
2422
2423         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2424         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2425         wait_for_completion(&mb1_transfer.work);
2426
2427         /*
2428          * No need to check return from PRCMU as modem should go in reset state
2429          * This state is already managed by upper layer
2430          */
2431
2432         mutex_unlock(&mb1_transfer.lock);
2433 }
2434
2435 static void ack_dbb_wakeup(void)
2436 {
2437         unsigned long flags;
2438
2439         spin_lock_irqsave(&mb0_transfer.lock, flags);
2440
2441         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2442                 cpu_relax();
2443
2444         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2445         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2446
2447         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2448 }
2449
2450 static inline void print_unknown_header_warning(u8 n, u8 header)
2451 {
2452         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2453                 header, n);
2454 }
2455
2456 static bool read_mailbox_0(void)
2457 {
2458         bool r;
2459         u32 ev;
2460         unsigned int n;
2461         u8 header;
2462
2463         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2464         switch (header) {
2465         case MB0H_WAKEUP_EXE:
2466         case MB0H_WAKEUP_SLEEP:
2467                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2468                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2469                 else
2470                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2471
2472                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2473                         complete(&mb0_transfer.ac_wake_work);
2474                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2475                         complete(&mb3_transfer.sysclk_work);
2476
2477                 ev &= mb0_transfer.req.dbb_irqs;
2478
2479                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2480                         if (ev & prcmu_irq_bit[n])
2481                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
2482                 }
2483                 r = true;
2484                 break;
2485         default:
2486                 print_unknown_header_warning(0, header);
2487                 r = false;
2488                 break;
2489         }
2490         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2491         return r;
2492 }
2493
2494 static bool read_mailbox_1(void)
2495 {
2496         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2497         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2498                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2499         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2500                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2501         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2502                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2503         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2504         complete(&mb1_transfer.work);
2505         return false;
2506 }
2507
2508 static bool read_mailbox_2(void)
2509 {
2510         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2511         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2512         complete(&mb2_transfer.work);
2513         return false;
2514 }
2515
2516 static bool read_mailbox_3(void)
2517 {
2518         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2519         return false;
2520 }
2521
2522 static bool read_mailbox_4(void)
2523 {
2524         u8 header;
2525         bool do_complete = true;
2526
2527         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2528         switch (header) {
2529         case MB4H_MEM_ST:
2530         case MB4H_HOTDOG:
2531         case MB4H_HOTMON:
2532         case MB4H_HOT_PERIOD:
2533         case MB4H_A9WDOG_CONF:
2534         case MB4H_A9WDOG_EN:
2535         case MB4H_A9WDOG_DIS:
2536         case MB4H_A9WDOG_LOAD:
2537         case MB4H_A9WDOG_KICK:
2538                 break;
2539         default:
2540                 print_unknown_header_warning(4, header);
2541                 do_complete = false;
2542                 break;
2543         }
2544
2545         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2546
2547         if (do_complete)
2548                 complete(&mb4_transfer.work);
2549
2550         return false;
2551 }
2552
2553 static bool read_mailbox_5(void)
2554 {
2555         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2556         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2557         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2558         complete(&mb5_transfer.work);
2559         return false;
2560 }
2561
2562 static bool read_mailbox_6(void)
2563 {
2564         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2565         return false;
2566 }
2567
2568 static bool read_mailbox_7(void)
2569 {
2570         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2571         return false;
2572 }
2573
2574 static bool (* const read_mailbox[NUM_MB])(void) = {
2575         read_mailbox_0,
2576         read_mailbox_1,
2577         read_mailbox_2,
2578         read_mailbox_3,
2579         read_mailbox_4,
2580         read_mailbox_5,
2581         read_mailbox_6,
2582         read_mailbox_7
2583 };
2584
2585 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2586 {
2587         u32 bits;
2588         u8 n;
2589         irqreturn_t r;
2590
2591         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2592         if (unlikely(!bits))
2593                 return IRQ_NONE;
2594
2595         r = IRQ_HANDLED;
2596         for (n = 0; bits; n++) {
2597                 if (bits & MBOX_BIT(n)) {
2598                         bits -= MBOX_BIT(n);
2599                         if (read_mailbox[n]())
2600                                 r = IRQ_WAKE_THREAD;
2601                 }
2602         }
2603         return r;
2604 }
2605
2606 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2607 {
2608         ack_dbb_wakeup();
2609         return IRQ_HANDLED;
2610 }
2611
2612 static void prcmu_mask_work(struct work_struct *work)
2613 {
2614         unsigned long flags;
2615
2616         spin_lock_irqsave(&mb0_transfer.lock, flags);
2617
2618         config_wakeups();
2619
2620         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2621 }
2622
2623 static void prcmu_irq_mask(struct irq_data *d)
2624 {
2625         unsigned long flags;
2626
2627         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2628
2629         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2630
2631         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2632
2633         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2634                 schedule_work(&mb0_transfer.mask_work);
2635 }
2636
2637 static void prcmu_irq_unmask(struct irq_data *d)
2638 {
2639         unsigned long flags;
2640
2641         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2642
2643         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2644
2645         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2646
2647         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2648                 schedule_work(&mb0_transfer.mask_work);
2649 }
2650
2651 static void noop(struct irq_data *d)
2652 {
2653 }
2654
2655 static struct irq_chip prcmu_irq_chip = {
2656         .name           = "prcmu",
2657         .irq_disable    = prcmu_irq_mask,
2658         .irq_ack        = noop,
2659         .irq_mask       = prcmu_irq_mask,
2660         .irq_unmask     = prcmu_irq_unmask,
2661 };
2662
2663 static char *fw_project_name(u8 project)
2664 {
2665         switch (project) {
2666         case PRCMU_FW_PROJECT_U8500:
2667                 return "U8500";
2668         case PRCMU_FW_PROJECT_U8500_C2:
2669                 return "U8500 C2";
2670         case PRCMU_FW_PROJECT_U9500:
2671                 return "U9500";
2672         case PRCMU_FW_PROJECT_U9500_C2:
2673                 return "U9500 C2";
2674         case PRCMU_FW_PROJECT_U8520:
2675                 return "U8520";
2676         case PRCMU_FW_PROJECT_U8420:
2677                 return "U8420";
2678         default:
2679                 return "Unknown";
2680         }
2681 }
2682
2683 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2684                                 irq_hw_number_t hwirq)
2685 {
2686         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2687                                 handle_simple_irq);
2688         set_irq_flags(virq, IRQF_VALID);
2689
2690         return 0;
2691 }
2692
2693 static struct irq_domain_ops db8500_irq_ops = {
2694         .map    = db8500_irq_map,
2695         .xlate  = irq_domain_xlate_twocell,
2696 };
2697
2698 static int db8500_irq_init(struct device_node *np)
2699 {
2700         db8500_irq_domain = irq_domain_add_legacy(
2701                 np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
2702                 0, &db8500_irq_ops, NULL);
2703
2704         if (!db8500_irq_domain) {
2705                 pr_err("Failed to create irqdomain\n");
2706                 return -ENOSYS;
2707         }
2708
2709         return 0;
2710 }
2711
2712 void __init db8500_prcmu_early_init(void)
2713 {
2714         if (cpu_is_u8500v2()) {
2715                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2716
2717                 if (tcpm_base != NULL) {
2718                         u32 version;
2719                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2720                         fw_info.version.project = version & 0xFF;
2721                         fw_info.version.api_version = (version >> 8) & 0xFF;
2722                         fw_info.version.func_version = (version >> 16) & 0xFF;
2723                         fw_info.version.errata = (version >> 24) & 0xFF;
2724                         fw_info.valid = true;
2725                         pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2726                                 fw_project_name(fw_info.version.project),
2727                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2728                                 (version >> 24) & 0xFF);
2729                         iounmap(tcpm_base);
2730                 }
2731
2732                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2733         } else {
2734                 pr_err("prcmu: Unsupported chip version\n");
2735                 BUG();
2736         }
2737
2738         spin_lock_init(&mb0_transfer.lock);
2739         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740         mutex_init(&mb0_transfer.ac_wake_lock);
2741         init_completion(&mb0_transfer.ac_wake_work);
2742         mutex_init(&mb1_transfer.lock);
2743         init_completion(&mb1_transfer.work);
2744         mb1_transfer.ape_opp = APE_NO_CHANGE;
2745         mutex_init(&mb2_transfer.lock);
2746         init_completion(&mb2_transfer.work);
2747         spin_lock_init(&mb2_transfer.auto_pm_lock);
2748         spin_lock_init(&mb3_transfer.lock);
2749         mutex_init(&mb3_transfer.sysclk_lock);
2750         init_completion(&mb3_transfer.sysclk_work);
2751         mutex_init(&mb4_transfer.lock);
2752         init_completion(&mb4_transfer.work);
2753         mutex_init(&mb5_transfer.lock);
2754         init_completion(&mb5_transfer.work);
2755
2756         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2757
2758         compute_armss_rate();
2759 }
2760
2761 static void __init init_prcm_registers(void)
2762 {
2763         u32 val;
2764
2765         val = readl(PRCM_A9PL_FORCE_CLKEN);
2766         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2767                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2768         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2769 }
2770
2771 /*
2772  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2773  */
2774 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2775         REGULATOR_SUPPLY("v-ape", NULL),
2776         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2777         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2778         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2779         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2780         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2781         /* "v-mmc" changed to "vcore" in the mainline kernel */
2782         REGULATOR_SUPPLY("vcore", "sdi0"),
2783         REGULATOR_SUPPLY("vcore", "sdi1"),
2784         REGULATOR_SUPPLY("vcore", "sdi2"),
2785         REGULATOR_SUPPLY("vcore", "sdi3"),
2786         REGULATOR_SUPPLY("vcore", "sdi4"),
2787         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2788         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2789         /* "v-uart" changed to "vcore" in the mainline kernel */
2790         REGULATOR_SUPPLY("vcore", "uart0"),
2791         REGULATOR_SUPPLY("vcore", "uart1"),
2792         REGULATOR_SUPPLY("vcore", "uart2"),
2793         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2794         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2795         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2796 };
2797
2798 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2799         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2800         /* AV8100 regulator */
2801         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802 };
2803
2804 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2805         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2806         REGULATOR_SUPPLY("vsupply", "mcde"),
2807 };
2808
2809 /* SVA MMDSP regulator switch */
2810 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2811         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812 };
2813
2814 /* SVA pipe regulator switch */
2815 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2816         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817 };
2818
2819 /* SIA MMDSP regulator switch */
2820 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2821         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822 };
2823
2824 /* SIA pipe regulator switch */
2825 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2826         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827 };
2828
2829 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2830         REGULATOR_SUPPLY("v-mali", NULL),
2831 };
2832
2833 /* ESRAM1 and 2 regulator switch */
2834 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2835         REGULATOR_SUPPLY("esram12", "cm_control"),
2836 };
2837
2838 /* ESRAM3 and 4 regulator switch */
2839 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2840         REGULATOR_SUPPLY("v-esram34", "mcde"),
2841         REGULATOR_SUPPLY("esram34", "cm_control"),
2842         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2843 };
2844
2845 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2846         [DB8500_REGULATOR_VAPE] = {
2847                 .constraints = {
2848                         .name = "db8500-vape",
2849                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850                         .always_on = true,
2851                 },
2852                 .consumer_supplies = db8500_vape_consumers,
2853                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2854         },
2855         [DB8500_REGULATOR_VARM] = {
2856                 .constraints = {
2857                         .name = "db8500-varm",
2858                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859                 },
2860         },
2861         [DB8500_REGULATOR_VMODEM] = {
2862                 .constraints = {
2863                         .name = "db8500-vmodem",
2864                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865                 },
2866         },
2867         [DB8500_REGULATOR_VPLL] = {
2868                 .constraints = {
2869                         .name = "db8500-vpll",
2870                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871                 },
2872         },
2873         [DB8500_REGULATOR_VSMPS1] = {
2874                 .constraints = {
2875                         .name = "db8500-vsmps1",
2876                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877                 },
2878         },
2879         [DB8500_REGULATOR_VSMPS2] = {
2880                 .constraints = {
2881                         .name = "db8500-vsmps2",
2882                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883                 },
2884                 .consumer_supplies = db8500_vsmps2_consumers,
2885                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2886         },
2887         [DB8500_REGULATOR_VSMPS3] = {
2888                 .constraints = {
2889                         .name = "db8500-vsmps3",
2890                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891                 },
2892         },
2893         [DB8500_REGULATOR_VRF1] = {
2894                 .constraints = {
2895                         .name = "db8500-vrf1",
2896                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897                 },
2898         },
2899         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2900                 /* dependency to u8500-vape is handled outside regulator framework */
2901                 .constraints = {
2902                         .name = "db8500-sva-mmdsp",
2903                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904                 },
2905                 .consumer_supplies = db8500_svammdsp_consumers,
2906                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2907         },
2908         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2909                 .constraints = {
2910                         /* "ret" means "retention" */
2911                         .name = "db8500-sva-mmdsp-ret",
2912                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913                 },
2914         },
2915         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2916                 /* dependency to u8500-vape is handled outside regulator framework */
2917                 .constraints = {
2918                         .name = "db8500-sva-pipe",
2919                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920                 },
2921                 .consumer_supplies = db8500_svapipe_consumers,
2922                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2923         },
2924         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2925                 /* dependency to u8500-vape is handled outside regulator framework */
2926                 .constraints = {
2927                         .name = "db8500-sia-mmdsp",
2928                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929                 },
2930                 .consumer_supplies = db8500_siammdsp_consumers,
2931                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2932         },
2933         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2934                 .constraints = {
2935                         .name = "db8500-sia-mmdsp-ret",
2936                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937                 },
2938         },
2939         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2940                 /* dependency to u8500-vape is handled outside regulator framework */
2941                 .constraints = {
2942                         .name = "db8500-sia-pipe",
2943                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944                 },
2945                 .consumer_supplies = db8500_siapipe_consumers,
2946                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2947         },
2948         [DB8500_REGULATOR_SWITCH_SGA] = {
2949                 .supply_regulator = "db8500-vape",
2950                 .constraints = {
2951                         .name = "db8500-sga",
2952                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953                 },
2954                 .consumer_supplies = db8500_sga_consumers,
2955                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2956
2957         },
2958         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2959                 .supply_regulator = "db8500-vape",
2960                 .constraints = {
2961                         .name = "db8500-b2r2-mcde",
2962                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2963                 },
2964                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2965                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2966         },
2967         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2968                 /*
2969                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2970                  * no need to hold Vape
2971                  */
2972                 .constraints = {
2973                         .name = "db8500-esram12",
2974                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975                 },
2976                 .consumer_supplies = db8500_esram12_consumers,
2977                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2978         },
2979         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2980                 .constraints = {
2981                         .name = "db8500-esram12-ret",
2982                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983                 },
2984         },
2985         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2986                 /*
2987                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2988                  * no need to hold Vape
2989                  */
2990                 .constraints = {
2991                         .name = "db8500-esram34",
2992                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2993                 },
2994                 .consumer_supplies = db8500_esram34_consumers,
2995                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2996         },
2997         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2998                 .constraints = {
2999                         .name = "db8500-esram34-ret",
3000                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3001                 },
3002         },
3003 };
3004
3005 static struct resource ab8500_resources[] = {
3006         [0] = {
3007                 .start  = IRQ_DB8500_AB8500,
3008                 .end    = IRQ_DB8500_AB8500,
3009                 .flags  = IORESOURCE_IRQ
3010         }
3011 };
3012
3013 static struct mfd_cell db8500_prcmu_devs[] = {
3014         {
3015                 .name = "db8500-prcmu-regulators",
3016                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3017                 .platform_data = &db8500_regulators,
3018                 .pdata_size = sizeof(db8500_regulators),
3019         },
3020         {
3021                 .name = "cpufreq-u8500",
3022                 .of_compatible = "stericsson,cpufreq-u8500",
3023         },
3024         {
3025                 .name = "ab8500-core",
3026                 .of_compatible = "stericsson,ab8500",
3027                 .num_resources = ARRAY_SIZE(ab8500_resources),
3028                 .resources = ab8500_resources,
3029                 .id = AB8500_VERSION_AB8500,
3030         },
3031 };
3032
3033 /**
3034  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3035  *
3036  */
3037 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3038 {
3039         struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3040         struct device_node *np = pdev->dev.of_node;
3041         int irq = 0, err = 0, i;
3042
3043         if (ux500_is_svp())
3044                 return -ENODEV;
3045
3046         init_prcm_registers();
3047
3048         /* Clean up the mailbox interrupts after pre-kernel code. */
3049         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3050
3051         if (np)
3052                 irq = platform_get_irq(pdev, 0);
3053
3054         if (!np || irq <= 0)
3055                 irq = IRQ_DB8500_PRCMU1;
3056
3057         err = request_threaded_irq(irq, prcmu_irq_handler,
3058                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3059         if (err < 0) {
3060                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3061                 err = -EBUSY;
3062                 goto no_irq_return;
3063         }
3064
3065         db8500_irq_init(np);
3066
3067         for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3068                 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3069                         db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3070                         db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3071                 }
3072         }
3073
3074         if (cpu_is_u8500v20_or_later())
3075                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3076
3077         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3078                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3079         if (err) {
3080                 pr_err("prcmu: Failed to add subdevices\n");
3081                 return err;
3082         }
3083
3084         pr_info("DB8500 PRCMU initialized\n");
3085
3086 no_irq_return:
3087         return err;
3088 }
3089 static const struct of_device_id db8500_prcmu_match[] = {
3090         { .compatible = "stericsson,db8500-prcmu"},
3091         { },
3092 };
3093
3094 static struct platform_driver db8500_prcmu_driver = {
3095         .driver = {
3096                 .name = "db8500-prcmu",
3097                 .owner = THIS_MODULE,
3098                 .of_match_table = db8500_prcmu_match,
3099         },
3100         .probe = db8500_prcmu_probe,
3101 };
3102
3103 static int __init db8500_prcmu_init(void)
3104 {
3105         return platform_driver_register(&db8500_prcmu_driver);
3106 }
3107
3108 core_initcall(db8500_prcmu_init);
3109
3110 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3111 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3112 MODULE_LICENSE("GPL v2");