]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mfd/db8500-prcmu.c
Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[karo-tx-linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE           0x2FC
46 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
59
60 #define PRCM_AVS_VOLTAGE                0
61 #define PRCM_AVS_VOLTAGE_MASK           0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP          6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE           7
65 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
66
67 #define PRCM_BOOT_STATUS        0xFFF
68 #define PRCM_ROMCODE_A2P        0xFFE
69 #define PRCM_ROMCODE_P2A        0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
71
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73
74 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
82
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
90
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS          0
101 #define MB0H_CONFIG_WAKEUPS_EXE         1
102 #define MB0H_READ_WAKEUP_ACK            3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
104
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
115
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF    0x1
138 #define PLL_SOC0_ON     0x2
139 #define PLL_SOC1_OFF    0x4
140 #define PLL_SOC1_ON     0x8
141
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
147
148 /* Mailbox 2 headers */
149 #define MB2H_DPS        0x0
150 #define MB2H_AUTO_PWR   0x1
151
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
163
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167
168 /* Mailbox 3 headers */
169 #define MB3H_ANC        0x0
170 #define MB3H_SIDETONE   0x1
171 #define MB3H_SYSCLK     0xE
172
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
181
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT   0x0
184 #define MB4H_MEM_ST     0x1
185 #define MB4H_HOTDOG     0x12
186 #define MB4H_HOTMON     0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN   0x17
190 #define MB4H_A9WDOG_DIS  0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW                       BIT(0)
204 #define HOTMON_CONFIG_HIGH                      BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS                     0
211 #define A9WDOG_ID_MASK                          0xf
212
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN               BIT(3)
223
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233
234 /*
235  * Wakeups/IRQs
236  */
237
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267
268 static struct {
269         bool valid;
270         struct prcmu_fw_version version;
271 } fw_info;
272
273 /*
274  * This vector maps irq numbers to the bits in the bit field used in
275  * communication with the PRCMU firmware.
276  *
277  * The reason for having this is to keep the irq numbers contiguous even though
278  * the bits in the bit field are not. (The bits also have a tendency to move
279  * around, to further complicate matters.)
280  */
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284         IRQ_ENTRY(RTC),
285         IRQ_ENTRY(RTT0),
286         IRQ_ENTRY(RTT1),
287         IRQ_ENTRY(HSI0),
288         IRQ_ENTRY(HSI1),
289         IRQ_ENTRY(CA_WAKE),
290         IRQ_ENTRY(USB),
291         IRQ_ENTRY(ABB),
292         IRQ_ENTRY(ABB_FIFO),
293         IRQ_ENTRY(CA_SLEEP),
294         IRQ_ENTRY(ARM),
295         IRQ_ENTRY(HOTMON_LOW),
296         IRQ_ENTRY(HOTMON_HIGH),
297         IRQ_ENTRY(MODEM_SW_RESET_REQ),
298         IRQ_ENTRY(GPIO0),
299         IRQ_ENTRY(GPIO1),
300         IRQ_ENTRY(GPIO2),
301         IRQ_ENTRY(GPIO3),
302         IRQ_ENTRY(GPIO4),
303         IRQ_ENTRY(GPIO5),
304         IRQ_ENTRY(GPIO6),
305         IRQ_ENTRY(GPIO7),
306         IRQ_ENTRY(GPIO8)
307 };
308
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312         WAKEUP_ENTRY(RTC),
313         WAKEUP_ENTRY(RTT0),
314         WAKEUP_ENTRY(RTT1),
315         WAKEUP_ENTRY(HSI0),
316         WAKEUP_ENTRY(HSI1),
317         WAKEUP_ENTRY(USB),
318         WAKEUP_ENTRY(ABB),
319         WAKEUP_ENTRY(ABB_FIFO),
320         WAKEUP_ENTRY(ARM)
321 };
322
323 /*
324  * mb0_transfer - state needed for mailbox 0 communication.
325  * @lock:               The transaction lock.
326  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
327  *                      the request data.
328  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
329  * @req:                Request data that need to persist between requests.
330  */
331 static struct {
332         spinlock_t lock;
333         spinlock_t dbb_irqs_lock;
334         struct work_struct mask_work;
335         struct mutex ac_wake_lock;
336         struct completion ac_wake_work;
337         struct {
338                 u32 dbb_irqs;
339                 u32 dbb_wakeups;
340                 u32 abb_events;
341         } req;
342 } mb0_transfer;
343
344 /*
345  * mb1_transfer - state needed for mailbox 1 communication.
346  * @lock:       The transaction lock.
347  * @work:       The transaction completion structure.
348  * @ape_opp:    The current APE OPP.
349  * @ack:        Reply ("acknowledge") data.
350  */
351 static struct {
352         struct mutex lock;
353         struct completion work;
354         u8 ape_opp;
355         struct {
356                 u8 header;
357                 u8 arm_opp;
358                 u8 ape_opp;
359                 u8 ape_voltage_status;
360         } ack;
361 } mb1_transfer;
362
363 /*
364  * mb2_transfer - state needed for mailbox 2 communication.
365  * @lock:            The transaction lock.
366  * @work:            The transaction completion structure.
367  * @auto_pm_lock:    The autonomous power management configuration lock.
368  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369  * @req:             Request data that need to persist between requests.
370  * @ack:             Reply ("acknowledge") data.
371  */
372 static struct {
373         struct mutex lock;
374         struct completion work;
375         spinlock_t auto_pm_lock;
376         bool auto_pm_enabled;
377         struct {
378                 u8 status;
379         } ack;
380 } mb2_transfer;
381
382 /*
383  * mb3_transfer - state needed for mailbox 3 communication.
384  * @lock:               The request lock.
385  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
386  * @sysclk_work:        Work structure used for sysclk requests.
387  */
388 static struct {
389         spinlock_t lock;
390         struct mutex sysclk_lock;
391         struct completion sysclk_work;
392 } mb3_transfer;
393
394 /*
395  * mb4_transfer - state needed for mailbox 4 communication.
396  * @lock:       The transaction lock.
397  * @work:       The transaction completion structure.
398  */
399 static struct {
400         struct mutex lock;
401         struct completion work;
402 } mb4_transfer;
403
404 /*
405  * mb5_transfer - state needed for mailbox 5 communication.
406  * @lock:       The transaction lock.
407  * @work:       The transaction completion structure.
408  * @ack:        Reply ("acknowledge") data.
409  */
410 static struct {
411         struct mutex lock;
412         struct completion work;
413         struct {
414                 u8 status;
415                 u8 value;
416         } ack;
417 } mb5_transfer;
418
419 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420
421 /* Functions definition */
422 static void compute_armss_rate(void);
423
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
427
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
430
431 struct clk_mgt {
432         void __iomem *reg;
433         u32 pllsw;
434         int branch;
435         bool clk38div;
436 };
437
438 enum {
439         PLL_RAW,
440         PLL_FIX,
441         PLL_DIV
442 };
443
444 static DEFINE_SPINLOCK(clk_mgt_lock);
445
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 };
479
480 struct dsiclk {
481         u32 divsel_mask;
482         u32 divsel_shift;
483         u32 divsel;
484 };
485
486 static struct dsiclk dsiclk[2] = {
487         {
488                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491         },
492         {
493                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496         }
497 };
498
499 struct dsiescclk {
500         u32 en;
501         u32 div_mask;
502         u32 div_shift;
503 };
504
505 static struct dsiescclk dsiescclk[3] = {
506         {
507                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510         },
511         {
512                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515         },
516         {
517                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520         }
521 };
522
523
524 /*
525 * Used by MCDE to setup all necessary PRCMU registers
526 */
527 #define PRCMU_RESET_DSIPLL              0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
529
530 #define PRCMU_CLK_PLL_DIV_SHIFT         0
531 #define PRCMU_CLK_PLL_SW_SHIFT          5
532 #define PRCMU_CLK_38                    (1 << 9)
533 #define PRCMU_CLK_38_SRC                (1 << 10)
534 #define PRCMU_CLK_38_DIV                (1 << 11)
535
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
538
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
543
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
546
547 #define PRCMU_ENABLE_PLLDSI             0x00000001
548 #define PRCMU_DISABLE_PLLDSI            0x00000000
549 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
554 #define PRCMU_DSI_RESET_SW              0x00000007
555
556 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
557
558 int db8500_prcmu_enable_dsipll(void)
559 {
560         int i;
561
562         /* Clear DSIPLL_RESETN */
563         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564         /* Unclamp DSIPLL in/out */
565         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566
567         /* Set DSI PLL FREQ */
568         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570         /* Enable Escape clocks */
571         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572
573         /* Start DSI PLL */
574         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575         /* Reset DSI PLL */
576         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577         for (i = 0; i < 10; i++) {
578                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
580                         break;
581                 udelay(100);
582         }
583         /* Set DSIPLL_RESETN */
584         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585         return 0;
586 }
587
588 int db8500_prcmu_disable_dsipll(void)
589 {
590         /* Disable dsi pll */
591         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592         /* Disable  escapeclock */
593         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594         return 0;
595 }
596
597 int db8500_prcmu_set_display_clocks(void)
598 {
599         unsigned long flags;
600
601         spin_lock_irqsave(&clk_mgt_lock, flags);
602
603         /* Grab the HW semaphore. */
604         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605                 cpu_relax();
606
607         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610
611         /* Release the HW semaphore. */
612         writel(0, PRCM_SEM);
613
614         spin_unlock_irqrestore(&clk_mgt_lock, flags);
615
616         return 0;
617 }
618
619 u32 db8500_prcmu_read(unsigned int reg)
620 {
621         return readl(_PRCMU_BASE + reg);
622 }
623
624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 {
626         unsigned long flags;
627
628         spin_lock_irqsave(&prcmu_lock, flags);
629         writel(value, (_PRCMU_BASE + reg));
630         spin_unlock_irqrestore(&prcmu_lock, flags);
631 }
632
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 {
635         u32 val;
636         unsigned long flags;
637
638         spin_lock_irqsave(&prcmu_lock, flags);
639         val = readl(_PRCMU_BASE + reg);
640         val = ((val & ~mask) | (value & mask));
641         writel(val, (_PRCMU_BASE + reg));
642         spin_unlock_irqrestore(&prcmu_lock, flags);
643 }
644
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 {
647         return fw_info.valid ? &fw_info.version : NULL;
648 }
649
650 bool prcmu_has_arm_maxopp(void)
651 {
652         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 }
655
656 /**
657  * prcmu_get_boot_status - PRCMU boot status checking
658  * Returns: the current PRCMU boot status
659  */
660 int prcmu_get_boot_status(void)
661 {
662         return readb(tcdm_base + PRCM_BOOT_STATUS);
663 }
664
665 /**
666  * prcmu_set_rc_a2p - This function is used to run few power state sequences
667  * @val: Value to be set, i.e. transition requested
668  * Returns: 0 on success, -EINVAL on invalid argument
669  *
670  * This function is used to run the following power state sequences -
671  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672  */
673 int prcmu_set_rc_a2p(enum romcode_write val)
674 {
675         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676                 return -EINVAL;
677         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678         return 0;
679 }
680
681 /**
682  * prcmu_get_rc_p2a - This function is used to get power state sequences
683  * Returns: the power transition that has last happened
684  *
685  * This function can return the following transitions-
686  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687  */
688 enum romcode_read prcmu_get_rc_p2a(void)
689 {
690         return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 }
692
693 /**
694  * prcmu_get_current_mode - Return the current XP70 power mode
695  * Returns: Returns the current AP(ARM) power mode: init,
696  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697  */
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 {
700         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 }
702
703 /**
704  * prcmu_config_clkout - Configure one of the programmable clock outputs.
705  * @clkout:     The CLKOUT number (0 or 1).
706  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
707  * @div:        The divider to be applied.
708  *
709  * Configures one of the programmable clock outputs (CLKOUTs).
710  * @div should be in the range [1,63] to request a configuration, or 0 to
711  * inform that the configuration is no longer requested.
712  */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 {
715         static int requests[2];
716         int r = 0;
717         unsigned long flags;
718         u32 val;
719         u32 bits;
720         u32 mask;
721         u32 div_mask;
722
723         BUG_ON(clkout > 1);
724         BUG_ON(div > 63);
725         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726
727         if (!div && !requests[clkout])
728                 return -EINVAL;
729
730         switch (clkout) {
731         case 0:
732                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736                 break;
737         case 1:
738                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740                         PRCM_CLKOCR_CLK1TYPE);
741                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743                 break;
744         }
745         bits &= mask;
746
747         spin_lock_irqsave(&clkout_lock, flags);
748
749         val = readl(PRCM_CLKOCR);
750         if (val & div_mask) {
751                 if (div) {
752                         if ((val & mask) != bits) {
753                                 r = -EBUSY;
754                                 goto unlock_and_return;
755                         }
756                 } else {
757                         if ((val & mask & ~div_mask) != bits) {
758                                 r = -EINVAL;
759                                 goto unlock_and_return;
760                         }
761                 }
762         }
763         writel((bits | (val & ~mask)), PRCM_CLKOCR);
764         requests[clkout] += (div ? 1 : -1);
765
766 unlock_and_return:
767         spin_unlock_irqrestore(&clkout_lock, flags);
768
769         return r;
770 }
771
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 {
774         unsigned long flags;
775
776         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777
778         spin_lock_irqsave(&mb0_transfer.lock, flags);
779
780         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781                 cpu_relax();
782
783         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786         writeb((keep_ulp_clk ? 1 : 0),
787                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790
791         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792
793         return 0;
794 }
795
796 u8 db8500_prcmu_get_power_state_result(void)
797 {
798         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 }
800
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
803 {
804         u32 val = readl(PRCM_A9_MASK_REQ);
805
806         /* Set bit 0 register value to 1 */
807         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808                PRCM_A9_MASK_REQ);
809
810         /* Make sure the register is updated */
811         readl(PRCM_A9_MASK_REQ);
812
813         /* Wait a few cycles for the gic mask completion */
814         udelay(1);
815
816         return 0;
817 }
818
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
821 {
822         u32 val = readl(PRCM_A9_MASK_REQ);
823
824         /* Set bit 0 register value to 0 */
825         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826
827         return 0;
828 }
829
830 #define PRCMU_GIC_NUMBER_REGS 5
831
832 /*
833  * This function checks if there are pending irq on the gic. It only
834  * makes sense if the gic has been decoupled before with the
835  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836  * disables the forwarding of the interrupt to any CPU interface. It
837  * does not prevent the interrupt from changing state, for example
838  * becoming pending, or active and pending if it is already
839  * active. Hence, we have to check the interrupt is pending *and* is
840  * active.
841  */
842 bool db8500_prcmu_gic_pending_irq(void)
843 {
844         u32 pr; /* Pending register */
845         u32 er; /* Enable register */
846         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847         int i;
848
849         /* 5 registers. STI & PPI not skipped */
850         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851
852                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854
855                 if (pr & er)
856                         return true; /* There is a pending interrupt */
857         }
858
859         return false;
860 }
861
862 /*
863  * This function checks if there are pending interrupt on the
864  * prcmu which has been delegated to monitor the irqs with the
865  * db8500_prcmu_copy_gic_settings function.
866  */
867 bool db8500_prcmu_pending_irq(void)
868 {
869         u32 it, im;
870         int i;
871
872         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875                 if (it & im)
876                         return true; /* There is a pending interrupt */
877         }
878
879         return false;
880 }
881
882 /*
883  * This function checks if the specified cpu is in in WFI. It's usage
884  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885  * function. Of course passing smp_processor_id() to this function will
886  * always return false...
887  */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 {
890         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891                      PRCM_ARM_WFI_STANDBY_WFI0;
892 }
893
894 /*
895  * This function copies the gic SPI settings to the prcmu in order to
896  * monitor them and abort/finish the retention/off sequence or state.
897  */
898 int db8500_prcmu_copy_gic_settings(void)
899 {
900         u32 er; /* Enable register */
901         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902         int i;
903
904         /* We skip the STI and PPI */
905         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906                 er = readl_relaxed(dist_base +
907                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
908                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909         }
910
911         return 0;
912 }
913
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
916 {
917         const u8 header[2] = {
918                 MB0H_CONFIG_WAKEUPS_EXE,
919                 MB0H_CONFIG_WAKEUPS_SLEEP
920         };
921         static u32 last_dbb_events;
922         static u32 last_abb_events;
923         u32 dbb_events;
924         u32 abb_events;
925         unsigned int i;
926
927         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929
930         abb_events = mb0_transfer.req.abb_events;
931
932         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933                 return;
934
935         for (i = 0; i < 2; i++) {
936                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937                         cpu_relax();
938                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942         }
943         last_dbb_events = dbb_events;
944         last_abb_events = abb_events;
945 }
946
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 {
949         unsigned long flags;
950         u32 bits;
951         int i;
952
953         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954
955         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956                 if (wakeups & BIT(i))
957                         bits |= prcmu_wakeup_bit[i];
958         }
959
960         spin_lock_irqsave(&mb0_transfer.lock, flags);
961
962         mb0_transfer.req.dbb_wakeups = bits;
963         config_wakeups();
964
965         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 }
967
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 {
970         unsigned long flags;
971
972         spin_lock_irqsave(&mb0_transfer.lock, flags);
973
974         mb0_transfer.req.abb_events = abb_events;
975         config_wakeups();
976
977         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 }
979
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 {
982         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984         else
985                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 }
987
988 /**
989  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990  * @opp: The new ARM operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the the operating point of the ARM.
994  */
995 int db8500_prcmu_set_arm_opp(u8 opp)
996 {
997         int r;
998
999         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000                 return -EINVAL;
1001
1002         r = 0;
1003
1004         mutex_lock(&mb1_transfer.lock);
1005
1006         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007                 cpu_relax();
1008
1009         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012
1013         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014         wait_for_completion(&mb1_transfer.work);
1015
1016         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017                 (mb1_transfer.ack.arm_opp != opp))
1018                 r = -EIO;
1019
1020         compute_armss_rate();
1021         mutex_unlock(&mb1_transfer.lock);
1022
1023         return r;
1024 }
1025
1026 /**
1027  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1028  *
1029  * Returns: the current ARM OPP
1030  */
1031 int db8500_prcmu_get_arm_opp(void)
1032 {
1033         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1034 }
1035
1036 /**
1037  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1038  *
1039  * Returns: the current DDR OPP
1040  */
1041 int db8500_prcmu_get_ddr_opp(void)
1042 {
1043         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1044 }
1045
1046 /**
1047  * db8500_set_ddr_opp - set the appropriate DDR OPP
1048  * @opp: The new DDR operating point to which transition is to be made
1049  * Returns: 0 on success, non-zero on failure
1050  *
1051  * This function sets the operating point of the DDR.
1052  */
1053 int db8500_prcmu_set_ddr_opp(u8 opp)
1054 {
1055         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1056                 return -EINVAL;
1057         /* Changing the DDR OPP can hang the hardware pre-v21 */
1058         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1059                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1060
1061         return 0;
1062 }
1063
1064 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1065 static void request_even_slower_clocks(bool enable)
1066 {
1067         void __iomem *clock_reg[] = {
1068                 PRCM_ACLK_MGT,
1069                 PRCM_DMACLK_MGT
1070         };
1071         unsigned long flags;
1072         unsigned int i;
1073
1074         spin_lock_irqsave(&clk_mgt_lock, flags);
1075
1076         /* Grab the HW semaphore. */
1077         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1078                 cpu_relax();
1079
1080         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1081                 u32 val;
1082                 u32 div;
1083
1084                 val = readl(clock_reg[i]);
1085                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1086                 if (enable) {
1087                         if ((div <= 1) || (div > 15)) {
1088                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1089                                         div, __func__);
1090                                 goto unlock_and_return;
1091                         }
1092                         div <<= 1;
1093                 } else {
1094                         if (div <= 2)
1095                                 goto unlock_and_return;
1096                         div >>= 1;
1097                 }
1098                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1099                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1100                 writel(val, clock_reg[i]);
1101         }
1102
1103 unlock_and_return:
1104         /* Release the HW semaphore. */
1105         writel(0, PRCM_SEM);
1106
1107         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1108 }
1109
1110 /**
1111  * db8500_set_ape_opp - set the appropriate APE OPP
1112  * @opp: The new APE operating point to which transition is to be made
1113  * Returns: 0 on success, non-zero on failure
1114  *
1115  * This function sets the operating point of the APE.
1116  */
1117 int db8500_prcmu_set_ape_opp(u8 opp)
1118 {
1119         int r = 0;
1120
1121         if (opp == mb1_transfer.ape_opp)
1122                 return 0;
1123
1124         mutex_lock(&mb1_transfer.lock);
1125
1126         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1127                 request_even_slower_clocks(false);
1128
1129         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1130                 goto skip_message;
1131
1132         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133                 cpu_relax();
1134
1135         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1136         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1137         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1138                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1139
1140         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141         wait_for_completion(&mb1_transfer.work);
1142
1143         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1144                 (mb1_transfer.ack.ape_opp != opp))
1145                 r = -EIO;
1146
1147 skip_message:
1148         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1149                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1150                 request_even_slower_clocks(true);
1151         if (!r)
1152                 mb1_transfer.ape_opp = opp;
1153
1154         mutex_unlock(&mb1_transfer.lock);
1155
1156         return r;
1157 }
1158
1159 /**
1160  * db8500_prcmu_get_ape_opp - get the current APE OPP
1161  *
1162  * Returns: the current APE OPP
1163  */
1164 int db8500_prcmu_get_ape_opp(void)
1165 {
1166         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1167 }
1168
1169 /**
1170  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1171  * @enable: true to request the higher voltage, false to drop a request.
1172  *
1173  * Calls to this function to enable and disable requests must be balanced.
1174  */
1175 int prcmu_request_ape_opp_100_voltage(bool enable)
1176 {
1177         int r = 0;
1178         u8 header;
1179         static unsigned int requests;
1180
1181         mutex_lock(&mb1_transfer.lock);
1182
1183         if (enable) {
1184                 if (0 != requests++)
1185                         goto unlock_and_return;
1186                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1187         } else {
1188                 if (requests == 0) {
1189                         r = -EIO;
1190                         goto unlock_and_return;
1191                 } else if (1 != requests--) {
1192                         goto unlock_and_return;
1193                 }
1194                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1195         }
1196
1197         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1198                 cpu_relax();
1199
1200         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1201
1202         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1203         wait_for_completion(&mb1_transfer.work);
1204
1205         if ((mb1_transfer.ack.header != header) ||
1206                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1207                 r = -EIO;
1208
1209 unlock_and_return:
1210         mutex_unlock(&mb1_transfer.lock);
1211
1212         return r;
1213 }
1214
1215 /**
1216  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1217  *
1218  * This function releases the power state requirements of a USB wakeup.
1219  */
1220 int prcmu_release_usb_wakeup_state(void)
1221 {
1222         int r = 0;
1223
1224         mutex_lock(&mb1_transfer.lock);
1225
1226         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1227                 cpu_relax();
1228
1229         writeb(MB1H_RELEASE_USB_WAKEUP,
1230                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1231
1232         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1233         wait_for_completion(&mb1_transfer.work);
1234
1235         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1236                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1237                 r = -EIO;
1238
1239         mutex_unlock(&mb1_transfer.lock);
1240
1241         return r;
1242 }
1243
1244 static int request_pll(u8 clock, bool enable)
1245 {
1246         int r = 0;
1247
1248         if (clock == PRCMU_PLLSOC0)
1249                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1250         else if (clock == PRCMU_PLLSOC1)
1251                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1252         else
1253                 return -EINVAL;
1254
1255         mutex_lock(&mb1_transfer.lock);
1256
1257         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1258                 cpu_relax();
1259
1260         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1261         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1262
1263         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1264         wait_for_completion(&mb1_transfer.work);
1265
1266         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1267                 r = -EIO;
1268
1269         mutex_unlock(&mb1_transfer.lock);
1270
1271         return r;
1272 }
1273
1274 /**
1275  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1276  * @epod_id: The EPOD to set
1277  * @epod_state: The new EPOD state
1278  *
1279  * This function sets the state of a EPOD (power domain). It may not be called
1280  * from interrupt context.
1281  */
1282 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1283 {
1284         int r = 0;
1285         bool ram_retention = false;
1286         int i;
1287
1288         /* check argument */
1289         BUG_ON(epod_id >= NUM_EPOD_ID);
1290
1291         /* set flag if retention is possible */
1292         switch (epod_id) {
1293         case EPOD_ID_SVAMMDSP:
1294         case EPOD_ID_SIAMMDSP:
1295         case EPOD_ID_ESRAM12:
1296         case EPOD_ID_ESRAM34:
1297                 ram_retention = true;
1298                 break;
1299         }
1300
1301         /* check argument */
1302         BUG_ON(epod_state > EPOD_STATE_ON);
1303         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1304
1305         /* get lock */
1306         mutex_lock(&mb2_transfer.lock);
1307
1308         /* wait for mailbox */
1309         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1310                 cpu_relax();
1311
1312         /* fill in mailbox */
1313         for (i = 0; i < NUM_EPOD_ID; i++)
1314                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1315         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1316
1317         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1318
1319         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1320
1321         /*
1322          * The current firmware version does not handle errors correctly,
1323          * and we cannot recover if there is an error.
1324          * This is expected to change when the firmware is updated.
1325          */
1326         if (!wait_for_completion_timeout(&mb2_transfer.work,
1327                         msecs_to_jiffies(20000))) {
1328                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329                         __func__);
1330                 r = -EIO;
1331                 goto unlock_and_return;
1332         }
1333
1334         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1335                 r = -EIO;
1336
1337 unlock_and_return:
1338         mutex_unlock(&mb2_transfer.lock);
1339         return r;
1340 }
1341
1342 /**
1343  * prcmu_configure_auto_pm - Configure autonomous power management.
1344  * @sleep: Configuration for ApSleep.
1345  * @idle:  Configuration for ApIdle.
1346  */
1347 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1348         struct prcmu_auto_pm_config *idle)
1349 {
1350         u32 sleep_cfg;
1351         u32 idle_cfg;
1352         unsigned long flags;
1353
1354         BUG_ON((sleep == NULL) || (idle == NULL));
1355
1356         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1357         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1358         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1359         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1360         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1361         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1362
1363         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1364         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1365         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1366         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1367         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1368         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1369
1370         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1371
1372         /*
1373          * The autonomous power management configuration is done through
1374          * fields in mailbox 2, but these fields are only used as shared
1375          * variables - i.e. there is no need to send a message.
1376          */
1377         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1378         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1379
1380         mb2_transfer.auto_pm_enabled =
1381                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1385
1386         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1387 }
1388 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1389
1390 bool prcmu_is_auto_pm_enabled(void)
1391 {
1392         return mb2_transfer.auto_pm_enabled;
1393 }
1394
1395 static int request_sysclk(bool enable)
1396 {
1397         int r;
1398         unsigned long flags;
1399
1400         r = 0;
1401
1402         mutex_lock(&mb3_transfer.sysclk_lock);
1403
1404         spin_lock_irqsave(&mb3_transfer.lock, flags);
1405
1406         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1407                 cpu_relax();
1408
1409         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1410
1411         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1412         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1413
1414         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1415
1416         /*
1417          * The firmware only sends an ACK if we want to enable the
1418          * SysClk, and it succeeds.
1419          */
1420         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1421                         msecs_to_jiffies(20000))) {
1422                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1423                         __func__);
1424                 r = -EIO;
1425         }
1426
1427         mutex_unlock(&mb3_transfer.sysclk_lock);
1428
1429         return r;
1430 }
1431
1432 static int request_timclk(bool enable)
1433 {
1434         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1435
1436         if (!enable)
1437                 val |= PRCM_TCR_STOP_TIMERS;
1438         writel(val, PRCM_TCR);
1439
1440         return 0;
1441 }
1442
1443 static int request_clock(u8 clock, bool enable)
1444 {
1445         u32 val;
1446         unsigned long flags;
1447
1448         spin_lock_irqsave(&clk_mgt_lock, flags);
1449
1450         /* Grab the HW semaphore. */
1451         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1452                 cpu_relax();
1453
1454         val = readl(clk_mgt[clock].reg);
1455         if (enable) {
1456                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1457         } else {
1458                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1459                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1460         }
1461         writel(val, clk_mgt[clock].reg);
1462
1463         /* Release the HW semaphore. */
1464         writel(0, PRCM_SEM);
1465
1466         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1467
1468         return 0;
1469 }
1470
1471 static int request_sga_clock(u8 clock, bool enable)
1472 {
1473         u32 val;
1474         int ret;
1475
1476         if (enable) {
1477                 val = readl(PRCM_CGATING_BYPASS);
1478                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1479         }
1480
1481         ret = request_clock(clock, enable);
1482
1483         if (!ret && !enable) {
1484                 val = readl(PRCM_CGATING_BYPASS);
1485                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1486         }
1487
1488         return ret;
1489 }
1490
1491 static inline bool plldsi_locked(void)
1492 {
1493         return (readl(PRCM_PLLDSI_LOCKP) &
1494                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1495                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1496                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1498 }
1499
1500 static int request_plldsi(bool enable)
1501 {
1502         int r = 0;
1503         u32 val;
1504
1505         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1506                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1507                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1508
1509         val = readl(PRCM_PLLDSI_ENABLE);
1510         if (enable)
1511                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1512         else
1513                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514         writel(val, PRCM_PLLDSI_ENABLE);
1515
1516         if (enable) {
1517                 unsigned int i;
1518                 bool locked = plldsi_locked();
1519
1520                 for (i = 10; !locked && (i > 0); --i) {
1521                         udelay(100);
1522                         locked = plldsi_locked();
1523                 }
1524                 if (locked) {
1525                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1526                                 PRCM_APE_RESETN_SET);
1527                 } else {
1528                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1529                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1530                                 PRCM_MMIP_LS_CLAMP_SET);
1531                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1532                         writel(val, PRCM_PLLDSI_ENABLE);
1533                         r = -EAGAIN;
1534                 }
1535         } else {
1536                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1537         }
1538         return r;
1539 }
1540
1541 static int request_dsiclk(u8 n, bool enable)
1542 {
1543         u32 val;
1544
1545         val = readl(PRCM_DSI_PLLOUT_SEL);
1546         val &= ~dsiclk[n].divsel_mask;
1547         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1548                 dsiclk[n].divsel_shift);
1549         writel(val, PRCM_DSI_PLLOUT_SEL);
1550         return 0;
1551 }
1552
1553 static int request_dsiescclk(u8 n, bool enable)
1554 {
1555         u32 val;
1556
1557         val = readl(PRCM_DSITVCLK_DIV);
1558         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1559         writel(val, PRCM_DSITVCLK_DIV);
1560         return 0;
1561 }
1562
1563 /**
1564  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1565  * @clock:      The clock for which the request is made.
1566  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1567  *
1568  * This function should only be used by the clock implementation.
1569  * Do not use it from any other place!
1570  */
1571 int db8500_prcmu_request_clock(u8 clock, bool enable)
1572 {
1573         if (clock == PRCMU_SGACLK)
1574                 return request_sga_clock(clock, enable);
1575         else if (clock < PRCMU_NUM_REG_CLOCKS)
1576                 return request_clock(clock, enable);
1577         else if (clock == PRCMU_TIMCLK)
1578                 return request_timclk(enable);
1579         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1580                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1581         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1582                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1583         else if (clock == PRCMU_PLLDSI)
1584                 return request_plldsi(enable);
1585         else if (clock == PRCMU_SYSCLK)
1586                 return request_sysclk(enable);
1587         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1588                 return request_pll(clock, enable);
1589         else
1590                 return -EINVAL;
1591 }
1592
1593 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1594         int branch)
1595 {
1596         u64 rate;
1597         u32 val;
1598         u32 d;
1599         u32 div = 1;
1600
1601         val = readl(reg);
1602
1603         rate = src_rate;
1604         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1605
1606         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1607         if (d > 1)
1608                 div *= d;
1609
1610         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1611         if (d > 1)
1612                 div *= d;
1613
1614         if (val & PRCM_PLL_FREQ_SELDIV2)
1615                 div *= 2;
1616
1617         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1618                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1619                 ((reg == PRCM_PLLSOC0_FREQ) ||
1620                  (reg == PRCM_PLLARM_FREQ) ||
1621                  (reg == PRCM_PLLDDR_FREQ))))
1622                 div *= 2;
1623
1624         (void)do_div(rate, div);
1625
1626         return (unsigned long)rate;
1627 }
1628
1629 #define ROOT_CLOCK_RATE 38400000
1630
1631 static unsigned long clock_rate(u8 clock)
1632 {
1633         u32 val;
1634         u32 pllsw;
1635         unsigned long rate = ROOT_CLOCK_RATE;
1636
1637         val = readl(clk_mgt[clock].reg);
1638
1639         if (val & PRCM_CLK_MGT_CLK38) {
1640                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1641                         rate /= 2;
1642                 return rate;
1643         }
1644
1645         val |= clk_mgt[clock].pllsw;
1646         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1647
1648         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1649                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1650         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1651                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1652         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1653                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1654         else
1655                 return 0;
1656
1657         if ((clock == PRCMU_SGACLK) &&
1658                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1659                 u64 r = (rate * 10);
1660
1661                 (void)do_div(r, 25);
1662                 return (unsigned long)r;
1663         }
1664         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1665         if (val)
1666                 return rate / val;
1667         else
1668                 return 0;
1669 }
1670 static unsigned long latest_armss_rate;
1671 static unsigned long armss_rate(void)
1672 {
1673         return latest_armss_rate;
1674 }
1675
1676 static void compute_armss_rate(void)
1677 {
1678         u32 r;
1679         unsigned long rate;
1680
1681         r = readl(PRCM_ARM_CHGCLKREQ);
1682
1683         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1684                 /* External ARMCLKFIX clock */
1685
1686                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1687
1688                 /* Check PRCM_ARM_CHGCLKREQ divider */
1689                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1690                         rate /= 2;
1691
1692                 /* Check PRCM_ARMCLKFIX_MGT divider */
1693                 r = readl(PRCM_ARMCLKFIX_MGT);
1694                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1695                 rate /= r;
1696
1697         } else {/* ARM PLL */
1698                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1699         }
1700
1701         latest_armss_rate = rate;
1702 }
1703
1704 static unsigned long dsiclk_rate(u8 n)
1705 {
1706         u32 divsel;
1707         u32 div = 1;
1708
1709         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1710         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1711
1712         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1713                 divsel = dsiclk[n].divsel;
1714
1715         switch (divsel) {
1716         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1717                 div *= 2;
1718         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1719                 div *= 2;
1720         case PRCM_DSI_PLLOUT_SEL_PHI:
1721                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1722                         PLL_RAW) / div;
1723         default:
1724                 return 0;
1725         }
1726 }
1727
1728 static unsigned long dsiescclk_rate(u8 n)
1729 {
1730         u32 div;
1731
1732         div = readl(PRCM_DSITVCLK_DIV);
1733         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1734         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1735 }
1736
1737 unsigned long prcmu_clock_rate(u8 clock)
1738 {
1739         if (clock < PRCMU_NUM_REG_CLOCKS)
1740                 return clock_rate(clock);
1741         else if (clock == PRCMU_TIMCLK)
1742                 return ROOT_CLOCK_RATE / 16;
1743         else if (clock == PRCMU_SYSCLK)
1744                 return ROOT_CLOCK_RATE;
1745         else if (clock == PRCMU_PLLSOC0)
1746                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747         else if (clock == PRCMU_PLLSOC1)
1748                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749         else if (clock == PRCMU_ARMSS)
1750                 return armss_rate();
1751         else if (clock == PRCMU_PLLDDR)
1752                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1753         else if (clock == PRCMU_PLLDSI)
1754                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1755                         PLL_RAW);
1756         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1757                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1758         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1759                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1760         else
1761                 return 0;
1762 }
1763
1764 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1765 {
1766         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1767                 return ROOT_CLOCK_RATE;
1768         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1769         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1770                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1771         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1772                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1773         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1774                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1775         else
1776                 return 0;
1777 }
1778
1779 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1780 {
1781         u32 div;
1782
1783         div = (src_rate / rate);
1784         if (div == 0)
1785                 return 1;
1786         if (rate < (src_rate / div))
1787                 div++;
1788         return div;
1789 }
1790
1791 static long round_clock_rate(u8 clock, unsigned long rate)
1792 {
1793         u32 val;
1794         u32 div;
1795         unsigned long src_rate;
1796         long rounded_rate;
1797
1798         val = readl(clk_mgt[clock].reg);
1799         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1800                 clk_mgt[clock].branch);
1801         div = clock_divider(src_rate, rate);
1802         if (val & PRCM_CLK_MGT_CLK38) {
1803                 if (clk_mgt[clock].clk38div) {
1804                         if (div > 2)
1805                                 div = 2;
1806                 } else {
1807                         div = 1;
1808                 }
1809         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1810                 u64 r = (src_rate * 10);
1811
1812                 (void)do_div(r, 25);
1813                 if (r <= rate)
1814                         return (unsigned long)r;
1815         }
1816         rounded_rate = (src_rate / min(div, (u32)31));
1817
1818         return rounded_rate;
1819 }
1820
1821 #define MIN_PLL_VCO_RATE 600000000ULL
1822 #define MAX_PLL_VCO_RATE 1680640000ULL
1823
1824 static long round_plldsi_rate(unsigned long rate)
1825 {
1826         long rounded_rate = 0;
1827         unsigned long src_rate;
1828         unsigned long rem;
1829         u32 r;
1830
1831         src_rate = clock_rate(PRCMU_HDMICLK);
1832         rem = rate;
1833
1834         for (r = 7; (rem > 0) && (r > 0); r--) {
1835                 u64 d;
1836
1837                 d = (r * rate);
1838                 (void)do_div(d, src_rate);
1839                 if (d < 6)
1840                         d = 6;
1841                 else if (d > 255)
1842                         d = 255;
1843                 d *= src_rate;
1844                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1845                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1846                         continue;
1847                 (void)do_div(d, r);
1848                 if (rate < d) {
1849                         if (rounded_rate == 0)
1850                                 rounded_rate = (long)d;
1851                         break;
1852                 }
1853                 if ((rate - d) < rem) {
1854                         rem = (rate - d);
1855                         rounded_rate = (long)d;
1856                 }
1857         }
1858         return rounded_rate;
1859 }
1860
1861 static long round_dsiclk_rate(unsigned long rate)
1862 {
1863         u32 div;
1864         unsigned long src_rate;
1865         long rounded_rate;
1866
1867         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1868                 PLL_RAW);
1869         div = clock_divider(src_rate, rate);
1870         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1871
1872         return rounded_rate;
1873 }
1874
1875 static long round_dsiescclk_rate(unsigned long rate)
1876 {
1877         u32 div;
1878         unsigned long src_rate;
1879         long rounded_rate;
1880
1881         src_rate = clock_rate(PRCMU_TVCLK);
1882         div = clock_divider(src_rate, rate);
1883         rounded_rate = (src_rate / min(div, (u32)255));
1884
1885         return rounded_rate;
1886 }
1887
1888 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1889 {
1890         if (clock < PRCMU_NUM_REG_CLOCKS)
1891                 return round_clock_rate(clock, rate);
1892         else if (clock == PRCMU_PLLDSI)
1893                 return round_plldsi_rate(rate);
1894         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1895                 return round_dsiclk_rate(rate);
1896         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1897                 return round_dsiescclk_rate(rate);
1898         else
1899                 return (long)prcmu_clock_rate(clock);
1900 }
1901
1902 static void set_clock_rate(u8 clock, unsigned long rate)
1903 {
1904         u32 val;
1905         u32 div;
1906         unsigned long src_rate;
1907         unsigned long flags;
1908
1909         spin_lock_irqsave(&clk_mgt_lock, flags);
1910
1911         /* Grab the HW semaphore. */
1912         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1913                 cpu_relax();
1914
1915         val = readl(clk_mgt[clock].reg);
1916         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1917                 clk_mgt[clock].branch);
1918         div = clock_divider(src_rate, rate);
1919         if (val & PRCM_CLK_MGT_CLK38) {
1920                 if (clk_mgt[clock].clk38div) {
1921                         if (div > 1)
1922                                 val |= PRCM_CLK_MGT_CLK38DIV;
1923                         else
1924                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1925                 }
1926         } else if (clock == PRCMU_SGACLK) {
1927                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1928                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1929                 if (div == 3) {
1930                         u64 r = (src_rate * 10);
1931
1932                         (void)do_div(r, 25);
1933                         if (r <= rate) {
1934                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1935                                 div = 0;
1936                         }
1937                 }
1938                 val |= min(div, (u32)31);
1939         } else {
1940                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1941                 val |= min(div, (u32)31);
1942         }
1943         writel(val, clk_mgt[clock].reg);
1944
1945         /* Release the HW semaphore. */
1946         writel(0, PRCM_SEM);
1947
1948         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1949 }
1950
1951 static int set_plldsi_rate(unsigned long rate)
1952 {
1953         unsigned long src_rate;
1954         unsigned long rem;
1955         u32 pll_freq = 0;
1956         u32 r;
1957
1958         src_rate = clock_rate(PRCMU_HDMICLK);
1959         rem = rate;
1960
1961         for (r = 7; (rem > 0) && (r > 0); r--) {
1962                 u64 d;
1963                 u64 hwrate;
1964
1965                 d = (r * rate);
1966                 (void)do_div(d, src_rate);
1967                 if (d < 6)
1968                         d = 6;
1969                 else if (d > 255)
1970                         d = 255;
1971                 hwrate = (d * src_rate);
1972                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1973                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1974                         continue;
1975                 (void)do_div(hwrate, r);
1976                 if (rate < hwrate) {
1977                         if (pll_freq == 0)
1978                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1979                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1980                         break;
1981                 }
1982                 if ((rate - hwrate) < rem) {
1983                         rem = (rate - hwrate);
1984                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1985                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1986                 }
1987         }
1988         if (pll_freq == 0)
1989                 return -EINVAL;
1990
1991         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1992         writel(pll_freq, PRCM_PLLDSI_FREQ);
1993
1994         return 0;
1995 }
1996
1997 static void set_dsiclk_rate(u8 n, unsigned long rate)
1998 {
1999         u32 val;
2000         u32 div;
2001
2002         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2003                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2004
2005         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2006                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2007                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
2008
2009         val = readl(PRCM_DSI_PLLOUT_SEL);
2010         val &= ~dsiclk[n].divsel_mask;
2011         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2012         writel(val, PRCM_DSI_PLLOUT_SEL);
2013 }
2014
2015 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2016 {
2017         u32 val;
2018         u32 div;
2019
2020         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2021         val = readl(PRCM_DSITVCLK_DIV);
2022         val &= ~dsiescclk[n].div_mask;
2023         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2024         writel(val, PRCM_DSITVCLK_DIV);
2025 }
2026
2027 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2028 {
2029         if (clock < PRCMU_NUM_REG_CLOCKS)
2030                 set_clock_rate(clock, rate);
2031         else if (clock == PRCMU_PLLDSI)
2032                 return set_plldsi_rate(rate);
2033         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2034                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2035         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2036                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2037         return 0;
2038 }
2039
2040 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2041 {
2042         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2043             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2044                 return -EINVAL;
2045
2046         mutex_lock(&mb4_transfer.lock);
2047
2048         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2049                 cpu_relax();
2050
2051         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2053                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2054         writeb(DDR_PWR_STATE_ON,
2055                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2056         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2057
2058         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2059         wait_for_completion(&mb4_transfer.work);
2060
2061         mutex_unlock(&mb4_transfer.lock);
2062
2063         return 0;
2064 }
2065
2066 int db8500_prcmu_config_hotdog(u8 threshold)
2067 {
2068         mutex_lock(&mb4_transfer.lock);
2069
2070         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2071                 cpu_relax();
2072
2073         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2074         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2075
2076         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2077         wait_for_completion(&mb4_transfer.work);
2078
2079         mutex_unlock(&mb4_transfer.lock);
2080
2081         return 0;
2082 }
2083
2084 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2085 {
2086         mutex_lock(&mb4_transfer.lock);
2087
2088         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089                 cpu_relax();
2090
2091         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2092         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2093         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2094                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2095         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096
2097         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2098         wait_for_completion(&mb4_transfer.work);
2099
2100         mutex_unlock(&mb4_transfer.lock);
2101
2102         return 0;
2103 }
2104
2105 static int config_hot_period(u16 val)
2106 {
2107         mutex_lock(&mb4_transfer.lock);
2108
2109         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2110                 cpu_relax();
2111
2112         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2113         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2114
2115         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2116         wait_for_completion(&mb4_transfer.work);
2117
2118         mutex_unlock(&mb4_transfer.lock);
2119
2120         return 0;
2121 }
2122
2123 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2124 {
2125         if (cycles32k == 0xFFFF)
2126                 return -EINVAL;
2127
2128         return config_hot_period(cycles32k);
2129 }
2130
2131 int db8500_prcmu_stop_temp_sense(void)
2132 {
2133         return config_hot_period(0xFFFF);
2134 }
2135
2136 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2137 {
2138
2139         mutex_lock(&mb4_transfer.lock);
2140
2141         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2142                 cpu_relax();
2143
2144         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2145         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2146         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2147         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2148
2149         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2150
2151         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2152         wait_for_completion(&mb4_transfer.work);
2153
2154         mutex_unlock(&mb4_transfer.lock);
2155
2156         return 0;
2157
2158 }
2159
2160 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2161 {
2162         BUG_ON(num == 0 || num > 0xf);
2163         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2164                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2165                             A9WDOG_AUTO_OFF_DIS);
2166 }
2167
2168 int db8500_prcmu_enable_a9wdog(u8 id)
2169 {
2170         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2171 }
2172
2173 int db8500_prcmu_disable_a9wdog(u8 id)
2174 {
2175         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2176 }
2177
2178 int db8500_prcmu_kick_a9wdog(u8 id)
2179 {
2180         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2181 }
2182
2183 /*
2184  * timeout is 28 bit, in ms.
2185  */
2186 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2187 {
2188         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2189                             (id & A9WDOG_ID_MASK) |
2190                             /*
2191                              * Put the lowest 28 bits of timeout at
2192                              * offset 4. Four first bits are used for id.
2193                              */
2194                             (u8)((timeout << 4) & 0xf0),
2195                             (u8)((timeout >> 4) & 0xff),
2196                             (u8)((timeout >> 12) & 0xff),
2197                             (u8)((timeout >> 20) & 0xff));
2198 }
2199
2200 /**
2201  * prcmu_abb_read() - Read register value(s) from the ABB.
2202  * @slave:      The I2C slave address.
2203  * @reg:        The (start) register address.
2204  * @value:      The read out value(s).
2205  * @size:       The number of registers to read.
2206  *
2207  * Reads register value(s) from the ABB.
2208  * @size has to be 1 for the current firmware version.
2209  */
2210 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2211 {
2212         int r;
2213
2214         if (size != 1)
2215                 return -EINVAL;
2216
2217         mutex_lock(&mb5_transfer.lock);
2218
2219         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2220                 cpu_relax();
2221
2222         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2223         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2224         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2225         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2226         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2227
2228         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2229
2230         if (!wait_for_completion_timeout(&mb5_transfer.work,
2231                                 msecs_to_jiffies(20000))) {
2232                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2233                         __func__);
2234                 r = -EIO;
2235         } else {
2236                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2237         }
2238
2239         if (!r)
2240                 *value = mb5_transfer.ack.value;
2241
2242         mutex_unlock(&mb5_transfer.lock);
2243
2244         return r;
2245 }
2246
2247 /**
2248  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2249  * @slave:      The I2C slave address.
2250  * @reg:        The (start) register address.
2251  * @value:      The value(s) to write.
2252  * @mask:       The mask(s) to use.
2253  * @size:       The number of registers to write.
2254  *
2255  * Writes masked register value(s) to the ABB.
2256  * For each @value, only the bits set to 1 in the corresponding @mask
2257  * will be written. The other bits are not changed.
2258  * @size has to be 1 for the current firmware version.
2259  */
2260 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2261 {
2262         int r;
2263
2264         if (size != 1)
2265                 return -EINVAL;
2266
2267         mutex_lock(&mb5_transfer.lock);
2268
2269         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2270                 cpu_relax();
2271
2272         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2273         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2274         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2275         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2276         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2277
2278         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2279
2280         if (!wait_for_completion_timeout(&mb5_transfer.work,
2281                                 msecs_to_jiffies(20000))) {
2282                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2283                         __func__);
2284                 r = -EIO;
2285         } else {
2286                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2287         }
2288
2289         mutex_unlock(&mb5_transfer.lock);
2290
2291         return r;
2292 }
2293
2294 /**
2295  * prcmu_abb_write() - Write register value(s) to the ABB.
2296  * @slave:      The I2C slave address.
2297  * @reg:        The (start) register address.
2298  * @value:      The value(s) to write.
2299  * @size:       The number of registers to write.
2300  *
2301  * Writes register value(s) to the ABB.
2302  * @size has to be 1 for the current firmware version.
2303  */
2304 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2305 {
2306         u8 mask = ~0;
2307
2308         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2309 }
2310
2311 /**
2312  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2313  */
2314 int prcmu_ac_wake_req(void)
2315 {
2316         u32 val;
2317         int ret = 0;
2318
2319         mutex_lock(&mb0_transfer.ac_wake_lock);
2320
2321         val = readl(PRCM_HOSTACCESS_REQ);
2322         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2323                 goto unlock_and_return;
2324
2325         atomic_set(&ac_wake_req_state, 1);
2326
2327         /*
2328          * Force Modem Wake-up before hostaccess_req ping-pong.
2329          * It prevents Modem to enter in Sleep while acking the hostaccess
2330          * request. The 31us delay has been calculated by HWI.
2331          */
2332         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2333         writel(val, PRCM_HOSTACCESS_REQ);
2334
2335         udelay(31);
2336
2337         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2338         writel(val, PRCM_HOSTACCESS_REQ);
2339
2340         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2341                         msecs_to_jiffies(5000))) {
2342 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2343                 db8500_prcmu_debug_dump(__func__, true, true);
2344 #endif
2345                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2346                         __func__);
2347                 ret = -EFAULT;
2348         }
2349
2350 unlock_and_return:
2351         mutex_unlock(&mb0_transfer.ac_wake_lock);
2352         return ret;
2353 }
2354
2355 /**
2356  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2357  */
2358 void prcmu_ac_sleep_req()
2359 {
2360         u32 val;
2361
2362         mutex_lock(&mb0_transfer.ac_wake_lock);
2363
2364         val = readl(PRCM_HOSTACCESS_REQ);
2365         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2366                 goto unlock_and_return;
2367
2368         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2369                 PRCM_HOSTACCESS_REQ);
2370
2371         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2372                         msecs_to_jiffies(5000))) {
2373                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2374                         __func__);
2375         }
2376
2377         atomic_set(&ac_wake_req_state, 0);
2378
2379 unlock_and_return:
2380         mutex_unlock(&mb0_transfer.ac_wake_lock);
2381 }
2382
2383 bool db8500_prcmu_is_ac_wake_requested(void)
2384 {
2385         return (atomic_read(&ac_wake_req_state) != 0);
2386 }
2387
2388 /**
2389  * db8500_prcmu_system_reset - System reset
2390  *
2391  * Saves the reset reason code and then sets the APE_SOFTRST register which
2392  * fires interrupt to fw
2393  */
2394 void db8500_prcmu_system_reset(u16 reset_code)
2395 {
2396         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2397         writel(1, PRCM_APE_SOFTRST);
2398 }
2399
2400 /**
2401  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2402  *
2403  * Retrieves the reset reason code stored by prcmu_system_reset() before
2404  * last restart.
2405  */
2406 u16 db8500_prcmu_get_reset_code(void)
2407 {
2408         return readw(tcdm_base + PRCM_SW_RST_REASON);
2409 }
2410
2411 /**
2412  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2413  */
2414 void db8500_prcmu_modem_reset(void)
2415 {
2416         mutex_lock(&mb1_transfer.lock);
2417
2418         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2419                 cpu_relax();
2420
2421         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2422         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2423         wait_for_completion(&mb1_transfer.work);
2424
2425         /*
2426          * No need to check return from PRCMU as modem should go in reset state
2427          * This state is already managed by upper layer
2428          */
2429
2430         mutex_unlock(&mb1_transfer.lock);
2431 }
2432
2433 static void ack_dbb_wakeup(void)
2434 {
2435         unsigned long flags;
2436
2437         spin_lock_irqsave(&mb0_transfer.lock, flags);
2438
2439         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2440                 cpu_relax();
2441
2442         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2443         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2444
2445         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2446 }
2447
2448 static inline void print_unknown_header_warning(u8 n, u8 header)
2449 {
2450         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2451                 header, n);
2452 }
2453
2454 static bool read_mailbox_0(void)
2455 {
2456         bool r;
2457         u32 ev;
2458         unsigned int n;
2459         u8 header;
2460
2461         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2462         switch (header) {
2463         case MB0H_WAKEUP_EXE:
2464         case MB0H_WAKEUP_SLEEP:
2465                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2466                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2467                 else
2468                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2469
2470                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2471                         complete(&mb0_transfer.ac_wake_work);
2472                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2473                         complete(&mb3_transfer.sysclk_work);
2474
2475                 ev &= mb0_transfer.req.dbb_irqs;
2476
2477                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2478                         if (ev & prcmu_irq_bit[n])
2479                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
2480                 }
2481                 r = true;
2482                 break;
2483         default:
2484                 print_unknown_header_warning(0, header);
2485                 r = false;
2486                 break;
2487         }
2488         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2489         return r;
2490 }
2491
2492 static bool read_mailbox_1(void)
2493 {
2494         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2495         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2496                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2497         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2498                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2499         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2500                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2501         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2502         complete(&mb1_transfer.work);
2503         return false;
2504 }
2505
2506 static bool read_mailbox_2(void)
2507 {
2508         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2509         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2510         complete(&mb2_transfer.work);
2511         return false;
2512 }
2513
2514 static bool read_mailbox_3(void)
2515 {
2516         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2517         return false;
2518 }
2519
2520 static bool read_mailbox_4(void)
2521 {
2522         u8 header;
2523         bool do_complete = true;
2524
2525         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2526         switch (header) {
2527         case MB4H_MEM_ST:
2528         case MB4H_HOTDOG:
2529         case MB4H_HOTMON:
2530         case MB4H_HOT_PERIOD:
2531         case MB4H_A9WDOG_CONF:
2532         case MB4H_A9WDOG_EN:
2533         case MB4H_A9WDOG_DIS:
2534         case MB4H_A9WDOG_LOAD:
2535         case MB4H_A9WDOG_KICK:
2536                 break;
2537         default:
2538                 print_unknown_header_warning(4, header);
2539                 do_complete = false;
2540                 break;
2541         }
2542
2543         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2544
2545         if (do_complete)
2546                 complete(&mb4_transfer.work);
2547
2548         return false;
2549 }
2550
2551 static bool read_mailbox_5(void)
2552 {
2553         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2554         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2555         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2556         complete(&mb5_transfer.work);
2557         return false;
2558 }
2559
2560 static bool read_mailbox_6(void)
2561 {
2562         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2563         return false;
2564 }
2565
2566 static bool read_mailbox_7(void)
2567 {
2568         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2569         return false;
2570 }
2571
2572 static bool (* const read_mailbox[NUM_MB])(void) = {
2573         read_mailbox_0,
2574         read_mailbox_1,
2575         read_mailbox_2,
2576         read_mailbox_3,
2577         read_mailbox_4,
2578         read_mailbox_5,
2579         read_mailbox_6,
2580         read_mailbox_7
2581 };
2582
2583 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2584 {
2585         u32 bits;
2586         u8 n;
2587         irqreturn_t r;
2588
2589         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2590         if (unlikely(!bits))
2591                 return IRQ_NONE;
2592
2593         r = IRQ_HANDLED;
2594         for (n = 0; bits; n++) {
2595                 if (bits & MBOX_BIT(n)) {
2596                         bits -= MBOX_BIT(n);
2597                         if (read_mailbox[n]())
2598                                 r = IRQ_WAKE_THREAD;
2599                 }
2600         }
2601         return r;
2602 }
2603
2604 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2605 {
2606         ack_dbb_wakeup();
2607         return IRQ_HANDLED;
2608 }
2609
2610 static void prcmu_mask_work(struct work_struct *work)
2611 {
2612         unsigned long flags;
2613
2614         spin_lock_irqsave(&mb0_transfer.lock, flags);
2615
2616         config_wakeups();
2617
2618         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2619 }
2620
2621 static void prcmu_irq_mask(struct irq_data *d)
2622 {
2623         unsigned long flags;
2624
2625         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2626
2627         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2628
2629         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2630
2631         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2632                 schedule_work(&mb0_transfer.mask_work);
2633 }
2634
2635 static void prcmu_irq_unmask(struct irq_data *d)
2636 {
2637         unsigned long flags;
2638
2639         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2640
2641         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2642
2643         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2644
2645         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2646                 schedule_work(&mb0_transfer.mask_work);
2647 }
2648
2649 static void noop(struct irq_data *d)
2650 {
2651 }
2652
2653 static struct irq_chip prcmu_irq_chip = {
2654         .name           = "prcmu",
2655         .irq_disable    = prcmu_irq_mask,
2656         .irq_ack        = noop,
2657         .irq_mask       = prcmu_irq_mask,
2658         .irq_unmask     = prcmu_irq_unmask,
2659 };
2660
2661 static char *fw_project_name(u8 project)
2662 {
2663         switch (project) {
2664         case PRCMU_FW_PROJECT_U8500:
2665                 return "U8500";
2666         case PRCMU_FW_PROJECT_U8500_C2:
2667                 return "U8500 C2";
2668         case PRCMU_FW_PROJECT_U9500:
2669                 return "U9500";
2670         case PRCMU_FW_PROJECT_U9500_C2:
2671                 return "U9500 C2";
2672         case PRCMU_FW_PROJECT_U8520:
2673                 return "U8520";
2674         case PRCMU_FW_PROJECT_U8420:
2675                 return "U8420";
2676         default:
2677                 return "Unknown";
2678         }
2679 }
2680
2681 void __init db8500_prcmu_early_init(void)
2682 {
2683         unsigned int i;
2684         if (cpu_is_u8500v2()) {
2685                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2686
2687                 if (tcpm_base != NULL) {
2688                         u32 version;
2689                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2690                         fw_info.version.project = version & 0xFF;
2691                         fw_info.version.api_version = (version >> 8) & 0xFF;
2692                         fw_info.version.func_version = (version >> 16) & 0xFF;
2693                         fw_info.version.errata = (version >> 24) & 0xFF;
2694                         fw_info.valid = true;
2695                         pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2696                                 fw_project_name(fw_info.version.project),
2697                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2698                                 (version >> 24) & 0xFF);
2699                         iounmap(tcpm_base);
2700                 }
2701
2702                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2703         } else {
2704                 pr_err("prcmu: Unsupported chip version\n");
2705                 BUG();
2706         }
2707
2708         spin_lock_init(&mb0_transfer.lock);
2709         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2710         mutex_init(&mb0_transfer.ac_wake_lock);
2711         init_completion(&mb0_transfer.ac_wake_work);
2712         mutex_init(&mb1_transfer.lock);
2713         init_completion(&mb1_transfer.work);
2714         mb1_transfer.ape_opp = APE_NO_CHANGE;
2715         mutex_init(&mb2_transfer.lock);
2716         init_completion(&mb2_transfer.work);
2717         spin_lock_init(&mb2_transfer.auto_pm_lock);
2718         spin_lock_init(&mb3_transfer.lock);
2719         mutex_init(&mb3_transfer.sysclk_lock);
2720         init_completion(&mb3_transfer.sysclk_work);
2721         mutex_init(&mb4_transfer.lock);
2722         init_completion(&mb4_transfer.work);
2723         mutex_init(&mb5_transfer.lock);
2724         init_completion(&mb5_transfer.work);
2725
2726         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2727
2728         /* Initalize irqs. */
2729         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2730                 unsigned int irq;
2731
2732                 irq = IRQ_PRCMU_BASE + i;
2733                 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2734                                          handle_simple_irq);
2735                 set_irq_flags(irq, IRQF_VALID);
2736         }
2737         compute_armss_rate();
2738 }
2739
2740 static void __init init_prcm_registers(void)
2741 {
2742         u32 val;
2743
2744         val = readl(PRCM_A9PL_FORCE_CLKEN);
2745         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2746                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2747         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2748 }
2749
2750 /*
2751  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2752  */
2753 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2754         REGULATOR_SUPPLY("v-ape", NULL),
2755         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2756         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2757         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2758         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2759         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2760         /* "v-mmc" changed to "vcore" in the mainline kernel */
2761         REGULATOR_SUPPLY("vcore", "sdi0"),
2762         REGULATOR_SUPPLY("vcore", "sdi1"),
2763         REGULATOR_SUPPLY("vcore", "sdi2"),
2764         REGULATOR_SUPPLY("vcore", "sdi3"),
2765         REGULATOR_SUPPLY("vcore", "sdi4"),
2766         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2767         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2768         /* "v-uart" changed to "vcore" in the mainline kernel */
2769         REGULATOR_SUPPLY("vcore", "uart0"),
2770         REGULATOR_SUPPLY("vcore", "uart1"),
2771         REGULATOR_SUPPLY("vcore", "uart2"),
2772         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2773         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2774         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2775 };
2776
2777 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2778         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2779         /* AV8100 regulator */
2780         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2781 };
2782
2783 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2784         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2785         REGULATOR_SUPPLY("vsupply", "mcde"),
2786 };
2787
2788 /* SVA MMDSP regulator switch */
2789 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2790         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2791 };
2792
2793 /* SVA pipe regulator switch */
2794 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2795         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2796 };
2797
2798 /* SIA MMDSP regulator switch */
2799 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2800         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2801 };
2802
2803 /* SIA pipe regulator switch */
2804 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2805         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2806 };
2807
2808 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2809         REGULATOR_SUPPLY("v-mali", NULL),
2810 };
2811
2812 /* ESRAM1 and 2 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2814         REGULATOR_SUPPLY("esram12", "cm_control"),
2815 };
2816
2817 /* ESRAM3 and 4 regulator switch */
2818 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2819         REGULATOR_SUPPLY("v-esram34", "mcde"),
2820         REGULATOR_SUPPLY("esram34", "cm_control"),
2821         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2822 };
2823
2824 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2825         [DB8500_REGULATOR_VAPE] = {
2826                 .constraints = {
2827                         .name = "db8500-vape",
2828                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2829                         .always_on = true,
2830                 },
2831                 .consumer_supplies = db8500_vape_consumers,
2832                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2833         },
2834         [DB8500_REGULATOR_VARM] = {
2835                 .constraints = {
2836                         .name = "db8500-varm",
2837                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838                 },
2839         },
2840         [DB8500_REGULATOR_VMODEM] = {
2841                 .constraints = {
2842                         .name = "db8500-vmodem",
2843                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2844                 },
2845         },
2846         [DB8500_REGULATOR_VPLL] = {
2847                 .constraints = {
2848                         .name = "db8500-vpll",
2849                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850                 },
2851         },
2852         [DB8500_REGULATOR_VSMPS1] = {
2853                 .constraints = {
2854                         .name = "db8500-vsmps1",
2855                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856                 },
2857         },
2858         [DB8500_REGULATOR_VSMPS2] = {
2859                 .constraints = {
2860                         .name = "db8500-vsmps2",
2861                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2862                 },
2863                 .consumer_supplies = db8500_vsmps2_consumers,
2864                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2865         },
2866         [DB8500_REGULATOR_VSMPS3] = {
2867                 .constraints = {
2868                         .name = "db8500-vsmps3",
2869                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870                 },
2871         },
2872         [DB8500_REGULATOR_VRF1] = {
2873                 .constraints = {
2874                         .name = "db8500-vrf1",
2875                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876                 },
2877         },
2878         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2879                 /* dependency to u8500-vape is handled outside regulator framework */
2880                 .constraints = {
2881                         .name = "db8500-sva-mmdsp",
2882                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883                 },
2884                 .consumer_supplies = db8500_svammdsp_consumers,
2885                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2886         },
2887         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2888                 .constraints = {
2889                         /* "ret" means "retention" */
2890                         .name = "db8500-sva-mmdsp-ret",
2891                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2892                 },
2893         },
2894         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2895                 /* dependency to u8500-vape is handled outside regulator framework */
2896                 .constraints = {
2897                         .name = "db8500-sva-pipe",
2898                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899                 },
2900                 .consumer_supplies = db8500_svapipe_consumers,
2901                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2902         },
2903         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2904                 /* dependency to u8500-vape is handled outside regulator framework */
2905                 .constraints = {
2906                         .name = "db8500-sia-mmdsp",
2907                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908                 },
2909                 .consumer_supplies = db8500_siammdsp_consumers,
2910                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2911         },
2912         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2913                 .constraints = {
2914                         .name = "db8500-sia-mmdsp-ret",
2915                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2916                 },
2917         },
2918         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2919                 /* dependency to u8500-vape is handled outside regulator framework */
2920                 .constraints = {
2921                         .name = "db8500-sia-pipe",
2922                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2923                 },
2924                 .consumer_supplies = db8500_siapipe_consumers,
2925                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2926         },
2927         [DB8500_REGULATOR_SWITCH_SGA] = {
2928                 .supply_regulator = "db8500-vape",
2929                 .constraints = {
2930                         .name = "db8500-sga",
2931                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2932                 },
2933                 .consumer_supplies = db8500_sga_consumers,
2934                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2935
2936         },
2937         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2938                 .supply_regulator = "db8500-vape",
2939                 .constraints = {
2940                         .name = "db8500-b2r2-mcde",
2941                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942                 },
2943                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2944                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2945         },
2946         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2947                 /*
2948                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2949                  * no need to hold Vape
2950                  */
2951                 .constraints = {
2952                         .name = "db8500-esram12",
2953                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954                 },
2955                 .consumer_supplies = db8500_esram12_consumers,
2956                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2957         },
2958         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2959                 .constraints = {
2960                         .name = "db8500-esram12-ret",
2961                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2962                 },
2963         },
2964         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2965                 /*
2966                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2967                  * no need to hold Vape
2968                  */
2969                 .constraints = {
2970                         .name = "db8500-esram34",
2971                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972                 },
2973                 .consumer_supplies = db8500_esram34_consumers,
2974                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2975         },
2976         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2977                 .constraints = {
2978                         .name = "db8500-esram34-ret",
2979                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980                 },
2981         },
2982 };
2983
2984 static struct resource ab8500_resources[] = {
2985         [0] = {
2986                 .start  = IRQ_DB8500_AB8500,
2987                 .end    = IRQ_DB8500_AB8500,
2988                 .flags  = IORESOURCE_IRQ
2989         }
2990 };
2991
2992 static struct mfd_cell db8500_prcmu_devs[] = {
2993         {
2994                 .name = "db8500-prcmu-regulators",
2995                 .of_compatible = "stericsson,db8500-prcmu-regulator",
2996                 .platform_data = &db8500_regulators,
2997                 .pdata_size = sizeof(db8500_regulators),
2998         },
2999         {
3000                 .name = "cpufreq-u8500",
3001                 .of_compatible = "stericsson,cpufreq-u8500",
3002         },
3003         {
3004                 .name = "ab8500-core",
3005                 .of_compatible = "stericsson,ab8500",
3006                 .num_resources = ARRAY_SIZE(ab8500_resources),
3007                 .resources = ab8500_resources,
3008                 .id = AB8500_VERSION_AB8500,
3009         },
3010 };
3011
3012 /**
3013  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3014  *
3015  */
3016 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3017 {
3018         struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3019         struct device_node *np = pdev->dev.of_node;
3020         int irq = 0, err = 0, i;
3021
3022         if (ux500_is_svp())
3023                 return -ENODEV;
3024
3025         init_prcm_registers();
3026
3027         /* Clean up the mailbox interrupts after pre-kernel code. */
3028         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3029
3030         if (np)
3031                 irq = platform_get_irq(pdev, 0);
3032
3033         if (!np || irq <= 0)
3034                 irq = IRQ_DB8500_PRCMU1;
3035
3036         err = request_threaded_irq(irq, prcmu_irq_handler,
3037                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3038         if (err < 0) {
3039                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3040                 err = -EBUSY;
3041                 goto no_irq_return;
3042         }
3043
3044         for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3045                 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3046                         db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3047                         db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3048                 }
3049         }
3050
3051         if (cpu_is_u8500v20_or_later())
3052                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3053
3054         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3055                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3056         if (err) {
3057                 pr_err("prcmu: Failed to add subdevices\n");
3058                 return err;
3059         }
3060
3061         pr_info("DB8500 PRCMU initialized\n");
3062
3063 no_irq_return:
3064         return err;
3065 }
3066 static const struct of_device_id db8500_prcmu_match[] = {
3067         { .compatible = "stericsson,db8500-prcmu"},
3068         { },
3069 };
3070
3071 static struct platform_driver db8500_prcmu_driver = {
3072         .driver = {
3073                 .name = "db8500-prcmu",
3074                 .owner = THIS_MODULE,
3075                 .of_match_table = db8500_prcmu_match,
3076         },
3077         .probe = db8500_prcmu_probe,
3078 };
3079
3080 static int __init db8500_prcmu_init(void)
3081 {
3082         return platform_driver_register(&db8500_prcmu_driver);
3083 }
3084
3085 core_initcall(db8500_prcmu_init);
3086
3087 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3088 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3089 MODULE_LICENSE("GPL v2");