]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mmc/core/queue.c
ACPI / power: Delay turning off unused power resources after suspend
[karo-tx-linux.git] / drivers / mmc / core / queue.c
1 /*
2  *  Copyright (C) 2003 Russell King, All Rights Reserved.
3  *  Copyright 2006-2007 Pierre Ossman
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  */
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/blkdev.h>
13 #include <linux/freezer.h>
14 #include <linux/kthread.h>
15 #include <linux/scatterlist.h>
16 #include <linux/dma-mapping.h>
17
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/host.h>
20
21 #include "queue.h"
22 #include "block.h"
23 #include "core.h"
24 #include "card.h"
25
26 #define MMC_QUEUE_BOUNCESZ      65536
27
28 /*
29  * Prepare a MMC request. This just filters out odd stuff.
30  */
31 static int mmc_prep_request(struct request_queue *q, struct request *req)
32 {
33         struct mmc_queue *mq = q->queuedata;
34
35         if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
36                 return BLKPREP_KILL;
37
38         req->rq_flags |= RQF_DONTPREP;
39
40         return BLKPREP_OK;
41 }
42
43 static int mmc_queue_thread(void *d)
44 {
45         struct mmc_queue *mq = d;
46         struct request_queue *q = mq->queue;
47         struct mmc_context_info *cntx = &mq->card->host->context_info;
48
49         current->flags |= PF_MEMALLOC;
50
51         down(&mq->thread_sem);
52         do {
53                 struct request *req = NULL;
54
55                 spin_lock_irq(q->queue_lock);
56                 set_current_state(TASK_INTERRUPTIBLE);
57                 req = blk_fetch_request(q);
58                 mq->asleep = false;
59                 cntx->is_waiting_last_req = false;
60                 cntx->is_new_req = false;
61                 if (!req) {
62                         /*
63                          * Dispatch queue is empty so set flags for
64                          * mmc_request_fn() to wake us up.
65                          */
66                         if (mq->mqrq_prev->req)
67                                 cntx->is_waiting_last_req = true;
68                         else
69                                 mq->asleep = true;
70                 }
71                 mq->mqrq_cur->req = req;
72                 spin_unlock_irq(q->queue_lock);
73
74                 if (req || mq->mqrq_prev->req) {
75                         bool req_is_special = mmc_req_is_special(req);
76
77                         set_current_state(TASK_RUNNING);
78                         mmc_blk_issue_rq(mq, req);
79                         cond_resched();
80                         if (mq->new_request) {
81                                 mq->new_request = false;
82                                 continue; /* fetch again */
83                         }
84
85                         /*
86                          * Current request becomes previous request
87                          * and vice versa.
88                          * In case of special requests, current request
89                          * has been finished. Do not assign it to previous
90                          * request.
91                          */
92                         if (req_is_special)
93                                 mq->mqrq_cur->req = NULL;
94
95                         mq->mqrq_prev->brq.mrq.data = NULL;
96                         mq->mqrq_prev->req = NULL;
97                         swap(mq->mqrq_prev, mq->mqrq_cur);
98                 } else {
99                         if (kthread_should_stop()) {
100                                 set_current_state(TASK_RUNNING);
101                                 break;
102                         }
103                         up(&mq->thread_sem);
104                         schedule();
105                         down(&mq->thread_sem);
106                 }
107         } while (1);
108         up(&mq->thread_sem);
109
110         return 0;
111 }
112
113 /*
114  * Generic MMC request handler.  This is called for any queue on a
115  * particular host.  When the host is not busy, we look for a request
116  * on any queue on this host, and attempt to issue it.  This may
117  * not be the queue we were asked to process.
118  */
119 static void mmc_request_fn(struct request_queue *q)
120 {
121         struct mmc_queue *mq = q->queuedata;
122         struct request *req;
123         struct mmc_context_info *cntx;
124
125         if (!mq) {
126                 while ((req = blk_fetch_request(q)) != NULL) {
127                         req->rq_flags |= RQF_QUIET;
128                         __blk_end_request_all(req, -EIO);
129                 }
130                 return;
131         }
132
133         cntx = &mq->card->host->context_info;
134
135         if (cntx->is_waiting_last_req) {
136                 cntx->is_new_req = true;
137                 wake_up_interruptible(&cntx->wait);
138         }
139
140         if (mq->asleep)
141                 wake_up_process(mq->thread);
142 }
143
144 static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
145 {
146         struct scatterlist *sg;
147
148         sg = kmalloc_array(sg_len, sizeof(*sg), GFP_KERNEL);
149         if (!sg)
150                 *err = -ENOMEM;
151         else {
152                 *err = 0;
153                 sg_init_table(sg, sg_len);
154         }
155
156         return sg;
157 }
158
159 static void mmc_queue_setup_discard(struct request_queue *q,
160                                     struct mmc_card *card)
161 {
162         unsigned max_discard;
163
164         max_discard = mmc_calc_max_discard(card);
165         if (!max_discard)
166                 return;
167
168         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
169         blk_queue_max_discard_sectors(q, max_discard);
170         if (card->erased_byte == 0 && !mmc_can_discard(card))
171                 q->limits.discard_zeroes_data = 1;
172         q->limits.discard_granularity = card->pref_erase << 9;
173         /* granularity must not be greater than max. discard */
174         if (card->pref_erase > max_discard)
175                 q->limits.discard_granularity = 0;
176         if (mmc_can_secure_erase_trim(card))
177                 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q);
178 }
179
180 #ifdef CONFIG_MMC_BLOCK_BOUNCE
181 static bool mmc_queue_alloc_bounce_bufs(struct mmc_queue *mq,
182                                         unsigned int bouncesz)
183 {
184         int i;
185
186         for (i = 0; i < mq->qdepth; i++) {
187                 mq->mqrq[i].bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
188                 if (!mq->mqrq[i].bounce_buf)
189                         goto out_err;
190         }
191
192         return true;
193
194 out_err:
195         while (--i >= 0) {
196                 kfree(mq->mqrq[i].bounce_buf);
197                 mq->mqrq[i].bounce_buf = NULL;
198         }
199         pr_warn("%s: unable to allocate bounce buffers\n",
200                 mmc_card_name(mq->card));
201         return false;
202 }
203
204 static int mmc_queue_alloc_bounce_sgs(struct mmc_queue *mq,
205                                       unsigned int bouncesz)
206 {
207         int i, ret;
208
209         for (i = 0; i < mq->qdepth; i++) {
210                 mq->mqrq[i].sg = mmc_alloc_sg(1, &ret);
211                 if (ret)
212                         return ret;
213
214                 mq->mqrq[i].bounce_sg = mmc_alloc_sg(bouncesz / 512, &ret);
215                 if (ret)
216                         return ret;
217         }
218
219         return 0;
220 }
221 #endif
222
223 static int mmc_queue_alloc_sgs(struct mmc_queue *mq, int max_segs)
224 {
225         int i, ret;
226
227         for (i = 0; i < mq->qdepth; i++) {
228                 mq->mqrq[i].sg = mmc_alloc_sg(max_segs, &ret);
229                 if (ret)
230                         return ret;
231         }
232
233         return 0;
234 }
235
236 static void mmc_queue_req_free_bufs(struct mmc_queue_req *mqrq)
237 {
238         kfree(mqrq->bounce_sg);
239         mqrq->bounce_sg = NULL;
240
241         kfree(mqrq->sg);
242         mqrq->sg = NULL;
243
244         kfree(mqrq->bounce_buf);
245         mqrq->bounce_buf = NULL;
246 }
247
248 static void mmc_queue_reqs_free_bufs(struct mmc_queue *mq)
249 {
250         int i;
251
252         for (i = 0; i < mq->qdepth; i++)
253                 mmc_queue_req_free_bufs(&mq->mqrq[i]);
254 }
255
256 /**
257  * mmc_init_queue - initialise a queue structure.
258  * @mq: mmc queue
259  * @card: mmc card to attach this queue
260  * @lock: queue lock
261  * @subname: partition subname
262  *
263  * Initialise a MMC card request queue.
264  */
265 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
266                    spinlock_t *lock, const char *subname)
267 {
268         struct mmc_host *host = card->host;
269         u64 limit = BLK_BOUNCE_HIGH;
270         bool bounce = false;
271         int ret = -ENOMEM;
272
273         if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
274                 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
275
276         mq->card = card;
277         mq->queue = blk_init_queue(mmc_request_fn, lock);
278         if (!mq->queue)
279                 return -ENOMEM;
280
281         mq->qdepth = 2;
282         mq->mqrq = kcalloc(mq->qdepth, sizeof(struct mmc_queue_req),
283                            GFP_KERNEL);
284         if (!mq->mqrq)
285                 goto blk_cleanup;
286         mq->mqrq_cur = &mq->mqrq[0];
287         mq->mqrq_prev = &mq->mqrq[1];
288         mq->queue->queuedata = mq;
289
290         blk_queue_prep_rq(mq->queue, mmc_prep_request);
291         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
292         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
293         if (mmc_can_erase(card))
294                 mmc_queue_setup_discard(mq->queue, card);
295
296 #ifdef CONFIG_MMC_BLOCK_BOUNCE
297         if (host->max_segs == 1) {
298                 unsigned int bouncesz;
299
300                 bouncesz = MMC_QUEUE_BOUNCESZ;
301
302                 if (bouncesz > host->max_req_size)
303                         bouncesz = host->max_req_size;
304                 if (bouncesz > host->max_seg_size)
305                         bouncesz = host->max_seg_size;
306                 if (bouncesz > (host->max_blk_count * 512))
307                         bouncesz = host->max_blk_count * 512;
308
309                 if (bouncesz > 512 &&
310                     mmc_queue_alloc_bounce_bufs(mq, bouncesz)) {
311                         blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
312                         blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
313                         blk_queue_max_segments(mq->queue, bouncesz / 512);
314                         blk_queue_max_segment_size(mq->queue, bouncesz);
315
316                         ret = mmc_queue_alloc_bounce_sgs(mq, bouncesz);
317                         if (ret)
318                                 goto cleanup_queue;
319                         bounce = true;
320                 }
321         }
322 #endif
323
324         if (!bounce) {
325                 blk_queue_bounce_limit(mq->queue, limit);
326                 blk_queue_max_hw_sectors(mq->queue,
327                         min(host->max_blk_count, host->max_req_size / 512));
328                 blk_queue_max_segments(mq->queue, host->max_segs);
329                 blk_queue_max_segment_size(mq->queue, host->max_seg_size);
330
331                 ret = mmc_queue_alloc_sgs(mq, host->max_segs);
332                 if (ret)
333                         goto cleanup_queue;
334         }
335
336         sema_init(&mq->thread_sem, 1);
337
338         mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
339                 host->index, subname ? subname : "");
340
341         if (IS_ERR(mq->thread)) {
342                 ret = PTR_ERR(mq->thread);
343                 goto cleanup_queue;
344         }
345
346         return 0;
347
348  cleanup_queue:
349         mmc_queue_reqs_free_bufs(mq);
350         kfree(mq->mqrq);
351         mq->mqrq = NULL;
352 blk_cleanup:
353         blk_cleanup_queue(mq->queue);
354         return ret;
355 }
356
357 void mmc_cleanup_queue(struct mmc_queue *mq)
358 {
359         struct request_queue *q = mq->queue;
360         unsigned long flags;
361
362         /* Make sure the queue isn't suspended, as that will deadlock */
363         mmc_queue_resume(mq);
364
365         /* Then terminate our worker thread */
366         kthread_stop(mq->thread);
367
368         /* Empty the queue */
369         spin_lock_irqsave(q->queue_lock, flags);
370         q->queuedata = NULL;
371         blk_start_queue(q);
372         spin_unlock_irqrestore(q->queue_lock, flags);
373
374         mmc_queue_reqs_free_bufs(mq);
375         kfree(mq->mqrq);
376         mq->mqrq = NULL;
377
378         mq->card = NULL;
379 }
380 EXPORT_SYMBOL(mmc_cleanup_queue);
381
382 /**
383  * mmc_queue_suspend - suspend a MMC request queue
384  * @mq: MMC queue to suspend
385  *
386  * Stop the block request queue, and wait for our thread to
387  * complete any outstanding requests.  This ensures that we
388  * won't suspend while a request is being processed.
389  */
390 void mmc_queue_suspend(struct mmc_queue *mq)
391 {
392         struct request_queue *q = mq->queue;
393         unsigned long flags;
394
395         if (!mq->suspended) {
396                 mq->suspended |= true;
397
398                 spin_lock_irqsave(q->queue_lock, flags);
399                 blk_stop_queue(q);
400                 spin_unlock_irqrestore(q->queue_lock, flags);
401
402                 down(&mq->thread_sem);
403         }
404 }
405
406 /**
407  * mmc_queue_resume - resume a previously suspended MMC request queue
408  * @mq: MMC queue to resume
409  */
410 void mmc_queue_resume(struct mmc_queue *mq)
411 {
412         struct request_queue *q = mq->queue;
413         unsigned long flags;
414
415         if (mq->suspended) {
416                 mq->suspended = false;
417
418                 up(&mq->thread_sem);
419
420                 spin_lock_irqsave(q->queue_lock, flags);
421                 blk_start_queue(q);
422                 spin_unlock_irqrestore(q->queue_lock, flags);
423         }
424 }
425
426 /*
427  * Prepare the sg list(s) to be handed of to the host driver
428  */
429 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
430 {
431         unsigned int sg_len;
432         size_t buflen;
433         struct scatterlist *sg;
434         int i;
435
436         if (!mqrq->bounce_buf)
437                 return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
438
439         sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
440
441         mqrq->bounce_sg_len = sg_len;
442
443         buflen = 0;
444         for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
445                 buflen += sg->length;
446
447         sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
448
449         return 1;
450 }
451
452 /*
453  * If writing, bounce the data to the buffer before the request
454  * is sent to the host driver
455  */
456 void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
457 {
458         if (!mqrq->bounce_buf)
459                 return;
460
461         if (rq_data_dir(mqrq->req) != WRITE)
462                 return;
463
464         sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
465                 mqrq->bounce_buf, mqrq->sg[0].length);
466 }
467
468 /*
469  * If reading, bounce the data from the buffer after the request
470  * has been handled by the host driver
471  */
472 void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
473 {
474         if (!mqrq->bounce_buf)
475                 return;
476
477         if (rq_data_dir(mqrq->req) != READ)
478                 return;
479
480         sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
481                 mqrq->bounce_buf, mqrq->sg[0].length);
482 }