]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/bcm47xxpart.c
6d427468c4cdba0ef51334a0043080a08608c2a9
[karo-tx-linux.git] / drivers / mtd / bcm47xxpart.c
1 /*
2  * BCM47XX MTD partitioning
3  *
4  * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
17 #include <bcm47xx_nvram.h>
18
19 /* 10 parts were found on sflash on Netgear WNDR4500 */
20 #define BCM47XXPART_MAX_PARTS           12
21
22 /*
23  * Amount of bytes we read when analyzing each block of flash memory.
24  * Set it big enough to allow detecting partition and reading important data.
25  */
26 #define BCM47XXPART_BYTES_TO_READ       0x404
27
28 /* Magics */
29 #define BOARD_DATA_MAGIC                0x5246504D      /* MPFR */
30 #define POT_MAGIC1                      0x54544f50      /* POTT */
31 #define POT_MAGIC2                      0x504f          /* OP */
32 #define ML_MAGIC1                       0x39685a42
33 #define ML_MAGIC2                       0x26594131
34 #define TRX_MAGIC                       0x30524448
35
36 struct trx_header {
37         uint32_t magic;
38         uint32_t length;
39         uint32_t crc32;
40         uint16_t flags;
41         uint16_t version;
42         uint32_t offset[3];
43 } __packed;
44
45 static void bcm47xxpart_add_part(struct mtd_partition *part, char *name,
46                                  u64 offset, uint32_t mask_flags)
47 {
48         part->name = name;
49         part->offset = offset;
50         part->mask_flags = mask_flags;
51 }
52
53 static int bcm47xxpart_parse(struct mtd_info *master,
54                              struct mtd_partition **pparts,
55                              struct mtd_part_parser_data *data)
56 {
57         struct mtd_partition *parts;
58         uint8_t i, curr_part = 0;
59         uint32_t *buf;
60         size_t bytes_read;
61         uint32_t offset;
62         uint32_t blocksize = master->erasesize;
63         struct trx_header *trx;
64         int trx_part = -1;
65         int last_trx_part = -1;
66         int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, };
67
68         if (blocksize <= 0x10000)
69                 blocksize = 0x10000;
70
71         /* Alloc */
72         parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
73                         GFP_KERNEL);
74         if (!parts)
75                 return -ENOMEM;
76
77         buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
78         if (!buf) {
79                 kfree(parts);
80                 return -ENOMEM;
81         }
82
83         /* Parse block by block looking for magics */
84         for (offset = 0; offset <= master->size - blocksize;
85              offset += blocksize) {
86                 /* Nothing more in higher memory */
87                 if (offset >= 0x2000000)
88                         break;
89
90                 if (curr_part > BCM47XXPART_MAX_PARTS) {
91                         pr_warn("Reached maximum number of partitions, scanning stopped!\n");
92                         break;
93                 }
94
95                 /* Read beginning of the block */
96                 if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
97                              &bytes_read, (uint8_t *)buf) < 0) {
98                         pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
99                                offset);
100                         continue;
101                 }
102
103                 /* CFE has small NVRAM at 0x400 */
104                 if (buf[0x400 / 4] == NVRAM_HEADER) {
105                         bcm47xxpart_add_part(&parts[curr_part++], "boot",
106                                              offset, MTD_WRITEABLE);
107                         continue;
108                 }
109
110                 /*
111                  * board_data starts with board_id which differs across boards,
112                  * but we can use 'MPFR' (hopefully) magic at 0x100
113                  */
114                 if (buf[0x100 / 4] == BOARD_DATA_MAGIC) {
115                         bcm47xxpart_add_part(&parts[curr_part++], "board_data",
116                                              offset, MTD_WRITEABLE);
117                         continue;
118                 }
119
120                 /* POT(TOP) */
121                 if (buf[0x000 / 4] == POT_MAGIC1 &&
122                     (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) {
123                         bcm47xxpart_add_part(&parts[curr_part++], "POT", offset,
124                                              MTD_WRITEABLE);
125                         continue;
126                 }
127
128                 /* ML */
129                 if (buf[0x010 / 4] == ML_MAGIC1 &&
130                     buf[0x014 / 4] == ML_MAGIC2) {
131                         bcm47xxpart_add_part(&parts[curr_part++], "ML", offset,
132                                              MTD_WRITEABLE);
133                         continue;
134                 }
135
136                 /* TRX */
137                 if (buf[0x000 / 4] == TRX_MAGIC) {
138                         trx = (struct trx_header *)buf;
139
140                         trx_part = curr_part;
141                         bcm47xxpart_add_part(&parts[curr_part++], "firmware",
142                                              offset, 0);
143
144                         i = 0;
145                         /* We have LZMA loader if offset[2] points to sth */
146                         if (trx->offset[2]) {
147                                 bcm47xxpart_add_part(&parts[curr_part++],
148                                                      "loader",
149                                                      offset + trx->offset[i],
150                                                      0);
151                                 i++;
152                         }
153
154                         bcm47xxpart_add_part(&parts[curr_part++], "linux",
155                                              offset + trx->offset[i], 0);
156                         i++;
157
158                         /*
159                          * Pure rootfs size is known and can be calculated as:
160                          * trx->length - trx->offset[i]. We don't fill it as
161                          * we want to have jffs2 (overlay) in the same mtd.
162                          */
163                         bcm47xxpart_add_part(&parts[curr_part++], "rootfs",
164                                              offset + trx->offset[i], 0);
165                         i++;
166
167                         last_trx_part = curr_part - 1;
168
169                         /*
170                          * We have whole TRX scanned, skip to the next part. Use
171                          * roundown (not roundup), as the loop will increase
172                          * offset in next step.
173                          */
174                         offset = rounddown(offset + trx->length, blocksize);
175                         continue;
176                 }
177         }
178
179         /* Look for NVRAM at the end of the last block. */
180         for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) {
181                 if (curr_part > BCM47XXPART_MAX_PARTS) {
182                         pr_warn("Reached maximum number of partitions, scanning stopped!\n");
183                         break;
184                 }
185
186                 offset = master->size - possible_nvram_sizes[i];
187                 if (mtd_read(master, offset, 0x4, &bytes_read,
188                              (uint8_t *)buf) < 0) {
189                         pr_err("mtd_read error while reading at offset 0x%X!\n",
190                                offset);
191                         continue;
192                 }
193
194                 /* Standard NVRAM */
195                 if (buf[0] == NVRAM_HEADER) {
196                         bcm47xxpart_add_part(&parts[curr_part++], "nvram",
197                                              master->size - blocksize, 0);
198                         break;
199                 }
200         }
201
202         kfree(buf);
203
204         /*
205          * Assume that partitions end at the beginning of the one they are
206          * followed by.
207          */
208         for (i = 0; i < curr_part; i++) {
209                 u64 next_part_offset = (i < curr_part - 1) ?
210                                        parts[i + 1].offset : master->size;
211
212                 parts[i].size = next_part_offset - parts[i].offset;
213                 if (i == last_trx_part && trx_part >= 0)
214                         parts[trx_part].size = next_part_offset -
215                                                parts[trx_part].offset;
216         }
217
218         *pparts = parts;
219         return curr_part;
220 };
221
222 static struct mtd_part_parser bcm47xxpart_mtd_parser = {
223         .owner = THIS_MODULE,
224         .parse_fn = bcm47xxpart_parse,
225         .name = "bcm47xxpart",
226 };
227
228 static int __init bcm47xxpart_init(void)
229 {
230         return register_mtd_parser(&bcm47xxpart_mtd_parser);
231 }
232
233 static void __exit bcm47xxpart_exit(void)
234 {
235         deregister_mtd_parser(&bcm47xxpart_mtd_parser);
236 }
237
238 module_init(bcm47xxpart_init);
239 module_exit(bcm47xxpart_exit);
240
241 MODULE_LICENSE("GPL");
242 MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories");