]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/bcm47xxpart.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / mtd / bcm47xxpart.c
1 /*
2  * BCM47XX MTD partitioning
3  *
4  * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
17 #include <bcm47xx_nvram.h>
18
19 /* 10 parts were found on sflash on Netgear WNDR4500 */
20 #define BCM47XXPART_MAX_PARTS           12
21
22 /*
23  * Amount of bytes we read when analyzing each block of flash memory.
24  * Set it big enough to allow detecting partition and reading important data.
25  */
26 #define BCM47XXPART_BYTES_TO_READ       0x404
27
28 /* Magics */
29 #define BOARD_DATA_MAGIC                0x5246504D      /* MPFR */
30 #define POT_MAGIC1                      0x54544f50      /* POTT */
31 #define POT_MAGIC2                      0x504f          /* OP */
32 #define ML_MAGIC1                       0x39685a42
33 #define ML_MAGIC2                       0x26594131
34 #define TRX_MAGIC                       0x30524448
35
36 struct trx_header {
37         uint32_t magic;
38         uint32_t length;
39         uint32_t crc32;
40         uint16_t flags;
41         uint16_t version;
42         uint32_t offset[3];
43 } __packed;
44
45 static void bcm47xxpart_add_part(struct mtd_partition *part, char *name,
46                                  u64 offset, uint32_t mask_flags)
47 {
48         part->name = name;
49         part->offset = offset;
50         part->mask_flags = mask_flags;
51 }
52
53 static int bcm47xxpart_parse(struct mtd_info *master,
54                              struct mtd_partition **pparts,
55                              struct mtd_part_parser_data *data)
56 {
57         struct mtd_partition *parts;
58         uint8_t i, curr_part = 0;
59         uint32_t *buf;
60         size_t bytes_read;
61         uint32_t offset;
62         uint32_t blocksize = master->erasesize;
63         struct trx_header *trx;
64         int trx_part = -1;
65         int last_trx_part = -1;
66         int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, };
67
68         if (blocksize <= 0x10000)
69                 blocksize = 0x10000;
70
71         /* Alloc */
72         parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
73                         GFP_KERNEL);
74         buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
75
76         /* Parse block by block looking for magics */
77         for (offset = 0; offset <= master->size - blocksize;
78              offset += blocksize) {
79                 /* Nothing more in higher memory */
80                 if (offset >= 0x2000000)
81                         break;
82
83                 if (curr_part > BCM47XXPART_MAX_PARTS) {
84                         pr_warn("Reached maximum number of partitions, scanning stopped!\n");
85                         break;
86                 }
87
88                 /* Read beginning of the block */
89                 if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
90                              &bytes_read, (uint8_t *)buf) < 0) {
91                         pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
92                                offset);
93                         continue;
94                 }
95
96                 /* CFE has small NVRAM at 0x400 */
97                 if (buf[0x400 / 4] == NVRAM_HEADER) {
98                         bcm47xxpart_add_part(&parts[curr_part++], "boot",
99                                              offset, MTD_WRITEABLE);
100                         continue;
101                 }
102
103                 /*
104                  * board_data starts with board_id which differs across boards,
105                  * but we can use 'MPFR' (hopefully) magic at 0x100
106                  */
107                 if (buf[0x100 / 4] == BOARD_DATA_MAGIC) {
108                         bcm47xxpart_add_part(&parts[curr_part++], "board_data",
109                                              offset, MTD_WRITEABLE);
110                         continue;
111                 }
112
113                 /* POT(TOP) */
114                 if (buf[0x000 / 4] == POT_MAGIC1 &&
115                     (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) {
116                         bcm47xxpart_add_part(&parts[curr_part++], "POT", offset,
117                                              MTD_WRITEABLE);
118                         continue;
119                 }
120
121                 /* ML */
122                 if (buf[0x010 / 4] == ML_MAGIC1 &&
123                     buf[0x014 / 4] == ML_MAGIC2) {
124                         bcm47xxpart_add_part(&parts[curr_part++], "ML", offset,
125                                              MTD_WRITEABLE);
126                         continue;
127                 }
128
129                 /* TRX */
130                 if (buf[0x000 / 4] == TRX_MAGIC) {
131                         trx = (struct trx_header *)buf;
132
133                         trx_part = curr_part;
134                         bcm47xxpart_add_part(&parts[curr_part++], "firmware",
135                                              offset, 0);
136
137                         i = 0;
138                         /* We have LZMA loader if offset[2] points to sth */
139                         if (trx->offset[2]) {
140                                 bcm47xxpart_add_part(&parts[curr_part++],
141                                                      "loader",
142                                                      offset + trx->offset[i],
143                                                      0);
144                                 i++;
145                         }
146
147                         bcm47xxpart_add_part(&parts[curr_part++], "linux",
148                                              offset + trx->offset[i], 0);
149                         i++;
150
151                         /*
152                          * Pure rootfs size is known and can be calculated as:
153                          * trx->length - trx->offset[i]. We don't fill it as
154                          * we want to have jffs2 (overlay) in the same mtd.
155                          */
156                         bcm47xxpart_add_part(&parts[curr_part++], "rootfs",
157                                              offset + trx->offset[i], 0);
158                         i++;
159
160                         last_trx_part = curr_part - 1;
161
162                         /*
163                          * We have whole TRX scanned, skip to the next part. Use
164                          * roundown (not roundup), as the loop will increase
165                          * offset in next step.
166                          */
167                         offset = rounddown(offset + trx->length, blocksize);
168                         continue;
169                 }
170         }
171
172         /* Look for NVRAM at the end of the last block. */
173         for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) {
174                 if (curr_part > BCM47XXPART_MAX_PARTS) {
175                         pr_warn("Reached maximum number of partitions, scanning stopped!\n");
176                         break;
177                 }
178
179                 offset = master->size - possible_nvram_sizes[i];
180                 if (mtd_read(master, offset, 0x4, &bytes_read,
181                              (uint8_t *)buf) < 0) {
182                         pr_err("mtd_read error while reading at offset 0x%X!\n",
183                                offset);
184                         continue;
185                 }
186
187                 /* Standard NVRAM */
188                 if (buf[0] == NVRAM_HEADER) {
189                         bcm47xxpart_add_part(&parts[curr_part++], "nvram",
190                                              master->size - blocksize, 0);
191                         break;
192                 }
193         }
194
195         kfree(buf);
196
197         /*
198          * Assume that partitions end at the beginning of the one they are
199          * followed by.
200          */
201         for (i = 0; i < curr_part; i++) {
202                 u64 next_part_offset = (i < curr_part - 1) ?
203                                        parts[i + 1].offset : master->size;
204
205                 parts[i].size = next_part_offset - parts[i].offset;
206                 if (i == last_trx_part && trx_part >= 0)
207                         parts[trx_part].size = next_part_offset -
208                                                parts[trx_part].offset;
209         }
210
211         *pparts = parts;
212         return curr_part;
213 };
214
215 static struct mtd_part_parser bcm47xxpart_mtd_parser = {
216         .owner = THIS_MODULE,
217         .parse_fn = bcm47xxpart_parse,
218         .name = "bcm47xxpart",
219 };
220
221 static int __init bcm47xxpart_init(void)
222 {
223         return register_mtd_parser(&bcm47xxpart_mtd_parser);
224 }
225
226 static void __exit bcm47xxpart_exit(void)
227 {
228         deregister_mtd_parser(&bcm47xxpart_mtd_parser);
229 }
230
231 module_init(bcm47xxpart_init);
232 module_exit(bcm47xxpart_exit);
233
234 MODULE_LICENSE("GPL");
235 MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories");