2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for initial enabling
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
50 struct lpddr_private *lpddr = map->fldrv_priv;
51 struct flchip_shared *shared;
57 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
59 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
63 mtd->type = MTD_NORFLASH;
65 /* Fill in the default mtd operations */
66 mtd->_read = lpddr_read;
67 mtd->type = MTD_NORFLASH;
68 mtd->flags = MTD_CAP_NORFLASH;
69 mtd->flags &= ~MTD_BIT_WRITEABLE;
70 mtd->_erase = lpddr_erase;
71 mtd->_write = lpddr_write_buffers;
72 mtd->_writev = lpddr_writev;
73 mtd->_lock = lpddr_lock;
74 mtd->_unlock = lpddr_unlock;
75 if (map_is_linear(map)) {
76 mtd->_point = lpddr_point;
77 mtd->_unpoint = lpddr_unpoint;
79 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
80 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
81 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
83 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
91 chip = &lpddr->chips[0];
92 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
93 for (i = 0; i < numchips; i++) {
94 shared[i].writing = shared[i].erasing = NULL;
95 mutex_init(&shared[i].lock);
96 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
97 *chip = lpddr->chips[i];
98 chip->start += j << lpddr->chipshift;
99 chip->oldstate = chip->state = FL_READY;
100 chip->priv = &shared[i];
101 /* those should be reset too since
102 they create memory references. */
103 init_waitqueue_head(&chip->wq);
104 mutex_init(&chip->mutex);
111 EXPORT_SYMBOL(lpddr_cmdset);
113 static int wait_for_ready(struct map_info *map, struct flchip *chip,
114 unsigned int chip_op_time)
116 unsigned int timeo, reset_timeo, sleep_time;
118 flstate_t chip_state = chip->state;
121 /* set our timeout to 8 times the expected delay */
122 timeo = chip_op_time * 8;
126 sleep_time = chip_op_time / 2;
129 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130 if (dsr & DSR_READY_STATUS)
133 printk(KERN_ERR "%s: Flash timeout error state %d \n",
134 map->name, chip_state);
139 /* OK Still waiting. Drop the lock, wait a while and retry. */
140 mutex_unlock(&chip->mutex);
141 if (sleep_time >= 1000000/HZ) {
143 * Half of the normal delay still remaining
144 * can be performed with a sleeping delay instead
147 msleep(sleep_time/1000);
149 sleep_time = 1000000/HZ;
155 mutex_lock(&chip->mutex);
157 while (chip->state != chip_state) {
158 /* Someone's suspended the operation: sleep */
159 DECLARE_WAITQUEUE(wait, current);
160 set_current_state(TASK_UNINTERRUPTIBLE);
161 add_wait_queue(&chip->wq, &wait);
162 mutex_unlock(&chip->mutex);
164 remove_wait_queue(&chip->wq, &wait);
165 mutex_lock(&chip->mutex);
167 if (chip->erase_suspended || chip->write_suspended) {
168 /* Suspend has occurred while sleep: reset timeout */
170 chip->erase_suspended = chip->write_suspended = 0;
173 /* check status for errors */
176 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
179 print_drs_error(dsr);
182 chip->state = FL_READY;
186 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
189 DECLARE_WAITQUEUE(wait, current);
192 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193 && chip->state != FL_SYNCING) {
195 * OK. We have possibility for contension on the write/erase
196 * operations which are global to the real chip and not per
197 * partition. So let's fight it over in the partition which
198 * currently has authority on the operation.
200 * The rules are as follows:
202 * - any write operation must own shared->writing.
204 * - any erase operation must own _both_ shared->writing and
207 * - contension arbitration is handled in the owner's context.
209 * The 'shared' struct can be read and/or written only when
212 struct flchip_shared *shared = chip->priv;
213 struct flchip *contender;
214 mutex_lock(&shared->lock);
215 contender = shared->writing;
216 if (contender && contender != chip) {
218 * The engine to perform desired operation on this
219 * partition is already in use by someone else.
220 * Let's fight over it in the context of the chip
221 * currently using it. If it is possible to suspend,
222 * that other partition will do just that, otherwise
223 * it'll happily send us to sleep. In any case, when
224 * get_chip returns success we're clear to go ahead.
226 ret = mutex_trylock(&contender->mutex);
227 mutex_unlock(&shared->lock);
230 mutex_unlock(&chip->mutex);
231 ret = chip_ready(map, contender, mode);
232 mutex_lock(&chip->mutex);
234 if (ret == -EAGAIN) {
235 mutex_unlock(&contender->mutex);
239 mutex_unlock(&contender->mutex);
242 mutex_lock(&shared->lock);
244 /* We should not own chip if it is already in FL_SYNCING
245 * state. Put contender and retry. */
246 if (chip->state == FL_SYNCING) {
247 put_chip(map, contender);
248 mutex_unlock(&contender->mutex);
251 mutex_unlock(&contender->mutex);
254 /* Check if we have suspended erase on this chip.
255 Must sleep in such a case. */
256 if (mode == FL_ERASING && shared->erasing
257 && shared->erasing->oldstate == FL_ERASING) {
258 mutex_unlock(&shared->lock);
259 set_current_state(TASK_UNINTERRUPTIBLE);
260 add_wait_queue(&chip->wq, &wait);
261 mutex_unlock(&chip->mutex);
263 remove_wait_queue(&chip->wq, &wait);
264 mutex_lock(&chip->mutex);
269 shared->writing = chip;
270 if (mode == FL_ERASING)
271 shared->erasing = chip;
272 mutex_unlock(&shared->lock);
275 ret = chip_ready(map, chip, mode);
282 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
284 struct lpddr_private *lpddr = map->fldrv_priv;
286 DECLARE_WAITQUEUE(wait, current);
288 /* Prevent setting state FL_SYNCING for chip in suspended state. */
289 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
292 switch (chip->state) {
298 if (!lpddr->qinfo->SuspEraseSupp ||
299 !(mode == FL_READY || mode == FL_POINT))
302 map_write(map, CMD(LPDDR_SUSPEND),
303 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304 chip->oldstate = FL_ERASING;
305 chip->state = FL_ERASE_SUSPENDING;
306 ret = wait_for_ready(map, chip, 0);
308 /* Oops. something got wrong. */
309 /* Resume and pretend we weren't here. */
311 printk(KERN_ERR "%s: suspend operation failed."
312 "State may be wrong \n", map->name);
315 chip->erase_suspended = 1;
316 chip->state = FL_READY;
320 /* Only if there's no operation suspended... */
321 if (mode == FL_READY && chip->oldstate == FL_READY)
326 set_current_state(TASK_UNINTERRUPTIBLE);
327 add_wait_queue(&chip->wq, &wait);
328 mutex_unlock(&chip->mutex);
330 remove_wait_queue(&chip->wq, &wait);
331 mutex_lock(&chip->mutex);
336 static void put_chip(struct map_info *map, struct flchip *chip)
339 struct flchip_shared *shared = chip->priv;
340 mutex_lock(&shared->lock);
341 if (shared->writing == chip && chip->oldstate == FL_READY) {
342 /* We own the ability to write, but we're done */
343 shared->writing = shared->erasing;
344 if (shared->writing && shared->writing != chip) {
345 /* give back the ownership */
346 struct flchip *loaner = shared->writing;
347 mutex_lock(&loaner->mutex);
348 mutex_unlock(&shared->lock);
349 mutex_unlock(&chip->mutex);
350 put_chip(map, loaner);
351 mutex_lock(&chip->mutex);
352 mutex_unlock(&loaner->mutex);
356 shared->erasing = NULL;
357 shared->writing = NULL;
358 } else if (shared->erasing == chip && shared->writing != chip) {
360 * We own the ability to erase without the ability
361 * to write, which means the erase was suspended
362 * and some other partition is currently writing.
363 * Don't let the switch below mess things up since
364 * we don't have ownership to resume anything.
366 mutex_unlock(&shared->lock);
370 mutex_unlock(&shared->lock);
373 switch (chip->oldstate) {
375 map_write(map, CMD(LPDDR_RESUME),
376 map->pfow_base + PFOW_COMMAND_CODE);
377 map_write(map, CMD(LPDDR_START_EXECUTION),
378 map->pfow_base + PFOW_COMMAND_EXECUTE);
379 chip->oldstate = FL_READY;
380 chip->state = FL_ERASING;
385 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386 map->name, chip->oldstate);
391 int do_write_buffer(struct map_info *map, struct flchip *chip,
392 unsigned long adr, const struct kvec **pvec,
393 unsigned long *pvec_seek, int len)
395 struct lpddr_private *lpddr = map->fldrv_priv;
397 int ret, wbufsize, word_gap, words;
398 const struct kvec *vec;
399 unsigned long vec_seek;
400 unsigned long prog_buf_ofs;
402 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
404 mutex_lock(&chip->mutex);
405 ret = get_chip(map, chip, FL_WRITING);
407 mutex_unlock(&chip->mutex);
410 /* Figure out the number of words to write */
411 word_gap = (-adr & (map_bankwidth(map)-1));
412 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
416 word_gap = map_bankwidth(map) - word_gap;
418 datum = map_word_ff(map);
421 /* Get the program buffer offset from PFOW register data first*/
422 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
425 vec_seek = *pvec_seek;
427 int n = map_bankwidth(map) - word_gap;
429 if (n > vec->iov_len - vec_seek)
430 n = vec->iov_len - vec_seek;
434 if (!word_gap && (len < map_bankwidth(map)))
435 datum = map_word_ff(map);
437 datum = map_word_load_partial(map, datum,
438 vec->iov_base + vec_seek, word_gap, n);
442 if (!len || word_gap == map_bankwidth(map)) {
443 map_write(map, datum, prog_buf_ofs);
444 prog_buf_ofs += map_bankwidth(map);
449 if (vec_seek == vec->iov_len) {
455 *pvec_seek = vec_seek;
458 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459 chip->state = FL_WRITING;
460 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
462 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463 map->name, ret, adr);
467 out: put_chip(map, chip);
468 mutex_unlock(&chip->mutex);
472 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
474 struct map_info *map = mtd->priv;
475 struct lpddr_private *lpddr = map->fldrv_priv;
476 int chipnum = adr >> lpddr->chipshift;
477 struct flchip *chip = &lpddr->chips[chipnum];
480 mutex_lock(&chip->mutex);
481 ret = get_chip(map, chip, FL_ERASING);
483 mutex_unlock(&chip->mutex);
486 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487 chip->state = FL_ERASING;
488 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
490 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491 map->name, ret, adr);
494 out: put_chip(map, chip);
495 mutex_unlock(&chip->mutex);
499 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500 size_t *retlen, u_char *buf)
502 struct map_info *map = mtd->priv;
503 struct lpddr_private *lpddr = map->fldrv_priv;
504 int chipnum = adr >> lpddr->chipshift;
505 struct flchip *chip = &lpddr->chips[chipnum];
508 mutex_lock(&chip->mutex);
509 ret = get_chip(map, chip, FL_READY);
511 mutex_unlock(&chip->mutex);
515 map_copy_from(map, buf, adr, len);
519 mutex_unlock(&chip->mutex);
523 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524 size_t *retlen, void **mtdbuf, resource_size_t *phys)
526 struct map_info *map = mtd->priv;
527 struct lpddr_private *lpddr = map->fldrv_priv;
528 int chipnum = adr >> lpddr->chipshift;
529 unsigned long ofs, last_end = 0;
530 struct flchip *chip = &lpddr->chips[chipnum];
536 /* ofs: offset within the first chip that the first read should start */
537 ofs = adr - (chipnum << lpddr->chipshift);
538 *mtdbuf = (void *)map->virt + chip->start + ofs;
541 unsigned long thislen;
543 if (chipnum >= lpddr->numchips)
546 /* We cannot point across chips that are virtually disjoint */
548 last_end = chip->start;
549 else if (chip->start != last_end)
552 if ((len + ofs - 1) >> lpddr->chipshift)
553 thislen = (1<<lpddr->chipshift) - ofs;
557 mutex_lock(&chip->mutex);
558 ret = get_chip(map, chip, FL_POINT);
559 mutex_unlock(&chip->mutex);
563 chip->state = FL_POINT;
564 chip->ref_point_counter++;
569 last_end += 1 << lpddr->chipshift;
571 chip = &lpddr->chips[chipnum];
576 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
578 struct map_info *map = mtd->priv;
579 struct lpddr_private *lpddr = map->fldrv_priv;
580 int chipnum = adr >> lpddr->chipshift, err = 0;
583 /* ofs: offset within the first chip that the first read should start */
584 ofs = adr - (chipnum << lpddr->chipshift);
587 unsigned long thislen;
590 chip = &lpddr->chips[chipnum];
591 if (chipnum >= lpddr->numchips)
594 if ((len + ofs - 1) >> lpddr->chipshift)
595 thislen = (1<<lpddr->chipshift) - ofs;
599 mutex_lock(&chip->mutex);
600 if (chip->state == FL_POINT) {
601 chip->ref_point_counter--;
602 if (chip->ref_point_counter == 0)
603 chip->state = FL_READY;
605 printk(KERN_WARNING "%s: Warning: unpoint called on non"
606 "pointed region\n", map->name);
611 mutex_unlock(&chip->mutex);
621 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622 size_t *retlen, const u_char *buf)
626 vec.iov_base = (void *) buf;
629 return lpddr_writev(mtd, &vec, 1, to, retlen);
633 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634 unsigned long count, loff_t to, size_t *retlen)
636 struct map_info *map = mtd->priv;
637 struct lpddr_private *lpddr = map->fldrv_priv;
640 unsigned long ofs, vec_seek, i;
641 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
644 for (i = 0; i < count; i++)
645 len += vecs[i].iov_len;
650 chipnum = to >> lpddr->chipshift;
656 /* We must not cross write block boundaries */
657 int size = wbufsize - (ofs & (wbufsize-1));
662 ret = do_write_buffer(map, &lpddr->chips[chipnum],
663 ofs, &vecs, &vec_seek, size);
671 /* Be nice and reschedule with the chip in a usable
672 * state for other processes */
680 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
682 unsigned long ofs, len;
684 struct map_info *map = mtd->priv;
685 struct lpddr_private *lpddr = map->fldrv_priv;
686 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
692 ret = do_erase_oneblock(mtd, ofs);
698 instr->state = MTD_ERASE_DONE;
699 mtd_erase_callback(instr);
704 #define DO_XXLOCK_LOCK 1
705 #define DO_XXLOCK_UNLOCK 2
706 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
709 struct map_info *map = mtd->priv;
710 struct lpddr_private *lpddr = map->fldrv_priv;
711 int chipnum = adr >> lpddr->chipshift;
712 struct flchip *chip = &lpddr->chips[chipnum];
714 mutex_lock(&chip->mutex);
715 ret = get_chip(map, chip, FL_LOCKING);
717 mutex_unlock(&chip->mutex);
721 if (thunk == DO_XXLOCK_LOCK) {
722 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723 chip->state = FL_LOCKING;
724 } else if (thunk == DO_XXLOCK_UNLOCK) {
725 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726 chip->state = FL_UNLOCKING;
730 ret = wait_for_ready(map, chip, 1);
732 printk(KERN_ERR "%s: block unlock error status %d \n",
736 out: put_chip(map, chip);
737 mutex_unlock(&chip->mutex);
741 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
743 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
746 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
748 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
751 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
754 struct lpddr_private *lpddr = map->fldrv_priv;
755 int chipnum = adr >> lpddr->chipshift;
756 struct flchip *chip = &lpddr->chips[chipnum];
758 mutex_lock(&chip->mutex);
759 ret = get_chip(map, chip, FL_WRITING);
761 mutex_unlock(&chip->mutex);
765 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
767 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
769 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770 map->name, adr, curval);
774 out: put_chip(map, chip);
775 mutex_unlock(&chip->mutex);
779 MODULE_LICENSE("GPL");
780 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");