2 * Swap block device support for MTDs
3 * Turns an MTD device into a swap device with block wear leveling
5 * Copyright © 2007,2011 Nokia Corporation. All rights reserved.
7 * Authors: Jarkko Lavinen <jarkko.lavinen@nokia.com>
9 * Based on Richard Purdie's earlier implementation in 2007. Background
10 * support and lock-less operation written by Adrian Hunter.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * version 2 as published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/blktrans.h>
31 #include <linux/rbtree.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35 #include <linux/genhd.h>
36 #include <linux/swap.h>
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39 #include <linux/device.h>
40 #include <linux/math64.h>
42 #define MTDSWAP_PREFIX "mtdswap"
45 * The number of free eraseblocks when GC should stop
47 #define CLEAN_BLOCK_THRESHOLD 20
50 * Number of free eraseblocks below which GC can also collect low frag
53 #define LOW_FRAG_GC_TRESHOLD 5
56 * Wear level cost amortization. We want to do wear leveling on the background
57 * without disturbing gc too much. This is made by defining max GC frequency.
58 * Frequency value 6 means 1/6 of the GC passes will pick an erase block based
59 * on the biggest wear difference rather than the biggest dirtiness.
61 * The lower freq2 should be chosen so that it makes sure the maximum erase
62 * difference will decrease even if a malicious application is deliberately
63 * trying to make erase differences large.
65 #define MAX_ERASE_DIFF 4000
66 #define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF
67 #define COLLECT_NONDIRTY_FREQ1 6
68 #define COLLECT_NONDIRTY_FREQ2 4
70 #define PAGE_UNDEF UINT_MAX
71 #define BLOCK_UNDEF UINT_MAX
72 #define BLOCK_ERROR (UINT_MAX - 1)
73 #define BLOCK_MAX (UINT_MAX - 2)
75 #define EBLOCK_BAD (1 << 0)
76 #define EBLOCK_NOMAGIC (1 << 1)
77 #define EBLOCK_BITFLIP (1 << 2)
78 #define EBLOCK_FAILED (1 << 3)
79 #define EBLOCK_READERR (1 << 4)
80 #define EBLOCK_IDX_SHIFT 5
87 unsigned int active_count;
88 unsigned int erase_count;
89 unsigned int pad; /* speeds up pointer decrement */
92 #define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \
94 #define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \
114 struct mtd_blktrans_dev *mbd_dev;
115 struct mtd_info *mtd;
118 unsigned int *page_data;
119 unsigned int *revmap;
122 unsigned int spare_eblks;
123 unsigned int pages_per_eblk;
124 unsigned int max_erase_count;
125 struct swap_eb *eb_data;
127 struct mtdswap_tree trees[MTDSWAP_TREE_CNT];
129 unsigned long long sect_read_count;
130 unsigned long long sect_write_count;
131 unsigned long long mtd_write_count;
132 unsigned long long mtd_read_count;
133 unsigned long long discard_count;
134 unsigned long long discard_page_count;
136 unsigned int curr_write_pos;
137 struct swap_eb *curr_write;
142 struct dentry *debugfs_root;
145 struct mtdswap_oobdata {
150 #define MTDSWAP_MAGIC_CLEAN 0x2095
151 #define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1)
152 #define MTDSWAP_TYPE_CLEAN 0
153 #define MTDSWAP_TYPE_DIRTY 1
154 #define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata)
156 #define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */
157 #define MTDSWAP_IO_RETRIES 3
160 MTDSWAP_SCANNED_CLEAN,
161 MTDSWAP_SCANNED_DIRTY,
162 MTDSWAP_SCANNED_BITFLIP,
167 * In the worst case mtdswap_writesect() has allocated the last clean
168 * page from the current block and is then pre-empted by the GC
169 * thread. The thread can consume a full erase block when moving a
172 #define MIN_SPARE_EBLOCKS 2
173 #define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1)
175 #define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root)
176 #define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL)
177 #define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name))
178 #define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count)
180 #define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv)
182 static char partitions[128] = "";
183 module_param_string(partitions, partitions, sizeof(partitions), 0444);
184 MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap "
185 "partitions=\"1,3,5\"");
187 static unsigned int spare_eblocks = 10;
188 module_param(spare_eblocks, uint, 0444);
189 MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for "
190 "garbage collection (default 10%)");
192 static bool header; /* false */
193 module_param(header, bool, 0444);
194 MODULE_PARM_DESC(header,
195 "Include builtin swap header (default 0, without header)");
197 static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background);
199 static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb)
201 return (loff_t)(eb - d->eb_data) * d->mtd->erasesize;
204 static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb)
207 struct mtdswap_tree *tp;
210 tp = container_of(eb->root, struct mtdswap_tree, root);
211 oldidx = tp - &d->trees[0];
213 d->trees[oldidx].count--;
214 rb_erase(&eb->rb, eb->root);
218 static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb)
220 struct rb_node **p, *parent = NULL;
226 cur = rb_entry(parent, struct swap_eb, rb);
227 if (eb->erase_count > cur->erase_count)
233 rb_link_node(&eb->rb, parent, p);
234 rb_insert_color(&eb->rb, root);
237 static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx)
239 struct rb_root *root;
241 if (eb->root == &d->trees[idx].root)
244 mtdswap_eb_detach(d, eb);
245 root = &d->trees[idx].root;
246 __mtdswap_rb_add(root, eb);
248 d->trees[idx].count++;
251 static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx)
258 while (i < idx && p) {
266 static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb)
272 eb->flags |= EBLOCK_BAD;
273 mtdswap_eb_detach(d, eb);
276 /* badblocks not supported */
277 if (!mtd_can_have_bb(d->mtd))
280 offset = mtdswap_eb_offset(d, eb);
281 dev_warn(d->dev, "Marking bad block at %08llx\n", offset);
282 ret = mtd_block_markbad(d->mtd, offset);
285 dev_warn(d->dev, "Mark block bad failed for block at %08llx "
286 "error %d\n", offset, ret);
294 static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb)
296 unsigned int marked = eb->flags & EBLOCK_FAILED;
297 struct swap_eb *curr_write = d->curr_write;
299 eb->flags |= EBLOCK_FAILED;
300 if (curr_write == eb) {
301 d->curr_write = NULL;
303 if (!marked && d->curr_write_pos != 0) {
304 mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
309 return mtdswap_handle_badblock(d, eb);
312 static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from,
313 struct mtd_oob_ops *ops)
315 int ret = mtd_read_oob(d->mtd, from, ops);
317 if (mtd_is_bitflip(ret))
321 dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n",
326 if (ops->oobretlen < ops->ooblen) {
327 dev_warn(d->dev, "Read OOB return short read (%zd bytes not "
328 "%zd) for block at %08llx\n",
329 ops->oobretlen, ops->ooblen, from);
336 static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb)
338 struct mtdswap_oobdata *data, *data2;
341 struct mtd_oob_ops ops;
343 offset = mtdswap_eb_offset(d, eb);
345 /* Check first if the block is bad. */
346 if (mtd_can_have_bb(d->mtd) && mtd_block_isbad(d->mtd, offset))
347 return MTDSWAP_SCANNED_BAD;
349 ops.ooblen = 2 * d->mtd->ecclayout->oobavail;
350 ops.oobbuf = d->oob_buf;
353 ops.mode = MTD_OPS_AUTO_OOB;
355 ret = mtdswap_read_oob(d, offset, &ops);
357 if (ret && !mtd_is_bitflip(ret))
360 data = (struct mtdswap_oobdata *)d->oob_buf;
361 data2 = (struct mtdswap_oobdata *)
362 (d->oob_buf + d->mtd->ecclayout->oobavail);
364 if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) {
365 eb->erase_count = le32_to_cpu(data->count);
366 if (mtd_is_bitflip(ret))
367 ret = MTDSWAP_SCANNED_BITFLIP;
369 if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY)
370 ret = MTDSWAP_SCANNED_DIRTY;
372 ret = MTDSWAP_SCANNED_CLEAN;
375 eb->flags |= EBLOCK_NOMAGIC;
376 ret = MTDSWAP_SCANNED_DIRTY;
382 static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb,
385 struct mtdswap_oobdata n;
388 struct mtd_oob_ops ops;
391 ops.oobbuf = (uint8_t *)&n;
392 ops.mode = MTD_OPS_AUTO_OOB;
395 if (marker == MTDSWAP_TYPE_CLEAN) {
396 n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN);
397 n.count = cpu_to_le32(eb->erase_count);
398 ops.ooblen = MTDSWAP_OOBSIZE;
399 offset = mtdswap_eb_offset(d, eb);
401 n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY);
402 ops.ooblen = sizeof(n.magic);
403 offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize;
406 ret = mtd_write_oob(d->mtd, offset, &ops);
409 dev_warn(d->dev, "Write OOB failed for block at %08llx "
410 "error %d\n", offset, ret);
411 if (ret == -EIO || mtd_is_eccerr(ret))
412 mtdswap_handle_write_error(d, eb);
416 if (ops.oobretlen != ops.ooblen) {
417 dev_warn(d->dev, "Short OOB write for block at %08llx: "
419 offset, ops.oobretlen, ops.ooblen);
427 * Are there any erase blocks without MAGIC_CLEAN header, presumably
428 * because power was cut off after erase but before header write? We
429 * need to guestimate the erase count.
431 static void mtdswap_check_counts(struct mtdswap_dev *d)
433 struct rb_root hist_root = RB_ROOT;
434 struct rb_node *medrb;
436 unsigned int i, cnt, median;
439 for (i = 0; i < d->eblks; i++) {
442 if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
445 __mtdswap_rb_add(&hist_root, eb);
452 medrb = mtdswap_rb_index(&hist_root, cnt / 2);
453 median = rb_entry(medrb, struct swap_eb, rb)->erase_count;
455 d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root);
457 for (i = 0; i < d->eblks; i++) {
460 if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR))
461 eb->erase_count = median;
463 if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
466 rb_erase(&eb->rb, &hist_root);
470 static void mtdswap_scan_eblks(struct mtdswap_dev *d)
476 for (i = 0; i < d->eblks; i++) {
479 status = mtdswap_read_markers(d, eb);
481 eb->flags |= EBLOCK_READERR;
482 else if (status == MTDSWAP_SCANNED_BAD) {
483 eb->flags |= EBLOCK_BAD;
488 case MTDSWAP_SCANNED_CLEAN:
491 case MTDSWAP_SCANNED_DIRTY:
492 case MTDSWAP_SCANNED_BITFLIP:
496 idx = MTDSWAP_FAILING;
499 eb->flags |= (idx << EBLOCK_IDX_SHIFT);
502 mtdswap_check_counts(d);
504 for (i = 0; i < d->eblks; i++) {
507 if (eb->flags & EBLOCK_BAD)
510 idx = eb->flags >> EBLOCK_IDX_SHIFT;
511 mtdswap_rb_add(d, eb, idx);
516 * Place eblk into a tree corresponding to its number of active blocks
519 static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb)
521 unsigned int weight = eb->active_count;
522 unsigned int maxweight = d->pages_per_eblk;
524 if (eb == d->curr_write)
527 if (eb->flags & EBLOCK_BITFLIP)
528 mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
529 else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED))
530 mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
531 if (weight == maxweight)
532 mtdswap_rb_add(d, eb, MTDSWAP_USED);
533 else if (weight == 0)
534 mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
535 else if (weight > (maxweight/2))
536 mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG);
538 mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG);
542 static void mtdswap_erase_callback(struct erase_info *done)
544 wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
548 static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
550 struct mtd_info *mtd = d->mtd;
551 struct erase_info erase;
552 wait_queue_head_t wq;
553 unsigned int retries = 0;
557 if (eb->erase_count > d->max_erase_count)
558 d->max_erase_count = eb->erase_count;
561 init_waitqueue_head(&wq);
562 memset(&erase, 0, sizeof(struct erase_info));
565 erase.callback = mtdswap_erase_callback;
566 erase.addr = mtdswap_eb_offset(d, eb);
567 erase.len = mtd->erasesize;
568 erase.priv = (u_long)&wq;
570 ret = mtd_erase(mtd, &erase);
572 if (retries++ < MTDSWAP_ERASE_RETRIES) {
574 "erase of erase block %#llx on %s failed",
575 erase.addr, mtd->name);
580 dev_err(d->dev, "Cannot erase erase block %#llx on %s\n",
581 erase.addr, mtd->name);
583 mtdswap_handle_badblock(d, eb);
587 ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE ||
588 erase.state == MTD_ERASE_FAILED);
590 dev_err(d->dev, "Interrupted erase block %#llx erassure on %s",
591 erase.addr, mtd->name);
595 if (erase.state == MTD_ERASE_FAILED) {
596 if (retries++ < MTDSWAP_ERASE_RETRIES) {
598 "erase of erase block %#llx on %s failed",
599 erase.addr, mtd->name);
604 mtdswap_handle_badblock(d, eb);
611 static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page,
615 struct swap_eb *old_eb = d->curr_write;
616 struct rb_root *clean_root;
619 if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) {
621 if (TREE_EMPTY(d, CLEAN))
624 clean_root = TREE_ROOT(d, CLEAN);
625 eb = rb_entry(rb_first(clean_root), struct swap_eb, rb);
626 rb_erase(&eb->rb, clean_root);
628 TREE_COUNT(d, CLEAN)--;
630 ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY);
631 } while (ret == -EIO || mtd_is_eccerr(ret));
636 d->curr_write_pos = 0;
639 mtdswap_store_eb(d, old_eb);
642 *block = (d->curr_write - d->eb_data) * d->pages_per_eblk +
645 d->curr_write->active_count++;
646 d->revmap[*block] = page;
652 static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d)
654 return TREE_COUNT(d, CLEAN) * d->pages_per_eblk +
655 d->pages_per_eblk - d->curr_write_pos;
658 static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d)
660 return mtdswap_free_page_cnt(d) > d->pages_per_eblk;
663 static int mtdswap_write_block(struct mtdswap_dev *d, char *buf,
664 unsigned int page, unsigned int *bp, int gc_context)
666 struct mtd_info *mtd = d->mtd;
674 while (!mtdswap_enough_free_pages(d))
675 if (mtdswap_gc(d, 0) > 0)
678 ret = mtdswap_map_free_block(d, page, bp);
679 eb = d->eb_data + (*bp / d->pages_per_eblk);
681 if (ret == -EIO || mtd_is_eccerr(ret)) {
682 d->curr_write = NULL;
684 d->revmap[*bp] = PAGE_UNDEF;
691 writepos = (loff_t)*bp << PAGE_SHIFT;
692 ret = mtd_write(mtd, writepos, PAGE_SIZE, &retlen, buf);
693 if (ret == -EIO || mtd_is_eccerr(ret)) {
696 d->revmap[*bp] = PAGE_UNDEF;
697 mtdswap_handle_write_error(d, eb);
702 dev_err(d->dev, "Write to MTD device failed: %d (%zd written)",
707 if (retlen != PAGE_SIZE) {
708 dev_err(d->dev, "Short write to MTD device: %zd written",
719 d->revmap[*bp] = PAGE_UNDEF;
724 static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock,
725 unsigned int *newblock)
727 struct mtd_info *mtd = d->mtd;
728 struct swap_eb *eb, *oldeb;
731 unsigned int page, retries;
734 page = d->revmap[oldblock];
735 readpos = (loff_t) oldblock << PAGE_SHIFT;
739 ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf);
741 if (ret < 0 && !mtd_is_bitflip(ret)) {
742 oldeb = d->eb_data + oldblock / d->pages_per_eblk;
743 oldeb->flags |= EBLOCK_READERR;
745 dev_err(d->dev, "Read Error: %d (block %u)\n", ret,
748 if (retries < MTDSWAP_IO_RETRIES)
754 if (retlen != PAGE_SIZE) {
755 dev_err(d->dev, "Short read: %zd (block %u)\n", retlen,
761 ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1);
763 d->page_data[page] = BLOCK_ERROR;
764 dev_err(d->dev, "Write error: %d\n", ret);
768 eb = d->eb_data + *newblock / d->pages_per_eblk;
769 d->page_data[page] = *newblock;
770 d->revmap[oldblock] = PAGE_UNDEF;
771 eb = d->eb_data + oldblock / d->pages_per_eblk;
777 d->page_data[page] = BLOCK_ERROR;
778 d->revmap[oldblock] = PAGE_UNDEF;
782 static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb)
784 unsigned int i, block, eblk_base, newblock;
788 eblk_base = (eb - d->eb_data) * d->pages_per_eblk;
790 for (i = 0; i < d->pages_per_eblk; i++) {
791 if (d->spare_eblks < MIN_SPARE_EBLOCKS)
794 block = eblk_base + i;
795 if (d->revmap[block] == PAGE_UNDEF)
798 ret = mtdswap_move_block(d, block, &newblock);
799 if (ret < 0 && !errcode)
806 static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d)
810 if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_TRESHOLD)
811 stopat = MTDSWAP_LOWFRAG;
813 stopat = MTDSWAP_HIFRAG;
815 for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--)
816 if (d->trees[idx].root.rb_node != NULL)
822 static int mtdswap_wlfreq(unsigned int maxdiff)
824 unsigned int h, x, y, dist, base;
827 * Calculate linear ramp down from f1 to f2 when maxdiff goes from
828 * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar
829 * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE.
832 dist = maxdiff - MAX_ERASE_DIFF;
833 if (dist > COLLECT_NONDIRTY_BASE)
834 dist = COLLECT_NONDIRTY_BASE;
837 * Modelling the slop as right angular triangle with base
838 * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is
839 * equal to the ratio h/base.
841 h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2;
842 base = COLLECT_NONDIRTY_BASE;
845 y = (x * h + base / 2) / base;
847 return COLLECT_NONDIRTY_FREQ2 + y;
850 static int mtdswap_choose_wl_tree(struct mtdswap_dev *d)
852 static unsigned int pick_cnt;
853 unsigned int i, idx = -1, wear, max;
854 struct rb_root *root;
857 for (i = 0; i <= MTDSWAP_DIRTY; i++) {
858 root = &d->trees[i].root;
859 if (root->rb_node == NULL)
862 wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root);
869 if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) {
878 static int mtdswap_choose_gc_tree(struct mtdswap_dev *d,
879 unsigned int background)
883 if (TREE_NONEMPTY(d, FAILING) &&
884 (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY))))
885 return MTDSWAP_FAILING;
887 idx = mtdswap_choose_wl_tree(d);
888 if (idx >= MTDSWAP_CLEAN)
891 return __mtdswap_choose_gc_tree(d);
894 static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d,
895 unsigned int background)
897 struct rb_root *rp = NULL;
898 struct swap_eb *eb = NULL;
901 if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD &&
902 TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING))
905 idx = mtdswap_choose_gc_tree(d, background);
909 rp = &d->trees[idx].root;
910 eb = rb_entry(rb_first(rp), struct swap_eb, rb);
912 rb_erase(&eb->rb, rp);
914 d->trees[idx].count--;
918 static unsigned int mtdswap_test_patt(unsigned int i)
920 return i % 2 ? 0x55555555 : 0xAAAAAAAA;
923 static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d,
926 struct mtd_info *mtd = d->mtd;
927 unsigned int test, i, j, patt, mtd_pages;
929 unsigned int *p1 = (unsigned int *)d->page_buf;
930 unsigned char *p2 = (unsigned char *)d->oob_buf;
931 struct mtd_oob_ops ops;
934 ops.mode = MTD_OPS_AUTO_OOB;
935 ops.len = mtd->writesize;
936 ops.ooblen = mtd->ecclayout->oobavail;
938 ops.datbuf = d->page_buf;
939 ops.oobbuf = d->oob_buf;
940 base = mtdswap_eb_offset(d, eb);
941 mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize;
943 for (test = 0; test < 2; test++) {
945 for (i = 0; i < mtd_pages; i++) {
946 patt = mtdswap_test_patt(test + i);
947 memset(d->page_buf, patt, mtd->writesize);
948 memset(d->oob_buf, patt, mtd->ecclayout->oobavail);
949 ret = mtd_write_oob(mtd, pos, &ops);
953 pos += mtd->writesize;
957 for (i = 0; i < mtd_pages; i++) {
958 ret = mtd_read_oob(mtd, pos, &ops);
962 patt = mtdswap_test_patt(test + i);
963 for (j = 0; j < mtd->writesize/sizeof(int); j++)
967 for (j = 0; j < mtd->ecclayout->oobavail; j++)
968 if (p2[j] != (unsigned char)patt)
971 pos += mtd->writesize;
974 ret = mtdswap_erase_block(d, eb);
979 eb->flags &= ~EBLOCK_READERR;
983 mtdswap_handle_badblock(d, eb);
987 static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background)
992 if (d->spare_eblks < MIN_SPARE_EBLOCKS)
995 eb = mtdswap_pick_gc_eblk(d, background);
999 ret = mtdswap_gc_eblock(d, eb);
1003 if (eb->flags & EBLOCK_FAILED) {
1004 mtdswap_handle_badblock(d, eb);
1008 eb->flags &= ~EBLOCK_BITFLIP;
1009 ret = mtdswap_erase_block(d, eb);
1010 if ((eb->flags & EBLOCK_READERR) &&
1011 (ret || !mtdswap_eblk_passes(d, eb)))
1015 ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN);
1018 mtdswap_rb_add(d, eb, MTDSWAP_CLEAN);
1019 else if (ret != -EIO && !mtd_is_eccerr(ret))
1020 mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
1025 static void mtdswap_background(struct mtd_blktrans_dev *dev)
1027 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1031 ret = mtdswap_gc(d, 1);
1032 if (ret || mtd_blktrans_cease_background(dev))
1037 static void mtdswap_cleanup(struct mtdswap_dev *d)
1041 vfree(d->page_data);
1046 static int mtdswap_flush(struct mtd_blktrans_dev *dev)
1048 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1054 static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size)
1057 unsigned int badcnt;
1061 if (mtd_can_have_bb(mtd))
1062 for (offset = 0; offset < size; offset += mtd->erasesize)
1063 if (mtd_block_isbad(mtd, offset))
1069 static int mtdswap_writesect(struct mtd_blktrans_dev *dev,
1070 unsigned long page, char *buf)
1072 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1073 unsigned int newblock, mapped;
1077 d->sect_write_count++;
1079 if (d->spare_eblks < MIN_SPARE_EBLOCKS)
1083 /* Ignore writes to the header page */
1084 if (unlikely(page == 0))
1090 mapped = d->page_data[page];
1091 if (mapped <= BLOCK_MAX) {
1092 eb = d->eb_data + (mapped / d->pages_per_eblk);
1094 mtdswap_store_eb(d, eb);
1095 d->page_data[page] = BLOCK_UNDEF;
1096 d->revmap[mapped] = PAGE_UNDEF;
1099 ret = mtdswap_write_block(d, buf, page, &newblock, 0);
1100 d->mtd_write_count++;
1105 eb = d->eb_data + (newblock / d->pages_per_eblk);
1106 d->page_data[page] = newblock;
1111 /* Provide a dummy swap header for the kernel */
1112 static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf)
1114 union swap_header *hd = (union swap_header *)(buf);
1116 memset(buf, 0, PAGE_SIZE - 10);
1118 hd->info.version = 1;
1119 hd->info.last_page = d->mbd_dev->size - 1;
1120 hd->info.nr_badpages = 0;
1122 memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10);
1127 static int mtdswap_readsect(struct mtd_blktrans_dev *dev,
1128 unsigned long page, char *buf)
1130 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1131 struct mtd_info *mtd = d->mtd;
1132 unsigned int realblock, retries;
1138 d->sect_read_count++;
1141 if (unlikely(page == 0))
1142 return mtdswap_auto_header(d, buf);
1147 realblock = d->page_data[page];
1148 if (realblock > BLOCK_MAX) {
1149 memset(buf, 0x0, PAGE_SIZE);
1150 if (realblock == BLOCK_UNDEF)
1156 eb = d->eb_data + (realblock / d->pages_per_eblk);
1157 BUG_ON(d->revmap[realblock] == PAGE_UNDEF);
1159 readpos = (loff_t)realblock << PAGE_SHIFT;
1163 ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, buf);
1165 d->mtd_read_count++;
1166 if (mtd_is_bitflip(ret)) {
1167 eb->flags |= EBLOCK_BITFLIP;
1168 mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
1173 dev_err(d->dev, "Read error %d\n", ret);
1174 eb->flags |= EBLOCK_READERR;
1175 mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
1177 if (retries < MTDSWAP_IO_RETRIES)
1183 if (retlen != PAGE_SIZE) {
1184 dev_err(d->dev, "Short read %zd\n", retlen);
1191 static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first,
1194 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1197 unsigned int mapped;
1201 for (page = first; page < first + nr_pages; page++) {
1202 mapped = d->page_data[page];
1203 if (mapped <= BLOCK_MAX) {
1204 eb = d->eb_data + (mapped / d->pages_per_eblk);
1206 mtdswap_store_eb(d, eb);
1207 d->page_data[page] = BLOCK_UNDEF;
1208 d->revmap[mapped] = PAGE_UNDEF;
1209 d->discard_page_count++;
1210 } else if (mapped == BLOCK_ERROR) {
1211 d->page_data[page] = BLOCK_UNDEF;
1212 d->discard_page_count++;
1219 static int mtdswap_show(struct seq_file *s, void *data)
1221 struct mtdswap_dev *d = (struct mtdswap_dev *) s->private;
1223 unsigned int count[MTDSWAP_TREE_CNT];
1224 unsigned int min[MTDSWAP_TREE_CNT];
1225 unsigned int max[MTDSWAP_TREE_CNT];
1226 unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages;
1228 char *name[] = {"clean", "used", "low", "high", "dirty", "bitflip",
1231 mutex_lock(&d->mbd_dev->lock);
1233 for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
1234 struct rb_root *root = &d->trees[i].root;
1236 if (root->rb_node) {
1237 count[i] = d->trees[i].count;
1238 min[i] = rb_entry(rb_first(root), struct swap_eb,
1240 max[i] = rb_entry(rb_last(root), struct swap_eb,
1246 if (d->curr_write) {
1248 cwp = d->curr_write_pos;
1249 cwecount = d->curr_write->erase_count;
1253 for (i = 0; i < d->eblks; i++)
1254 sum += d->eb_data[i].erase_count;
1256 use_size = (uint64_t)d->eblks * d->mtd->erasesize;
1257 bb_cnt = mtdswap_badblocks(d->mtd, use_size);
1260 pages = d->mbd_dev->size;
1261 for (i = 0; i < pages; i++)
1262 if (d->page_data[i] != BLOCK_UNDEF)
1265 mutex_unlock(&d->mbd_dev->lock);
1267 for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
1271 if (min[i] != max[i])
1272 seq_printf(s, "%s:\t%5d erase blocks, erased min %d, "
1274 name[i], count[i], min[i], max[i]);
1276 seq_printf(s, "%s:\t%5d erase blocks, all erased %d "
1277 "times\n", name[i], count[i], min[i]);
1281 seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt);
1284 seq_printf(s, "current erase block: %u pages used, %u free, "
1285 "erased %u times\n",
1286 cwp, d->pages_per_eblk - cwp, cwecount);
1288 seq_printf(s, "total erasures: %lu\n", sum);
1292 seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count);
1293 seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count);
1294 seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count);
1295 seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count);
1296 seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count);
1297 seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count);
1300 seq_printf(s, "total pages: %u\n", pages);
1301 seq_printf(s, "pages mapped: %u\n", mapped);
1306 static int mtdswap_open(struct inode *inode, struct file *file)
1308 return single_open(file, mtdswap_show, inode->i_private);
1311 static const struct file_operations mtdswap_fops = {
1312 .open = mtdswap_open,
1314 .llseek = seq_lseek,
1315 .release = single_release,
1318 static int mtdswap_add_debugfs(struct mtdswap_dev *d)
1320 struct gendisk *gd = d->mbd_dev->disk;
1321 struct device *dev = disk_to_dev(gd);
1323 struct dentry *root;
1324 struct dentry *dent;
1326 root = debugfs_create_dir(gd->disk_name, NULL);
1331 dev_err(dev, "failed to initialize debugfs\n");
1335 d->debugfs_root = root;
1337 dent = debugfs_create_file("stats", S_IRUSR, root, d,
1340 dev_err(d->dev, "debugfs_create_file failed\n");
1341 debugfs_remove_recursive(root);
1342 d->debugfs_root = NULL;
1349 static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks,
1350 unsigned int spare_cnt)
1352 struct mtd_info *mtd = d->mbd_dev->mtd;
1353 unsigned int i, eblk_bytes, pages, blocks;
1358 d->spare_eblks = spare_cnt;
1359 d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT;
1361 pages = d->mbd_dev->size;
1362 blocks = eblocks * d->pages_per_eblk;
1364 for (i = 0; i < MTDSWAP_TREE_CNT; i++)
1365 d->trees[i].root = RB_ROOT;
1367 d->page_data = vmalloc(sizeof(int)*pages);
1369 goto page_data_fail;
1371 d->revmap = vmalloc(sizeof(int)*blocks);
1375 eblk_bytes = sizeof(struct swap_eb)*d->eblks;
1376 d->eb_data = vzalloc(eblk_bytes);
1380 for (i = 0; i < pages; i++)
1381 d->page_data[i] = BLOCK_UNDEF;
1383 for (i = 0; i < blocks; i++)
1384 d->revmap[i] = PAGE_UNDEF;
1386 d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1390 d->oob_buf = kmalloc(2 * mtd->ecclayout->oobavail, GFP_KERNEL);
1394 mtdswap_scan_eblks(d);
1405 vfree(d->page_data);
1407 printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret);
1411 static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
1413 struct mtdswap_dev *d;
1414 struct mtd_blktrans_dev *mbd_dev;
1418 unsigned int eblocks, eavailable, bad_blocks, spare_cnt;
1419 uint64_t swap_size, use_size, size_limit;
1420 struct nand_ecclayout *oinfo;
1423 parts = &partitions[0];
1427 while ((this_opt = strsep(&parts, ",")) != NULL) {
1428 if (kstrtoul(this_opt, 0, &part) < 0)
1431 if (mtd->index == part)
1435 if (mtd->index != part)
1438 if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) {
1439 printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE "
1440 "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE);
1444 if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) {
1445 printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size"
1446 " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize);
1450 oinfo = mtd->ecclayout;
1452 printk(KERN_ERR "%s: mtd%d does not have OOB\n",
1453 MTDSWAP_PREFIX, mtd->index);
1457 if (!mtd->oobsize || oinfo->oobavail < MTDSWAP_OOBSIZE) {
1458 printk(KERN_ERR "%s: Not enough free bytes in OOB, "
1459 "%d available, %zu needed.\n",
1460 MTDSWAP_PREFIX, oinfo->oobavail, MTDSWAP_OOBSIZE);
1464 if (spare_eblocks > 100)
1465 spare_eblocks = 100;
1467 use_size = mtd->size;
1468 size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE;
1470 if (mtd->size > size_limit) {
1471 printk(KERN_WARNING "%s: Device too large. Limiting size to "
1472 "%llu bytes\n", MTDSWAP_PREFIX, size_limit);
1473 use_size = size_limit;
1476 eblocks = mtd_div_by_eb(use_size, mtd);
1477 use_size = (uint64_t)eblocks * mtd->erasesize;
1478 bad_blocks = mtdswap_badblocks(mtd, use_size);
1479 eavailable = eblocks - bad_blocks;
1481 if (eavailable < MIN_ERASE_BLOCKS) {
1482 printk(KERN_ERR "%s: Not enough erase blocks. %u available, "
1483 "%d needed\n", MTDSWAP_PREFIX, eavailable,
1488 spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100);
1490 if (spare_cnt < MIN_SPARE_EBLOCKS)
1491 spare_cnt = MIN_SPARE_EBLOCKS;
1493 if (spare_cnt > eavailable - 1)
1494 spare_cnt = eavailable - 1;
1496 swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize +
1497 (header ? PAGE_SIZE : 0);
1499 printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, "
1500 "%u spare, %u bad blocks\n",
1501 MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks);
1503 d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL);
1507 mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL);
1513 d->mbd_dev = mbd_dev;
1517 mbd_dev->devnum = mtd->index;
1518 mbd_dev->size = swap_size >> PAGE_SHIFT;
1521 if (!(mtd->flags & MTD_WRITEABLE))
1522 mbd_dev->readonly = 1;
1524 if (mtdswap_init(d, eblocks, spare_cnt) < 0)
1527 if (add_mtd_blktrans_dev(mbd_dev) < 0)
1530 d->dev = disk_to_dev(mbd_dev->disk);
1532 ret = mtdswap_add_debugfs(d);
1534 goto debugfs_failed;
1539 del_mtd_blktrans_dev(mbd_dev);
1549 static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev)
1551 struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1553 debugfs_remove_recursive(d->debugfs_root);
1554 del_mtd_blktrans_dev(dev);
1559 static struct mtd_blktrans_ops mtdswap_ops = {
1563 .blksize = PAGE_SIZE,
1564 .flush = mtdswap_flush,
1565 .readsect = mtdswap_readsect,
1566 .writesect = mtdswap_writesect,
1567 .discard = mtdswap_discard,
1568 .background = mtdswap_background,
1569 .add_mtd = mtdswap_add_mtd,
1570 .remove_dev = mtdswap_remove_dev,
1571 .owner = THIS_MODULE,
1574 static int __init mtdswap_modinit(void)
1576 return register_mtd_blktrans(&mtdswap_ops);
1579 static void __exit mtdswap_modexit(void)
1581 deregister_mtd_blktrans(&mtdswap_ops);
1584 module_init(mtdswap_modinit);
1585 module_exit(mtdswap_modexit);
1588 MODULE_LICENSE("GPL");
1589 MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
1590 MODULE_DESCRIPTION("Block device access to an MTD suitable for using as "