]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/atmel_nand.c
mtd: atmel_nand: using a stronger ECC is not dangerous
[karo-tx-linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the GNU General Public License version 2 as
23  * published by the Free Software Foundation.
24  *
25  */
26
27 #include <linux/dma-mapping.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_mtd.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39
40 #include <linux/dmaengine.h>
41 #include <linux/gpio.h>
42 #include <linux/io.h>
43 #include <linux/platform_data/atmel.h>
44 #include <linux/pinctrl/consumer.h>
45
46 static int use_dma = 1;
47 module_param(use_dma, int, 0);
48
49 static int on_flash_bbt = 0;
50 module_param(on_flash_bbt, int, 0);
51
52 /* Register access macros */
53 #define ecc_readl(add, reg)                             \
54         __raw_readl(add + ATMEL_ECC_##reg)
55 #define ecc_writel(add, reg, value)                     \
56         __raw_writel((value), add + ATMEL_ECC_##reg)
57
58 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
59
60 /* oob layout for large page size
61  * bad block info is on bytes 0 and 1
62  * the bytes have to be consecutives to avoid
63  * several NAND_CMD_RNDOUT during read
64  */
65 static struct nand_ecclayout atmel_oobinfo_large = {
66         .eccbytes = 4,
67         .eccpos = {60, 61, 62, 63},
68         .oobfree = {
69                 {2, 58}
70         },
71 };
72
73 /* oob layout for small page size
74  * bad block info is on bytes 4 and 5
75  * the bytes have to be consecutives to avoid
76  * several NAND_CMD_RNDOUT during read
77  */
78 static struct nand_ecclayout atmel_oobinfo_small = {
79         .eccbytes = 4,
80         .eccpos = {0, 1, 2, 3},
81         .oobfree = {
82                 {6, 10}
83         },
84 };
85
86 struct atmel_nand_host {
87         struct nand_chip        nand_chip;
88         struct mtd_info         mtd;
89         void __iomem            *io_base;
90         dma_addr_t              io_phys;
91         struct atmel_nand_data  board;
92         struct device           *dev;
93         void __iomem            *ecc;
94
95         struct completion       comp;
96         struct dma_chan         *dma_chan;
97
98         bool                    has_pmecc;
99         u8                      pmecc_corr_cap;
100         u16                     pmecc_sector_size;
101         u32                     pmecc_lookup_table_offset;
102         u32                     pmecc_lookup_table_offset_512;
103         u32                     pmecc_lookup_table_offset_1024;
104
105         int                     pmecc_bytes_per_sector;
106         int                     pmecc_sector_number;
107         int                     pmecc_degree;   /* Degree of remainders */
108         int                     pmecc_cw_len;   /* Length of codeword */
109
110         void __iomem            *pmerrloc_base;
111         void __iomem            *pmecc_rom_base;
112
113         /* lookup table for alpha_to and index_of */
114         void __iomem            *pmecc_alpha_to;
115         void __iomem            *pmecc_index_of;
116
117         /* data for pmecc computation */
118         int16_t                 *pmecc_partial_syn;
119         int16_t                 *pmecc_si;
120         int16_t                 *pmecc_smu;     /* Sigma table */
121         int16_t                 *pmecc_lmu;     /* polynomal order */
122         int                     *pmecc_mu;
123         int                     *pmecc_dmu;
124         int                     *pmecc_delta;
125 };
126
127 static struct nand_ecclayout atmel_pmecc_oobinfo;
128
129 /*
130  * Enable NAND.
131  */
132 static void atmel_nand_enable(struct atmel_nand_host *host)
133 {
134         if (gpio_is_valid(host->board.enable_pin))
135                 gpio_set_value(host->board.enable_pin, 0);
136 }
137
138 /*
139  * Disable NAND.
140  */
141 static void atmel_nand_disable(struct atmel_nand_host *host)
142 {
143         if (gpio_is_valid(host->board.enable_pin))
144                 gpio_set_value(host->board.enable_pin, 1);
145 }
146
147 /*
148  * Hardware specific access to control-lines
149  */
150 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
151 {
152         struct nand_chip *nand_chip = mtd->priv;
153         struct atmel_nand_host *host = nand_chip->priv;
154
155         if (ctrl & NAND_CTRL_CHANGE) {
156                 if (ctrl & NAND_NCE)
157                         atmel_nand_enable(host);
158                 else
159                         atmel_nand_disable(host);
160         }
161         if (cmd == NAND_CMD_NONE)
162                 return;
163
164         if (ctrl & NAND_CLE)
165                 writeb(cmd, host->io_base + (1 << host->board.cle));
166         else
167                 writeb(cmd, host->io_base + (1 << host->board.ale));
168 }
169
170 /*
171  * Read the Device Ready pin.
172  */
173 static int atmel_nand_device_ready(struct mtd_info *mtd)
174 {
175         struct nand_chip *nand_chip = mtd->priv;
176         struct atmel_nand_host *host = nand_chip->priv;
177
178         return gpio_get_value(host->board.rdy_pin) ^
179                 !!host->board.rdy_pin_active_low;
180 }
181
182 /*
183  * Minimal-overhead PIO for data access.
184  */
185 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
186 {
187         struct nand_chip        *nand_chip = mtd->priv;
188
189         __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
190 }
191
192 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
193 {
194         struct nand_chip        *nand_chip = mtd->priv;
195
196         __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
197 }
198
199 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
200 {
201         struct nand_chip        *nand_chip = mtd->priv;
202
203         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
204 }
205
206 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
207 {
208         struct nand_chip        *nand_chip = mtd->priv;
209
210         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
211 }
212
213 static void dma_complete_func(void *completion)
214 {
215         complete(completion);
216 }
217
218 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
219                                int is_read)
220 {
221         struct dma_device *dma_dev;
222         enum dma_ctrl_flags flags;
223         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
224         struct dma_async_tx_descriptor *tx = NULL;
225         dma_cookie_t cookie;
226         struct nand_chip *chip = mtd->priv;
227         struct atmel_nand_host *host = chip->priv;
228         void *p = buf;
229         int err = -EIO;
230         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
231
232         if (buf >= high_memory)
233                 goto err_buf;
234
235         dma_dev = host->dma_chan->device;
236
237         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
238                 DMA_COMPL_SKIP_DEST_UNMAP;
239
240         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
241         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
242                 dev_err(host->dev, "Failed to dma_map_single\n");
243                 goto err_buf;
244         }
245
246         if (is_read) {
247                 dma_src_addr = host->io_phys;
248                 dma_dst_addr = phys_addr;
249         } else {
250                 dma_src_addr = phys_addr;
251                 dma_dst_addr = host->io_phys;
252         }
253
254         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
255                                              dma_src_addr, len, flags);
256         if (!tx) {
257                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
258                 goto err_dma;
259         }
260
261         init_completion(&host->comp);
262         tx->callback = dma_complete_func;
263         tx->callback_param = &host->comp;
264
265         cookie = tx->tx_submit(tx);
266         if (dma_submit_error(cookie)) {
267                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
268                 goto err_dma;
269         }
270
271         dma_async_issue_pending(host->dma_chan);
272         wait_for_completion(&host->comp);
273
274         err = 0;
275
276 err_dma:
277         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
278 err_buf:
279         if (err != 0)
280                 dev_warn(host->dev, "Fall back to CPU I/O\n");
281         return err;
282 }
283
284 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
285 {
286         struct nand_chip *chip = mtd->priv;
287         struct atmel_nand_host *host = chip->priv;
288
289         if (use_dma && len > mtd->oobsize)
290                 /* only use DMA for bigger than oob size: better performances */
291                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
292                         return;
293
294         if (host->board.bus_width_16)
295                 atmel_read_buf16(mtd, buf, len);
296         else
297                 atmel_read_buf8(mtd, buf, len);
298 }
299
300 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
301 {
302         struct nand_chip *chip = mtd->priv;
303         struct atmel_nand_host *host = chip->priv;
304
305         if (use_dma && len > mtd->oobsize)
306                 /* only use DMA for bigger than oob size: better performances */
307                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
308                         return;
309
310         if (host->board.bus_width_16)
311                 atmel_write_buf16(mtd, buf, len);
312         else
313                 atmel_write_buf8(mtd, buf, len);
314 }
315
316 /*
317  * Return number of ecc bytes per sector according to sector size and
318  * correction capability
319  *
320  * Following table shows what at91 PMECC supported:
321  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
322  * =====================        ================        =================
323  *                2-bits                 4-bytes                  4-bytes
324  *                4-bits                 7-bytes                  7-bytes
325  *                8-bits                13-bytes                 14-bytes
326  *               12-bits                20-bytes                 21-bytes
327  *               24-bits                39-bytes                 42-bytes
328  */
329 static int pmecc_get_ecc_bytes(int cap, int sector_size)
330 {
331         int m = 12 + sector_size / 512;
332         return (m * cap + 7) / 8;
333 }
334
335 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
336                                     int oobsize, int ecc_len)
337 {
338         int i;
339
340         layout->eccbytes = ecc_len;
341
342         /* ECC will occupy the last ecc_len bytes continuously */
343         for (i = 0; i < ecc_len; i++)
344                 layout->eccpos[i] = oobsize - ecc_len + i;
345
346         layout->oobfree[0].offset = 2;
347         layout->oobfree[0].length =
348                 oobsize - ecc_len - layout->oobfree[0].offset;
349 }
350
351 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
352 {
353         int table_size;
354
355         table_size = host->pmecc_sector_size == 512 ?
356                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
357
358         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
359                         table_size * sizeof(int16_t);
360 }
361
362 static void pmecc_data_free(struct atmel_nand_host *host)
363 {
364         kfree(host->pmecc_partial_syn);
365         kfree(host->pmecc_si);
366         kfree(host->pmecc_lmu);
367         kfree(host->pmecc_smu);
368         kfree(host->pmecc_mu);
369         kfree(host->pmecc_dmu);
370         kfree(host->pmecc_delta);
371 }
372
373 static int pmecc_data_alloc(struct atmel_nand_host *host)
374 {
375         const int cap = host->pmecc_corr_cap;
376
377         host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
378                                         GFP_KERNEL);
379         host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
380         host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
381         host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
382                                         GFP_KERNEL);
383         host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
384         host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
385         host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
386
387         if (host->pmecc_partial_syn &&
388                         host->pmecc_si &&
389                         host->pmecc_lmu &&
390                         host->pmecc_smu &&
391                         host->pmecc_mu &&
392                         host->pmecc_dmu &&
393                         host->pmecc_delta)
394                 return 0;
395
396         /* error happened */
397         pmecc_data_free(host);
398         return -ENOMEM;
399 }
400
401 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
402 {
403         struct nand_chip *nand_chip = mtd->priv;
404         struct atmel_nand_host *host = nand_chip->priv;
405         int i;
406         uint32_t value;
407
408         /* Fill odd syndromes */
409         for (i = 0; i < host->pmecc_corr_cap; i++) {
410                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
411                 if (i & 1)
412                         value >>= 16;
413                 value &= 0xffff;
414                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
415         }
416 }
417
418 static void pmecc_substitute(struct mtd_info *mtd)
419 {
420         struct nand_chip *nand_chip = mtd->priv;
421         struct atmel_nand_host *host = nand_chip->priv;
422         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
423         int16_t __iomem *index_of = host->pmecc_index_of;
424         int16_t *partial_syn = host->pmecc_partial_syn;
425         const int cap = host->pmecc_corr_cap;
426         int16_t *si;
427         int i, j;
428
429         /* si[] is a table that holds the current syndrome value,
430          * an element of that table belongs to the field
431          */
432         si = host->pmecc_si;
433
434         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
435
436         /* Computation 2t syndromes based on S(x) */
437         /* Odd syndromes */
438         for (i = 1; i < 2 * cap; i += 2) {
439                 for (j = 0; j < host->pmecc_degree; j++) {
440                         if (partial_syn[i] & ((unsigned short)0x1 << j))
441                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
442                 }
443         }
444         /* Even syndrome = (Odd syndrome) ** 2 */
445         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
446                 if (si[j] == 0) {
447                         si[i] = 0;
448                 } else {
449                         int16_t tmp;
450
451                         tmp = readw_relaxed(index_of + si[j]);
452                         tmp = (tmp * 2) % host->pmecc_cw_len;
453                         si[i] = readw_relaxed(alpha_to + tmp);
454                 }
455         }
456
457         return;
458 }
459
460 static void pmecc_get_sigma(struct mtd_info *mtd)
461 {
462         struct nand_chip *nand_chip = mtd->priv;
463         struct atmel_nand_host *host = nand_chip->priv;
464
465         int16_t *lmu = host->pmecc_lmu;
466         int16_t *si = host->pmecc_si;
467         int *mu = host->pmecc_mu;
468         int *dmu = host->pmecc_dmu;     /* Discrepancy */
469         int *delta = host->pmecc_delta; /* Delta order */
470         int cw_len = host->pmecc_cw_len;
471         const int16_t cap = host->pmecc_corr_cap;
472         const int num = 2 * cap + 1;
473         int16_t __iomem *index_of = host->pmecc_index_of;
474         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
475         int i, j, k;
476         uint32_t dmu_0_count, tmp;
477         int16_t *smu = host->pmecc_smu;
478
479         /* index of largest delta */
480         int ro;
481         int largest;
482         int diff;
483
484         dmu_0_count = 0;
485
486         /* First Row */
487
488         /* Mu */
489         mu[0] = -1;
490
491         memset(smu, 0, sizeof(int16_t) * num);
492         smu[0] = 1;
493
494         /* discrepancy set to 1 */
495         dmu[0] = 1;
496         /* polynom order set to 0 */
497         lmu[0] = 0;
498         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
499
500         /* Second Row */
501
502         /* Mu */
503         mu[1] = 0;
504         /* Sigma(x) set to 1 */
505         memset(&smu[num], 0, sizeof(int16_t) * num);
506         smu[num] = 1;
507
508         /* discrepancy set to S1 */
509         dmu[1] = si[1];
510
511         /* polynom order set to 0 */
512         lmu[1] = 0;
513
514         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
515
516         /* Init the Sigma(x) last row */
517         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
518
519         for (i = 1; i <= cap; i++) {
520                 mu[i + 1] = i << 1;
521                 /* Begin Computing Sigma (Mu+1) and L(mu) */
522                 /* check if discrepancy is set to 0 */
523                 if (dmu[i] == 0) {
524                         dmu_0_count++;
525
526                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
527                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
528                                 tmp += 2;
529                         else
530                                 tmp += 1;
531
532                         if (dmu_0_count == tmp) {
533                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
534                                         smu[(cap + 1) * num + j] =
535                                                         smu[i * num + j];
536
537                                 lmu[cap + 1] = lmu[i];
538                                 return;
539                         }
540
541                         /* copy polynom */
542                         for (j = 0; j <= lmu[i] >> 1; j++)
543                                 smu[(i + 1) * num + j] = smu[i * num + j];
544
545                         /* copy previous polynom order to the next */
546                         lmu[i + 1] = lmu[i];
547                 } else {
548                         ro = 0;
549                         largest = -1;
550                         /* find largest delta with dmu != 0 */
551                         for (j = 0; j < i; j++) {
552                                 if ((dmu[j]) && (delta[j] > largest)) {
553                                         largest = delta[j];
554                                         ro = j;
555                                 }
556                         }
557
558                         /* compute difference */
559                         diff = (mu[i] - mu[ro]);
560
561                         /* Compute degree of the new smu polynomial */
562                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
563                                 lmu[i + 1] = lmu[i];
564                         else
565                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
566
567                         /* Init smu[i+1] with 0 */
568                         for (k = 0; k < num; k++)
569                                 smu[(i + 1) * num + k] = 0;
570
571                         /* Compute smu[i+1] */
572                         for (k = 0; k <= lmu[ro] >> 1; k++) {
573                                 int16_t a, b, c;
574
575                                 if (!(smu[ro * num + k] && dmu[i]))
576                                         continue;
577                                 a = readw_relaxed(index_of + dmu[i]);
578                                 b = readw_relaxed(index_of + dmu[ro]);
579                                 c = readw_relaxed(index_of + smu[ro * num + k]);
580                                 tmp = a + (cw_len - b) + c;
581                                 a = readw_relaxed(alpha_to + tmp % cw_len);
582                                 smu[(i + 1) * num + (k + diff)] = a;
583                         }
584
585                         for (k = 0; k <= lmu[i] >> 1; k++)
586                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
587                 }
588
589                 /* End Computing Sigma (Mu+1) and L(mu) */
590                 /* In either case compute delta */
591                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
592
593                 /* Do not compute discrepancy for the last iteration */
594                 if (i >= cap)
595                         continue;
596
597                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
598                         tmp = 2 * (i - 1);
599                         if (k == 0) {
600                                 dmu[i + 1] = si[tmp + 3];
601                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
602                                 int16_t a, b, c;
603                                 a = readw_relaxed(index_of +
604                                                 smu[(i + 1) * num + k]);
605                                 b = si[2 * (i - 1) + 3 - k];
606                                 c = readw_relaxed(index_of + b);
607                                 tmp = a + c;
608                                 tmp %= cw_len;
609                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
610                                         dmu[i + 1];
611                         }
612                 }
613         }
614
615         return;
616 }
617
618 static int pmecc_err_location(struct mtd_info *mtd)
619 {
620         struct nand_chip *nand_chip = mtd->priv;
621         struct atmel_nand_host *host = nand_chip->priv;
622         unsigned long end_time;
623         const int cap = host->pmecc_corr_cap;
624         const int num = 2 * cap + 1;
625         int sector_size = host->pmecc_sector_size;
626         int err_nbr = 0;        /* number of error */
627         int roots_nbr;          /* number of roots */
628         int i;
629         uint32_t val;
630         int16_t *smu = host->pmecc_smu;
631
632         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
633
634         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
635                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
636                                       smu[(cap + 1) * num + i]);
637                 err_nbr++;
638         }
639
640         val = (err_nbr - 1) << 16;
641         if (sector_size == 1024)
642                 val |= 1;
643
644         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
645         pmerrloc_writel(host->pmerrloc_base, ELEN,
646                         sector_size * 8 + host->pmecc_degree * cap);
647
648         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
649         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
650                  & PMERRLOC_CALC_DONE)) {
651                 if (unlikely(time_after(jiffies, end_time))) {
652                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
653                         return -1;
654                 }
655                 cpu_relax();
656         }
657
658         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
659                 & PMERRLOC_ERR_NUM_MASK) >> 8;
660         /* Number of roots == degree of smu hence <= cap */
661         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
662                 return err_nbr - 1;
663
664         /* Number of roots does not match the degree of smu
665          * unable to correct error */
666         return -1;
667 }
668
669 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
670                 int sector_num, int extra_bytes, int err_nbr)
671 {
672         struct nand_chip *nand_chip = mtd->priv;
673         struct atmel_nand_host *host = nand_chip->priv;
674         int i = 0;
675         int byte_pos, bit_pos, sector_size, pos;
676         uint32_t tmp;
677         uint8_t err_byte;
678
679         sector_size = host->pmecc_sector_size;
680
681         while (err_nbr) {
682                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
683                 byte_pos = tmp / 8;
684                 bit_pos  = tmp % 8;
685
686                 if (byte_pos >= (sector_size + extra_bytes))
687                         BUG();  /* should never happen */
688
689                 if (byte_pos < sector_size) {
690                         err_byte = *(buf + byte_pos);
691                         *(buf + byte_pos) ^= (1 << bit_pos);
692
693                         pos = sector_num * host->pmecc_sector_size + byte_pos;
694                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
695                                 pos, bit_pos, err_byte, *(buf + byte_pos));
696                 } else {
697                         /* Bit flip in OOB area */
698                         tmp = sector_num * host->pmecc_bytes_per_sector
699                                         + (byte_pos - sector_size);
700                         err_byte = ecc[tmp];
701                         ecc[tmp] ^= (1 << bit_pos);
702
703                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
704                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
705                                 pos, bit_pos, err_byte, ecc[tmp]);
706                 }
707
708                 i++;
709                 err_nbr--;
710         }
711
712         return;
713 }
714
715 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
716         u8 *ecc)
717 {
718         struct nand_chip *nand_chip = mtd->priv;
719         struct atmel_nand_host *host = nand_chip->priv;
720         int i, err_nbr, eccbytes;
721         uint8_t *buf_pos;
722         int total_err = 0;
723
724         eccbytes = nand_chip->ecc.bytes;
725         for (i = 0; i < eccbytes; i++)
726                 if (ecc[i] != 0xff)
727                         goto normal_check;
728         /* Erased page, return OK */
729         return 0;
730
731 normal_check:
732         for (i = 0; i < host->pmecc_sector_number; i++) {
733                 err_nbr = 0;
734                 if (pmecc_stat & 0x1) {
735                         buf_pos = buf + i * host->pmecc_sector_size;
736
737                         pmecc_gen_syndrome(mtd, i);
738                         pmecc_substitute(mtd);
739                         pmecc_get_sigma(mtd);
740
741                         err_nbr = pmecc_err_location(mtd);
742                         if (err_nbr == -1) {
743                                 dev_err(host->dev, "PMECC: Too many errors\n");
744                                 mtd->ecc_stats.failed++;
745                                 return -EIO;
746                         } else {
747                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
748                                         host->pmecc_bytes_per_sector, err_nbr);
749                                 mtd->ecc_stats.corrected += err_nbr;
750                                 total_err += err_nbr;
751                         }
752                 }
753                 pmecc_stat >>= 1;
754         }
755
756         return total_err;
757 }
758
759 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
760         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
761 {
762         struct atmel_nand_host *host = chip->priv;
763         int eccsize = chip->ecc.size;
764         uint8_t *oob = chip->oob_poi;
765         uint32_t *eccpos = chip->ecc.layout->eccpos;
766         uint32_t stat;
767         unsigned long end_time;
768         int bitflips = 0;
769
770         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
771         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
772         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
773                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
774
775         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
776         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
777
778         chip->read_buf(mtd, buf, eccsize);
779         chip->read_buf(mtd, oob, mtd->oobsize);
780
781         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
782         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
783                 if (unlikely(time_after(jiffies, end_time))) {
784                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
785                         return -EIO;
786                 }
787                 cpu_relax();
788         }
789
790         stat = pmecc_readl_relaxed(host->ecc, ISR);
791         if (stat != 0) {
792                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
793                 if (bitflips < 0)
794                         /* uncorrectable errors */
795                         return 0;
796         }
797
798         return bitflips;
799 }
800
801 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
802                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
803 {
804         struct atmel_nand_host *host = chip->priv;
805         uint32_t *eccpos = chip->ecc.layout->eccpos;
806         int i, j;
807         unsigned long end_time;
808
809         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
810         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
811
812         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
813                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
814
815         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
816         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
817
818         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
819
820         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
821         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
822                 if (unlikely(time_after(jiffies, end_time))) {
823                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
824                         return -EIO;
825                 }
826                 cpu_relax();
827         }
828
829         for (i = 0; i < host->pmecc_sector_number; i++) {
830                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
831                         int pos;
832
833                         pos = i * host->pmecc_bytes_per_sector + j;
834                         chip->oob_poi[eccpos[pos]] =
835                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
836                 }
837         }
838         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
839
840         return 0;
841 }
842
843 static void atmel_pmecc_core_init(struct mtd_info *mtd)
844 {
845         struct nand_chip *nand_chip = mtd->priv;
846         struct atmel_nand_host *host = nand_chip->priv;
847         uint32_t val = 0;
848         struct nand_ecclayout *ecc_layout;
849
850         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
851         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
852
853         switch (host->pmecc_corr_cap) {
854         case 2:
855                 val = PMECC_CFG_BCH_ERR2;
856                 break;
857         case 4:
858                 val = PMECC_CFG_BCH_ERR4;
859                 break;
860         case 8:
861                 val = PMECC_CFG_BCH_ERR8;
862                 break;
863         case 12:
864                 val = PMECC_CFG_BCH_ERR12;
865                 break;
866         case 24:
867                 val = PMECC_CFG_BCH_ERR24;
868                 break;
869         }
870
871         if (host->pmecc_sector_size == 512)
872                 val |= PMECC_CFG_SECTOR512;
873         else if (host->pmecc_sector_size == 1024)
874                 val |= PMECC_CFG_SECTOR1024;
875
876         switch (host->pmecc_sector_number) {
877         case 1:
878                 val |= PMECC_CFG_PAGE_1SECTOR;
879                 break;
880         case 2:
881                 val |= PMECC_CFG_PAGE_2SECTORS;
882                 break;
883         case 4:
884                 val |= PMECC_CFG_PAGE_4SECTORS;
885                 break;
886         case 8:
887                 val |= PMECC_CFG_PAGE_8SECTORS;
888                 break;
889         }
890
891         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
892                 | PMECC_CFG_AUTO_DISABLE);
893         pmecc_writel(host->ecc, CFG, val);
894
895         ecc_layout = nand_chip->ecc.layout;
896         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
897         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
898         pmecc_writel(host->ecc, EADDR,
899                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
900         /* See datasheet about PMECC Clock Control Register */
901         pmecc_writel(host->ecc, CLK, 2);
902         pmecc_writel(host->ecc, IDR, 0xff);
903         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
904 }
905
906 /*
907  * Get ECC requirement in ONFI parameters, returns -1 if ONFI
908  * parameters is not supported.
909  * return 0 if success to get the ECC requirement.
910  */
911 static int get_onfi_ecc_param(struct nand_chip *chip,
912                 int *ecc_bits, int *sector_size)
913 {
914         *ecc_bits = *sector_size = 0;
915
916         if (chip->onfi_params.ecc_bits == 0xff)
917                 /* TODO: the sector_size and ecc_bits need to be find in
918                  * extended ecc parameter, currently we don't support it.
919                  */
920                 return -1;
921
922         *ecc_bits = chip->onfi_params.ecc_bits;
923
924         /* The default sector size (ecc codeword size) is 512 */
925         *sector_size = 512;
926
927         return 0;
928 }
929
930 /*
931  * Get ecc requirement from ONFI parameters ecc requirement.
932  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
933  * will set them according to ONFI ecc requirement. Otherwise, use the
934  * value in DTS file.
935  * return 0 if success. otherwise return error code.
936  */
937 static int pmecc_choose_ecc(struct atmel_nand_host *host,
938                 int *cap, int *sector_size)
939 {
940         /* Get ECC requirement from ONFI parameters */
941         *cap = *sector_size = 0;
942         if (host->nand_chip.onfi_version) {
943                 if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
944                         dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
945                                 *cap, *sector_size);
946                 else
947                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
948         } else {
949                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
950         }
951         if (*cap == 0 && *sector_size == 0) {
952                 *cap = 2;
953                 *sector_size = 512;
954         }
955
956         /* If dts file doesn't specify then use the one in ONFI parameters */
957         if (host->pmecc_corr_cap == 0) {
958                 /* use the most fitable ecc bits (the near bigger one ) */
959                 if (*cap <= 2)
960                         host->pmecc_corr_cap = 2;
961                 else if (*cap <= 4)
962                         host->pmecc_corr_cap = 4;
963                 else if (*cap < 8)
964                         host->pmecc_corr_cap = 8;
965                 else if (*cap < 12)
966                         host->pmecc_corr_cap = 12;
967                 else if (*cap < 24)
968                         host->pmecc_corr_cap = 24;
969                 else
970                         return -EINVAL;
971         }
972         if (host->pmecc_sector_size == 0) {
973                 /* use the most fitable sector size (the near smaller one ) */
974                 if (*sector_size >= 1024)
975                         host->pmecc_sector_size = 1024;
976                 else if (*sector_size >= 512)
977                         host->pmecc_sector_size = 512;
978                 else
979                         return -EINVAL;
980         }
981         return 0;
982 }
983
984 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
985                                          struct atmel_nand_host *host)
986 {
987         struct mtd_info *mtd = &host->mtd;
988         struct nand_chip *nand_chip = &host->nand_chip;
989         struct resource *regs, *regs_pmerr, *regs_rom;
990         int cap, sector_size, err_no;
991
992         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
993         if (err_no) {
994                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
995                 return err_no;
996         }
997
998         if (cap > host->pmecc_corr_cap ||
999                         sector_size != host->pmecc_sector_size)
1000                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1001
1002         cap = host->pmecc_corr_cap;
1003         sector_size = host->pmecc_sector_size;
1004         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1005                         host->pmecc_lookup_table_offset_512 :
1006                         host->pmecc_lookup_table_offset_1024;
1007
1008         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1009                  cap, sector_size);
1010
1011         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1012         if (!regs) {
1013                 dev_warn(host->dev,
1014                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1015                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1016                 return 0;
1017         }
1018
1019         host->ecc = ioremap(regs->start, resource_size(regs));
1020         if (host->ecc == NULL) {
1021                 dev_err(host->dev, "ioremap failed\n");
1022                 err_no = -EIO;
1023                 goto err_pmecc_ioremap;
1024         }
1025
1026         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1027         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1028         if (regs_pmerr && regs_rom) {
1029                 host->pmerrloc_base = ioremap(regs_pmerr->start,
1030                         resource_size(regs_pmerr));
1031                 host->pmecc_rom_base = ioremap(regs_rom->start,
1032                         resource_size(regs_rom));
1033         }
1034
1035         if (!host->pmerrloc_base || !host->pmecc_rom_base) {
1036                 dev_err(host->dev,
1037                         "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n");
1038                 err_no = -EIO;
1039                 goto err_pmloc_ioremap;
1040         }
1041
1042         /* ECC is calculated for the whole page (1 step) */
1043         nand_chip->ecc.size = mtd->writesize;
1044
1045         /* set ECC page size and oob layout */
1046         switch (mtd->writesize) {
1047         case 2048:
1048                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
1049                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1050                 host->pmecc_sector_number = mtd->writesize / sector_size;
1051                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1052                         cap, sector_size);
1053                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1054                 host->pmecc_index_of = host->pmecc_rom_base +
1055                         host->pmecc_lookup_table_offset;
1056
1057                 nand_chip->ecc.steps = 1;
1058                 nand_chip->ecc.strength = cap;
1059                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1060                                        host->pmecc_sector_number;
1061                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1062                         dev_err(host->dev, "No room for ECC bytes\n");
1063                         err_no = -EINVAL;
1064                         goto err_no_ecc_room;
1065                 }
1066                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1067                                         mtd->oobsize,
1068                                         nand_chip->ecc.bytes);
1069                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1070                 break;
1071         case 512:
1072         case 1024:
1073         case 4096:
1074                 /* TODO */
1075                 dev_warn(host->dev,
1076                         "Unsupported page size for PMECC, use Software ECC\n");
1077         default:
1078                 /* page size not handled by HW ECC */
1079                 /* switching back to soft ECC */
1080                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1081                 return 0;
1082         }
1083
1084         /* Allocate data for PMECC computation */
1085         err_no = pmecc_data_alloc(host);
1086         if (err_no) {
1087                 dev_err(host->dev,
1088                                 "Cannot allocate memory for PMECC computation!\n");
1089                 goto err_pmecc_data_alloc;
1090         }
1091
1092         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1093         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1094
1095         atmel_pmecc_core_init(mtd);
1096
1097         return 0;
1098
1099 err_pmecc_data_alloc:
1100 err_no_ecc_room:
1101 err_pmloc_ioremap:
1102         iounmap(host->ecc);
1103         if (host->pmerrloc_base)
1104                 iounmap(host->pmerrloc_base);
1105         if (host->pmecc_rom_base)
1106                 iounmap(host->pmecc_rom_base);
1107 err_pmecc_ioremap:
1108         return err_no;
1109 }
1110
1111 /*
1112  * Calculate HW ECC
1113  *
1114  * function called after a write
1115  *
1116  * mtd:        MTD block structure
1117  * dat:        raw data (unused)
1118  * ecc_code:   buffer for ECC
1119  */
1120 static int atmel_nand_calculate(struct mtd_info *mtd,
1121                 const u_char *dat, unsigned char *ecc_code)
1122 {
1123         struct nand_chip *nand_chip = mtd->priv;
1124         struct atmel_nand_host *host = nand_chip->priv;
1125         unsigned int ecc_value;
1126
1127         /* get the first 2 ECC bytes */
1128         ecc_value = ecc_readl(host->ecc, PR);
1129
1130         ecc_code[0] = ecc_value & 0xFF;
1131         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1132
1133         /* get the last 2 ECC bytes */
1134         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1135
1136         ecc_code[2] = ecc_value & 0xFF;
1137         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1138
1139         return 0;
1140 }
1141
1142 /*
1143  * HW ECC read page function
1144  *
1145  * mtd:        mtd info structure
1146  * chip:       nand chip info structure
1147  * buf:        buffer to store read data
1148  * oob_required:    caller expects OOB data read to chip->oob_poi
1149  */
1150 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1151                                 uint8_t *buf, int oob_required, int page)
1152 {
1153         int eccsize = chip->ecc.size;
1154         int eccbytes = chip->ecc.bytes;
1155         uint32_t *eccpos = chip->ecc.layout->eccpos;
1156         uint8_t *p = buf;
1157         uint8_t *oob = chip->oob_poi;
1158         uint8_t *ecc_pos;
1159         int stat;
1160         unsigned int max_bitflips = 0;
1161
1162         /*
1163          * Errata: ALE is incorrectly wired up to the ECC controller
1164          * on the AP7000, so it will include the address cycles in the
1165          * ECC calculation.
1166          *
1167          * Workaround: Reset the parity registers before reading the
1168          * actual data.
1169          */
1170         struct atmel_nand_host *host = chip->priv;
1171         if (host->board.need_reset_workaround)
1172                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1173
1174         /* read the page */
1175         chip->read_buf(mtd, p, eccsize);
1176
1177         /* move to ECC position if needed */
1178         if (eccpos[0] != 0) {
1179                 /* This only works on large pages
1180                  * because the ECC controller waits for
1181                  * NAND_CMD_RNDOUTSTART after the
1182                  * NAND_CMD_RNDOUT.
1183                  * anyway, for small pages, the eccpos[0] == 0
1184                  */
1185                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1186                                 mtd->writesize + eccpos[0], -1);
1187         }
1188
1189         /* the ECC controller needs to read the ECC just after the data */
1190         ecc_pos = oob + eccpos[0];
1191         chip->read_buf(mtd, ecc_pos, eccbytes);
1192
1193         /* check if there's an error */
1194         stat = chip->ecc.correct(mtd, p, oob, NULL);
1195
1196         if (stat < 0) {
1197                 mtd->ecc_stats.failed++;
1198         } else {
1199                 mtd->ecc_stats.corrected += stat;
1200                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1201         }
1202
1203         /* get back to oob start (end of page) */
1204         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1205
1206         /* read the oob */
1207         chip->read_buf(mtd, oob, mtd->oobsize);
1208
1209         return max_bitflips;
1210 }
1211
1212 /*
1213  * HW ECC Correction
1214  *
1215  * function called after a read
1216  *
1217  * mtd:        MTD block structure
1218  * dat:        raw data read from the chip
1219  * read_ecc:   ECC from the chip (unused)
1220  * isnull:     unused
1221  *
1222  * Detect and correct a 1 bit error for a page
1223  */
1224 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1225                 u_char *read_ecc, u_char *isnull)
1226 {
1227         struct nand_chip *nand_chip = mtd->priv;
1228         struct atmel_nand_host *host = nand_chip->priv;
1229         unsigned int ecc_status;
1230         unsigned int ecc_word, ecc_bit;
1231
1232         /* get the status from the Status Register */
1233         ecc_status = ecc_readl(host->ecc, SR);
1234
1235         /* if there's no error */
1236         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1237                 return 0;
1238
1239         /* get error bit offset (4 bits) */
1240         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1241         /* get word address (12 bits) */
1242         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1243         ecc_word >>= 4;
1244
1245         /* if there are multiple errors */
1246         if (ecc_status & ATMEL_ECC_MULERR) {
1247                 /* check if it is a freshly erased block
1248                  * (filled with 0xff) */
1249                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1250                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1251                         /* the block has just been erased, return OK */
1252                         return 0;
1253                 }
1254                 /* it doesn't seems to be a freshly
1255                  * erased block.
1256                  * We can't correct so many errors */
1257                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1258                                 " Unable to correct.\n");
1259                 return -EIO;
1260         }
1261
1262         /* if there's a single bit error : we can correct it */
1263         if (ecc_status & ATMEL_ECC_ECCERR) {
1264                 /* there's nothing much to do here.
1265                  * the bit error is on the ECC itself.
1266                  */
1267                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1268                                 " Nothing to correct\n");
1269                 return 0;
1270         }
1271
1272         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1273                         " (word offset in the page :"
1274                         " 0x%x bit offset : 0x%x)\n",
1275                         ecc_word, ecc_bit);
1276         /* correct the error */
1277         if (nand_chip->options & NAND_BUSWIDTH_16) {
1278                 /* 16 bits words */
1279                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1280         } else {
1281                 /* 8 bits words */
1282                 dat[ecc_word] ^= (1 << ecc_bit);
1283         }
1284         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1285         return 1;
1286 }
1287
1288 /*
1289  * Enable HW ECC : unused on most chips
1290  */
1291 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1292 {
1293         struct nand_chip *nand_chip = mtd->priv;
1294         struct atmel_nand_host *host = nand_chip->priv;
1295
1296         if (host->board.need_reset_workaround)
1297                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1298 }
1299
1300 #if defined(CONFIG_OF)
1301 static int atmel_of_init_port(struct atmel_nand_host *host,
1302                               struct device_node *np)
1303 {
1304         u32 val;
1305         u32 offset[2];
1306         int ecc_mode;
1307         struct atmel_nand_data *board = &host->board;
1308         enum of_gpio_flags flags;
1309
1310         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1311                 if (val >= 32) {
1312                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1313                         return -EINVAL;
1314                 }
1315                 board->ale = val;
1316         }
1317
1318         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1319                 if (val >= 32) {
1320                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1321                         return -EINVAL;
1322                 }
1323                 board->cle = val;
1324         }
1325
1326         ecc_mode = of_get_nand_ecc_mode(np);
1327
1328         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1329
1330         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1331
1332         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1333
1334         if (of_get_nand_bus_width(np) == 16)
1335                 board->bus_width_16 = 1;
1336
1337         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1338         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1339
1340         board->enable_pin = of_get_gpio(np, 1);
1341         board->det_pin = of_get_gpio(np, 2);
1342
1343         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1344
1345         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1346                 return 0;       /* Not using PMECC */
1347
1348         /* use PMECC, get correction capability, sector size and lookup
1349          * table offset.
1350          * If correction bits and sector size are not specified, then find
1351          * them from NAND ONFI parameters.
1352          */
1353         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1354                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1355                                 (val != 24)) {
1356                         dev_err(host->dev,
1357                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1358                                 val);
1359                         return -EINVAL;
1360                 }
1361                 host->pmecc_corr_cap = (u8)val;
1362         }
1363
1364         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1365                 if ((val != 512) && (val != 1024)) {
1366                         dev_err(host->dev,
1367                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1368                                 val);
1369                         return -EINVAL;
1370                 }
1371                 host->pmecc_sector_size = (u16)val;
1372         }
1373
1374         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1375                         offset, 2) != 0) {
1376                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1377                 return -EINVAL;
1378         }
1379         if (!offset[0] && !offset[1]) {
1380                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1381                 return -EINVAL;
1382         }
1383         host->pmecc_lookup_table_offset_512 = offset[0];
1384         host->pmecc_lookup_table_offset_1024 = offset[1];
1385
1386         return 0;
1387 }
1388 #else
1389 static int atmel_of_init_port(struct atmel_nand_host *host,
1390                               struct device_node *np)
1391 {
1392         return -EINVAL;
1393 }
1394 #endif
1395
1396 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1397                                          struct atmel_nand_host *host)
1398 {
1399         struct mtd_info *mtd = &host->mtd;
1400         struct nand_chip *nand_chip = &host->nand_chip;
1401         struct resource         *regs;
1402
1403         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1404         if (!regs) {
1405                 dev_err(host->dev,
1406                         "Can't get I/O resource regs, use software ECC\n");
1407                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1408                 return 0;
1409         }
1410
1411         host->ecc = ioremap(regs->start, resource_size(regs));
1412         if (host->ecc == NULL) {
1413                 dev_err(host->dev, "ioremap failed\n");
1414                 return -EIO;
1415         }
1416
1417         /* ECC is calculated for the whole page (1 step) */
1418         nand_chip->ecc.size = mtd->writesize;
1419
1420         /* set ECC page size and oob layout */
1421         switch (mtd->writesize) {
1422         case 512:
1423                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1424                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1425                 break;
1426         case 1024:
1427                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1428                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1429                 break;
1430         case 2048:
1431                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1432                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1433                 break;
1434         case 4096:
1435                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1436                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1437                 break;
1438         default:
1439                 /* page size not handled by HW ECC */
1440                 /* switching back to soft ECC */
1441                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1442                 return 0;
1443         }
1444
1445         /* set up for HW ECC */
1446         nand_chip->ecc.calculate = atmel_nand_calculate;
1447         nand_chip->ecc.correct = atmel_nand_correct;
1448         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1449         nand_chip->ecc.read_page = atmel_nand_read_page;
1450         nand_chip->ecc.bytes = 4;
1451         nand_chip->ecc.strength = 1;
1452
1453         return 0;
1454 }
1455
1456 /*
1457  * Probe for the NAND device.
1458  */
1459 static int __init atmel_nand_probe(struct platform_device *pdev)
1460 {
1461         struct atmel_nand_host *host;
1462         struct mtd_info *mtd;
1463         struct nand_chip *nand_chip;
1464         struct resource *mem;
1465         struct mtd_part_parser_data ppdata = {};
1466         int res;
1467         struct pinctrl *pinctrl;
1468
1469         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470         if (!mem) {
1471                 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
1472                 return -ENXIO;
1473         }
1474
1475         /* Allocate memory for the device structure (and zero it) */
1476         host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
1477         if (!host) {
1478                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1479                 return -ENOMEM;
1480         }
1481
1482         host->io_phys = (dma_addr_t)mem->start;
1483
1484         host->io_base = ioremap(mem->start, resource_size(mem));
1485         if (host->io_base == NULL) {
1486                 printk(KERN_ERR "atmel_nand: ioremap failed\n");
1487                 res = -EIO;
1488                 goto err_nand_ioremap;
1489         }
1490
1491         mtd = &host->mtd;
1492         nand_chip = &host->nand_chip;
1493         host->dev = &pdev->dev;
1494         if (pdev->dev.of_node) {
1495                 res = atmel_of_init_port(host, pdev->dev.of_node);
1496                 if (res)
1497                         goto err_ecc_ioremap;
1498         } else {
1499                 memcpy(&host->board, pdev->dev.platform_data,
1500                        sizeof(struct atmel_nand_data));
1501         }
1502
1503         nand_chip->priv = host;         /* link the private data structures */
1504         mtd->priv = nand_chip;
1505         mtd->owner = THIS_MODULE;
1506
1507         /* Set address of NAND IO lines */
1508         nand_chip->IO_ADDR_R = host->io_base;
1509         nand_chip->IO_ADDR_W = host->io_base;
1510         nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1511
1512         pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1513         if (IS_ERR(pinctrl)) {
1514                 dev_err(host->dev, "Failed to request pinctrl\n");
1515                 res = PTR_ERR(pinctrl);
1516                 goto err_ecc_ioremap;
1517         }
1518
1519         if (gpio_is_valid(host->board.rdy_pin)) {
1520                 res = gpio_request(host->board.rdy_pin, "nand_rdy");
1521                 if (res < 0) {
1522                         dev_err(&pdev->dev,
1523                                 "can't request rdy gpio %d\n",
1524                                 host->board.rdy_pin);
1525                         goto err_ecc_ioremap;
1526                 }
1527
1528                 res = gpio_direction_input(host->board.rdy_pin);
1529                 if (res < 0) {
1530                         dev_err(&pdev->dev,
1531                                 "can't request input direction rdy gpio %d\n",
1532                                 host->board.rdy_pin);
1533                         goto err_ecc_ioremap;
1534                 }
1535
1536                 nand_chip->dev_ready = atmel_nand_device_ready;
1537         }
1538
1539         if (gpio_is_valid(host->board.enable_pin)) {
1540                 res = gpio_request(host->board.enable_pin, "nand_enable");
1541                 if (res < 0) {
1542                         dev_err(&pdev->dev,
1543                                 "can't request enable gpio %d\n",
1544                                 host->board.enable_pin);
1545                         goto err_ecc_ioremap;
1546                 }
1547
1548                 res = gpio_direction_output(host->board.enable_pin, 1);
1549                 if (res < 0) {
1550                         dev_err(&pdev->dev,
1551                                 "can't request output direction enable gpio %d\n",
1552                                 host->board.enable_pin);
1553                         goto err_ecc_ioremap;
1554                 }
1555         }
1556
1557         nand_chip->ecc.mode = host->board.ecc_mode;
1558         nand_chip->chip_delay = 20;             /* 20us command delay time */
1559
1560         if (host->board.bus_width_16)   /* 16-bit bus width */
1561                 nand_chip->options |= NAND_BUSWIDTH_16;
1562
1563         nand_chip->read_buf = atmel_read_buf;
1564         nand_chip->write_buf = atmel_write_buf;
1565
1566         platform_set_drvdata(pdev, host);
1567         atmel_nand_enable(host);
1568
1569         if (gpio_is_valid(host->board.det_pin)) {
1570                 res = gpio_request(host->board.det_pin, "nand_det");
1571                 if (res < 0) {
1572                         dev_err(&pdev->dev,
1573                                 "can't request det gpio %d\n",
1574                                 host->board.det_pin);
1575                         goto err_no_card;
1576                 }
1577
1578                 res = gpio_direction_input(host->board.det_pin);
1579                 if (res < 0) {
1580                         dev_err(&pdev->dev,
1581                                 "can't request input direction det gpio %d\n",
1582                                 host->board.det_pin);
1583                         goto err_no_card;
1584                 }
1585
1586                 if (gpio_get_value(host->board.det_pin)) {
1587                         printk(KERN_INFO "No SmartMedia card inserted.\n");
1588                         res = -ENXIO;
1589                         goto err_no_card;
1590                 }
1591         }
1592
1593         if (host->board.on_flash_bbt || on_flash_bbt) {
1594                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
1595                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1596         }
1597
1598         if (!host->board.has_dma)
1599                 use_dma = 0;
1600
1601         if (use_dma) {
1602                 dma_cap_mask_t mask;
1603
1604                 dma_cap_zero(mask);
1605                 dma_cap_set(DMA_MEMCPY, mask);
1606                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
1607                 if (!host->dma_chan) {
1608                         dev_err(host->dev, "Failed to request DMA channel\n");
1609                         use_dma = 0;
1610                 }
1611         }
1612         if (use_dma)
1613                 dev_info(host->dev, "Using %s for DMA transfers.\n",
1614                                         dma_chan_name(host->dma_chan));
1615         else
1616                 dev_info(host->dev, "No DMA support for NAND access.\n");
1617
1618         /* first scan to find the device and get the page size */
1619         if (nand_scan_ident(mtd, 1, NULL)) {
1620                 res = -ENXIO;
1621                 goto err_scan_ident;
1622         }
1623
1624         if (nand_chip->ecc.mode == NAND_ECC_HW) {
1625                 if (host->has_pmecc)
1626                         res = atmel_pmecc_nand_init_params(pdev, host);
1627                 else
1628                         res = atmel_hw_nand_init_params(pdev, host);
1629
1630                 if (res != 0)
1631                         goto err_hw_ecc;
1632         }
1633
1634         /* second phase scan */
1635         if (nand_scan_tail(mtd)) {
1636                 res = -ENXIO;
1637                 goto err_scan_tail;
1638         }
1639
1640         mtd->name = "atmel_nand";
1641         ppdata.of_node = pdev->dev.of_node;
1642         res = mtd_device_parse_register(mtd, NULL, &ppdata,
1643                         host->board.parts, host->board.num_parts);
1644         if (!res)
1645                 return res;
1646
1647 err_scan_tail:
1648         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1649                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1650                 pmecc_data_free(host);
1651         }
1652         if (host->ecc)
1653                 iounmap(host->ecc);
1654         if (host->pmerrloc_base)
1655                 iounmap(host->pmerrloc_base);
1656         if (host->pmecc_rom_base)
1657                 iounmap(host->pmecc_rom_base);
1658 err_hw_ecc:
1659 err_scan_ident:
1660 err_no_card:
1661         atmel_nand_disable(host);
1662         if (host->dma_chan)
1663                 dma_release_channel(host->dma_chan);
1664 err_ecc_ioremap:
1665         iounmap(host->io_base);
1666 err_nand_ioremap:
1667         kfree(host);
1668         return res;
1669 }
1670
1671 /*
1672  * Remove a NAND device.
1673  */
1674 static int __exit atmel_nand_remove(struct platform_device *pdev)
1675 {
1676         struct atmel_nand_host *host = platform_get_drvdata(pdev);
1677         struct mtd_info *mtd = &host->mtd;
1678
1679         nand_release(mtd);
1680
1681         atmel_nand_disable(host);
1682
1683         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1684                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1685                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
1686                                 PMERRLOC_DISABLE);
1687                 pmecc_data_free(host);
1688         }
1689
1690         if (gpio_is_valid(host->board.det_pin))
1691                 gpio_free(host->board.det_pin);
1692
1693         if (gpio_is_valid(host->board.enable_pin))
1694                 gpio_free(host->board.enable_pin);
1695
1696         if (gpio_is_valid(host->board.rdy_pin))
1697                 gpio_free(host->board.rdy_pin);
1698
1699         if (host->ecc)
1700                 iounmap(host->ecc);
1701         if (host->pmecc_rom_base)
1702                 iounmap(host->pmecc_rom_base);
1703         if (host->pmerrloc_base)
1704                 iounmap(host->pmerrloc_base);
1705
1706         if (host->dma_chan)
1707                 dma_release_channel(host->dma_chan);
1708
1709         iounmap(host->io_base);
1710         kfree(host);
1711
1712         return 0;
1713 }
1714
1715 #if defined(CONFIG_OF)
1716 static const struct of_device_id atmel_nand_dt_ids[] = {
1717         { .compatible = "atmel,at91rm9200-nand" },
1718         { /* sentinel */ }
1719 };
1720
1721 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
1722 #endif
1723
1724 static struct platform_driver atmel_nand_driver = {
1725         .remove         = __exit_p(atmel_nand_remove),
1726         .driver         = {
1727                 .name   = "atmel_nand",
1728                 .owner  = THIS_MODULE,
1729                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
1730         },
1731 };
1732
1733 module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe);
1734
1735 MODULE_LICENSE("GPL");
1736 MODULE_AUTHOR("Rick Bronson");
1737 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
1738 MODULE_ALIAS("platform:atmel_nand");