]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/atmel_nand.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[karo-tx-linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the GNU General Public License version 2 as
23  * published by the Free Software Foundation.
24  *
25  */
26
27 #include <linux/dma-mapping.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_mtd.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39
40 #include <linux/dmaengine.h>
41 #include <linux/gpio.h>
42 #include <linux/io.h>
43 #include <linux/platform_data/atmel.h>
44
45 #include <mach/cpu.h>
46
47 static int use_dma = 1;
48 module_param(use_dma, int, 0);
49
50 static int on_flash_bbt = 0;
51 module_param(on_flash_bbt, int, 0);
52
53 /* Register access macros */
54 #define ecc_readl(add, reg)                             \
55         __raw_readl(add + ATMEL_ECC_##reg)
56 #define ecc_writel(add, reg, value)                     \
57         __raw_writel((value), add + ATMEL_ECC_##reg)
58
59 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
60
61 /* oob layout for large page size
62  * bad block info is on bytes 0 and 1
63  * the bytes have to be consecutives to avoid
64  * several NAND_CMD_RNDOUT during read
65  */
66 static struct nand_ecclayout atmel_oobinfo_large = {
67         .eccbytes = 4,
68         .eccpos = {60, 61, 62, 63},
69         .oobfree = {
70                 {2, 58}
71         },
72 };
73
74 /* oob layout for small page size
75  * bad block info is on bytes 4 and 5
76  * the bytes have to be consecutives to avoid
77  * several NAND_CMD_RNDOUT during read
78  */
79 static struct nand_ecclayout atmel_oobinfo_small = {
80         .eccbytes = 4,
81         .eccpos = {0, 1, 2, 3},
82         .oobfree = {
83                 {6, 10}
84         },
85 };
86
87 struct atmel_nand_host {
88         struct nand_chip        nand_chip;
89         struct mtd_info         mtd;
90         void __iomem            *io_base;
91         dma_addr_t              io_phys;
92         struct atmel_nand_data  board;
93         struct device           *dev;
94         void __iomem            *ecc;
95
96         struct completion       comp;
97         struct dma_chan         *dma_chan;
98
99         bool                    has_pmecc;
100         u8                      pmecc_corr_cap;
101         u16                     pmecc_sector_size;
102         u32                     pmecc_lookup_table_offset;
103
104         int                     pmecc_bytes_per_sector;
105         int                     pmecc_sector_number;
106         int                     pmecc_degree;   /* Degree of remainders */
107         int                     pmecc_cw_len;   /* Length of codeword */
108
109         void __iomem            *pmerrloc_base;
110         void __iomem            *pmecc_rom_base;
111
112         /* lookup table for alpha_to and index_of */
113         void __iomem            *pmecc_alpha_to;
114         void __iomem            *pmecc_index_of;
115
116         /* data for pmecc computation */
117         int16_t                 *pmecc_partial_syn;
118         int16_t                 *pmecc_si;
119         int16_t                 *pmecc_smu;     /* Sigma table */
120         int16_t                 *pmecc_lmu;     /* polynomal order */
121         int                     *pmecc_mu;
122         int                     *pmecc_dmu;
123         int                     *pmecc_delta;
124 };
125
126 static struct nand_ecclayout atmel_pmecc_oobinfo;
127
128 static int cpu_has_dma(void)
129 {
130         return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
131 }
132
133 /*
134  * Enable NAND.
135  */
136 static void atmel_nand_enable(struct atmel_nand_host *host)
137 {
138         if (gpio_is_valid(host->board.enable_pin))
139                 gpio_set_value(host->board.enable_pin, 0);
140 }
141
142 /*
143  * Disable NAND.
144  */
145 static void atmel_nand_disable(struct atmel_nand_host *host)
146 {
147         if (gpio_is_valid(host->board.enable_pin))
148                 gpio_set_value(host->board.enable_pin, 1);
149 }
150
151 /*
152  * Hardware specific access to control-lines
153  */
154 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
155 {
156         struct nand_chip *nand_chip = mtd->priv;
157         struct atmel_nand_host *host = nand_chip->priv;
158
159         if (ctrl & NAND_CTRL_CHANGE) {
160                 if (ctrl & NAND_NCE)
161                         atmel_nand_enable(host);
162                 else
163                         atmel_nand_disable(host);
164         }
165         if (cmd == NAND_CMD_NONE)
166                 return;
167
168         if (ctrl & NAND_CLE)
169                 writeb(cmd, host->io_base + (1 << host->board.cle));
170         else
171                 writeb(cmd, host->io_base + (1 << host->board.ale));
172 }
173
174 /*
175  * Read the Device Ready pin.
176  */
177 static int atmel_nand_device_ready(struct mtd_info *mtd)
178 {
179         struct nand_chip *nand_chip = mtd->priv;
180         struct atmel_nand_host *host = nand_chip->priv;
181
182         return gpio_get_value(host->board.rdy_pin) ^
183                 !!host->board.rdy_pin_active_low;
184 }
185
186 /*
187  * Minimal-overhead PIO for data access.
188  */
189 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
190 {
191         struct nand_chip        *nand_chip = mtd->priv;
192
193         __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
194 }
195
196 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
197 {
198         struct nand_chip        *nand_chip = mtd->priv;
199
200         __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
201 }
202
203 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
204 {
205         struct nand_chip        *nand_chip = mtd->priv;
206
207         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
208 }
209
210 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
211 {
212         struct nand_chip        *nand_chip = mtd->priv;
213
214         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
215 }
216
217 static void dma_complete_func(void *completion)
218 {
219         complete(completion);
220 }
221
222 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
223                                int is_read)
224 {
225         struct dma_device *dma_dev;
226         enum dma_ctrl_flags flags;
227         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
228         struct dma_async_tx_descriptor *tx = NULL;
229         dma_cookie_t cookie;
230         struct nand_chip *chip = mtd->priv;
231         struct atmel_nand_host *host = chip->priv;
232         void *p = buf;
233         int err = -EIO;
234         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
235
236         if (buf >= high_memory)
237                 goto err_buf;
238
239         dma_dev = host->dma_chan->device;
240
241         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
242                 DMA_COMPL_SKIP_DEST_UNMAP;
243
244         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
245         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
246                 dev_err(host->dev, "Failed to dma_map_single\n");
247                 goto err_buf;
248         }
249
250         if (is_read) {
251                 dma_src_addr = host->io_phys;
252                 dma_dst_addr = phys_addr;
253         } else {
254                 dma_src_addr = phys_addr;
255                 dma_dst_addr = host->io_phys;
256         }
257
258         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
259                                              dma_src_addr, len, flags);
260         if (!tx) {
261                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
262                 goto err_dma;
263         }
264
265         init_completion(&host->comp);
266         tx->callback = dma_complete_func;
267         tx->callback_param = &host->comp;
268
269         cookie = tx->tx_submit(tx);
270         if (dma_submit_error(cookie)) {
271                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
272                 goto err_dma;
273         }
274
275         dma_async_issue_pending(host->dma_chan);
276         wait_for_completion(&host->comp);
277
278         err = 0;
279
280 err_dma:
281         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
282 err_buf:
283         if (err != 0)
284                 dev_warn(host->dev, "Fall back to CPU I/O\n");
285         return err;
286 }
287
288 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
289 {
290         struct nand_chip *chip = mtd->priv;
291         struct atmel_nand_host *host = chip->priv;
292
293         if (use_dma && len > mtd->oobsize)
294                 /* only use DMA for bigger than oob size: better performances */
295                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
296                         return;
297
298         if (host->board.bus_width_16)
299                 atmel_read_buf16(mtd, buf, len);
300         else
301                 atmel_read_buf8(mtd, buf, len);
302 }
303
304 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
305 {
306         struct nand_chip *chip = mtd->priv;
307         struct atmel_nand_host *host = chip->priv;
308
309         if (use_dma && len > mtd->oobsize)
310                 /* only use DMA for bigger than oob size: better performances */
311                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
312                         return;
313
314         if (host->board.bus_width_16)
315                 atmel_write_buf16(mtd, buf, len);
316         else
317                 atmel_write_buf8(mtd, buf, len);
318 }
319
320 /*
321  * Return number of ecc bytes per sector according to sector size and
322  * correction capability
323  *
324  * Following table shows what at91 PMECC supported:
325  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
326  * =====================        ================        =================
327  *                2-bits                 4-bytes                  4-bytes
328  *                4-bits                 7-bytes                  7-bytes
329  *                8-bits                13-bytes                 14-bytes
330  *               12-bits                20-bytes                 21-bytes
331  *               24-bits                39-bytes                 42-bytes
332  */
333 static int __devinit pmecc_get_ecc_bytes(int cap, int sector_size)
334 {
335         int m = 12 + sector_size / 512;
336         return (m * cap + 7) / 8;
337 }
338
339 static void __devinit pmecc_config_ecc_layout(struct nand_ecclayout *layout,
340         int oobsize, int ecc_len)
341 {
342         int i;
343
344         layout->eccbytes = ecc_len;
345
346         /* ECC will occupy the last ecc_len bytes continuously */
347         for (i = 0; i < ecc_len; i++)
348                 layout->eccpos[i] = oobsize - ecc_len + i;
349
350         layout->oobfree[0].offset = 2;
351         layout->oobfree[0].length =
352                 oobsize - ecc_len - layout->oobfree[0].offset;
353 }
354
355 static void __devinit __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
356 {
357         int table_size;
358
359         table_size = host->pmecc_sector_size == 512 ?
360                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
361
362         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
363                         table_size * sizeof(int16_t);
364 }
365
366 static void pmecc_data_free(struct atmel_nand_host *host)
367 {
368         kfree(host->pmecc_partial_syn);
369         kfree(host->pmecc_si);
370         kfree(host->pmecc_lmu);
371         kfree(host->pmecc_smu);
372         kfree(host->pmecc_mu);
373         kfree(host->pmecc_dmu);
374         kfree(host->pmecc_delta);
375 }
376
377 static int __devinit pmecc_data_alloc(struct atmel_nand_host *host)
378 {
379         const int cap = host->pmecc_corr_cap;
380
381         host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
382                                         GFP_KERNEL);
383         host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
384         host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
385         host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
386                                         GFP_KERNEL);
387         host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
388         host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
389         host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
390
391         if (host->pmecc_partial_syn &&
392                         host->pmecc_si &&
393                         host->pmecc_lmu &&
394                         host->pmecc_smu &&
395                         host->pmecc_mu &&
396                         host->pmecc_dmu &&
397                         host->pmecc_delta)
398                 return 0;
399
400         /* error happened */
401         pmecc_data_free(host);
402         return -ENOMEM;
403 }
404
405 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
406 {
407         struct nand_chip *nand_chip = mtd->priv;
408         struct atmel_nand_host *host = nand_chip->priv;
409         int i;
410         uint32_t value;
411
412         /* Fill odd syndromes */
413         for (i = 0; i < host->pmecc_corr_cap; i++) {
414                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
415                 if (i & 1)
416                         value >>= 16;
417                 value &= 0xffff;
418                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
419         }
420 }
421
422 static void pmecc_substitute(struct mtd_info *mtd)
423 {
424         struct nand_chip *nand_chip = mtd->priv;
425         struct atmel_nand_host *host = nand_chip->priv;
426         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
427         int16_t __iomem *index_of = host->pmecc_index_of;
428         int16_t *partial_syn = host->pmecc_partial_syn;
429         const int cap = host->pmecc_corr_cap;
430         int16_t *si;
431         int i, j;
432
433         /* si[] is a table that holds the current syndrome value,
434          * an element of that table belongs to the field
435          */
436         si = host->pmecc_si;
437
438         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
439
440         /* Computation 2t syndromes based on S(x) */
441         /* Odd syndromes */
442         for (i = 1; i < 2 * cap; i += 2) {
443                 for (j = 0; j < host->pmecc_degree; j++) {
444                         if (partial_syn[i] & ((unsigned short)0x1 << j))
445                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
446                 }
447         }
448         /* Even syndrome = (Odd syndrome) ** 2 */
449         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
450                 if (si[j] == 0) {
451                         si[i] = 0;
452                 } else {
453                         int16_t tmp;
454
455                         tmp = readw_relaxed(index_of + si[j]);
456                         tmp = (tmp * 2) % host->pmecc_cw_len;
457                         si[i] = readw_relaxed(alpha_to + tmp);
458                 }
459         }
460
461         return;
462 }
463
464 static void pmecc_get_sigma(struct mtd_info *mtd)
465 {
466         struct nand_chip *nand_chip = mtd->priv;
467         struct atmel_nand_host *host = nand_chip->priv;
468
469         int16_t *lmu = host->pmecc_lmu;
470         int16_t *si = host->pmecc_si;
471         int *mu = host->pmecc_mu;
472         int *dmu = host->pmecc_dmu;     /* Discrepancy */
473         int *delta = host->pmecc_delta; /* Delta order */
474         int cw_len = host->pmecc_cw_len;
475         const int16_t cap = host->pmecc_corr_cap;
476         const int num = 2 * cap + 1;
477         int16_t __iomem *index_of = host->pmecc_index_of;
478         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
479         int i, j, k;
480         uint32_t dmu_0_count, tmp;
481         int16_t *smu = host->pmecc_smu;
482
483         /* index of largest delta */
484         int ro;
485         int largest;
486         int diff;
487
488         dmu_0_count = 0;
489
490         /* First Row */
491
492         /* Mu */
493         mu[0] = -1;
494
495         memset(smu, 0, sizeof(int16_t) * num);
496         smu[0] = 1;
497
498         /* discrepancy set to 1 */
499         dmu[0] = 1;
500         /* polynom order set to 0 */
501         lmu[0] = 0;
502         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
503
504         /* Second Row */
505
506         /* Mu */
507         mu[1] = 0;
508         /* Sigma(x) set to 1 */
509         memset(&smu[num], 0, sizeof(int16_t) * num);
510         smu[num] = 1;
511
512         /* discrepancy set to S1 */
513         dmu[1] = si[1];
514
515         /* polynom order set to 0 */
516         lmu[1] = 0;
517
518         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
519
520         /* Init the Sigma(x) last row */
521         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
522
523         for (i = 1; i <= cap; i++) {
524                 mu[i + 1] = i << 1;
525                 /* Begin Computing Sigma (Mu+1) and L(mu) */
526                 /* check if discrepancy is set to 0 */
527                 if (dmu[i] == 0) {
528                         dmu_0_count++;
529
530                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
531                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
532                                 tmp += 2;
533                         else
534                                 tmp += 1;
535
536                         if (dmu_0_count == tmp) {
537                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
538                                         smu[(cap + 1) * num + j] =
539                                                         smu[i * num + j];
540
541                                 lmu[cap + 1] = lmu[i];
542                                 return;
543                         }
544
545                         /* copy polynom */
546                         for (j = 0; j <= lmu[i] >> 1; j++)
547                                 smu[(i + 1) * num + j] = smu[i * num + j];
548
549                         /* copy previous polynom order to the next */
550                         lmu[i + 1] = lmu[i];
551                 } else {
552                         ro = 0;
553                         largest = -1;
554                         /* find largest delta with dmu != 0 */
555                         for (j = 0; j < i; j++) {
556                                 if ((dmu[j]) && (delta[j] > largest)) {
557                                         largest = delta[j];
558                                         ro = j;
559                                 }
560                         }
561
562                         /* compute difference */
563                         diff = (mu[i] - mu[ro]);
564
565                         /* Compute degree of the new smu polynomial */
566                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
567                                 lmu[i + 1] = lmu[i];
568                         else
569                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
570
571                         /* Init smu[i+1] with 0 */
572                         for (k = 0; k < num; k++)
573                                 smu[(i + 1) * num + k] = 0;
574
575                         /* Compute smu[i+1] */
576                         for (k = 0; k <= lmu[ro] >> 1; k++) {
577                                 int16_t a, b, c;
578
579                                 if (!(smu[ro * num + k] && dmu[i]))
580                                         continue;
581                                 a = readw_relaxed(index_of + dmu[i]);
582                                 b = readw_relaxed(index_of + dmu[ro]);
583                                 c = readw_relaxed(index_of + smu[ro * num + k]);
584                                 tmp = a + (cw_len - b) + c;
585                                 a = readw_relaxed(alpha_to + tmp % cw_len);
586                                 smu[(i + 1) * num + (k + diff)] = a;
587                         }
588
589                         for (k = 0; k <= lmu[i] >> 1; k++)
590                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
591                 }
592
593                 /* End Computing Sigma (Mu+1) and L(mu) */
594                 /* In either case compute delta */
595                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
596
597                 /* Do not compute discrepancy for the last iteration */
598                 if (i >= cap)
599                         continue;
600
601                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
602                         tmp = 2 * (i - 1);
603                         if (k == 0) {
604                                 dmu[i + 1] = si[tmp + 3];
605                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
606                                 int16_t a, b, c;
607                                 a = readw_relaxed(index_of +
608                                                 smu[(i + 1) * num + k]);
609                                 b = si[2 * (i - 1) + 3 - k];
610                                 c = readw_relaxed(index_of + b);
611                                 tmp = a + c;
612                                 tmp %= cw_len;
613                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
614                                         dmu[i + 1];
615                         }
616                 }
617         }
618
619         return;
620 }
621
622 static int pmecc_err_location(struct mtd_info *mtd)
623 {
624         struct nand_chip *nand_chip = mtd->priv;
625         struct atmel_nand_host *host = nand_chip->priv;
626         unsigned long end_time;
627         const int cap = host->pmecc_corr_cap;
628         const int num = 2 * cap + 1;
629         int sector_size = host->pmecc_sector_size;
630         int err_nbr = 0;        /* number of error */
631         int roots_nbr;          /* number of roots */
632         int i;
633         uint32_t val;
634         int16_t *smu = host->pmecc_smu;
635
636         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
637
638         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
639                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
640                                       smu[(cap + 1) * num + i]);
641                 err_nbr++;
642         }
643
644         val = (err_nbr - 1) << 16;
645         if (sector_size == 1024)
646                 val |= 1;
647
648         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
649         pmerrloc_writel(host->pmerrloc_base, ELEN,
650                         sector_size * 8 + host->pmecc_degree * cap);
651
652         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
653         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
654                  & PMERRLOC_CALC_DONE)) {
655                 if (unlikely(time_after(jiffies, end_time))) {
656                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
657                         return -1;
658                 }
659                 cpu_relax();
660         }
661
662         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
663                 & PMERRLOC_ERR_NUM_MASK) >> 8;
664         /* Number of roots == degree of smu hence <= cap */
665         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
666                 return err_nbr - 1;
667
668         /* Number of roots does not match the degree of smu
669          * unable to correct error */
670         return -1;
671 }
672
673 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
674                 int sector_num, int extra_bytes, int err_nbr)
675 {
676         struct nand_chip *nand_chip = mtd->priv;
677         struct atmel_nand_host *host = nand_chip->priv;
678         int i = 0;
679         int byte_pos, bit_pos, sector_size, pos;
680         uint32_t tmp;
681         uint8_t err_byte;
682
683         sector_size = host->pmecc_sector_size;
684
685         while (err_nbr) {
686                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
687                 byte_pos = tmp / 8;
688                 bit_pos  = tmp % 8;
689
690                 if (byte_pos >= (sector_size + extra_bytes))
691                         BUG();  /* should never happen */
692
693                 if (byte_pos < sector_size) {
694                         err_byte = *(buf + byte_pos);
695                         *(buf + byte_pos) ^= (1 << bit_pos);
696
697                         pos = sector_num * host->pmecc_sector_size + byte_pos;
698                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
699                                 pos, bit_pos, err_byte, *(buf + byte_pos));
700                 } else {
701                         /* Bit flip in OOB area */
702                         tmp = sector_num * host->pmecc_bytes_per_sector
703                                         + (byte_pos - sector_size);
704                         err_byte = ecc[tmp];
705                         ecc[tmp] ^= (1 << bit_pos);
706
707                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
708                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
709                                 pos, bit_pos, err_byte, ecc[tmp]);
710                 }
711
712                 i++;
713                 err_nbr--;
714         }
715
716         return;
717 }
718
719 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
720         u8 *ecc)
721 {
722         struct nand_chip *nand_chip = mtd->priv;
723         struct atmel_nand_host *host = nand_chip->priv;
724         int i, err_nbr, eccbytes;
725         uint8_t *buf_pos;
726
727         eccbytes = nand_chip->ecc.bytes;
728         for (i = 0; i < eccbytes; i++)
729                 if (ecc[i] != 0xff)
730                         goto normal_check;
731         /* Erased page, return OK */
732         return 0;
733
734 normal_check:
735         for (i = 0; i < host->pmecc_sector_number; i++) {
736                 err_nbr = 0;
737                 if (pmecc_stat & 0x1) {
738                         buf_pos = buf + i * host->pmecc_sector_size;
739
740                         pmecc_gen_syndrome(mtd, i);
741                         pmecc_substitute(mtd);
742                         pmecc_get_sigma(mtd);
743
744                         err_nbr = pmecc_err_location(mtd);
745                         if (err_nbr == -1) {
746                                 dev_err(host->dev, "PMECC: Too many errors\n");
747                                 mtd->ecc_stats.failed++;
748                                 return -EIO;
749                         } else {
750                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
751                                         host->pmecc_bytes_per_sector, err_nbr);
752                                 mtd->ecc_stats.corrected += err_nbr;
753                         }
754                 }
755                 pmecc_stat >>= 1;
756         }
757
758         return 0;
759 }
760
761 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
762         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
763 {
764         struct atmel_nand_host *host = chip->priv;
765         int eccsize = chip->ecc.size;
766         uint8_t *oob = chip->oob_poi;
767         uint32_t *eccpos = chip->ecc.layout->eccpos;
768         uint32_t stat;
769         unsigned long end_time;
770
771         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
772         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
773         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
774                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
775
776         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
777         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
778
779         chip->read_buf(mtd, buf, eccsize);
780         chip->read_buf(mtd, oob, mtd->oobsize);
781
782         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
783         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
784                 if (unlikely(time_after(jiffies, end_time))) {
785                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
786                         return -EIO;
787                 }
788                 cpu_relax();
789         }
790
791         stat = pmecc_readl_relaxed(host->ecc, ISR);
792         if (stat != 0)
793                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
794                         return -EIO;
795
796         return 0;
797 }
798
799 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
800                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
801 {
802         struct atmel_nand_host *host = chip->priv;
803         uint32_t *eccpos = chip->ecc.layout->eccpos;
804         int i, j;
805         unsigned long end_time;
806
807         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
808         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
809
810         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
811                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
812
813         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
814         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
815
816         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
817
818         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
819         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
820                 if (unlikely(time_after(jiffies, end_time))) {
821                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
822                         return -EIO;
823                 }
824                 cpu_relax();
825         }
826
827         for (i = 0; i < host->pmecc_sector_number; i++) {
828                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
829                         int pos;
830
831                         pos = i * host->pmecc_bytes_per_sector + j;
832                         chip->oob_poi[eccpos[pos]] =
833                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
834                 }
835         }
836         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
837
838         return 0;
839 }
840
841 static void atmel_pmecc_core_init(struct mtd_info *mtd)
842 {
843         struct nand_chip *nand_chip = mtd->priv;
844         struct atmel_nand_host *host = nand_chip->priv;
845         uint32_t val = 0;
846         struct nand_ecclayout *ecc_layout;
847
848         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
849         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
850
851         switch (host->pmecc_corr_cap) {
852         case 2:
853                 val = PMECC_CFG_BCH_ERR2;
854                 break;
855         case 4:
856                 val = PMECC_CFG_BCH_ERR4;
857                 break;
858         case 8:
859                 val = PMECC_CFG_BCH_ERR8;
860                 break;
861         case 12:
862                 val = PMECC_CFG_BCH_ERR12;
863                 break;
864         case 24:
865                 val = PMECC_CFG_BCH_ERR24;
866                 break;
867         }
868
869         if (host->pmecc_sector_size == 512)
870                 val |= PMECC_CFG_SECTOR512;
871         else if (host->pmecc_sector_size == 1024)
872                 val |= PMECC_CFG_SECTOR1024;
873
874         switch (host->pmecc_sector_number) {
875         case 1:
876                 val |= PMECC_CFG_PAGE_1SECTOR;
877                 break;
878         case 2:
879                 val |= PMECC_CFG_PAGE_2SECTORS;
880                 break;
881         case 4:
882                 val |= PMECC_CFG_PAGE_4SECTORS;
883                 break;
884         case 8:
885                 val |= PMECC_CFG_PAGE_8SECTORS;
886                 break;
887         }
888
889         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
890                 | PMECC_CFG_AUTO_DISABLE);
891         pmecc_writel(host->ecc, CFG, val);
892
893         ecc_layout = nand_chip->ecc.layout;
894         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
895         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
896         pmecc_writel(host->ecc, EADDR,
897                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
898         /* See datasheet about PMECC Clock Control Register */
899         pmecc_writel(host->ecc, CLK, 2);
900         pmecc_writel(host->ecc, IDR, 0xff);
901         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
902 }
903
904 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
905                                          struct atmel_nand_host *host)
906 {
907         struct mtd_info *mtd = &host->mtd;
908         struct nand_chip *nand_chip = &host->nand_chip;
909         struct resource *regs, *regs_pmerr, *regs_rom;
910         int cap, sector_size, err_no;
911
912         cap = host->pmecc_corr_cap;
913         sector_size = host->pmecc_sector_size;
914         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
915                  cap, sector_size);
916
917         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
918         if (!regs) {
919                 dev_warn(host->dev,
920                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
921                 nand_chip->ecc.mode = NAND_ECC_SOFT;
922                 return 0;
923         }
924
925         host->ecc = ioremap(regs->start, resource_size(regs));
926         if (host->ecc == NULL) {
927                 dev_err(host->dev, "ioremap failed\n");
928                 err_no = -EIO;
929                 goto err_pmecc_ioremap;
930         }
931
932         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
933         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
934         if (regs_pmerr && regs_rom) {
935                 host->pmerrloc_base = ioremap(regs_pmerr->start,
936                         resource_size(regs_pmerr));
937                 host->pmecc_rom_base = ioremap(regs_rom->start,
938                         resource_size(regs_rom));
939         }
940
941         if (!host->pmerrloc_base || !host->pmecc_rom_base) {
942                 dev_err(host->dev,
943                         "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n");
944                 err_no = -EIO;
945                 goto err_pmloc_ioremap;
946         }
947
948         /* ECC is calculated for the whole page (1 step) */
949         nand_chip->ecc.size = mtd->writesize;
950
951         /* set ECC page size and oob layout */
952         switch (mtd->writesize) {
953         case 2048:
954                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
955                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
956                 host->pmecc_sector_number = mtd->writesize / sector_size;
957                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
958                         cap, sector_size);
959                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
960                 host->pmecc_index_of = host->pmecc_rom_base +
961                         host->pmecc_lookup_table_offset;
962
963                 nand_chip->ecc.steps = 1;
964                 nand_chip->ecc.strength = cap;
965                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
966                                        host->pmecc_sector_number;
967                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
968                         dev_err(host->dev, "No room for ECC bytes\n");
969                         err_no = -EINVAL;
970                         goto err_no_ecc_room;
971                 }
972                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
973                                         mtd->oobsize,
974                                         nand_chip->ecc.bytes);
975                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
976                 break;
977         case 512:
978         case 1024:
979         case 4096:
980                 /* TODO */
981                 dev_warn(host->dev,
982                         "Unsupported page size for PMECC, use Software ECC\n");
983         default:
984                 /* page size not handled by HW ECC */
985                 /* switching back to soft ECC */
986                 nand_chip->ecc.mode = NAND_ECC_SOFT;
987                 return 0;
988         }
989
990         /* Allocate data for PMECC computation */
991         err_no = pmecc_data_alloc(host);
992         if (err_no) {
993                 dev_err(host->dev,
994                                 "Cannot allocate memory for PMECC computation!\n");
995                 goto err_pmecc_data_alloc;
996         }
997
998         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
999         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1000
1001         atmel_pmecc_core_init(mtd);
1002
1003         return 0;
1004
1005 err_pmecc_data_alloc:
1006 err_no_ecc_room:
1007 err_pmloc_ioremap:
1008         iounmap(host->ecc);
1009         if (host->pmerrloc_base)
1010                 iounmap(host->pmerrloc_base);
1011         if (host->pmecc_rom_base)
1012                 iounmap(host->pmecc_rom_base);
1013 err_pmecc_ioremap:
1014         return err_no;
1015 }
1016
1017 /*
1018  * Calculate HW ECC
1019  *
1020  * function called after a write
1021  *
1022  * mtd:        MTD block structure
1023  * dat:        raw data (unused)
1024  * ecc_code:   buffer for ECC
1025  */
1026 static int atmel_nand_calculate(struct mtd_info *mtd,
1027                 const u_char *dat, unsigned char *ecc_code)
1028 {
1029         struct nand_chip *nand_chip = mtd->priv;
1030         struct atmel_nand_host *host = nand_chip->priv;
1031         unsigned int ecc_value;
1032
1033         /* get the first 2 ECC bytes */
1034         ecc_value = ecc_readl(host->ecc, PR);
1035
1036         ecc_code[0] = ecc_value & 0xFF;
1037         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1038
1039         /* get the last 2 ECC bytes */
1040         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1041
1042         ecc_code[2] = ecc_value & 0xFF;
1043         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1044
1045         return 0;
1046 }
1047
1048 /*
1049  * HW ECC read page function
1050  *
1051  * mtd:        mtd info structure
1052  * chip:       nand chip info structure
1053  * buf:        buffer to store read data
1054  * oob_required:    caller expects OOB data read to chip->oob_poi
1055  */
1056 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1057                                 uint8_t *buf, int oob_required, int page)
1058 {
1059         int eccsize = chip->ecc.size;
1060         int eccbytes = chip->ecc.bytes;
1061         uint32_t *eccpos = chip->ecc.layout->eccpos;
1062         uint8_t *p = buf;
1063         uint8_t *oob = chip->oob_poi;
1064         uint8_t *ecc_pos;
1065         int stat;
1066         unsigned int max_bitflips = 0;
1067
1068         /*
1069          * Errata: ALE is incorrectly wired up to the ECC controller
1070          * on the AP7000, so it will include the address cycles in the
1071          * ECC calculation.
1072          *
1073          * Workaround: Reset the parity registers before reading the
1074          * actual data.
1075          */
1076         if (cpu_is_at32ap7000()) {
1077                 struct atmel_nand_host *host = chip->priv;
1078                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1079         }
1080
1081         /* read the page */
1082         chip->read_buf(mtd, p, eccsize);
1083
1084         /* move to ECC position if needed */
1085         if (eccpos[0] != 0) {
1086                 /* This only works on large pages
1087                  * because the ECC controller waits for
1088                  * NAND_CMD_RNDOUTSTART after the
1089                  * NAND_CMD_RNDOUT.
1090                  * anyway, for small pages, the eccpos[0] == 0
1091                  */
1092                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1093                                 mtd->writesize + eccpos[0], -1);
1094         }
1095
1096         /* the ECC controller needs to read the ECC just after the data */
1097         ecc_pos = oob + eccpos[0];
1098         chip->read_buf(mtd, ecc_pos, eccbytes);
1099
1100         /* check if there's an error */
1101         stat = chip->ecc.correct(mtd, p, oob, NULL);
1102
1103         if (stat < 0) {
1104                 mtd->ecc_stats.failed++;
1105         } else {
1106                 mtd->ecc_stats.corrected += stat;
1107                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1108         }
1109
1110         /* get back to oob start (end of page) */
1111         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1112
1113         /* read the oob */
1114         chip->read_buf(mtd, oob, mtd->oobsize);
1115
1116         return max_bitflips;
1117 }
1118
1119 /*
1120  * HW ECC Correction
1121  *
1122  * function called after a read
1123  *
1124  * mtd:        MTD block structure
1125  * dat:        raw data read from the chip
1126  * read_ecc:   ECC from the chip (unused)
1127  * isnull:     unused
1128  *
1129  * Detect and correct a 1 bit error for a page
1130  */
1131 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1132                 u_char *read_ecc, u_char *isnull)
1133 {
1134         struct nand_chip *nand_chip = mtd->priv;
1135         struct atmel_nand_host *host = nand_chip->priv;
1136         unsigned int ecc_status;
1137         unsigned int ecc_word, ecc_bit;
1138
1139         /* get the status from the Status Register */
1140         ecc_status = ecc_readl(host->ecc, SR);
1141
1142         /* if there's no error */
1143         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1144                 return 0;
1145
1146         /* get error bit offset (4 bits) */
1147         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1148         /* get word address (12 bits) */
1149         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1150         ecc_word >>= 4;
1151
1152         /* if there are multiple errors */
1153         if (ecc_status & ATMEL_ECC_MULERR) {
1154                 /* check if it is a freshly erased block
1155                  * (filled with 0xff) */
1156                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1157                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1158                         /* the block has just been erased, return OK */
1159                         return 0;
1160                 }
1161                 /* it doesn't seems to be a freshly
1162                  * erased block.
1163                  * We can't correct so many errors */
1164                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1165                                 " Unable to correct.\n");
1166                 return -EIO;
1167         }
1168
1169         /* if there's a single bit error : we can correct it */
1170         if (ecc_status & ATMEL_ECC_ECCERR) {
1171                 /* there's nothing much to do here.
1172                  * the bit error is on the ECC itself.
1173                  */
1174                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1175                                 " Nothing to correct\n");
1176                 return 0;
1177         }
1178
1179         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1180                         " (word offset in the page :"
1181                         " 0x%x bit offset : 0x%x)\n",
1182                         ecc_word, ecc_bit);
1183         /* correct the error */
1184         if (nand_chip->options & NAND_BUSWIDTH_16) {
1185                 /* 16 bits words */
1186                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1187         } else {
1188                 /* 8 bits words */
1189                 dat[ecc_word] ^= (1 << ecc_bit);
1190         }
1191         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1192         return 1;
1193 }
1194
1195 /*
1196  * Enable HW ECC : unused on most chips
1197  */
1198 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1199 {
1200         if (cpu_is_at32ap7000()) {
1201                 struct nand_chip *nand_chip = mtd->priv;
1202                 struct atmel_nand_host *host = nand_chip->priv;
1203                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1204         }
1205 }
1206
1207 #if defined(CONFIG_OF)
1208 static int __devinit atmel_of_init_port(struct atmel_nand_host *host,
1209                                          struct device_node *np)
1210 {
1211         u32 val, table_offset;
1212         u32 offset[2];
1213         int ecc_mode;
1214         struct atmel_nand_data *board = &host->board;
1215         enum of_gpio_flags flags;
1216
1217         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1218                 if (val >= 32) {
1219                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1220                         return -EINVAL;
1221                 }
1222                 board->ale = val;
1223         }
1224
1225         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1226                 if (val >= 32) {
1227                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1228                         return -EINVAL;
1229                 }
1230                 board->cle = val;
1231         }
1232
1233         ecc_mode = of_get_nand_ecc_mode(np);
1234
1235         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1236
1237         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1238
1239         if (of_get_nand_bus_width(np) == 16)
1240                 board->bus_width_16 = 1;
1241
1242         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1243         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1244
1245         board->enable_pin = of_get_gpio(np, 1);
1246         board->det_pin = of_get_gpio(np, 2);
1247
1248         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1249
1250         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1251                 return 0;       /* Not using PMECC */
1252
1253         /* use PMECC, get correction capability, sector size and lookup
1254          * table offset.
1255          */
1256         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) {
1257                 dev_err(host->dev, "Cannot decide PMECC Capability\n");
1258                 return -EINVAL;
1259         } else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1260             (val != 24)) {
1261                 dev_err(host->dev,
1262                         "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1263                         val);
1264                 return -EINVAL;
1265         }
1266         host->pmecc_corr_cap = (u8)val;
1267
1268         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) {
1269                 dev_err(host->dev, "Cannot decide PMECC Sector Size\n");
1270                 return -EINVAL;
1271         } else if ((val != 512) && (val != 1024)) {
1272                 dev_err(host->dev,
1273                         "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1274                         val);
1275                 return -EINVAL;
1276         }
1277         host->pmecc_sector_size = (u16)val;
1278
1279         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1280                         offset, 2) != 0) {
1281                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1282                 return -EINVAL;
1283         }
1284         table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1];
1285
1286         if (!table_offset) {
1287                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1288                 return -EINVAL;
1289         }
1290         host->pmecc_lookup_table_offset = table_offset;
1291
1292         return 0;
1293 }
1294 #else
1295 static int __devinit atmel_of_init_port(struct atmel_nand_host *host,
1296                                          struct device_node *np)
1297 {
1298         return -EINVAL;
1299 }
1300 #endif
1301
1302 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1303                                          struct atmel_nand_host *host)
1304 {
1305         struct mtd_info *mtd = &host->mtd;
1306         struct nand_chip *nand_chip = &host->nand_chip;
1307         struct resource         *regs;
1308
1309         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1310         if (!regs) {
1311                 dev_err(host->dev,
1312                         "Can't get I/O resource regs, use software ECC\n");
1313                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1314                 return 0;
1315         }
1316
1317         host->ecc = ioremap(regs->start, resource_size(regs));
1318         if (host->ecc == NULL) {
1319                 dev_err(host->dev, "ioremap failed\n");
1320                 return -EIO;
1321         }
1322
1323         /* ECC is calculated for the whole page (1 step) */
1324         nand_chip->ecc.size = mtd->writesize;
1325
1326         /* set ECC page size and oob layout */
1327         switch (mtd->writesize) {
1328         case 512:
1329                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1330                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1331                 break;
1332         case 1024:
1333                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1334                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1335                 break;
1336         case 2048:
1337                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1338                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1339                 break;
1340         case 4096:
1341                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1342                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1343                 break;
1344         default:
1345                 /* page size not handled by HW ECC */
1346                 /* switching back to soft ECC */
1347                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1348                 return 0;
1349         }
1350
1351         /* set up for HW ECC */
1352         nand_chip->ecc.calculate = atmel_nand_calculate;
1353         nand_chip->ecc.correct = atmel_nand_correct;
1354         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1355         nand_chip->ecc.read_page = atmel_nand_read_page;
1356         nand_chip->ecc.bytes = 4;
1357         nand_chip->ecc.strength = 1;
1358
1359         return 0;
1360 }
1361
1362 /*
1363  * Probe for the NAND device.
1364  */
1365 static int __init atmel_nand_probe(struct platform_device *pdev)
1366 {
1367         struct atmel_nand_host *host;
1368         struct mtd_info *mtd;
1369         struct nand_chip *nand_chip;
1370         struct resource *mem;
1371         struct mtd_part_parser_data ppdata = {};
1372         int res;
1373
1374         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1375         if (!mem) {
1376                 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
1377                 return -ENXIO;
1378         }
1379
1380         /* Allocate memory for the device structure (and zero it) */
1381         host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
1382         if (!host) {
1383                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1384                 return -ENOMEM;
1385         }
1386
1387         host->io_phys = (dma_addr_t)mem->start;
1388
1389         host->io_base = ioremap(mem->start, resource_size(mem));
1390         if (host->io_base == NULL) {
1391                 printk(KERN_ERR "atmel_nand: ioremap failed\n");
1392                 res = -EIO;
1393                 goto err_nand_ioremap;
1394         }
1395
1396         mtd = &host->mtd;
1397         nand_chip = &host->nand_chip;
1398         host->dev = &pdev->dev;
1399         if (pdev->dev.of_node) {
1400                 res = atmel_of_init_port(host, pdev->dev.of_node);
1401                 if (res)
1402                         goto err_ecc_ioremap;
1403         } else {
1404                 memcpy(&host->board, pdev->dev.platform_data,
1405                        sizeof(struct atmel_nand_data));
1406         }
1407
1408         nand_chip->priv = host;         /* link the private data structures */
1409         mtd->priv = nand_chip;
1410         mtd->owner = THIS_MODULE;
1411
1412         /* Set address of NAND IO lines */
1413         nand_chip->IO_ADDR_R = host->io_base;
1414         nand_chip->IO_ADDR_W = host->io_base;
1415         nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1416
1417         if (gpio_is_valid(host->board.rdy_pin)) {
1418                 res = gpio_request(host->board.rdy_pin, "nand_rdy");
1419                 if (res < 0) {
1420                         dev_err(&pdev->dev,
1421                                 "can't request rdy gpio %d\n",
1422                                 host->board.rdy_pin);
1423                         goto err_ecc_ioremap;
1424                 }
1425
1426                 res = gpio_direction_input(host->board.rdy_pin);
1427                 if (res < 0) {
1428                         dev_err(&pdev->dev,
1429                                 "can't request input direction rdy gpio %d\n",
1430                                 host->board.rdy_pin);
1431                         goto err_ecc_ioremap;
1432                 }
1433
1434                 nand_chip->dev_ready = atmel_nand_device_ready;
1435         }
1436
1437         if (gpio_is_valid(host->board.enable_pin)) {
1438                 res = gpio_request(host->board.enable_pin, "nand_enable");
1439                 if (res < 0) {
1440                         dev_err(&pdev->dev,
1441                                 "can't request enable gpio %d\n",
1442                                 host->board.enable_pin);
1443                         goto err_ecc_ioremap;
1444                 }
1445
1446                 res = gpio_direction_output(host->board.enable_pin, 1);
1447                 if (res < 0) {
1448                         dev_err(&pdev->dev,
1449                                 "can't request output direction enable gpio %d\n",
1450                                 host->board.enable_pin);
1451                         goto err_ecc_ioremap;
1452                 }
1453         }
1454
1455         nand_chip->ecc.mode = host->board.ecc_mode;
1456         nand_chip->chip_delay = 20;             /* 20us command delay time */
1457
1458         if (host->board.bus_width_16)   /* 16-bit bus width */
1459                 nand_chip->options |= NAND_BUSWIDTH_16;
1460
1461         nand_chip->read_buf = atmel_read_buf;
1462         nand_chip->write_buf = atmel_write_buf;
1463
1464         platform_set_drvdata(pdev, host);
1465         atmel_nand_enable(host);
1466
1467         if (gpio_is_valid(host->board.det_pin)) {
1468                 res = gpio_request(host->board.det_pin, "nand_det");
1469                 if (res < 0) {
1470                         dev_err(&pdev->dev,
1471                                 "can't request det gpio %d\n",
1472                                 host->board.det_pin);
1473                         goto err_no_card;
1474                 }
1475
1476                 res = gpio_direction_input(host->board.det_pin);
1477                 if (res < 0) {
1478                         dev_err(&pdev->dev,
1479                                 "can't request input direction det gpio %d\n",
1480                                 host->board.det_pin);
1481                         goto err_no_card;
1482                 }
1483
1484                 if (gpio_get_value(host->board.det_pin)) {
1485                         printk(KERN_INFO "No SmartMedia card inserted.\n");
1486                         res = -ENXIO;
1487                         goto err_no_card;
1488                 }
1489         }
1490
1491         if (host->board.on_flash_bbt || on_flash_bbt) {
1492                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
1493                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1494         }
1495
1496         if (!cpu_has_dma())
1497                 use_dma = 0;
1498
1499         if (use_dma) {
1500                 dma_cap_mask_t mask;
1501
1502                 dma_cap_zero(mask);
1503                 dma_cap_set(DMA_MEMCPY, mask);
1504                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
1505                 if (!host->dma_chan) {
1506                         dev_err(host->dev, "Failed to request DMA channel\n");
1507                         use_dma = 0;
1508                 }
1509         }
1510         if (use_dma)
1511                 dev_info(host->dev, "Using %s for DMA transfers.\n",
1512                                         dma_chan_name(host->dma_chan));
1513         else
1514                 dev_info(host->dev, "No DMA support for NAND access.\n");
1515
1516         /* first scan to find the device and get the page size */
1517         if (nand_scan_ident(mtd, 1, NULL)) {
1518                 res = -ENXIO;
1519                 goto err_scan_ident;
1520         }
1521
1522         if (nand_chip->ecc.mode == NAND_ECC_HW) {
1523                 if (host->has_pmecc)
1524                         res = atmel_pmecc_nand_init_params(pdev, host);
1525                 else
1526                         res = atmel_hw_nand_init_params(pdev, host);
1527
1528                 if (res != 0)
1529                         goto err_hw_ecc;
1530         }
1531
1532         /* second phase scan */
1533         if (nand_scan_tail(mtd)) {
1534                 res = -ENXIO;
1535                 goto err_scan_tail;
1536         }
1537
1538         mtd->name = "atmel_nand";
1539         ppdata.of_node = pdev->dev.of_node;
1540         res = mtd_device_parse_register(mtd, NULL, &ppdata,
1541                         host->board.parts, host->board.num_parts);
1542         if (!res)
1543                 return res;
1544
1545 err_scan_tail:
1546         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1547                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1548                 pmecc_data_free(host);
1549         }
1550         if (host->ecc)
1551                 iounmap(host->ecc);
1552         if (host->pmerrloc_base)
1553                 iounmap(host->pmerrloc_base);
1554         if (host->pmecc_rom_base)
1555                 iounmap(host->pmecc_rom_base);
1556 err_hw_ecc:
1557 err_scan_ident:
1558 err_no_card:
1559         atmel_nand_disable(host);
1560         platform_set_drvdata(pdev, NULL);
1561         if (host->dma_chan)
1562                 dma_release_channel(host->dma_chan);
1563 err_ecc_ioremap:
1564         iounmap(host->io_base);
1565 err_nand_ioremap:
1566         kfree(host);
1567         return res;
1568 }
1569
1570 /*
1571  * Remove a NAND device.
1572  */
1573 static int __exit atmel_nand_remove(struct platform_device *pdev)
1574 {
1575         struct atmel_nand_host *host = platform_get_drvdata(pdev);
1576         struct mtd_info *mtd = &host->mtd;
1577
1578         nand_release(mtd);
1579
1580         atmel_nand_disable(host);
1581
1582         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1583                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1584                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
1585                                 PMERRLOC_DISABLE);
1586                 pmecc_data_free(host);
1587         }
1588
1589         if (gpio_is_valid(host->board.det_pin))
1590                 gpio_free(host->board.det_pin);
1591
1592         if (gpio_is_valid(host->board.enable_pin))
1593                 gpio_free(host->board.enable_pin);
1594
1595         if (gpio_is_valid(host->board.rdy_pin))
1596                 gpio_free(host->board.rdy_pin);
1597
1598         if (host->ecc)
1599                 iounmap(host->ecc);
1600         if (host->pmecc_rom_base)
1601                 iounmap(host->pmecc_rom_base);
1602         if (host->pmerrloc_base)
1603                 iounmap(host->pmerrloc_base);
1604
1605         if (host->dma_chan)
1606                 dma_release_channel(host->dma_chan);
1607
1608         iounmap(host->io_base);
1609         kfree(host);
1610
1611         return 0;
1612 }
1613
1614 #if defined(CONFIG_OF)
1615 static const struct of_device_id atmel_nand_dt_ids[] = {
1616         { .compatible = "atmel,at91rm9200-nand" },
1617         { /* sentinel */ }
1618 };
1619
1620 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
1621 #endif
1622
1623 static struct platform_driver atmel_nand_driver = {
1624         .remove         = __exit_p(atmel_nand_remove),
1625         .driver         = {
1626                 .name   = "atmel_nand",
1627                 .owner  = THIS_MODULE,
1628                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
1629         },
1630 };
1631
1632 static int __init atmel_nand_init(void)
1633 {
1634         return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
1635 }
1636
1637
1638 static void __exit atmel_nand_exit(void)
1639 {
1640         platform_driver_unregister(&atmel_nand_driver);
1641 }
1642
1643
1644 module_init(atmel_nand_init);
1645 module_exit(atmel_nand_exit);
1646
1647 MODULE_LICENSE("GPL");
1648 MODULE_AUTHOR("Rick Bronson");
1649 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
1650 MODULE_ALIAS("platform:atmel_nand");