2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://www.marvell.com/products/pcconn/88ALP01.jsp
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
13 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
25 #define CAFE_NAND_CTRL1 0x00
26 #define CAFE_NAND_CTRL2 0x04
27 #define CAFE_NAND_CTRL3 0x08
28 #define CAFE_NAND_STATUS 0x0c
29 #define CAFE_NAND_IRQ 0x10
30 #define CAFE_NAND_IRQ_MASK 0x14
31 #define CAFE_NAND_DATA_LEN 0x18
32 #define CAFE_NAND_ADDR1 0x1c
33 #define CAFE_NAND_ADDR2 0x20
34 #define CAFE_NAND_TIMING1 0x24
35 #define CAFE_NAND_TIMING2 0x28
36 #define CAFE_NAND_TIMING3 0x2c
37 #define CAFE_NAND_NONMEM 0x30
38 #define CAFE_NAND_ECC_RESULT 0x3C
39 #define CAFE_NAND_DMA_CTRL 0x40
40 #define CAFE_NAND_DMA_ADDR0 0x44
41 #define CAFE_NAND_DMA_ADDR1 0x48
42 #define CAFE_NAND_ECC_SYN01 0x50
43 #define CAFE_NAND_ECC_SYN23 0x54
44 #define CAFE_NAND_ECC_SYN45 0x58
45 #define CAFE_NAND_ECC_SYN67 0x5c
46 #define CAFE_NAND_READ_DATA 0x1000
47 #define CAFE_NAND_WRITE_DATA 0x2000
49 #define CAFE_GLOBAL_CTRL 0x3004
50 #define CAFE_GLOBAL_IRQ 0x3008
51 #define CAFE_GLOBAL_IRQ_MASK 0x300c
52 #define CAFE_NAND_RESET 0x3034
54 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
55 #define CTRL1_CHIPSELECT (1<<19)
58 struct nand_chip nand;
59 struct mtd_partition *parts;
62 struct rs_control *rs;
70 unsigned char *dmabuf;
73 static int usedma = 1;
74 module_param(usedma, int, 0644);
76 static int skipbbt = 0;
77 module_param(skipbbt, int, 0644);
80 module_param(debug, int, 0644);
82 static int regdebug = 0;
83 module_param(regdebug, int, 0644);
85 static int checkecc = 1;
86 module_param(checkecc, int, 0644);
88 static unsigned int numtimings;
90 module_param_array(timing, int, &numtimings, 0644);
92 #ifdef CONFIG_MTD_PARTITIONS
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
103 static int cafe_device_ready(struct mtd_info *mtd)
105 struct cafe_priv *cafe = mtd->priv;
106 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
107 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109 cafe_writel(cafe, irqs, NAND_IRQ);
111 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
121 struct cafe_priv *cafe = mtd->priv;
124 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128 cafe->datalen += len;
130 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
134 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136 struct cafe_priv *cafe = mtd->priv;
139 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
143 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145 cafe->datalen += len;
148 static uint8_t cafe_read_byte(struct mtd_info *mtd)
150 struct cafe_priv *cafe = mtd->priv;
153 cafe_read_buf(mtd, &d, 1);
154 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
159 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
160 int column, int page_addr)
162 struct cafe_priv *cafe = mtd->priv;
165 uint32_t doneint = 0x80000000;
167 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
168 command, column, page_addr);
170 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
171 /* Second half of a command we already calculated */
172 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174 cafe->ctl2 &= ~(1<<30);
175 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
176 cafe->ctl1, cafe->nr_data);
179 /* Reset ECC engine */
180 cafe_writel(cafe, 0, NAND_CTRL2);
182 /* Emulate NAND_CMD_READOOB on large-page chips */
183 if (mtd->writesize > 512 &&
184 command == NAND_CMD_READOOB) {
185 column += mtd->writesize;
186 command = NAND_CMD_READ0;
189 /* FIXME: Do we need to send read command before sending data
190 for small-page chips, to position the buffer correctly? */
193 cafe_writel(cafe, column, NAND_ADDR1);
197 } else if (page_addr != -1) {
198 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
201 cafe_writel(cafe, page_addr, NAND_ADDR2);
203 if (mtd->size > mtd->writesize << 16)
207 cafe->data_pos = cafe->datalen = 0;
209 /* Set command valid bit, mask in the chip select bit */
210 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212 /* Set RD or WR bits as appropriate */
213 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
214 ctl1 |= (1<<26); /* rd */
215 /* Always 5 bytes, for now */
217 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
220 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
221 ctl1 |= 1<<26; /* rd */
222 /* For now, assume just read to end of page */
223 cafe->datalen = mtd->writesize + mtd->oobsize - column;
224 } else if (command == NAND_CMD_SEQIN)
225 ctl1 |= 1<<25; /* wr */
227 /* Set number of address bytes */
229 ctl1 |= ((adrbytes-1)|8) << 27;
231 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
232 /* Ignore the first command of a pair; the hardware
233 deals with them both at once, later */
235 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
236 cafe->ctl1, cafe->datalen);
239 /* RNDOUT and READ0 commands need a following byte */
240 if (command == NAND_CMD_RNDOUT)
241 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
242 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
243 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
246 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
247 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249 /* NB: The datasheet lies -- we really should be subtracting 1 here */
250 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
251 cafe_writel(cafe, 0x90000000, NAND_IRQ);
252 if (usedma && (ctl1 & (3<<25))) {
253 uint32_t dmactl = 0xc0000000 + cafe->datalen;
254 /* If WR or RD bits set, set up DMA */
255 if (ctl1 & (1<<26)) {
258 /* ... so it's done when the DMA is done, not just
260 doneint = 0x10000000;
262 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
266 if (unlikely(regdebug)) {
268 printk("About to write command %08x to register 0\n", ctl1);
269 for (i=4; i< 0x5c; i+=4)
270 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
273 cafe_writel(cafe, ctl1, NAND_CTRL1);
274 /* Apply this short delay always to ensure that we do wait tWB in
275 * any case on any machine. */
282 for (c = 500000; c != 0; c--) {
283 irqs = cafe_readl(cafe, NAND_IRQ);
288 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
291 cafe_writel(cafe, doneint, NAND_IRQ);
292 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
293 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
296 WARN_ON(cafe->ctl2 & (1<<30));
300 case NAND_CMD_CACHEDPROG:
301 case NAND_CMD_PAGEPROG:
302 case NAND_CMD_ERASE1:
303 case NAND_CMD_ERASE2:
306 case NAND_CMD_STATUS:
307 case NAND_CMD_DEPLETE1:
308 case NAND_CMD_RNDOUT:
309 case NAND_CMD_STATUS_ERROR:
310 case NAND_CMD_STATUS_ERROR0:
311 case NAND_CMD_STATUS_ERROR1:
312 case NAND_CMD_STATUS_ERROR2:
313 case NAND_CMD_STATUS_ERROR3:
314 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
317 nand_wait_ready(mtd);
318 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
321 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
323 struct cafe_priv *cafe = mtd->priv;
325 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
327 /* Mask the appropriate bit into the stored value of ctl1
328 which will be used by cafe_nand_cmdfunc() */
330 cafe->ctl1 |= CTRL1_CHIPSELECT;
332 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
335 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
337 struct mtd_info *mtd = id;
338 struct cafe_priv *cafe = mtd->priv;
339 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
344 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
348 static void cafe_nand_bug(struct mtd_info *mtd)
353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354 struct nand_chip *chip, int page)
358 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361 status = chip->waitfunc(mtd, chip);
363 return status & NAND_STATUS_FAIL ? -EIO : 0;
366 /* Don't use -- use nand_read_oob_std for now */
367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368 int page, int sndcmd)
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
375 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
376 * @mtd: mtd info structure
377 * @chip: nand chip info structure
378 * @buf: buffer to store read data
380 * The hw generator calculates the error syndrome automatically. Therefor
381 * we need a special oob layout and handling.
383 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
386 struct cafe_priv *cafe = mtd->priv;
388 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
389 cafe_readl(cafe, NAND_ECC_RESULT),
390 cafe_readl(cafe, NAND_ECC_SYN01));
392 chip->read_buf(mtd, buf, mtd->writesize);
393 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
395 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
396 unsigned short syn[8], pat[4];
398 u8 *oob = chip->oob_poi;
401 for (i=0; i<8; i+=2) {
402 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
403 syn[i] = cafe->rs->index_of[tmp & 0xfff];
404 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
407 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
410 for (i = 0; i < n; i++) {
413 /* The 12-bit symbols are mapped to bytes here */
419 /* high four bits do not correspond to data */
424 } else if (p == 1365) {
425 buf[2047] ^= pat[i] >> 4;
426 oob[0] ^= pat[i] << 4;
427 } else if (p > 1365) {
429 oob[3*p/2 - 2048] ^= pat[i] >> 4;
430 oob[3*p/2 - 2047] ^= pat[i] << 4;
432 oob[3*p/2 - 2049] ^= pat[i] >> 8;
433 oob[3*p/2 - 2048] ^= pat[i];
435 } else if ((p & 1) == 1) {
436 buf[3*p/2] ^= pat[i] >> 4;
437 buf[3*p/2 + 1] ^= pat[i] << 4;
439 buf[3*p/2 - 1] ^= pat[i] >> 8;
440 buf[3*p/2] ^= pat[i];
445 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
446 cafe_readl(cafe, NAND_ADDR2) * 2048);
447 for (i = 0; i < 0x5c; i += 4)
448 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
449 mtd->ecc_stats.failed++;
451 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
452 mtd->ecc_stats.corrected += n;
459 static struct nand_ecclayout cafe_oobinfo_2048 = {
461 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
462 .oobfree = {{14, 50}}
465 /* Ick. The BBT code really ought to be able to work this bit out
466 for itself from the above, at least for the 2KiB case */
467 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
468 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
470 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
471 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
474 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
475 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
476 | NAND_BBT_2BIT | NAND_BBT_VERSION,
481 .pattern = cafe_bbt_pattern_2048
484 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
485 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
486 | NAND_BBT_2BIT | NAND_BBT_VERSION,
491 .pattern = cafe_mirror_pattern_2048
494 static struct nand_ecclayout cafe_oobinfo_512 = {
496 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
500 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
501 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
502 | NAND_BBT_2BIT | NAND_BBT_VERSION,
507 .pattern = cafe_bbt_pattern_512
510 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
511 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
512 | NAND_BBT_2BIT | NAND_BBT_VERSION,
517 .pattern = cafe_mirror_pattern_512
521 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
522 struct nand_chip *chip, const uint8_t *buf)
524 struct cafe_priv *cafe = mtd->priv;
526 chip->write_buf(mtd, buf, mtd->writesize);
527 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
529 /* Set up ECC autogeneration */
530 cafe->ctl2 |= (1<<30);
533 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
534 const uint8_t *buf, int page, int cached, int raw)
538 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
541 chip->ecc.write_page_raw(mtd, chip, buf);
543 chip->ecc.write_page(mtd, chip, buf);
546 * Cached progamming disabled for now, Not sure if its worth the
547 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
551 if (!cached || !(chip->options & NAND_CACHEPRG)) {
553 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
554 status = chip->waitfunc(mtd, chip);
556 * See if operation failed and additional status checks are
559 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
560 status = chip->errstat(mtd, chip, FL_WRITING, status,
563 if (status & NAND_STATUS_FAIL)
566 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
567 status = chip->waitfunc(mtd, chip);
570 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
571 /* Send command to read back the data */
572 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
574 if (chip->verify_buf(mtd, buf, mtd->writesize))
580 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
585 /* F_2[X]/(X**6+X+1) */
586 static unsigned short __devinit gf64_mul(u8 a, u8 b)
592 for (i = 0; i < 6; i++) {
604 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
605 static u16 __devinit gf4096_mul(u16 a, u16 b)
607 u8 ah, al, bh, bl, ch, cl;
614 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
615 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
617 return (ch << 6) ^ cl;
620 static int __devinit cafe_mul(int x)
624 return gf4096_mul(x, 0xe01);
627 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
628 const struct pci_device_id *ent)
630 struct mtd_info *mtd;
631 struct cafe_priv *cafe;
634 #ifdef CONFIG_MTD_PARTITIONS
635 struct mtd_partition *parts;
639 /* Very old versions shared the same PCI ident for all three
640 functions on the chip. Verify the class too... */
641 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
644 err = pci_enable_device(pdev);
648 pci_set_master(pdev);
650 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
652 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
655 cafe = (void *)(&mtd[1]);
657 mtd->dev.parent = &pdev->dev;
659 mtd->owner = THIS_MODULE;
662 cafe->mmio = pci_iomap(pdev, 0, 0);
664 dev_warn(&pdev->dev, "failed to iomap\n");
668 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
669 &cafe->dmaaddr, GFP_KERNEL);
674 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
676 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
682 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
683 cafe->nand.dev_ready = cafe_device_ready;
684 cafe->nand.read_byte = cafe_read_byte;
685 cafe->nand.read_buf = cafe_read_buf;
686 cafe->nand.write_buf = cafe_write_buf;
687 cafe->nand.select_chip = cafe_select_chip;
689 cafe->nand.chip_delay = 0;
691 /* Enable the following for a flash based bad block table */
692 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
695 cafe->nand.options |= NAND_SKIP_BBTSCAN;
696 cafe->nand.block_bad = cafe_nand_block_bad;
699 if (numtimings && numtimings != 3) {
700 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
703 if (numtimings == 3) {
704 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
705 timing[0], timing[1], timing[2]);
707 timing[0] = cafe_readl(cafe, NAND_TIMING1);
708 timing[1] = cafe_readl(cafe, NAND_TIMING2);
709 timing[2] = cafe_readl(cafe, NAND_TIMING3);
711 if (timing[0] | timing[1] | timing[2]) {
712 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
713 timing[0], timing[1], timing[2]);
715 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
716 timing[0] = timing[1] = timing[2] = 0xffffffff;
720 /* Start off by resetting the NAND controller completely */
721 cafe_writel(cafe, 1, NAND_RESET);
722 cafe_writel(cafe, 0, NAND_RESET);
724 cafe_writel(cafe, timing[0], NAND_TIMING1);
725 cafe_writel(cafe, timing[1], NAND_TIMING2);
726 cafe_writel(cafe, timing[2], NAND_TIMING3);
728 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
729 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
732 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
736 /* Disable master reset, enable NAND clock */
737 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
740 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
741 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
742 cafe_writel(cafe, 0, NAND_DMA_CTRL);
744 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
745 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
747 /* Set up DMA address */
748 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
749 if (sizeof(cafe->dmaaddr) > 4)
750 /* Shift in two parts to shut the compiler up */
751 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
755 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
756 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
758 /* Enable NAND IRQ in global IRQ mask register */
759 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
760 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
761 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
763 /* Scan to find existence of the device */
764 if (nand_scan_ident(mtd, 2)) {
769 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
770 if (mtd->writesize == 2048)
771 cafe->ctl2 |= 1<<29; /* 2KiB page size */
773 /* Set up ECC according to the type of chip we found */
774 if (mtd->writesize == 2048) {
775 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
776 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
777 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
778 } else if (mtd->writesize == 512) {
779 cafe->nand.ecc.layout = &cafe_oobinfo_512;
780 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
781 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
787 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
788 cafe->nand.ecc.size = mtd->writesize;
789 cafe->nand.ecc.bytes = 14;
790 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
791 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
792 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
793 cafe->nand.write_page = cafe_nand_write_page;
794 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
795 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
796 cafe->nand.ecc.read_page = cafe_nand_read_page;
797 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
799 err = nand_scan_tail(mtd);
803 pci_set_drvdata(pdev, mtd);
805 /* We register the whole device first, separate from the partitions */
808 #ifdef CONFIG_MTD_PARTITIONS
809 #ifdef CONFIG_MTD_CMDLINE_PARTS
810 mtd->name = "cafe_nand";
812 nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
815 dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
816 add_mtd_partitions(mtd, parts, nr_parts);
822 /* Disable NAND IRQ in global IRQ mask register */
823 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
824 free_irq(pdev->irq, mtd);
826 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
828 pci_iounmap(pdev, cafe->mmio);
835 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
837 struct mtd_info *mtd = pci_get_drvdata(pdev);
838 struct cafe_priv *cafe = mtd->priv;
841 /* Disable NAND IRQ in global IRQ mask register */
842 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
843 free_irq(pdev->irq, mtd);
846 pci_iounmap(pdev, cafe->mmio);
847 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
851 static struct pci_device_id cafe_nand_tbl[] = {
852 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
853 PCI_ANY_ID, PCI_ANY_ID },
857 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
859 static int cafe_nand_resume(struct pci_dev *pdev)
862 struct mtd_info *mtd = pci_get_drvdata(pdev);
863 struct cafe_priv *cafe = mtd->priv;
865 /* Start off by resetting the NAND controller completely */
866 cafe_writel(cafe, 1, NAND_RESET);
867 cafe_writel(cafe, 0, NAND_RESET);
868 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
870 /* Restore timing configuration */
871 cafe_writel(cafe, timing[0], NAND_TIMING1);
872 cafe_writel(cafe, timing[1], NAND_TIMING2);
873 cafe_writel(cafe, timing[2], NAND_TIMING3);
875 /* Disable master reset, enable NAND clock */
876 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
879 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
880 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
881 cafe_writel(cafe, 0, NAND_DMA_CTRL);
882 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
883 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
885 /* Set up DMA address */
886 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
887 if (sizeof(cafe->dmaaddr) > 4)
888 /* Shift in two parts to shut the compiler up */
889 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
891 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
893 /* Enable NAND IRQ in global IRQ mask register */
894 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
898 static struct pci_driver cafe_nand_pci_driver = {
900 .id_table = cafe_nand_tbl,
901 .probe = cafe_nand_probe,
902 .remove = __devexit_p(cafe_nand_remove),
903 .resume = cafe_nand_resume,
906 static int cafe_nand_init(void)
908 return pci_register_driver(&cafe_nand_pci_driver);
911 static void cafe_nand_exit(void)
913 pci_unregister_driver(&cafe_nand_pci_driver);
915 module_init(cafe_nand_init);
916 module_exit(cafe_nand_exit);
918 MODULE_LICENSE("GPL");
919 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
920 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");