]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/cafe_nand.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mv-sheeva.git] / drivers / mtd / nand / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://www.marvell.com/products/pcconn/88ALP01.jsp
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <asm/io.h>
24
25 #define CAFE_NAND_CTRL1         0x00
26 #define CAFE_NAND_CTRL2         0x04
27 #define CAFE_NAND_CTRL3         0x08
28 #define CAFE_NAND_STATUS        0x0c
29 #define CAFE_NAND_IRQ           0x10
30 #define CAFE_NAND_IRQ_MASK      0x14
31 #define CAFE_NAND_DATA_LEN      0x18
32 #define CAFE_NAND_ADDR1         0x1c
33 #define CAFE_NAND_ADDR2         0x20
34 #define CAFE_NAND_TIMING1       0x24
35 #define CAFE_NAND_TIMING2       0x28
36 #define CAFE_NAND_TIMING3       0x2c
37 #define CAFE_NAND_NONMEM        0x30
38 #define CAFE_NAND_ECC_RESULT    0x3C
39 #define CAFE_NAND_DMA_CTRL      0x40
40 #define CAFE_NAND_DMA_ADDR0     0x44
41 #define CAFE_NAND_DMA_ADDR1     0x48
42 #define CAFE_NAND_ECC_SYN01     0x50
43 #define CAFE_NAND_ECC_SYN23     0x54
44 #define CAFE_NAND_ECC_SYN45     0x58
45 #define CAFE_NAND_ECC_SYN67     0x5c
46 #define CAFE_NAND_READ_DATA     0x1000
47 #define CAFE_NAND_WRITE_DATA    0x2000
48
49 #define CAFE_GLOBAL_CTRL        0x3004
50 #define CAFE_GLOBAL_IRQ         0x3008
51 #define CAFE_GLOBAL_IRQ_MASK    0x300c
52 #define CAFE_NAND_RESET         0x3034
53
54 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
55 #define CTRL1_CHIPSELECT        (1<<19)
56
57 struct cafe_priv {
58         struct nand_chip nand;
59         struct mtd_partition *parts;
60         struct pci_dev *pdev;
61         void __iomem *mmio;
62         struct rs_control *rs;
63         uint32_t ctl1;
64         uint32_t ctl2;
65         int datalen;
66         int nr_data;
67         int data_pos;
68         int page_addr;
69         dma_addr_t dmaaddr;
70         unsigned char *dmabuf;
71 };
72
73 static int usedma = 1;
74 module_param(usedma, int, 0644);
75
76 static int skipbbt = 0;
77 module_param(skipbbt, int, 0644);
78
79 static int debug = 0;
80 module_param(debug, int, 0644);
81
82 static int regdebug = 0;
83 module_param(regdebug, int, 0644);
84
85 static int checkecc = 1;
86 module_param(checkecc, int, 0644);
87
88 static unsigned int numtimings;
89 static int timing[3];
90 module_param_array(timing, int, &numtimings, 0644);
91
92 #ifdef CONFIG_MTD_PARTITIONS
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 #endif
95
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
102
103 static int cafe_device_ready(struct mtd_info *mtd)
104 {
105         struct cafe_priv *cafe = mtd->priv;
106         int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
107         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108
109         cafe_writel(cafe, irqs, NAND_IRQ);
110
111         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114
115         return result;
116 }
117
118
119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
120 {
121         struct cafe_priv *cafe = mtd->priv;
122
123         if (usedma)
124                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
125         else
126                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127
128         cafe->datalen += len;
129
130         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131                 len, cafe->datalen);
132 }
133
134 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
135 {
136         struct cafe_priv *cafe = mtd->priv;
137
138         if (usedma)
139                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
140         else
141                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
142
143         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144                   len, cafe->datalen);
145         cafe->datalen += len;
146 }
147
148 static uint8_t cafe_read_byte(struct mtd_info *mtd)
149 {
150         struct cafe_priv *cafe = mtd->priv;
151         uint8_t d;
152
153         cafe_read_buf(mtd, &d, 1);
154         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155
156         return d;
157 }
158
159 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
160                               int column, int page_addr)
161 {
162         struct cafe_priv *cafe = mtd->priv;
163         int adrbytes = 0;
164         uint32_t ctl1;
165         uint32_t doneint = 0x80000000;
166
167         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
168                 command, column, page_addr);
169
170         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
171                 /* Second half of a command we already calculated */
172                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
173                 ctl1 = cafe->ctl1;
174                 cafe->ctl2 &= ~(1<<30);
175                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
176                           cafe->ctl1, cafe->nr_data);
177                 goto do_command;
178         }
179         /* Reset ECC engine */
180         cafe_writel(cafe, 0, NAND_CTRL2);
181
182         /* Emulate NAND_CMD_READOOB on large-page chips */
183         if (mtd->writesize > 512 &&
184             command == NAND_CMD_READOOB) {
185                 column += mtd->writesize;
186                 command = NAND_CMD_READ0;
187         }
188
189         /* FIXME: Do we need to send read command before sending data
190            for small-page chips, to position the buffer correctly? */
191
192         if (column != -1) {
193                 cafe_writel(cafe, column, NAND_ADDR1);
194                 adrbytes = 2;
195                 if (page_addr != -1)
196                         goto write_adr2;
197         } else if (page_addr != -1) {
198                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
199                 page_addr >>= 16;
200         write_adr2:
201                 cafe_writel(cafe, page_addr, NAND_ADDR2);
202                 adrbytes += 2;
203                 if (mtd->size > mtd->writesize << 16)
204                         adrbytes++;
205         }
206
207         cafe->data_pos = cafe->datalen = 0;
208
209         /* Set command valid bit, mask in the chip select bit  */
210         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
211
212         /* Set RD or WR bits as appropriate */
213         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
214                 ctl1 |= (1<<26); /* rd */
215                 /* Always 5 bytes, for now */
216                 cafe->datalen = 4;
217                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
218                 adrbytes = 1;
219         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
220                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
221                 ctl1 |= 1<<26; /* rd */
222                 /* For now, assume just read to end of page */
223                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
224         } else if (command == NAND_CMD_SEQIN)
225                 ctl1 |= 1<<25; /* wr */
226
227         /* Set number of address bytes */
228         if (adrbytes)
229                 ctl1 |= ((adrbytes-1)|8) << 27;
230
231         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
232                 /* Ignore the first command of a pair; the hardware
233                    deals with them both at once, later */
234                 cafe->ctl1 = ctl1;
235                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
236                           cafe->ctl1, cafe->datalen);
237                 return;
238         }
239         /* RNDOUT and READ0 commands need a following byte */
240         if (command == NAND_CMD_RNDOUT)
241                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
242         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
243                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
244
245  do_command:
246         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
247                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
248
249         /* NB: The datasheet lies -- we really should be subtracting 1 here */
250         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
251         cafe_writel(cafe, 0x90000000, NAND_IRQ);
252         if (usedma && (ctl1 & (3<<25))) {
253                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
254                 /* If WR or RD bits set, set up DMA */
255                 if (ctl1 & (1<<26)) {
256                         /* It's a read */
257                         dmactl |= (1<<29);
258                         /* ... so it's done when the DMA is done, not just
259                            the command. */
260                         doneint = 0x10000000;
261                 }
262                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
263         }
264         cafe->datalen = 0;
265
266         if (unlikely(regdebug)) {
267                 int i;
268                 printk("About to write command %08x to register 0\n", ctl1);
269                 for (i=4; i< 0x5c; i+=4)
270                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
271         }
272
273         cafe_writel(cafe, ctl1, NAND_CTRL1);
274         /* Apply this short delay always to ensure that we do wait tWB in
275          * any case on any machine. */
276         ndelay(100);
277
278         if (1) {
279                 int c;
280                 uint32_t irqs;
281
282                 for (c = 500000; c != 0; c--) {
283                         irqs = cafe_readl(cafe, NAND_IRQ);
284                         if (irqs & doneint)
285                                 break;
286                         udelay(1);
287                         if (!(c % 100000))
288                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
289                         cpu_relax();
290                 }
291                 cafe_writel(cafe, doneint, NAND_IRQ);
292                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
293                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
294         }
295
296         WARN_ON(cafe->ctl2 & (1<<30));
297
298         switch (command) {
299
300         case NAND_CMD_CACHEDPROG:
301         case NAND_CMD_PAGEPROG:
302         case NAND_CMD_ERASE1:
303         case NAND_CMD_ERASE2:
304         case NAND_CMD_SEQIN:
305         case NAND_CMD_RNDIN:
306         case NAND_CMD_STATUS:
307         case NAND_CMD_DEPLETE1:
308         case NAND_CMD_RNDOUT:
309         case NAND_CMD_STATUS_ERROR:
310         case NAND_CMD_STATUS_ERROR0:
311         case NAND_CMD_STATUS_ERROR1:
312         case NAND_CMD_STATUS_ERROR2:
313         case NAND_CMD_STATUS_ERROR3:
314                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315                 return;
316         }
317         nand_wait_ready(mtd);
318         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
319 }
320
321 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
322 {
323         struct cafe_priv *cafe = mtd->priv;
324
325         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
326
327         /* Mask the appropriate bit into the stored value of ctl1
328            which will be used by cafe_nand_cmdfunc() */
329         if (chipnr)
330                 cafe->ctl1 |= CTRL1_CHIPSELECT;
331         else
332                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
333 }
334
335 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
336 {
337         struct mtd_info *mtd = id;
338         struct cafe_priv *cafe = mtd->priv;
339         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341         if (!irqs)
342                 return IRQ_NONE;
343
344         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345         return IRQ_HANDLED;
346 }
347
348 static void cafe_nand_bug(struct mtd_info *mtd)
349 {
350         BUG();
351 }
352
353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354                                struct nand_chip *chip, int page)
355 {
356         int status = 0;
357
358         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361         status = chip->waitfunc(mtd, chip);
362
363         return status & NAND_STATUS_FAIL ? -EIO : 0;
364 }
365
366 /* Don't use -- use nand_read_oob_std for now */
367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368                               int page, int sndcmd)
369 {
370         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372         return 1;
373 }
374 /**
375  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
376  * @mtd:        mtd info structure
377  * @chip:       nand chip info structure
378  * @buf:        buffer to store read data
379  *
380  * The hw generator calculates the error syndrome automatically. Therefor
381  * we need a special oob layout and handling.
382  */
383 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
384                                uint8_t *buf)
385 {
386         struct cafe_priv *cafe = mtd->priv;
387
388         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
389                      cafe_readl(cafe, NAND_ECC_RESULT),
390                      cafe_readl(cafe, NAND_ECC_SYN01));
391
392         chip->read_buf(mtd, buf, mtd->writesize);
393         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
394
395         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
396                 unsigned short syn[8], pat[4];
397                 int pos[4];
398                 u8 *oob = chip->oob_poi;
399                 int i, n;
400
401                 for (i=0; i<8; i+=2) {
402                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
403                         syn[i] = cafe->rs->index_of[tmp & 0xfff];
404                         syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
405                 }
406
407                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
408                                 pat);
409
410                 for (i = 0; i < n; i++) {
411                         int p = pos[i];
412
413                         /* The 12-bit symbols are mapped to bytes here */
414
415                         if (p > 1374) {
416                                 /* out of range */
417                                 n = -1374;
418                         } else if (p == 0) {
419                                 /* high four bits do not correspond to data */
420                                 if (pat[i] > 0xff)
421                                         n = -2048;
422                                 else
423                                         buf[0] ^= pat[i];
424                         } else if (p == 1365) {
425                                 buf[2047] ^= pat[i] >> 4;
426                                 oob[0] ^= pat[i] << 4;
427                         } else if (p > 1365) {
428                                 if ((p & 1) == 1) {
429                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
430                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
431                                 } else {
432                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
433                                         oob[3*p/2 - 2048] ^= pat[i];
434                                 }
435                         } else if ((p & 1) == 1) {
436                                 buf[3*p/2] ^= pat[i] >> 4;
437                                 buf[3*p/2 + 1] ^= pat[i] << 4;
438                         } else {
439                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
440                                 buf[3*p/2] ^= pat[i];
441                         }
442                 }
443
444                 if (n < 0) {
445                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
446                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
447                         for (i = 0; i < 0x5c; i += 4)
448                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
449                         mtd->ecc_stats.failed++;
450                 } else {
451                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
452                         mtd->ecc_stats.corrected += n;
453                 }
454         }
455
456         return 0;
457 }
458
459 static struct nand_ecclayout cafe_oobinfo_2048 = {
460         .eccbytes = 14,
461         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
462         .oobfree = {{14, 50}}
463 };
464
465 /* Ick. The BBT code really ought to be able to work this bit out
466    for itself from the above, at least for the 2KiB case */
467 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
468 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
469
470 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
471 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
472
473
474 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
475         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
476                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
477         .offs = 14,
478         .len = 4,
479         .veroffs = 18,
480         .maxblocks = 4,
481         .pattern = cafe_bbt_pattern_2048
482 };
483
484 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
485         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
486                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
487         .offs = 14,
488         .len = 4,
489         .veroffs = 18,
490         .maxblocks = 4,
491         .pattern = cafe_mirror_pattern_2048
492 };
493
494 static struct nand_ecclayout cafe_oobinfo_512 = {
495         .eccbytes = 14,
496         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
497         .oobfree = {{14, 2}}
498 };
499
500 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
501         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
502                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
503         .offs = 14,
504         .len = 1,
505         .veroffs = 15,
506         .maxblocks = 4,
507         .pattern = cafe_bbt_pattern_512
508 };
509
510 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
511         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
512                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
513         .offs = 14,
514         .len = 1,
515         .veroffs = 15,
516         .maxblocks = 4,
517         .pattern = cafe_mirror_pattern_512
518 };
519
520
521 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
522                                           struct nand_chip *chip, const uint8_t *buf)
523 {
524         struct cafe_priv *cafe = mtd->priv;
525
526         chip->write_buf(mtd, buf, mtd->writesize);
527         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
528
529         /* Set up ECC autogeneration */
530         cafe->ctl2 |= (1<<30);
531 }
532
533 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
534                                 const uint8_t *buf, int page, int cached, int raw)
535 {
536         int status;
537
538         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
539
540         if (unlikely(raw))
541                 chip->ecc.write_page_raw(mtd, chip, buf);
542         else
543                 chip->ecc.write_page(mtd, chip, buf);
544
545         /*
546          * Cached progamming disabled for now, Not sure if its worth the
547          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
548          */
549         cached = 0;
550
551         if (!cached || !(chip->options & NAND_CACHEPRG)) {
552
553                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
554                 status = chip->waitfunc(mtd, chip);
555                 /*
556                  * See if operation failed and additional status checks are
557                  * available
558                  */
559                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
560                         status = chip->errstat(mtd, chip, FL_WRITING, status,
561                                                page);
562
563                 if (status & NAND_STATUS_FAIL)
564                         return -EIO;
565         } else {
566                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
567                 status = chip->waitfunc(mtd, chip);
568         }
569
570 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
571         /* Send command to read back the data */
572         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
573
574         if (chip->verify_buf(mtd, buf, mtd->writesize))
575                 return -EIO;
576 #endif
577         return 0;
578 }
579
580 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
581 {
582         return 0;
583 }
584
585 /* F_2[X]/(X**6+X+1)  */
586 static unsigned short __devinit gf64_mul(u8 a, u8 b)
587 {
588         u8 c;
589         unsigned int i;
590
591         c = 0;
592         for (i = 0; i < 6; i++) {
593                 if (a & 1)
594                         c ^= b;
595                 a >>= 1;
596                 b <<= 1;
597                 if ((b & 0x40) != 0)
598                         b ^= 0x43;
599         }
600
601         return c;
602 }
603
604 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
605 static u16 __devinit gf4096_mul(u16 a, u16 b)
606 {
607         u8 ah, al, bh, bl, ch, cl;
608
609         ah = a >> 6;
610         al = a & 0x3f;
611         bh = b >> 6;
612         bl = b & 0x3f;
613
614         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
615         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
616
617         return (ch << 6) ^ cl;
618 }
619
620 static int __devinit cafe_mul(int x)
621 {
622         if (x == 0)
623                 return 1;
624         return gf4096_mul(x, 0xe01);
625 }
626
627 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
628                                      const struct pci_device_id *ent)
629 {
630         struct mtd_info *mtd;
631         struct cafe_priv *cafe;
632         uint32_t ctrl;
633         int err = 0;
634 #ifdef CONFIG_MTD_PARTITIONS
635         struct mtd_partition *parts;
636         int nr_parts;
637 #endif
638
639         /* Very old versions shared the same PCI ident for all three
640            functions on the chip. Verify the class too... */
641         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
642                 return -ENODEV;
643
644         err = pci_enable_device(pdev);
645         if (err)
646                 return err;
647
648         pci_set_master(pdev);
649
650         mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
651         if (!mtd) {
652                 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
653                 return  -ENOMEM;
654         }
655         cafe = (void *)(&mtd[1]);
656
657         mtd->dev.parent = &pdev->dev;
658         mtd->priv = cafe;
659         mtd->owner = THIS_MODULE;
660
661         cafe->pdev = pdev;
662         cafe->mmio = pci_iomap(pdev, 0, 0);
663         if (!cafe->mmio) {
664                 dev_warn(&pdev->dev, "failed to iomap\n");
665                 err = -ENOMEM;
666                 goto out_free_mtd;
667         }
668         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
669                                           &cafe->dmaaddr, GFP_KERNEL);
670         if (!cafe->dmabuf) {
671                 err = -ENOMEM;
672                 goto out_ior;
673         }
674         cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
675
676         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
677         if (!cafe->rs) {
678                 err = -ENOMEM;
679                 goto out_ior;
680         }
681
682         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
683         cafe->nand.dev_ready = cafe_device_ready;
684         cafe->nand.read_byte = cafe_read_byte;
685         cafe->nand.read_buf = cafe_read_buf;
686         cafe->nand.write_buf = cafe_write_buf;
687         cafe->nand.select_chip = cafe_select_chip;
688
689         cafe->nand.chip_delay = 0;
690
691         /* Enable the following for a flash based bad block table */
692         cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
693
694         if (skipbbt) {
695                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
696                 cafe->nand.block_bad = cafe_nand_block_bad;
697         }
698
699         if (numtimings && numtimings != 3) {
700                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
701         }
702
703         if (numtimings == 3) {
704                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
705                              timing[0], timing[1], timing[2]);
706         } else {
707                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
708                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
709                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
710
711                 if (timing[0] | timing[1] | timing[2]) {
712                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
713                                      timing[0], timing[1], timing[2]);
714                 } else {
715                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
716                         timing[0] = timing[1] = timing[2] = 0xffffffff;
717                 }
718         }
719
720         /* Start off by resetting the NAND controller completely */
721         cafe_writel(cafe, 1, NAND_RESET);
722         cafe_writel(cafe, 0, NAND_RESET);
723
724         cafe_writel(cafe, timing[0], NAND_TIMING1);
725         cafe_writel(cafe, timing[1], NAND_TIMING2);
726         cafe_writel(cafe, timing[2], NAND_TIMING3);
727
728         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
729         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
730                           "CAFE NAND", mtd);
731         if (err) {
732                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
733                 goto out_free_dma;
734         }
735
736         /* Disable master reset, enable NAND clock */
737         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
738         ctrl &= 0xffffeff0;
739         ctrl |= 0x00007000;
740         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
741         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
742         cafe_writel(cafe, 0, NAND_DMA_CTRL);
743
744         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
745         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
746
747         /* Set up DMA address */
748         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
749         if (sizeof(cafe->dmaaddr) > 4)
750                 /* Shift in two parts to shut the compiler up */
751                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
752         else
753                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
754
755         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
756                 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
757
758         /* Enable NAND IRQ in global IRQ mask register */
759         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
760         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
761                 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
762
763         /* Scan to find existence of the device */
764         if (nand_scan_ident(mtd, 2)) {
765                 err = -ENXIO;
766                 goto out_irq;
767         }
768
769         cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
770         if (mtd->writesize == 2048)
771                 cafe->ctl2 |= 1<<29; /* 2KiB page size */
772
773         /* Set up ECC according to the type of chip we found */
774         if (mtd->writesize == 2048) {
775                 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
776                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
777                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
778         } else if (mtd->writesize == 512) {
779                 cafe->nand.ecc.layout = &cafe_oobinfo_512;
780                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
781                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
782         } else {
783                 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
784                        mtd->writesize);
785                 goto out_irq;
786         }
787         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
788         cafe->nand.ecc.size = mtd->writesize;
789         cafe->nand.ecc.bytes = 14;
790         cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
791         cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
792         cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
793         cafe->nand.write_page = cafe_nand_write_page;
794         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
795         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
796         cafe->nand.ecc.read_page = cafe_nand_read_page;
797         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
798
799         err = nand_scan_tail(mtd);
800         if (err)
801                 goto out_irq;
802
803         pci_set_drvdata(pdev, mtd);
804
805         /* We register the whole device first, separate from the partitions */
806         add_mtd_device(mtd);
807
808 #ifdef CONFIG_MTD_PARTITIONS
809 #ifdef CONFIG_MTD_CMDLINE_PARTS
810         mtd->name = "cafe_nand";
811 #endif
812         nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
813         if (nr_parts > 0) {
814                 cafe->parts = parts;
815                 dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
816                 add_mtd_partitions(mtd, parts, nr_parts);
817         }
818 #endif
819         goto out;
820
821  out_irq:
822         /* Disable NAND IRQ in global IRQ mask register */
823         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
824         free_irq(pdev->irq, mtd);
825  out_free_dma:
826         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
827  out_ior:
828         pci_iounmap(pdev, cafe->mmio);
829  out_free_mtd:
830         kfree(mtd);
831  out:
832         return err;
833 }
834
835 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
836 {
837         struct mtd_info *mtd = pci_get_drvdata(pdev);
838         struct cafe_priv *cafe = mtd->priv;
839
840         del_mtd_device(mtd);
841         /* Disable NAND IRQ in global IRQ mask register */
842         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
843         free_irq(pdev->irq, mtd);
844         nand_release(mtd);
845         free_rs(cafe->rs);
846         pci_iounmap(pdev, cafe->mmio);
847         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
848         kfree(mtd);
849 }
850
851 static struct pci_device_id cafe_nand_tbl[] = {
852         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
853           PCI_ANY_ID, PCI_ANY_ID },
854         { }
855 };
856
857 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
858
859 static int cafe_nand_resume(struct pci_dev *pdev)
860 {
861         uint32_t ctrl;
862         struct mtd_info *mtd = pci_get_drvdata(pdev);
863         struct cafe_priv *cafe = mtd->priv;
864
865        /* Start off by resetting the NAND controller completely */
866         cafe_writel(cafe, 1, NAND_RESET);
867         cafe_writel(cafe, 0, NAND_RESET);
868         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
869
870         /* Restore timing configuration */
871         cafe_writel(cafe, timing[0], NAND_TIMING1);
872         cafe_writel(cafe, timing[1], NAND_TIMING2);
873         cafe_writel(cafe, timing[2], NAND_TIMING3);
874
875         /* Disable master reset, enable NAND clock */
876         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
877         ctrl &= 0xffffeff0;
878         ctrl |= 0x00007000;
879         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
880         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
881         cafe_writel(cafe, 0, NAND_DMA_CTRL);
882         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
883         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
884
885         /* Set up DMA address */
886         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
887         if (sizeof(cafe->dmaaddr) > 4)
888         /* Shift in two parts to shut the compiler up */
889                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
890         else
891                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
892
893         /* Enable NAND IRQ in global IRQ mask register */
894         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
895         return 0;
896 }
897
898 static struct pci_driver cafe_nand_pci_driver = {
899         .name = "CAFÉ NAND",
900         .id_table = cafe_nand_tbl,
901         .probe = cafe_nand_probe,
902         .remove = __devexit_p(cafe_nand_remove),
903         .resume = cafe_nand_resume,
904 };
905
906 static int cafe_nand_init(void)
907 {
908         return pci_register_driver(&cafe_nand_pci_driver);
909 }
910
911 static void cafe_nand_exit(void)
912 {
913         pci_unregister_driver(&cafe_nand_pci_driver);
914 }
915 module_init(cafe_nand_init);
916 module_exit(cafe_nand_exit);
917
918 MODULE_LICENSE("GPL");
919 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
920 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");