]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/cafe_nand.c
[MTD] [NAND] Rename cafe.c to cafe_nand.c and remove the multi-obj magic
[karo-tx-linux.git] / drivers / mtd / nand / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * Copyright © 2006 Red Hat, Inc.
5  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6  */
7
8 #define DEBUG
9
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/rslib.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
19 #include <asm/io.h>
20
21 #define CAFE_NAND_CTRL1         0x00
22 #define CAFE_NAND_CTRL2         0x04
23 #define CAFE_NAND_CTRL3         0x08
24 #define CAFE_NAND_STATUS        0x0c
25 #define CAFE_NAND_IRQ           0x10
26 #define CAFE_NAND_IRQ_MASK      0x14
27 #define CAFE_NAND_DATA_LEN      0x18
28 #define CAFE_NAND_ADDR1         0x1c
29 #define CAFE_NAND_ADDR2         0x20
30 #define CAFE_NAND_TIMING1       0x24
31 #define CAFE_NAND_TIMING2       0x28
32 #define CAFE_NAND_TIMING3       0x2c
33 #define CAFE_NAND_NONMEM        0x30
34 #define CAFE_NAND_ECC_RESULT    0x3C
35 #define CAFE_NAND_DMA_CTRL      0x40
36 #define CAFE_NAND_DMA_ADDR0     0x44
37 #define CAFE_NAND_DMA_ADDR1     0x48
38 #define CAFE_NAND_ECC_SYN01     0x50
39 #define CAFE_NAND_ECC_SYN23     0x54
40 #define CAFE_NAND_ECC_SYN45     0x58
41 #define CAFE_NAND_ECC_SYN67     0x5c
42 #define CAFE_NAND_READ_DATA     0x1000
43 #define CAFE_NAND_WRITE_DATA    0x2000
44
45 #define CAFE_GLOBAL_CTRL        0x3004
46 #define CAFE_GLOBAL_IRQ         0x3008
47 #define CAFE_GLOBAL_IRQ_MASK    0x300c
48 #define CAFE_NAND_RESET         0x3034
49
50 struct cafe_priv {
51         struct nand_chip nand;
52         struct pci_dev *pdev;
53         void __iomem *mmio;
54         struct rs_control *rs;
55         uint32_t ctl1;
56         uint32_t ctl2;
57         int datalen;
58         int nr_data;
59         int data_pos;
60         int page_addr;
61         dma_addr_t dmaaddr;
62         unsigned char *dmabuf;
63 };
64
65 static int usedma = 1;
66 module_param(usedma, int, 0644);
67
68 static int skipbbt = 0;
69 module_param(skipbbt, int, 0644);
70
71 static int debug = 0;
72 module_param(debug, int, 0644);
73
74 static int regdebug = 0;
75 module_param(regdebug, int, 0644);
76
77 static int checkecc = 1;
78 module_param(checkecc, int, 0644);
79
80 static int numtimings;
81 static int timing[3];
82 module_param_array(timing, int, &numtimings, 0644);
83
84 /* Hrm. Why isn't this already conditional on something in the struct device? */
85 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
86
87 /* Make it easier to switch to PIO if we need to */
88 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
89 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
90
91 static int cafe_device_ready(struct mtd_info *mtd)
92 {
93         struct cafe_priv *cafe = mtd->priv;
94         int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
95         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
96
97         cafe_writel(cafe, irqs, NAND_IRQ);
98
99         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
100                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
101                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
102
103         return result;
104 }
105
106
107 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
108 {
109         struct cafe_priv *cafe = mtd->priv;
110
111         if (usedma)
112                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
113         else
114                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
115
116         cafe->datalen += len;
117
118         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
119                 len, cafe->datalen);
120 }
121
122 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
123 {
124         struct cafe_priv *cafe = mtd->priv;
125
126         if (usedma)
127                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
128         else
129                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
130
131         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
132                   len, cafe->datalen);
133         cafe->datalen += len;
134 }
135
136 static uint8_t cafe_read_byte(struct mtd_info *mtd)
137 {
138         struct cafe_priv *cafe = mtd->priv;
139         uint8_t d;
140
141         cafe_read_buf(mtd, &d, 1);
142         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
143
144         return d;
145 }
146
147 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
148                               int column, int page_addr)
149 {
150         struct cafe_priv *cafe = mtd->priv;
151         int adrbytes = 0;
152         uint32_t ctl1;
153         uint32_t doneint = 0x80000000;
154
155         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
156                 command, column, page_addr);
157
158         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
159                 /* Second half of a command we already calculated */
160                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
161                 ctl1 = cafe->ctl1;
162                 cafe->ctl2 &= ~(1<<30);
163                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
164                           cafe->ctl1, cafe->nr_data);
165                 goto do_command;
166         }
167         /* Reset ECC engine */
168         cafe_writel(cafe, 0, NAND_CTRL2);
169
170         /* Emulate NAND_CMD_READOOB on large-page chips */
171         if (mtd->writesize > 512 &&
172             command == NAND_CMD_READOOB) {
173                 column += mtd->writesize;
174                 command = NAND_CMD_READ0;
175         }
176
177         /* FIXME: Do we need to send read command before sending data
178            for small-page chips, to position the buffer correctly? */
179
180         if (column != -1) {
181                 cafe_writel(cafe, column, NAND_ADDR1);
182                 adrbytes = 2;
183                 if (page_addr != -1)
184                         goto write_adr2;
185         } else if (page_addr != -1) {
186                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
187                 page_addr >>= 16;
188         write_adr2:
189                 cafe_writel(cafe, page_addr, NAND_ADDR2);
190                 adrbytes += 2;
191                 if (mtd->size > mtd->writesize << 16)
192                         adrbytes++;
193         }
194
195         cafe->data_pos = cafe->datalen = 0;
196
197         /* Set command valid bit */
198         ctl1 = 0x80000000 | command;
199
200         /* Set RD or WR bits as appropriate */
201         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
202                 ctl1 |= (1<<26); /* rd */
203                 /* Always 5 bytes, for now */
204                 cafe->datalen = 4;
205                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
206                 adrbytes = 1;
207         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
208                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
209                 ctl1 |= 1<<26; /* rd */
210                 /* For now, assume just read to end of page */
211                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
212         } else if (command == NAND_CMD_SEQIN)
213                 ctl1 |= 1<<25; /* wr */
214
215         /* Set number of address bytes */
216         if (adrbytes)
217                 ctl1 |= ((adrbytes-1)|8) << 27;
218
219         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
220                 /* Ignore the first command of a pair; the hardware
221                    deals with them both at once, later */
222                 cafe->ctl1 = ctl1;
223                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
224                           cafe->ctl1, cafe->datalen);
225                 return;
226         }
227         /* RNDOUT and READ0 commands need a following byte */
228         if (command == NAND_CMD_RNDOUT)
229                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
230         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
231                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
232
233  do_command:
234         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
235                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
236
237         /* NB: The datasheet lies -- we really should be subtracting 1 here */
238         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
239         cafe_writel(cafe, 0x90000000, NAND_IRQ);
240         if (usedma && (ctl1 & (3<<25))) {
241                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
242                 /* If WR or RD bits set, set up DMA */
243                 if (ctl1 & (1<<26)) {
244                         /* It's a read */
245                         dmactl |= (1<<29);
246                         /* ... so it's done when the DMA is done, not just
247                            the command. */
248                         doneint = 0x10000000;
249                 }
250                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
251         }
252         cafe->datalen = 0;
253
254         if (unlikely(regdebug)) {
255                 int i;
256                 printk("About to write command %08x to register 0\n", ctl1);
257                 for (i=4; i< 0x5c; i+=4)
258                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
259         }
260
261         cafe_writel(cafe, ctl1, NAND_CTRL1);
262         /* Apply this short delay always to ensure that we do wait tWB in
263          * any case on any machine. */
264         ndelay(100);
265
266         if (1) {
267                 int c;
268                 uint32_t irqs;
269
270                 for (c = 500000; c != 0; c--) {
271                         irqs = cafe_readl(cafe, NAND_IRQ);
272                         if (irqs & doneint)
273                                 break;
274                         udelay(1);
275                         if (!(c % 100000))
276                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
277                         cpu_relax();
278                 }
279                 cafe_writel(cafe, doneint, NAND_IRQ);
280                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
281                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
282         }
283
284         WARN_ON(cafe->ctl2 & (1<<30));
285
286         switch (command) {
287
288         case NAND_CMD_CACHEDPROG:
289         case NAND_CMD_PAGEPROG:
290         case NAND_CMD_ERASE1:
291         case NAND_CMD_ERASE2:
292         case NAND_CMD_SEQIN:
293         case NAND_CMD_RNDIN:
294         case NAND_CMD_STATUS:
295         case NAND_CMD_DEPLETE1:
296         case NAND_CMD_RNDOUT:
297         case NAND_CMD_STATUS_ERROR:
298         case NAND_CMD_STATUS_ERROR0:
299         case NAND_CMD_STATUS_ERROR1:
300         case NAND_CMD_STATUS_ERROR2:
301         case NAND_CMD_STATUS_ERROR3:
302                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
303                 return;
304         }
305         nand_wait_ready(mtd);
306         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
307 }
308
309 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
310 {
311         //struct cafe_priv *cafe = mtd->priv;
312         //      cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
313 }
314
315 static int cafe_nand_interrupt(int irq, void *id)
316 {
317         struct mtd_info *mtd = id;
318         struct cafe_priv *cafe = mtd->priv;
319         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
320         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
321         if (!irqs)
322                 return IRQ_NONE;
323
324         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
325         return IRQ_HANDLED;
326 }
327
328 static void cafe_nand_bug(struct mtd_info *mtd)
329 {
330         BUG();
331 }
332
333 static int cafe_nand_write_oob(struct mtd_info *mtd,
334                                struct nand_chip *chip, int page)
335 {
336         int status = 0;
337
338         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
339         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
340         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
341         status = chip->waitfunc(mtd, chip);
342
343         return status & NAND_STATUS_FAIL ? -EIO : 0;
344 }
345
346 /* Don't use -- use nand_read_oob_std for now */
347 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
348                               int page, int sndcmd)
349 {
350         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
351         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
352         return 1;
353 }
354 /**
355  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
356  * @mtd:        mtd info structure
357  * @chip:       nand chip info structure
358  * @buf:        buffer to store read data
359  *
360  * The hw generator calculates the error syndrome automatically. Therefor
361  * we need a special oob layout and handling.
362  */
363 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
364                                uint8_t *buf)
365 {
366         struct cafe_priv *cafe = mtd->priv;
367
368         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
369                      cafe_readl(cafe, NAND_ECC_RESULT),
370                      cafe_readl(cafe, NAND_ECC_SYN01));
371
372         chip->read_buf(mtd, buf, mtd->writesize);
373         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
374
375         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
376                 unsigned short syn[8], pat[4];
377                 int pos[4];
378                 u8 *oob = chip->oob_poi;
379                 int i, n;
380
381                 for (i=0; i<8; i+=2) {
382                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
383                         syn[i] = cafe->rs->index_of[tmp & 0xfff];
384                         syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
385                 }
386
387                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
388                                 pat);
389
390                 for (i = 0; i < n; i++) {
391                         int p = pos[i];
392
393                         /* The 12-bit symbols are mapped to bytes here */
394
395                         if (p > 1374) {
396                                 /* out of range */
397                                 n = -1374;
398                         } else if (p == 0) {
399                                 /* high four bits do not correspond to data */
400                                 if (pat[i] > 0xff)
401                                         n = -2048;
402                                 else
403                                         buf[0] ^= pat[i];
404                         } else if (p == 1365) {
405                                 buf[2047] ^= pat[i] >> 4;
406                                 oob[0] ^= pat[i] << 4;
407                         } else if (p > 1365) {
408                                 if ((p & 1) == 1) {
409                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
410                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
411                                 } else {
412                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
413                                         oob[3*p/2 - 2048] ^= pat[i];
414                                 }
415                         } else if ((p & 1) == 1) {
416                                 buf[3*p/2] ^= pat[i] >> 4;
417                                 buf[3*p/2 + 1] ^= pat[i] << 4;
418                         } else {
419                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
420                                 buf[3*p/2] ^= pat[i];
421                         }
422                 }
423
424                 if (n < 0) {
425                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
426                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
427                         for (i = 0; i < 0x5c; i += 4)
428                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
429                         mtd->ecc_stats.failed++;
430                 } else {
431                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
432                         mtd->ecc_stats.corrected += n;
433                 }
434         }
435
436         return 0;
437 }
438
439 static struct nand_ecclayout cafe_oobinfo_2048 = {
440         .eccbytes = 14,
441         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
442         .oobfree = {{14, 50}}
443 };
444
445 /* Ick. The BBT code really ought to be able to work this bit out
446    for itself from the above, at least for the 2KiB case */
447 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
448 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
449
450 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
451 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
452
453
454 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
455         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
456                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
457         .offs = 14,
458         .len = 4,
459         .veroffs = 18,
460         .maxblocks = 4,
461         .pattern = cafe_bbt_pattern_2048
462 };
463
464 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
465         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
466                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
467         .offs = 14,
468         .len = 4,
469         .veroffs = 18,
470         .maxblocks = 4,
471         .pattern = cafe_mirror_pattern_2048
472 };
473
474 static struct nand_ecclayout cafe_oobinfo_512 = {
475         .eccbytes = 14,
476         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
477         .oobfree = {{14, 2}}
478 };
479
480 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
481         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
482                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
483         .offs = 14,
484         .len = 1,
485         .veroffs = 15,
486         .maxblocks = 4,
487         .pattern = cafe_bbt_pattern_512
488 };
489
490 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
491         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
492                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
493         .offs = 14,
494         .len = 1,
495         .veroffs = 15,
496         .maxblocks = 4,
497         .pattern = cafe_mirror_pattern_512
498 };
499
500
501 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
502                                           struct nand_chip *chip, const uint8_t *buf)
503 {
504         struct cafe_priv *cafe = mtd->priv;
505
506         chip->write_buf(mtd, buf, mtd->writesize);
507         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
508
509         /* Set up ECC autogeneration */
510         cafe->ctl2 |= (1<<30);
511 }
512
513 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
514                                 const uint8_t *buf, int page, int cached, int raw)
515 {
516         int status;
517
518         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
519
520         if (unlikely(raw))
521                 chip->ecc.write_page_raw(mtd, chip, buf);
522         else
523                 chip->ecc.write_page(mtd, chip, buf);
524
525         /*
526          * Cached progamming disabled for now, Not sure if its worth the
527          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
528          */
529         cached = 0;
530
531         if (!cached || !(chip->options & NAND_CACHEPRG)) {
532
533                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
534                 status = chip->waitfunc(mtd, chip);
535                 /*
536                  * See if operation failed and additional status checks are
537                  * available
538                  */
539                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
540                         status = chip->errstat(mtd, chip, FL_WRITING, status,
541                                                page);
542
543                 if (status & NAND_STATUS_FAIL)
544                         return -EIO;
545         } else {
546                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
547                 status = chip->waitfunc(mtd, chip);
548         }
549
550 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
551         /* Send command to read back the data */
552         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
553
554         if (chip->verify_buf(mtd, buf, mtd->writesize))
555                 return -EIO;
556 #endif
557         return 0;
558 }
559
560 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
561 {
562         return 0;
563 }
564
565 /* F_2[X]/(X**6+X+1)  */
566 static unsigned short __devinit gf64_mul(u8 a, u8 b)
567 {
568         u8 c;
569         unsigned int i;
570
571         c = 0;
572         for (i = 0; i < 6; i++) {
573                 if (a & 1)
574                         c ^= b;
575                 a >>= 1;
576                 b <<= 1;
577                 if ((b & 0x40) != 0)
578                         b ^= 0x43;
579         }
580
581         return c;
582 }
583
584 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
585 static u16 __devinit gf4096_mul(u16 a, u16 b)
586 {
587         u8 ah, al, bh, bl, ch, cl;
588
589         ah = a >> 6;
590         al = a & 0x3f;
591         bh = b >> 6;
592         bl = b & 0x3f;
593
594         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
595         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
596
597         return (ch << 6) ^ cl;
598 }
599
600 static int __devinit cafe_mul(int x)
601 {
602         if (x == 0)
603                 return 1;
604         return gf4096_mul(x, 0xe01);
605 }
606
607 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
608                                      const struct pci_device_id *ent)
609 {
610         struct mtd_info *mtd;
611         struct cafe_priv *cafe;
612         uint32_t ctrl;
613         int err = 0;
614
615         err = pci_enable_device(pdev);
616         if (err)
617                 return err;
618
619         pci_set_master(pdev);
620
621         mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
622         if (!mtd) {
623                 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
624                 return  -ENOMEM;
625         }
626         cafe = (void *)(&mtd[1]);
627
628         mtd->priv = cafe;
629         mtd->owner = THIS_MODULE;
630
631         cafe->pdev = pdev;
632         cafe->mmio = pci_iomap(pdev, 0, 0);
633         if (!cafe->mmio) {
634                 dev_warn(&pdev->dev, "failed to iomap\n");
635                 err = -ENOMEM;
636                 goto out_free_mtd;
637         }
638         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
639                                           &cafe->dmaaddr, GFP_KERNEL);
640         if (!cafe->dmabuf) {
641                 err = -ENOMEM;
642                 goto out_ior;
643         }
644         cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
645
646         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
647         if (!cafe->rs) {
648                 err = -ENOMEM;
649                 goto out_ior;
650         }
651
652         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
653         cafe->nand.dev_ready = cafe_device_ready;
654         cafe->nand.read_byte = cafe_read_byte;
655         cafe->nand.read_buf = cafe_read_buf;
656         cafe->nand.write_buf = cafe_write_buf;
657         cafe->nand.select_chip = cafe_select_chip;
658
659         cafe->nand.chip_delay = 0;
660
661         /* Enable the following for a flash based bad block table */
662         cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
663
664         if (skipbbt) {
665                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
666                 cafe->nand.block_bad = cafe_nand_block_bad;
667         }
668
669         if (numtimings && numtimings != 3) {
670                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
671         }
672
673         if (numtimings == 3) {
674                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
675                              timing[0], timing[1], timing[2]);
676         } else {
677                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
678                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
679                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
680
681                 if (timing[0] | timing[1] | timing[2]) {
682                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
683                                      timing[0], timing[1], timing[2]);
684                 } else {
685                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
686                         timing[0] = timing[1] = timing[2] = 0xffffffff;
687                 }
688         }
689
690         /* Start off by resetting the NAND controller completely */
691         cafe_writel(cafe, 1, NAND_RESET);
692         cafe_writel(cafe, 0, NAND_RESET);
693
694         cafe_writel(cafe, timing[0], NAND_TIMING1);
695         cafe_writel(cafe, timing[1], NAND_TIMING2);
696         cafe_writel(cafe, timing[2], NAND_TIMING3);
697
698         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
699         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
700                           "CAFE NAND", mtd);
701         if (err) {
702                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
703                 goto out_free_dma;
704         }
705
706         /* Disable master reset, enable NAND clock */
707         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
708         ctrl &= 0xffffeff0;
709         ctrl |= 0x00007000;
710         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
711         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
712         cafe_writel(cafe, 0, NAND_DMA_CTRL);
713
714         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
715         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
716
717         /* Set up DMA address */
718         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
719         if (sizeof(cafe->dmaaddr) > 4)
720                 /* Shift in two parts to shut the compiler up */
721                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
722         else
723                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
724
725         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
726                 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
727
728         /* Enable NAND IRQ in global IRQ mask register */
729         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
730         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
731                 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
732
733         /* Scan to find existence of the device */
734         if (nand_scan_ident(mtd, 1)) {
735                 err = -ENXIO;
736                 goto out_irq;
737         }
738
739         cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
740         if (mtd->writesize == 2048)
741                 cafe->ctl2 |= 1<<29; /* 2KiB page size */
742
743         /* Set up ECC according to the type of chip we found */
744         if (mtd->writesize == 2048) {
745                 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
746                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
747                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
748         } else if (mtd->writesize == 512) {
749                 cafe->nand.ecc.layout = &cafe_oobinfo_512;
750                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
751                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
752         } else {
753                 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
754                        mtd->writesize);
755                 goto out_irq;
756         }
757         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
758         cafe->nand.ecc.size = mtd->writesize;
759         cafe->nand.ecc.bytes = 14;
760         cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
761         cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
762         cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
763         cafe->nand.write_page = cafe_nand_write_page;
764         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
765         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
766         cafe->nand.ecc.read_page = cafe_nand_read_page;
767         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
768
769         err = nand_scan_tail(mtd);
770         if (err)
771                 goto out_irq;
772
773         pci_set_drvdata(pdev, mtd);
774         add_mtd_device(mtd);
775         goto out;
776
777  out_irq:
778         /* Disable NAND IRQ in global IRQ mask register */
779         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
780         free_irq(pdev->irq, mtd);
781  out_free_dma:
782         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
783  out_ior:
784         pci_iounmap(pdev, cafe->mmio);
785  out_free_mtd:
786         kfree(mtd);
787  out:
788         return err;
789 }
790
791 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
792 {
793         struct mtd_info *mtd = pci_get_drvdata(pdev);
794         struct cafe_priv *cafe = mtd->priv;
795
796         del_mtd_device(mtd);
797         /* Disable NAND IRQ in global IRQ mask register */
798         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
799         free_irq(pdev->irq, mtd);
800         nand_release(mtd);
801         free_rs(cafe->rs);
802         pci_iounmap(pdev, cafe->mmio);
803         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
804         kfree(mtd);
805 }
806
807 static struct pci_device_id cafe_nand_tbl[] = {
808         { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
809 };
810
811 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
812
813 static struct pci_driver cafe_nand_pci_driver = {
814         .name = "CAFÉ NAND",
815         .id_table = cafe_nand_tbl,
816         .probe = cafe_nand_probe,
817         .remove = __devexit_p(cafe_nand_remove),
818 #ifdef CONFIG_PMx
819         .suspend = cafe_nand_suspend,
820         .resume = cafe_nand_resume,
821 #endif
822 };
823
824 static int cafe_nand_init(void)
825 {
826         return pci_register_driver(&cafe_nand_pci_driver);
827 }
828
829 static void cafe_nand_exit(void)
830 {
831         pci_unregister_driver(&cafe_nand_pci_driver);
832 }
833 module_init(cafe_nand_init);
834 module_exit(cafe_nand_exit);
835
836 MODULE_LICENSE("GPL");
837 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
838 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");