]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/fsl_elbc_nand.c
mtd: nand: use elbc_fcm_ctrl->oob to set FPAR_MS bit of FPAR
[mv-sheeva.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78 };
79
80 /* These map to the positions used by the FCM hardware ECC generator */
81
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
84         .eccbytes = 3,
85         .eccpos = {6, 7, 8},
86         .oobfree = { {0, 5}, {9, 7} },
87 };
88
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
91         .eccbytes = 3,
92         .eccpos = {8, 9, 10},
93         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
94 };
95
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
98         .eccbytes = 12,
99         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
105         .eccbytes = 12,
106         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
108 };
109
110 /*
111  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112  * 1, so we have to adjust bad block pattern. This pattern should be used for
113  * x8 chips only. So far hardware does not support x16 chips anyway.
114  */
115 static u8 scan_ff_pattern[] = { 0xff, };
116
117 static struct nand_bbt_descr largepage_memorybased = {
118         .options = 0,
119         .offs = 0,
120         .len = 1,
121         .pattern = scan_ff_pattern,
122 };
123
124 /*
125  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126  * interfere with ECC positions, that's why we implement our own descriptors.
127  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
128  */
129 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
131
132 static struct nand_bbt_descr bbt_main_descr = {
133         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
134                    NAND_BBT_2BIT | NAND_BBT_VERSION,
135         .offs = 11,
136         .len = 4,
137         .veroffs = 15,
138         .maxblocks = 4,
139         .pattern = bbt_pattern,
140 };
141
142 static struct nand_bbt_descr bbt_mirror_descr = {
143         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
144                    NAND_BBT_2BIT | NAND_BBT_VERSION,
145         .offs = 11,
146         .len = 4,
147         .veroffs = 15,
148         .maxblocks = 4,
149         .pattern = mirror_pattern,
150 };
151
152 /*=================================*/
153
154 /*
155  * Set up the FCM hardware block and page address fields, and the fcm
156  * structure addr field to point to the correct FCM buffer in memory
157  */
158 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
159 {
160         struct nand_chip *chip = mtd->priv;
161         struct fsl_elbc_mtd *priv = chip->priv;
162         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
163         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
164         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
165         int buf_num;
166
167         elbc_fcm_ctrl->page = page_addr;
168
169         out_be32(&lbc->fbar,
170                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
171
172         if (priv->page_size) {
173                 out_be32(&lbc->fpar,
174                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
175                          (oob ? FPAR_LP_MS : 0) | column);
176                 buf_num = (page_addr & 1) << 2;
177         } else {
178                 out_be32(&lbc->fpar,
179                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
180                          (oob ? FPAR_SP_MS : 0) | column);
181                 buf_num = page_addr & 7;
182         }
183
184         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
185         elbc_fcm_ctrl->index = column;
186
187         /* for OOB data point to the second half of the buffer */
188         if (oob)
189                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
190
191         dev_vdbg(priv->dev, "set_addr: bank=%d, "
192                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
193                             "index %x, pes %d ps %d\n",
194                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
195                  elbc_fcm_ctrl->index,
196                  chip->phys_erase_shift, chip->page_shift);
197 }
198
199 /*
200  * execute FCM command and wait for it to complete
201  */
202 static int fsl_elbc_run_command(struct mtd_info *mtd)
203 {
204         struct nand_chip *chip = mtd->priv;
205         struct fsl_elbc_mtd *priv = chip->priv;
206         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
207         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
208         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
209
210         /* Setup the FMR[OP] to execute without write protection */
211         out_be32(&lbc->fmr, priv->fmr | 3);
212         if (elbc_fcm_ctrl->use_mdr)
213                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
214
215         dev_vdbg(priv->dev,
216                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
217                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
218         dev_vdbg(priv->dev,
219                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
220                  "fbcr=%08x bank=%d\n",
221                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
222                  in_be32(&lbc->fbcr), priv->bank);
223
224         ctrl->irq_status = 0;
225         /* execute special operation */
226         out_be32(&lbc->lsor, priv->bank);
227
228         /* wait for FCM complete flag or timeout */
229         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
230                            FCM_TIMEOUT_MSECS * HZ/1000);
231         elbc_fcm_ctrl->status = ctrl->irq_status;
232         /* store mdr value in case it was needed */
233         if (elbc_fcm_ctrl->use_mdr)
234                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
235
236         elbc_fcm_ctrl->use_mdr = 0;
237
238         if (elbc_fcm_ctrl->status != LTESR_CC) {
239                 dev_info(priv->dev,
240                          "command failed: fir %x fcr %x status %x mdr %x\n",
241                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
242                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
243                 return -EIO;
244         }
245
246         if (chip->ecc.mode != NAND_ECC_HW)
247                 return 0;
248
249         if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
250                 uint32_t lteccr = in_be32(&lbc->lteccr);
251                 /*
252                  * if command was a full page read and the ELBC
253                  * has the LTECCR register, then bits 12-15 (ppc order) of
254                  * LTECCR indicates which 512 byte sub-pages had fixed errors.
255                  * bits 28-31 are uncorrectable errors, marked elsewhere.
256                  * for small page nand only 1 bit is used.
257                  * if the ELBC doesn't have the lteccr register it reads 0
258                  */
259                 if (lteccr & 0x000F000F)
260                         out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
261                 if (lteccr & 0x000F0000)
262                         mtd->ecc_stats.corrected++;
263         }
264
265         return 0;
266 }
267
268 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
269 {
270         struct fsl_elbc_mtd *priv = chip->priv;
271         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
272         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
273
274         if (priv->page_size) {
275                 out_be32(&lbc->fir,
276                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
277                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
278                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
279                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
280                          (FIR_OP_RBW << FIR_OP4_SHIFT));
281
282                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
283                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
284         } else {
285                 out_be32(&lbc->fir,
286                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
287                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
288                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
289                          (FIR_OP_RBW << FIR_OP3_SHIFT));
290
291                 if (oob)
292                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
293                 else
294                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
295         }
296 }
297
298 /* cmdfunc send commands to the FCM */
299 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
300                              int column, int page_addr)
301 {
302         struct nand_chip *chip = mtd->priv;
303         struct fsl_elbc_mtd *priv = chip->priv;
304         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
305         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
306         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
307
308         elbc_fcm_ctrl->use_mdr = 0;
309
310         /* clear the read buffer */
311         elbc_fcm_ctrl->read_bytes = 0;
312         if (command != NAND_CMD_PAGEPROG)
313                 elbc_fcm_ctrl->index = 0;
314
315         switch (command) {
316         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
317         case NAND_CMD_READ1:
318                 column += 256;
319
320         /* fall-through */
321         case NAND_CMD_READ0:
322                 dev_dbg(priv->dev,
323                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
324                         " 0x%x, column: 0x%x.\n", page_addr, column);
325
326
327                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
328                 set_addr(mtd, 0, page_addr, 0);
329
330                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
331                 elbc_fcm_ctrl->index += column;
332
333                 fsl_elbc_do_read(chip, 0);
334                 fsl_elbc_run_command(mtd);
335                 return;
336
337         /* READOOB reads only the OOB because no ECC is performed. */
338         case NAND_CMD_READOOB:
339                 dev_vdbg(priv->dev,
340                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
341                          " 0x%x, column: 0x%x.\n", page_addr, column);
342
343                 out_be32(&lbc->fbcr, mtd->oobsize - column);
344                 set_addr(mtd, column, page_addr, 1);
345
346                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
347
348                 fsl_elbc_do_read(chip, 1);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* READID must read all 5 possible bytes while CEB is active */
353         case NAND_CMD_READID:
354                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
355
356                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
357                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
358                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
359                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
360                 /* nand_get_flash_type() reads 8 bytes of entire ID string */
361                 out_be32(&lbc->fbcr, 8);
362                 elbc_fcm_ctrl->read_bytes = 8;
363                 elbc_fcm_ctrl->use_mdr = 1;
364                 elbc_fcm_ctrl->mdr = 0;
365
366                 set_addr(mtd, 0, 0, 0);
367                 fsl_elbc_run_command(mtd);
368                 return;
369
370         /* ERASE1 stores the block and page address */
371         case NAND_CMD_ERASE1:
372                 dev_vdbg(priv->dev,
373                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
374                          "page_addr: 0x%x.\n", page_addr);
375                 set_addr(mtd, 0, page_addr, 0);
376                 return;
377
378         /* ERASE2 uses the block and page address from ERASE1 */
379         case NAND_CMD_ERASE2:
380                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
381
382                 out_be32(&lbc->fir,
383                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
384                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
385                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
386                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
387                          (FIR_OP_RS  << FIR_OP4_SHIFT));
388
389                 out_be32(&lbc->fcr,
390                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
391                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
392                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
393
394                 out_be32(&lbc->fbcr, 0);
395                 elbc_fcm_ctrl->read_bytes = 0;
396                 elbc_fcm_ctrl->use_mdr = 1;
397
398                 fsl_elbc_run_command(mtd);
399                 return;
400
401         /* SEQIN sets up the addr buffer and all registers except the length */
402         case NAND_CMD_SEQIN: {
403                 __be32 fcr;
404                 dev_vdbg(priv->dev,
405                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
406                          "page_addr: 0x%x, column: 0x%x.\n",
407                          page_addr, column);
408
409                 elbc_fcm_ctrl->column = column;
410                 elbc_fcm_ctrl->use_mdr = 1;
411
412                 if (column >= mtd->writesize) {
413                         /* OOB area */
414                         column -= mtd->writesize;
415                         elbc_fcm_ctrl->oob = 1;
416                 } else {
417                         WARN_ON(column != 0);
418                         elbc_fcm_ctrl->oob = 0;
419                 }
420
421                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
422                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
423                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
424
425                 if (priv->page_size) {
426                         out_be32(&lbc->fir,
427                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
428                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
429                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
430                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
431                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
432                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
433                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
434                 } else {
435                         out_be32(&lbc->fir,
436                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
437                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
438                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
439                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
440                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
441                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
442                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
443                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
444
445                         if (elbc_fcm_ctrl->oob)
446                                 /* OOB area --> READOOB */
447                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
448                         else
449                                 /* First 256 bytes --> READ0 */
450                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
451                 }
452
453                 out_be32(&lbc->fcr, fcr);
454                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
455                 return;
456         }
457
458         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
459         case NAND_CMD_PAGEPROG: {
460                 dev_vdbg(priv->dev,
461                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
462                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
463
464                 /* if the write did not start at 0 or is not a full page
465                  * then set the exact length, otherwise use a full page
466                  * write so the HW generates the ECC.
467                  */
468                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
469                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
470                         out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
471                 else
472                         out_be32(&lbc->fbcr, 0);
473
474                 fsl_elbc_run_command(mtd);
475                 return;
476         }
477
478         /* CMD_STATUS must read the status byte while CEB is active */
479         /* Note - it does not wait for the ready line */
480         case NAND_CMD_STATUS:
481                 out_be32(&lbc->fir,
482                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
483                          (FIR_OP_RBW << FIR_OP1_SHIFT));
484                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
485                 out_be32(&lbc->fbcr, 1);
486                 set_addr(mtd, 0, 0, 0);
487                 elbc_fcm_ctrl->read_bytes = 1;
488
489                 fsl_elbc_run_command(mtd);
490
491                 /* The chip always seems to report that it is
492                  * write-protected, even when it is not.
493                  */
494                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
495                 return;
496
497         /* RESET without waiting for the ready line */
498         case NAND_CMD_RESET:
499                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
500                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
501                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
502                 fsl_elbc_run_command(mtd);
503                 return;
504
505         default:
506                 dev_err(priv->dev,
507                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
508                         command);
509         }
510 }
511
512 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
513 {
514         /* The hardware does not seem to support multiple
515          * chips per bank.
516          */
517 }
518
519 /*
520  * Write buf to the FCM Controller Data Buffer
521  */
522 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
523 {
524         struct nand_chip *chip = mtd->priv;
525         struct fsl_elbc_mtd *priv = chip->priv;
526         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
527         unsigned int bufsize = mtd->writesize + mtd->oobsize;
528
529         if (len <= 0) {
530                 dev_err(priv->dev, "write_buf of %d bytes", len);
531                 elbc_fcm_ctrl->status = 0;
532                 return;
533         }
534
535         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
536                 dev_err(priv->dev,
537                         "write_buf beyond end of buffer "
538                         "(%d requested, %u available)\n",
539                         len, bufsize - elbc_fcm_ctrl->index);
540                 len = bufsize - elbc_fcm_ctrl->index;
541         }
542
543         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
544         /*
545          * This is workaround for the weird elbc hangs during nand write,
546          * Scott Wood says: "...perhaps difference in how long it takes a
547          * write to make it through the localbus compared to a write to IMMR
548          * is causing problems, and sync isn't helping for some reason."
549          * Reading back the last byte helps though.
550          */
551         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
552
553         elbc_fcm_ctrl->index += len;
554 }
555
556 /*
557  * read a byte from either the FCM hardware buffer if it has any data left
558  * otherwise issue a command to read a single byte.
559  */
560 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
561 {
562         struct nand_chip *chip = mtd->priv;
563         struct fsl_elbc_mtd *priv = chip->priv;
564         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
565
566         /* If there are still bytes in the FCM, then use the next byte. */
567         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
568                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
569
570         dev_err(priv->dev, "read_byte beyond end of buffer\n");
571         return ERR_BYTE;
572 }
573
574 /*
575  * Read from the FCM Controller Data Buffer
576  */
577 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
578 {
579         struct nand_chip *chip = mtd->priv;
580         struct fsl_elbc_mtd *priv = chip->priv;
581         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
582         int avail;
583
584         if (len < 0)
585                 return;
586
587         avail = min((unsigned int)len,
588                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
589         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
590         elbc_fcm_ctrl->index += avail;
591
592         if (len > avail)
593                 dev_err(priv->dev,
594                         "read_buf beyond end of buffer "
595                         "(%d requested, %d available)\n",
596                         len, avail);
597 }
598
599 /*
600  * Verify buffer against the FCM Controller Data Buffer
601  */
602 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
603 {
604         struct nand_chip *chip = mtd->priv;
605         struct fsl_elbc_mtd *priv = chip->priv;
606         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
607         int i;
608
609         if (len < 0) {
610                 dev_err(priv->dev, "write_buf of %d bytes", len);
611                 return -EINVAL;
612         }
613
614         if ((unsigned int)len >
615                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
616                 dev_err(priv->dev,
617                         "verify_buf beyond end of buffer "
618                         "(%d requested, %u available)\n",
619                         len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
620
621                 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
622                 return -EINVAL;
623         }
624
625         for (i = 0; i < len; i++)
626                 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
627                                 != buf[i])
628                         break;
629
630         elbc_fcm_ctrl->index += len;
631         return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
632 }
633
634 /* This function is called after Program and Erase Operations to
635  * check for success or failure.
636  */
637 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
638 {
639         struct fsl_elbc_mtd *priv = chip->priv;
640         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
641
642         if (elbc_fcm_ctrl->status != LTESR_CC)
643                 return NAND_STATUS_FAIL;
644
645         /* The chip always seems to report that it is
646          * write-protected, even when it is not.
647          */
648         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
649 }
650
651 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
652 {
653         struct nand_chip *chip = mtd->priv;
654         struct fsl_elbc_mtd *priv = chip->priv;
655         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
656         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
657         unsigned int al;
658
659         /* calculate FMR Address Length field */
660         al = 0;
661         if (chip->pagemask & 0xffff0000)
662                 al++;
663         if (chip->pagemask & 0xff000000)
664                 al++;
665
666         /* add to ECCM mode set in fsl_elbc_init */
667         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
668                      (al << FMR_AL_SHIFT);
669
670         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
671                 chip->numchips);
672         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
673                 chip->chipsize);
674         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
675                 chip->pagemask);
676         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
677                 chip->chip_delay);
678         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
679                 chip->badblockpos);
680         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
681                 chip->chip_shift);
682         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
683                 chip->page_shift);
684         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
685                 chip->phys_erase_shift);
686         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
687                 chip->ecclayout);
688         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
689                 chip->ecc.mode);
690         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
691                 chip->ecc.steps);
692         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
693                 chip->ecc.bytes);
694         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
695                 chip->ecc.total);
696         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
697                 chip->ecc.layout);
698         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
699         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
700         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
701                 mtd->erasesize);
702         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
703                 mtd->writesize);
704         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
705                 mtd->oobsize);
706
707         /* adjust Option Register and ECC to match Flash page size */
708         if (mtd->writesize == 512) {
709                 priv->page_size = 0;
710                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
711         } else if (mtd->writesize == 2048) {
712                 priv->page_size = 1;
713                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
714                 /* adjust ecc setup if needed */
715                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
716                     BR_DECC_CHK_GEN) {
717                         chip->ecc.size = 512;
718                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
719                                            &fsl_elbc_oob_lp_eccm1 :
720                                            &fsl_elbc_oob_lp_eccm0;
721                         chip->badblock_pattern = &largepage_memorybased;
722                 }
723         } else {
724                 dev_err(priv->dev,
725                         "fsl_elbc_init: page size %d is not supported\n",
726                         mtd->writesize);
727                 return -1;
728         }
729
730         return 0;
731 }
732
733 static int fsl_elbc_read_page(struct mtd_info *mtd,
734                               struct nand_chip *chip,
735                               uint8_t *buf,
736                               int page)
737 {
738         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
739         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
740
741         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
742                 mtd->ecc_stats.failed++;
743
744         return 0;
745 }
746
747 /* ECC will be calculated automatically, and errors will be detected in
748  * waitfunc.
749  */
750 static void fsl_elbc_write_page(struct mtd_info *mtd,
751                                 struct nand_chip *chip,
752                                 const uint8_t *buf)
753 {
754         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
755         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
756 }
757
758 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
759 {
760         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
761         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
762         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
763         struct nand_chip *chip = &priv->chip;
764
765         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
766
767         /* Fill in fsl_elbc_mtd structure */
768         priv->mtd.priv = chip;
769         priv->mtd.owner = THIS_MODULE;
770
771         /* Set the ECCM according to the settings in bootloader.*/
772         priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
773
774         /* fill in nand_chip structure */
775         /* set up function call table */
776         chip->read_byte = fsl_elbc_read_byte;
777         chip->write_buf = fsl_elbc_write_buf;
778         chip->read_buf = fsl_elbc_read_buf;
779         chip->verify_buf = fsl_elbc_verify_buf;
780         chip->select_chip = fsl_elbc_select_chip;
781         chip->cmdfunc = fsl_elbc_cmdfunc;
782         chip->waitfunc = fsl_elbc_wait;
783
784         chip->bbt_td = &bbt_main_descr;
785         chip->bbt_md = &bbt_mirror_descr;
786
787         /* set up nand options */
788         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
789         chip->bbt_options = NAND_BBT_USE_FLASH;
790
791         chip->controller = &elbc_fcm_ctrl->controller;
792         chip->priv = priv;
793
794         chip->ecc.read_page = fsl_elbc_read_page;
795         chip->ecc.write_page = fsl_elbc_write_page;
796
797         /* If CS Base Register selects full hardware ECC then use it */
798         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
799             BR_DECC_CHK_GEN) {
800                 chip->ecc.mode = NAND_ECC_HW;
801                 /* put in small page settings and adjust later if needed */
802                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
803                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
804                 chip->ecc.size = 512;
805                 chip->ecc.bytes = 3;
806         } else {
807                 /* otherwise fall back to default software ECC */
808                 chip->ecc.mode = NAND_ECC_SOFT;
809         }
810
811         return 0;
812 }
813
814 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
815 {
816         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
817         nand_release(&priv->mtd);
818
819         kfree(priv->mtd.name);
820
821         if (priv->vbase)
822                 iounmap(priv->vbase);
823
824         elbc_fcm_ctrl->chips[priv->bank] = NULL;
825         kfree(priv);
826         return 0;
827 }
828
829 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
830
831 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
832 {
833         struct fsl_lbc_regs __iomem *lbc;
834         struct fsl_elbc_mtd *priv;
835         struct resource res;
836         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
837         static const char *part_probe_types[]
838                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
839         int ret;
840         int bank;
841         struct device *dev;
842         struct device_node *node = pdev->dev.of_node;
843         struct mtd_part_parser_data ppdata;
844
845         ppdata.of_node = pdev->dev.of_node;
846         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
847                 return -ENODEV;
848         lbc = fsl_lbc_ctrl_dev->regs;
849         dev = fsl_lbc_ctrl_dev->dev;
850
851         /* get, allocate and map the memory resource */
852         ret = of_address_to_resource(node, 0, &res);
853         if (ret) {
854                 dev_err(dev, "failed to get resource\n");
855                 return ret;
856         }
857
858         /* find which chip select it is connected to */
859         for (bank = 0; bank < MAX_BANKS; bank++)
860                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
861                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
862                     (in_be32(&lbc->bank[bank].br) &
863                      in_be32(&lbc->bank[bank].or) & BR_BA)
864                      == fsl_lbc_addr(res.start))
865                         break;
866
867         if (bank >= MAX_BANKS) {
868                 dev_err(dev, "address did not match any chip selects\n");
869                 return -ENODEV;
870         }
871
872         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
873         if (!priv)
874                 return -ENOMEM;
875
876         mutex_lock(&fsl_elbc_nand_mutex);
877         if (!fsl_lbc_ctrl_dev->nand) {
878                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
879                 if (!elbc_fcm_ctrl) {
880                         dev_err(dev, "failed to allocate memory\n");
881                         mutex_unlock(&fsl_elbc_nand_mutex);
882                         ret = -ENOMEM;
883                         goto err;
884                 }
885                 elbc_fcm_ctrl->counter++;
886
887                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
888                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
889                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
890         } else {
891                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
892         }
893         mutex_unlock(&fsl_elbc_nand_mutex);
894
895         elbc_fcm_ctrl->chips[bank] = priv;
896         priv->bank = bank;
897         priv->ctrl = fsl_lbc_ctrl_dev;
898         priv->dev = dev;
899
900         priv->vbase = ioremap(res.start, resource_size(&res));
901         if (!priv->vbase) {
902                 dev_err(dev, "failed to map chip region\n");
903                 ret = -ENOMEM;
904                 goto err;
905         }
906
907         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
908         if (!priv->mtd.name) {
909                 ret = -ENOMEM;
910                 goto err;
911         }
912
913         ret = fsl_elbc_chip_init(priv);
914         if (ret)
915                 goto err;
916
917         ret = nand_scan_ident(&priv->mtd, 1, NULL);
918         if (ret)
919                 goto err;
920
921         ret = fsl_elbc_chip_init_tail(&priv->mtd);
922         if (ret)
923                 goto err;
924
925         ret = nand_scan_tail(&priv->mtd);
926         if (ret)
927                 goto err;
928
929         /* First look for RedBoot table or partitions on the command
930          * line, these take precedence over device tree information */
931         mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
932                                   NULL, 0);
933
934         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
935                (unsigned long long)res.start, priv->bank);
936         return 0;
937
938 err:
939         fsl_elbc_chip_remove(priv);
940         return ret;
941 }
942
943 static int fsl_elbc_nand_remove(struct platform_device *pdev)
944 {
945         int i;
946         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
947         for (i = 0; i < MAX_BANKS; i++)
948                 if (elbc_fcm_ctrl->chips[i])
949                         fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
950
951         mutex_lock(&fsl_elbc_nand_mutex);
952         elbc_fcm_ctrl->counter--;
953         if (!elbc_fcm_ctrl->counter) {
954                 fsl_lbc_ctrl_dev->nand = NULL;
955                 kfree(elbc_fcm_ctrl);
956         }
957         mutex_unlock(&fsl_elbc_nand_mutex);
958
959         return 0;
960
961 }
962
963 static const struct of_device_id fsl_elbc_nand_match[] = {
964         { .compatible = "fsl,elbc-fcm-nand", },
965         {}
966 };
967
968 static struct platform_driver fsl_elbc_nand_driver = {
969         .driver = {
970                 .name = "fsl,elbc-fcm-nand",
971                 .owner = THIS_MODULE,
972                 .of_match_table = fsl_elbc_nand_match,
973         },
974         .probe = fsl_elbc_nand_probe,
975         .remove = fsl_elbc_nand_remove,
976 };
977
978 module_platform_driver(fsl_elbc_nand_driver);
979
980 MODULE_LICENSE("GPL");
981 MODULE_AUTHOR("Freescale");
982 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");