]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'next/spring-cleaning' into next/cleanup
[karo-tx-linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ECC support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99                              struct mtd_oob_ops *ops);
100
101 /*
102  * For devices which display every fart in the system on a separate LED. Is
103  * compiled away when LED support is disabled.
104  */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108                                         loff_t ofs, uint64_t len)
109 {
110         struct nand_chip *chip = mtd->priv;
111         int ret = 0;
112
113         /* Start address must align on block boundary */
114         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
115                 pr_debug("%s: unaligned address\n", __func__);
116                 ret = -EINVAL;
117         }
118
119         /* Length must align on block boundary */
120         if (len & ((1 << chip->phys_erase_shift) - 1)) {
121                 pr_debug("%s: length not block aligned\n", __func__);
122                 ret = -EINVAL;
123         }
124
125         return ret;
126 }
127
128 /**
129  * nand_release_device - [GENERIC] release chip
130  * @mtd: MTD device structure
131  *
132  * Release chip lock and wake up anyone waiting on the device.
133  */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136         struct nand_chip *chip = mtd->priv;
137
138         /* Release the controller and the chip */
139         spin_lock(&chip->controller->lock);
140         chip->controller->active = NULL;
141         chip->state = FL_READY;
142         wake_up(&chip->controller->wq);
143         spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154         struct nand_chip *chip = mtd->priv;
155         return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161  * @mtd: MTD device structure
162  *
163  * Default read function for 16bit buswidth with endianness conversion.
164  *
165  */
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 }
171
172 /**
173  * nand_read_word - [DEFAULT] read one word from the chip
174  * @mtd: MTD device structure
175  *
176  * Default read function for 16bit buswidth without endianness conversion.
177  */
178 static u16 nand_read_word(struct mtd_info *mtd)
179 {
180         struct nand_chip *chip = mtd->priv;
181         return readw(chip->IO_ADDR_R);
182 }
183
184 /**
185  * nand_select_chip - [DEFAULT] control CE line
186  * @mtd: MTD device structure
187  * @chipnr: chipnumber to select, -1 for deselect
188  *
189  * Default select function for 1 chip devices.
190  */
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192 {
193         struct nand_chip *chip = mtd->priv;
194
195         switch (chipnr) {
196         case -1:
197                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198                 break;
199         case 0:
200                 break;
201
202         default:
203                 BUG();
204         }
205 }
206
207 /**
208  * nand_write_buf - [DEFAULT] write buffer to chip
209  * @mtd: MTD device structure
210  * @buf: data buffer
211  * @len: number of bytes to write
212  *
213  * Default write function for 8bit buswidth.
214  */
215 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
216 {
217         int i;
218         struct nand_chip *chip = mtd->priv;
219
220         for (i = 0; i < len; i++)
221                 writeb(buf[i], chip->IO_ADDR_W);
222 }
223
224 /**
225  * nand_read_buf - [DEFAULT] read chip data into buffer
226  * @mtd: MTD device structure
227  * @buf: buffer to store date
228  * @len: number of bytes to read
229  *
230  * Default read function for 8bit buswidth.
231  */
232 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
233 {
234         int i;
235         struct nand_chip *chip = mtd->priv;
236
237         for (i = 0; i < len; i++)
238                 buf[i] = readb(chip->IO_ADDR_R);
239 }
240
241 /**
242  * nand_write_buf16 - [DEFAULT] write buffer to chip
243  * @mtd: MTD device structure
244  * @buf: data buffer
245  * @len: number of bytes to write
246  *
247  * Default write function for 16bit buswidth.
248  */
249 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
250 {
251         int i;
252         struct nand_chip *chip = mtd->priv;
253         u16 *p = (u16 *) buf;
254         len >>= 1;
255
256         for (i = 0; i < len; i++)
257                 writew(p[i], chip->IO_ADDR_W);
258
259 }
260
261 /**
262  * nand_read_buf16 - [DEFAULT] read chip data into buffer
263  * @mtd: MTD device structure
264  * @buf: buffer to store date
265  * @len: number of bytes to read
266  *
267  * Default read function for 16bit buswidth.
268  */
269 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
270 {
271         int i;
272         struct nand_chip *chip = mtd->priv;
273         u16 *p = (u16 *) buf;
274         len >>= 1;
275
276         for (i = 0; i < len; i++)
277                 p[i] = readw(chip->IO_ADDR_R);
278 }
279
280 /**
281  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
282  * @mtd: MTD device structure
283  * @ofs: offset from device start
284  * @getchip: 0, if the chip is already selected
285  *
286  * Check, if the block is bad.
287  */
288 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
289 {
290         int page, chipnr, res = 0, i = 0;
291         struct nand_chip *chip = mtd->priv;
292         u16 bad;
293
294         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
295                 ofs += mtd->erasesize - mtd->writesize;
296
297         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
298
299         if (getchip) {
300                 chipnr = (int)(ofs >> chip->chip_shift);
301
302                 nand_get_device(mtd, FL_READING);
303
304                 /* Select the NAND device */
305                 chip->select_chip(mtd, chipnr);
306         }
307
308         do {
309                 if (chip->options & NAND_BUSWIDTH_16) {
310                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
311                                         chip->badblockpos & 0xFE, page);
312                         bad = cpu_to_le16(chip->read_word(mtd));
313                         if (chip->badblockpos & 0x1)
314                                 bad >>= 8;
315                         else
316                                 bad &= 0xFF;
317                 } else {
318                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
319                                         page);
320                         bad = chip->read_byte(mtd);
321                 }
322
323                 if (likely(chip->badblockbits == 8))
324                         res = bad != 0xFF;
325                 else
326                         res = hweight8(bad) < chip->badblockbits;
327                 ofs += mtd->writesize;
328                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329                 i++;
330         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
331
332         if (getchip) {
333                 chip->select_chip(mtd, -1);
334                 nand_release_device(mtd);
335         }
336
337         return res;
338 }
339
340 /**
341  * nand_default_block_markbad - [DEFAULT] mark a block bad
342  * @mtd: MTD device structure
343  * @ofs: offset from device start
344  *
345  * This is the default implementation, which can be overridden by a hardware
346  * specific driver. We try operations in the following order, according to our
347  * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
348  *  (1) erase the affected block, to allow OOB marker to be written cleanly
349  *  (2) update in-memory BBT
350  *  (3) write bad block marker to OOB area of affected block
351  *  (4) update flash-based BBT
352  * Note that we retain the first error encountered in (3) or (4), finish the
353  * procedures, and dump the error in the end.
354 */
355 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
356 {
357         struct nand_chip *chip = mtd->priv;
358         uint8_t buf[2] = { 0, 0 };
359         int block, res, ret = 0, i = 0;
360         int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
361
362         if (write_oob) {
363                 struct erase_info einfo;
364
365                 /* Attempt erase before marking OOB */
366                 memset(&einfo, 0, sizeof(einfo));
367                 einfo.mtd = mtd;
368                 einfo.addr = ofs;
369                 einfo.len = 1 << chip->phys_erase_shift;
370                 nand_erase_nand(mtd, &einfo, 0);
371         }
372
373         /* Get block number */
374         block = (int)(ofs >> chip->bbt_erase_shift);
375         /* Mark block bad in memory-based BBT */
376         if (chip->bbt)
377                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
378
379         /* Write bad block marker to OOB */
380         if (write_oob) {
381                 struct mtd_oob_ops ops;
382                 loff_t wr_ofs = ofs;
383
384                 nand_get_device(mtd, FL_WRITING);
385
386                 ops.datbuf = NULL;
387                 ops.oobbuf = buf;
388                 ops.ooboffs = chip->badblockpos;
389                 if (chip->options & NAND_BUSWIDTH_16) {
390                         ops.ooboffs &= ~0x01;
391                         ops.len = ops.ooblen = 2;
392                 } else {
393                         ops.len = ops.ooblen = 1;
394                 }
395                 ops.mode = MTD_OPS_PLACE_OOB;
396
397                 /* Write to first/last page(s) if necessary */
398                 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
399                         wr_ofs += mtd->erasesize - mtd->writesize;
400                 do {
401                         res = nand_do_write_oob(mtd, wr_ofs, &ops);
402                         if (!ret)
403                                 ret = res;
404
405                         i++;
406                         wr_ofs += mtd->writesize;
407                 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
408
409                 nand_release_device(mtd);
410         }
411
412         /* Update flash-based bad block table */
413         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
414                 res = nand_update_bbt(mtd, ofs);
415                 if (!ret)
416                         ret = res;
417         }
418
419         if (!ret)
420                 mtd->ecc_stats.badblocks++;
421
422         return ret;
423 }
424
425 /**
426  * nand_check_wp - [GENERIC] check if the chip is write protected
427  * @mtd: MTD device structure
428  *
429  * Check, if the device is write protected. The function expects, that the
430  * device is already selected.
431  */
432 static int nand_check_wp(struct mtd_info *mtd)
433 {
434         struct nand_chip *chip = mtd->priv;
435
436         /* Broken xD cards report WP despite being writable */
437         if (chip->options & NAND_BROKEN_XD)
438                 return 0;
439
440         /* Check the WP bit */
441         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
442         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
443 }
444
445 /**
446  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
447  * @mtd: MTD device structure
448  * @ofs: offset from device start
449  * @getchip: 0, if the chip is already selected
450  * @allowbbt: 1, if its allowed to access the bbt area
451  *
452  * Check, if the block is bad. Either by reading the bad block table or
453  * calling of the scan function.
454  */
455 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
456                                int allowbbt)
457 {
458         struct nand_chip *chip = mtd->priv;
459
460         if (!chip->bbt)
461                 return chip->block_bad(mtd, ofs, getchip);
462
463         /* Return info from the table */
464         return nand_isbad_bbt(mtd, ofs, allowbbt);
465 }
466
467 /**
468  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
469  * @mtd: MTD device structure
470  * @timeo: Timeout
471  *
472  * Helper function for nand_wait_ready used when needing to wait in interrupt
473  * context.
474  */
475 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
476 {
477         struct nand_chip *chip = mtd->priv;
478         int i;
479
480         /* Wait for the device to get ready */
481         for (i = 0; i < timeo; i++) {
482                 if (chip->dev_ready(mtd))
483                         break;
484                 touch_softlockup_watchdog();
485                 mdelay(1);
486         }
487 }
488
489 /* Wait for the ready pin, after a command. The timeout is caught later. */
490 void nand_wait_ready(struct mtd_info *mtd)
491 {
492         struct nand_chip *chip = mtd->priv;
493         unsigned long timeo = jiffies + msecs_to_jiffies(20);
494
495         /* 400ms timeout */
496         if (in_interrupt() || oops_in_progress)
497                 return panic_nand_wait_ready(mtd, 400);
498
499         led_trigger_event(nand_led_trigger, LED_FULL);
500         /* Wait until command is processed or timeout occurs */
501         do {
502                 if (chip->dev_ready(mtd))
503                         break;
504                 touch_softlockup_watchdog();
505         } while (time_before(jiffies, timeo));
506         led_trigger_event(nand_led_trigger, LED_OFF);
507 }
508 EXPORT_SYMBOL_GPL(nand_wait_ready);
509
510 /**
511  * nand_command - [DEFAULT] Send command to NAND device
512  * @mtd: MTD device structure
513  * @command: the command to be sent
514  * @column: the column address for this command, -1 if none
515  * @page_addr: the page address for this command, -1 if none
516  *
517  * Send command to NAND device. This function is used for small page devices
518  * (256/512 Bytes per page).
519  */
520 static void nand_command(struct mtd_info *mtd, unsigned int command,
521                          int column, int page_addr)
522 {
523         register struct nand_chip *chip = mtd->priv;
524         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
525
526         /* Write out the command to the device */
527         if (command == NAND_CMD_SEQIN) {
528                 int readcmd;
529
530                 if (column >= mtd->writesize) {
531                         /* OOB area */
532                         column -= mtd->writesize;
533                         readcmd = NAND_CMD_READOOB;
534                 } else if (column < 256) {
535                         /* First 256 bytes --> READ0 */
536                         readcmd = NAND_CMD_READ0;
537                 } else {
538                         column -= 256;
539                         readcmd = NAND_CMD_READ1;
540                 }
541                 chip->cmd_ctrl(mtd, readcmd, ctrl);
542                 ctrl &= ~NAND_CTRL_CHANGE;
543         }
544         chip->cmd_ctrl(mtd, command, ctrl);
545
546         /* Address cycle, when necessary */
547         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
548         /* Serially input address */
549         if (column != -1) {
550                 /* Adjust columns for 16 bit buswidth */
551                 if (chip->options & NAND_BUSWIDTH_16)
552                         column >>= 1;
553                 chip->cmd_ctrl(mtd, column, ctrl);
554                 ctrl &= ~NAND_CTRL_CHANGE;
555         }
556         if (page_addr != -1) {
557                 chip->cmd_ctrl(mtd, page_addr, ctrl);
558                 ctrl &= ~NAND_CTRL_CHANGE;
559                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
560                 /* One more address cycle for devices > 32MiB */
561                 if (chip->chipsize > (32 << 20))
562                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
563         }
564         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
565
566         /*
567          * Program and erase have their own busy handlers status and sequential
568          * in needs no delay
569          */
570         switch (command) {
571
572         case NAND_CMD_PAGEPROG:
573         case NAND_CMD_ERASE1:
574         case NAND_CMD_ERASE2:
575         case NAND_CMD_SEQIN:
576         case NAND_CMD_STATUS:
577                 return;
578
579         case NAND_CMD_RESET:
580                 if (chip->dev_ready)
581                         break;
582                 udelay(chip->chip_delay);
583                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
584                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
585                 chip->cmd_ctrl(mtd,
586                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
588                                 ;
589                 return;
590
591                 /* This applies to read commands */
592         default:
593                 /*
594                  * If we don't have access to the busy pin, we apply the given
595                  * command delay
596                  */
597                 if (!chip->dev_ready) {
598                         udelay(chip->chip_delay);
599                         return;
600                 }
601         }
602         /*
603          * Apply this short delay always to ensure that we do wait tWB in
604          * any case on any machine.
605          */
606         ndelay(100);
607
608         nand_wait_ready(mtd);
609 }
610
611 /**
612  * nand_command_lp - [DEFAULT] Send command to NAND large page device
613  * @mtd: MTD device structure
614  * @command: the command to be sent
615  * @column: the column address for this command, -1 if none
616  * @page_addr: the page address for this command, -1 if none
617  *
618  * Send command to NAND device. This is the version for the new large page
619  * devices. We don't have the separate regions as we have in the small page
620  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
621  */
622 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
623                             int column, int page_addr)
624 {
625         register struct nand_chip *chip = mtd->priv;
626
627         /* Emulate NAND_CMD_READOOB */
628         if (command == NAND_CMD_READOOB) {
629                 column += mtd->writesize;
630                 command = NAND_CMD_READ0;
631         }
632
633         /* Command latch cycle */
634         chip->cmd_ctrl(mtd, command & 0xff,
635                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
636
637         if (column != -1 || page_addr != -1) {
638                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
639
640                 /* Serially input address */
641                 if (column != -1) {
642                         /* Adjust columns for 16 bit buswidth */
643                         if (chip->options & NAND_BUSWIDTH_16)
644                                 column >>= 1;
645                         chip->cmd_ctrl(mtd, column, ctrl);
646                         ctrl &= ~NAND_CTRL_CHANGE;
647                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
648                 }
649                 if (page_addr != -1) {
650                         chip->cmd_ctrl(mtd, page_addr, ctrl);
651                         chip->cmd_ctrl(mtd, page_addr >> 8,
652                                        NAND_NCE | NAND_ALE);
653                         /* One more address cycle for devices > 128MiB */
654                         if (chip->chipsize > (128 << 20))
655                                 chip->cmd_ctrl(mtd, page_addr >> 16,
656                                                NAND_NCE | NAND_ALE);
657                 }
658         }
659         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
660
661         /*
662          * Program and erase have their own busy handlers status, sequential
663          * in, and deplete1 need no delay.
664          */
665         switch (command) {
666
667         case NAND_CMD_CACHEDPROG:
668         case NAND_CMD_PAGEPROG:
669         case NAND_CMD_ERASE1:
670         case NAND_CMD_ERASE2:
671         case NAND_CMD_SEQIN:
672         case NAND_CMD_RNDIN:
673         case NAND_CMD_STATUS:
674         case NAND_CMD_DEPLETE1:
675                 return;
676
677         case NAND_CMD_STATUS_ERROR:
678         case NAND_CMD_STATUS_ERROR0:
679         case NAND_CMD_STATUS_ERROR1:
680         case NAND_CMD_STATUS_ERROR2:
681         case NAND_CMD_STATUS_ERROR3:
682                 /* Read error status commands require only a short delay */
683                 udelay(chip->chip_delay);
684                 return;
685
686         case NAND_CMD_RESET:
687                 if (chip->dev_ready)
688                         break;
689                 udelay(chip->chip_delay);
690                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
691                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693                                NAND_NCE | NAND_CTRL_CHANGE);
694                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
695                                 ;
696                 return;
697
698         case NAND_CMD_RNDOUT:
699                 /* No ready / busy check necessary */
700                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
701                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
702                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
703                                NAND_NCE | NAND_CTRL_CHANGE);
704                 return;
705
706         case NAND_CMD_READ0:
707                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
708                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710                                NAND_NCE | NAND_CTRL_CHANGE);
711
712                 /* This applies to read commands */
713         default:
714                 /*
715                  * If we don't have access to the busy pin, we apply the given
716                  * command delay.
717                  */
718                 if (!chip->dev_ready) {
719                         udelay(chip->chip_delay);
720                         return;
721                 }
722         }
723
724         /*
725          * Apply this short delay always to ensure that we do wait tWB in
726          * any case on any machine.
727          */
728         ndelay(100);
729
730         nand_wait_ready(mtd);
731 }
732
733 /**
734  * panic_nand_get_device - [GENERIC] Get chip for selected access
735  * @chip: the nand chip descriptor
736  * @mtd: MTD device structure
737  * @new_state: the state which is requested
738  *
739  * Used when in panic, no locks are taken.
740  */
741 static void panic_nand_get_device(struct nand_chip *chip,
742                       struct mtd_info *mtd, int new_state)
743 {
744         /* Hardware controller shared among independent devices */
745         chip->controller->active = chip;
746         chip->state = new_state;
747 }
748
749 /**
750  * nand_get_device - [GENERIC] Get chip for selected access
751  * @mtd: MTD device structure
752  * @new_state: the state which is requested
753  *
754  * Get the device and lock it for exclusive access
755  */
756 static int
757 nand_get_device(struct mtd_info *mtd, int new_state)
758 {
759         struct nand_chip *chip = mtd->priv;
760         spinlock_t *lock = &chip->controller->lock;
761         wait_queue_head_t *wq = &chip->controller->wq;
762         DECLARE_WAITQUEUE(wait, current);
763 retry:
764         spin_lock(lock);
765
766         /* Hardware controller shared among independent devices */
767         if (!chip->controller->active)
768                 chip->controller->active = chip;
769
770         if (chip->controller->active == chip && chip->state == FL_READY) {
771                 chip->state = new_state;
772                 spin_unlock(lock);
773                 return 0;
774         }
775         if (new_state == FL_PM_SUSPENDED) {
776                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
777                         chip->state = FL_PM_SUSPENDED;
778                         spin_unlock(lock);
779                         return 0;
780                 }
781         }
782         set_current_state(TASK_UNINTERRUPTIBLE);
783         add_wait_queue(wq, &wait);
784         spin_unlock(lock);
785         schedule();
786         remove_wait_queue(wq, &wait);
787         goto retry;
788 }
789
790 /**
791  * panic_nand_wait - [GENERIC] wait until the command is done
792  * @mtd: MTD device structure
793  * @chip: NAND chip structure
794  * @timeo: timeout
795  *
796  * Wait for command done. This is a helper function for nand_wait used when
797  * we are in interrupt context. May happen when in panic and trying to write
798  * an oops through mtdoops.
799  */
800 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
801                             unsigned long timeo)
802 {
803         int i;
804         for (i = 0; i < timeo; i++) {
805                 if (chip->dev_ready) {
806                         if (chip->dev_ready(mtd))
807                                 break;
808                 } else {
809                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
810                                 break;
811                 }
812                 mdelay(1);
813         }
814 }
815
816 /**
817  * nand_wait - [DEFAULT] wait until the command is done
818  * @mtd: MTD device structure
819  * @chip: NAND chip structure
820  *
821  * Wait for command done. This applies to erase and program only. Erase can
822  * take up to 400ms and program up to 20ms according to general NAND and
823  * SmartMedia specs.
824  */
825 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
826 {
827
828         int status, state = chip->state;
829         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
830
831         led_trigger_event(nand_led_trigger, LED_FULL);
832
833         /*
834          * Apply this short delay always to ensure that we do wait tWB in any
835          * case on any machine.
836          */
837         ndelay(100);
838
839         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
840                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
841         else
842                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
843
844         if (in_interrupt() || oops_in_progress)
845                 panic_nand_wait(mtd, chip, timeo);
846         else {
847                 timeo = jiffies + msecs_to_jiffies(timeo);
848                 while (time_before(jiffies, timeo)) {
849                         if (chip->dev_ready) {
850                                 if (chip->dev_ready(mtd))
851                                         break;
852                         } else {
853                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
854                                         break;
855                         }
856                         cond_resched();
857                 }
858         }
859         led_trigger_event(nand_led_trigger, LED_OFF);
860
861         status = (int)chip->read_byte(mtd);
862         /* This can happen if in case of timeout or buggy dev_ready */
863         WARN_ON(!(status & NAND_STATUS_READY));
864         return status;
865 }
866
867 /**
868  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
869  * @mtd: mtd info
870  * @ofs: offset to start unlock from
871  * @len: length to unlock
872  * @invert: when = 0, unlock the range of blocks within the lower and
873  *                    upper boundary address
874  *          when = 1, unlock the range of blocks outside the boundaries
875  *                    of the lower and upper boundary address
876  *
877  * Returs unlock status.
878  */
879 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
880                                         uint64_t len, int invert)
881 {
882         int ret = 0;
883         int status, page;
884         struct nand_chip *chip = mtd->priv;
885
886         /* Submit address of first page to unlock */
887         page = ofs >> chip->page_shift;
888         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
889
890         /* Submit address of last page to unlock */
891         page = (ofs + len) >> chip->page_shift;
892         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
893                                 (page | invert) & chip->pagemask);
894
895         /* Call wait ready function */
896         status = chip->waitfunc(mtd, chip);
897         /* See if device thinks it succeeded */
898         if (status & NAND_STATUS_FAIL) {
899                 pr_debug("%s: error status = 0x%08x\n",
900                                         __func__, status);
901                 ret = -EIO;
902         }
903
904         return ret;
905 }
906
907 /**
908  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
909  * @mtd: mtd info
910  * @ofs: offset to start unlock from
911  * @len: length to unlock
912  *
913  * Returns unlock status.
914  */
915 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
916 {
917         int ret = 0;
918         int chipnr;
919         struct nand_chip *chip = mtd->priv;
920
921         pr_debug("%s: start = 0x%012llx, len = %llu\n",
922                         __func__, (unsigned long long)ofs, len);
923
924         if (check_offs_len(mtd, ofs, len))
925                 ret = -EINVAL;
926
927         /* Align to last block address if size addresses end of the device */
928         if (ofs + len == mtd->size)
929                 len -= mtd->erasesize;
930
931         nand_get_device(mtd, FL_UNLOCKING);
932
933         /* Shift to get chip number */
934         chipnr = ofs >> chip->chip_shift;
935
936         chip->select_chip(mtd, chipnr);
937
938         /* Check, if it is write protected */
939         if (nand_check_wp(mtd)) {
940                 pr_debug("%s: device is write protected!\n",
941                                         __func__);
942                 ret = -EIO;
943                 goto out;
944         }
945
946         ret = __nand_unlock(mtd, ofs, len, 0);
947
948 out:
949         chip->select_chip(mtd, -1);
950         nand_release_device(mtd);
951
952         return ret;
953 }
954 EXPORT_SYMBOL(nand_unlock);
955
956 /**
957  * nand_lock - [REPLACEABLE] locks all blocks present in the device
958  * @mtd: mtd info
959  * @ofs: offset to start unlock from
960  * @len: length to unlock
961  *
962  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
963  * have this feature, but it allows only to lock all blocks, not for specified
964  * range for block. Implementing 'lock' feature by making use of 'unlock', for
965  * now.
966  *
967  * Returns lock status.
968  */
969 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
970 {
971         int ret = 0;
972         int chipnr, status, page;
973         struct nand_chip *chip = mtd->priv;
974
975         pr_debug("%s: start = 0x%012llx, len = %llu\n",
976                         __func__, (unsigned long long)ofs, len);
977
978         if (check_offs_len(mtd, ofs, len))
979                 ret = -EINVAL;
980
981         nand_get_device(mtd, FL_LOCKING);
982
983         /* Shift to get chip number */
984         chipnr = ofs >> chip->chip_shift;
985
986         chip->select_chip(mtd, chipnr);
987
988         /* Check, if it is write protected */
989         if (nand_check_wp(mtd)) {
990                 pr_debug("%s: device is write protected!\n",
991                                         __func__);
992                 status = MTD_ERASE_FAILED;
993                 ret = -EIO;
994                 goto out;
995         }
996
997         /* Submit address of first page to lock */
998         page = ofs >> chip->page_shift;
999         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1000
1001         /* Call wait ready function */
1002         status = chip->waitfunc(mtd, chip);
1003         /* See if device thinks it succeeded */
1004         if (status & NAND_STATUS_FAIL) {
1005                 pr_debug("%s: error status = 0x%08x\n",
1006                                         __func__, status);
1007                 ret = -EIO;
1008                 goto out;
1009         }
1010
1011         ret = __nand_unlock(mtd, ofs, len, 0x1);
1012
1013 out:
1014         chip->select_chip(mtd, -1);
1015         nand_release_device(mtd);
1016
1017         return ret;
1018 }
1019 EXPORT_SYMBOL(nand_lock);
1020
1021 /**
1022  * nand_read_page_raw - [INTERN] read raw page data without ecc
1023  * @mtd: mtd info structure
1024  * @chip: nand chip info structure
1025  * @buf: buffer to store read data
1026  * @oob_required: caller requires OOB data read to chip->oob_poi
1027  * @page: page number to read
1028  *
1029  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1030  */
1031 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1032                               uint8_t *buf, int oob_required, int page)
1033 {
1034         chip->read_buf(mtd, buf, mtd->writesize);
1035         if (oob_required)
1036                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1037         return 0;
1038 }
1039
1040 /**
1041  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1042  * @mtd: mtd info structure
1043  * @chip: nand chip info structure
1044  * @buf: buffer to store read data
1045  * @oob_required: caller requires OOB data read to chip->oob_poi
1046  * @page: page number to read
1047  *
1048  * We need a special oob layout and handling even when OOB isn't used.
1049  */
1050 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1051                                        struct nand_chip *chip, uint8_t *buf,
1052                                        int oob_required, int page)
1053 {
1054         int eccsize = chip->ecc.size;
1055         int eccbytes = chip->ecc.bytes;
1056         uint8_t *oob = chip->oob_poi;
1057         int steps, size;
1058
1059         for (steps = chip->ecc.steps; steps > 0; steps--) {
1060                 chip->read_buf(mtd, buf, eccsize);
1061                 buf += eccsize;
1062
1063                 if (chip->ecc.prepad) {
1064                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1065                         oob += chip->ecc.prepad;
1066                 }
1067
1068                 chip->read_buf(mtd, oob, eccbytes);
1069                 oob += eccbytes;
1070
1071                 if (chip->ecc.postpad) {
1072                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1073                         oob += chip->ecc.postpad;
1074                 }
1075         }
1076
1077         size = mtd->oobsize - (oob - chip->oob_poi);
1078         if (size)
1079                 chip->read_buf(mtd, oob, size);
1080
1081         return 0;
1082 }
1083
1084 /**
1085  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1086  * @mtd: mtd info structure
1087  * @chip: nand chip info structure
1088  * @buf: buffer to store read data
1089  * @oob_required: caller requires OOB data read to chip->oob_poi
1090  * @page: page number to read
1091  */
1092 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1093                                 uint8_t *buf, int oob_required, int page)
1094 {
1095         int i, eccsize = chip->ecc.size;
1096         int eccbytes = chip->ecc.bytes;
1097         int eccsteps = chip->ecc.steps;
1098         uint8_t *p = buf;
1099         uint8_t *ecc_calc = chip->buffers->ecccalc;
1100         uint8_t *ecc_code = chip->buffers->ecccode;
1101         uint32_t *eccpos = chip->ecc.layout->eccpos;
1102         unsigned int max_bitflips = 0;
1103
1104         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1105
1106         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1107                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1108
1109         for (i = 0; i < chip->ecc.total; i++)
1110                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1111
1112         eccsteps = chip->ecc.steps;
1113         p = buf;
1114
1115         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1116                 int stat;
1117
1118                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1119                 if (stat < 0) {
1120                         mtd->ecc_stats.failed++;
1121                 } else {
1122                         mtd->ecc_stats.corrected += stat;
1123                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1124                 }
1125         }
1126         return max_bitflips;
1127 }
1128
1129 /**
1130  * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1131  * @mtd: mtd info structure
1132  * @chip: nand chip info structure
1133  * @data_offs: offset of requested data within the page
1134  * @readlen: data length
1135  * @bufpoi: buffer to store read data
1136  */
1137 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1138                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1139 {
1140         int start_step, end_step, num_steps;
1141         uint32_t *eccpos = chip->ecc.layout->eccpos;
1142         uint8_t *p;
1143         int data_col_addr, i, gaps = 0;
1144         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1145         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1146         int index = 0;
1147         unsigned int max_bitflips = 0;
1148
1149         /* Column address within the page aligned to ECC size (256bytes) */
1150         start_step = data_offs / chip->ecc.size;
1151         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1152         num_steps = end_step - start_step + 1;
1153
1154         /* Data size aligned to ECC ecc.size */
1155         datafrag_len = num_steps * chip->ecc.size;
1156         eccfrag_len = num_steps * chip->ecc.bytes;
1157
1158         data_col_addr = start_step * chip->ecc.size;
1159         /* If we read not a page aligned data */
1160         if (data_col_addr != 0)
1161                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1162
1163         p = bufpoi + data_col_addr;
1164         chip->read_buf(mtd, p, datafrag_len);
1165
1166         /* Calculate ECC */
1167         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1168                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1169
1170         /*
1171          * The performance is faster if we position offsets according to
1172          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1173          */
1174         for (i = 0; i < eccfrag_len - 1; i++) {
1175                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1176                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1177                         gaps = 1;
1178                         break;
1179                 }
1180         }
1181         if (gaps) {
1182                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1183                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1184         } else {
1185                 /*
1186                  * Send the command to read the particular ECC bytes take care
1187                  * about buswidth alignment in read_buf.
1188                  */
1189                 index = start_step * chip->ecc.bytes;
1190
1191                 aligned_pos = eccpos[index] & ~(busw - 1);
1192                 aligned_len = eccfrag_len;
1193                 if (eccpos[index] & (busw - 1))
1194                         aligned_len++;
1195                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1196                         aligned_len++;
1197
1198                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1199                                         mtd->writesize + aligned_pos, -1);
1200                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1201         }
1202
1203         for (i = 0; i < eccfrag_len; i++)
1204                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1205
1206         p = bufpoi + data_col_addr;
1207         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1208                 int stat;
1209
1210                 stat = chip->ecc.correct(mtd, p,
1211                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1212                 if (stat < 0) {
1213                         mtd->ecc_stats.failed++;
1214                 } else {
1215                         mtd->ecc_stats.corrected += stat;
1216                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1217                 }
1218         }
1219         return max_bitflips;
1220 }
1221
1222 /**
1223  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1224  * @mtd: mtd info structure
1225  * @chip: nand chip info structure
1226  * @buf: buffer to store read data
1227  * @oob_required: caller requires OOB data read to chip->oob_poi
1228  * @page: page number to read
1229  *
1230  * Not for syndrome calculating ECC controllers which need a special oob layout.
1231  */
1232 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1233                                 uint8_t *buf, int oob_required, int page)
1234 {
1235         int i, eccsize = chip->ecc.size;
1236         int eccbytes = chip->ecc.bytes;
1237         int eccsteps = chip->ecc.steps;
1238         uint8_t *p = buf;
1239         uint8_t *ecc_calc = chip->buffers->ecccalc;
1240         uint8_t *ecc_code = chip->buffers->ecccode;
1241         uint32_t *eccpos = chip->ecc.layout->eccpos;
1242         unsigned int max_bitflips = 0;
1243
1244         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1245                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1246                 chip->read_buf(mtd, p, eccsize);
1247                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1248         }
1249         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250
1251         for (i = 0; i < chip->ecc.total; i++)
1252                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1253
1254         eccsteps = chip->ecc.steps;
1255         p = buf;
1256
1257         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258                 int stat;
1259
1260                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1261                 if (stat < 0) {
1262                         mtd->ecc_stats.failed++;
1263                 } else {
1264                         mtd->ecc_stats.corrected += stat;
1265                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1266                 }
1267         }
1268         return max_bitflips;
1269 }
1270
1271 /**
1272  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1273  * @mtd: mtd info structure
1274  * @chip: nand chip info structure
1275  * @buf: buffer to store read data
1276  * @oob_required: caller requires OOB data read to chip->oob_poi
1277  * @page: page number to read
1278  *
1279  * Hardware ECC for large page chips, require OOB to be read first. For this
1280  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283  * the data area, by overwriting the NAND manufacturer bad block markings.
1284  */
1285 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1287 {
1288         int i, eccsize = chip->ecc.size;
1289         int eccbytes = chip->ecc.bytes;
1290         int eccsteps = chip->ecc.steps;
1291         uint8_t *p = buf;
1292         uint8_t *ecc_code = chip->buffers->ecccode;
1293         uint32_t *eccpos = chip->ecc.layout->eccpos;
1294         uint8_t *ecc_calc = chip->buffers->ecccalc;
1295         unsigned int max_bitflips = 0;
1296
1297         /* Read the OOB area first */
1298         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1299         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1300         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1301
1302         for (i = 0; i < chip->ecc.total; i++)
1303                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1304
1305         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1306                 int stat;
1307
1308                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1309                 chip->read_buf(mtd, p, eccsize);
1310                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1311
1312                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1313                 if (stat < 0) {
1314                         mtd->ecc_stats.failed++;
1315                 } else {
1316                         mtd->ecc_stats.corrected += stat;
1317                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1318                 }
1319         }
1320         return max_bitflips;
1321 }
1322
1323 /**
1324  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1325  * @mtd: mtd info structure
1326  * @chip: nand chip info structure
1327  * @buf: buffer to store read data
1328  * @oob_required: caller requires OOB data read to chip->oob_poi
1329  * @page: page number to read
1330  *
1331  * The hw generator calculates the error syndrome automatically. Therefore we
1332  * need a special oob layout and handling.
1333  */
1334 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1335                                    uint8_t *buf, int oob_required, int page)
1336 {
1337         int i, eccsize = chip->ecc.size;
1338         int eccbytes = chip->ecc.bytes;
1339         int eccsteps = chip->ecc.steps;
1340         uint8_t *p = buf;
1341         uint8_t *oob = chip->oob_poi;
1342         unsigned int max_bitflips = 0;
1343
1344         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1345                 int stat;
1346
1347                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1348                 chip->read_buf(mtd, p, eccsize);
1349
1350                 if (chip->ecc.prepad) {
1351                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1352                         oob += chip->ecc.prepad;
1353                 }
1354
1355                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1356                 chip->read_buf(mtd, oob, eccbytes);
1357                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1358
1359                 if (stat < 0) {
1360                         mtd->ecc_stats.failed++;
1361                 } else {
1362                         mtd->ecc_stats.corrected += stat;
1363                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1364                 }
1365
1366                 oob += eccbytes;
1367
1368                 if (chip->ecc.postpad) {
1369                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1370                         oob += chip->ecc.postpad;
1371                 }
1372         }
1373
1374         /* Calculate remaining oob bytes */
1375         i = mtd->oobsize - (oob - chip->oob_poi);
1376         if (i)
1377                 chip->read_buf(mtd, oob, i);
1378
1379         return max_bitflips;
1380 }
1381
1382 /**
1383  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1384  * @chip: nand chip structure
1385  * @oob: oob destination address
1386  * @ops: oob ops structure
1387  * @len: size of oob to transfer
1388  */
1389 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1390                                   struct mtd_oob_ops *ops, size_t len)
1391 {
1392         switch (ops->mode) {
1393
1394         case MTD_OPS_PLACE_OOB:
1395         case MTD_OPS_RAW:
1396                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1397                 return oob + len;
1398
1399         case MTD_OPS_AUTO_OOB: {
1400                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1401                 uint32_t boffs = 0, roffs = ops->ooboffs;
1402                 size_t bytes = 0;
1403
1404                 for (; free->length && len; free++, len -= bytes) {
1405                         /* Read request not from offset 0? */
1406                         if (unlikely(roffs)) {
1407                                 if (roffs >= free->length) {
1408                                         roffs -= free->length;
1409                                         continue;
1410                                 }
1411                                 boffs = free->offset + roffs;
1412                                 bytes = min_t(size_t, len,
1413                                               (free->length - roffs));
1414                                 roffs = 0;
1415                         } else {
1416                                 bytes = min_t(size_t, len, free->length);
1417                                 boffs = free->offset;
1418                         }
1419                         memcpy(oob, chip->oob_poi + boffs, bytes);
1420                         oob += bytes;
1421                 }
1422                 return oob;
1423         }
1424         default:
1425                 BUG();
1426         }
1427         return NULL;
1428 }
1429
1430 /**
1431  * nand_do_read_ops - [INTERN] Read data with ECC
1432  * @mtd: MTD device structure
1433  * @from: offset to read from
1434  * @ops: oob ops structure
1435  *
1436  * Internal function. Called with chip held.
1437  */
1438 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1439                             struct mtd_oob_ops *ops)
1440 {
1441         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1442         struct nand_chip *chip = mtd->priv;
1443         struct mtd_ecc_stats stats;
1444         int ret = 0;
1445         uint32_t readlen = ops->len;
1446         uint32_t oobreadlen = ops->ooblen;
1447         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1448                 mtd->oobavail : mtd->oobsize;
1449
1450         uint8_t *bufpoi, *oob, *buf;
1451         unsigned int max_bitflips = 0;
1452
1453         stats = mtd->ecc_stats;
1454
1455         chipnr = (int)(from >> chip->chip_shift);
1456         chip->select_chip(mtd, chipnr);
1457
1458         realpage = (int)(from >> chip->page_shift);
1459         page = realpage & chip->pagemask;
1460
1461         col = (int)(from & (mtd->writesize - 1));
1462
1463         buf = ops->datbuf;
1464         oob = ops->oobbuf;
1465         oob_required = oob ? 1 : 0;
1466
1467         while (1) {
1468                 bytes = min(mtd->writesize - col, readlen);
1469                 aligned = (bytes == mtd->writesize);
1470
1471                 /* Is the current page in the buffer? */
1472                 if (realpage != chip->pagebuf || oob) {
1473                         bufpoi = aligned ? buf : chip->buffers->databuf;
1474
1475                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1476
1477                         /*
1478                          * Now read the page into the buffer.  Absent an error,
1479                          * the read methods return max bitflips per ecc step.
1480                          */
1481                         if (unlikely(ops->mode == MTD_OPS_RAW))
1482                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1483                                                               oob_required,
1484                                                               page);
1485                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1486                                  !oob)
1487                                 ret = chip->ecc.read_subpage(mtd, chip,
1488                                                         col, bytes, bufpoi);
1489                         else
1490                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1491                                                           oob_required, page);
1492                         if (ret < 0) {
1493                                 if (!aligned)
1494                                         /* Invalidate page cache */
1495                                         chip->pagebuf = -1;
1496                                 break;
1497                         }
1498
1499                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1500
1501                         /* Transfer not aligned data */
1502                         if (!aligned) {
1503                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1504                                     !(mtd->ecc_stats.failed - stats.failed) &&
1505                                     (ops->mode != MTD_OPS_RAW)) {
1506                                         chip->pagebuf = realpage;
1507                                         chip->pagebuf_bitflips = ret;
1508                                 } else {
1509                                         /* Invalidate page cache */
1510                                         chip->pagebuf = -1;
1511                                 }
1512                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1513                         }
1514
1515                         buf += bytes;
1516
1517                         if (unlikely(oob)) {
1518                                 int toread = min(oobreadlen, max_oobsize);
1519
1520                                 if (toread) {
1521                                         oob = nand_transfer_oob(chip,
1522                                                 oob, ops, toread);
1523                                         oobreadlen -= toread;
1524                                 }
1525                         }
1526
1527                         if (chip->options & NAND_NEED_READRDY) {
1528                                 /* Apply delay or wait for ready/busy pin */
1529                                 if (!chip->dev_ready)
1530                                         udelay(chip->chip_delay);
1531                                 else
1532                                         nand_wait_ready(mtd);
1533                         }
1534                 } else {
1535                         memcpy(buf, chip->buffers->databuf + col, bytes);
1536                         buf += bytes;
1537                         max_bitflips = max_t(unsigned int, max_bitflips,
1538                                              chip->pagebuf_bitflips);
1539                 }
1540
1541                 readlen -= bytes;
1542
1543                 if (!readlen)
1544                         break;
1545
1546                 /* For subsequent reads align to page boundary */
1547                 col = 0;
1548                 /* Increment page address */
1549                 realpage++;
1550
1551                 page = realpage & chip->pagemask;
1552                 /* Check, if we cross a chip boundary */
1553                 if (!page) {
1554                         chipnr++;
1555                         chip->select_chip(mtd, -1);
1556                         chip->select_chip(mtd, chipnr);
1557                 }
1558         }
1559         chip->select_chip(mtd, -1);
1560
1561         ops->retlen = ops->len - (size_t) readlen;
1562         if (oob)
1563                 ops->oobretlen = ops->ooblen - oobreadlen;
1564
1565         if (ret < 0)
1566                 return ret;
1567
1568         if (mtd->ecc_stats.failed - stats.failed)
1569                 return -EBADMSG;
1570
1571         return max_bitflips;
1572 }
1573
1574 /**
1575  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1576  * @mtd: MTD device structure
1577  * @from: offset to read from
1578  * @len: number of bytes to read
1579  * @retlen: pointer to variable to store the number of read bytes
1580  * @buf: the databuffer to put data
1581  *
1582  * Get hold of the chip and call nand_do_read.
1583  */
1584 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1585                      size_t *retlen, uint8_t *buf)
1586 {
1587         struct mtd_oob_ops ops;
1588         int ret;
1589
1590         nand_get_device(mtd, FL_READING);
1591         ops.len = len;
1592         ops.datbuf = buf;
1593         ops.oobbuf = NULL;
1594         ops.mode = MTD_OPS_PLACE_OOB;
1595         ret = nand_do_read_ops(mtd, from, &ops);
1596         *retlen = ops.retlen;
1597         nand_release_device(mtd);
1598         return ret;
1599 }
1600
1601 /**
1602  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1603  * @mtd: mtd info structure
1604  * @chip: nand chip info structure
1605  * @page: page number to read
1606  */
1607 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1608                              int page)
1609 {
1610         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1611         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1612         return 0;
1613 }
1614
1615 /**
1616  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1617  *                          with syndromes
1618  * @mtd: mtd info structure
1619  * @chip: nand chip info structure
1620  * @page: page number to read
1621  */
1622 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1623                                   int page)
1624 {
1625         uint8_t *buf = chip->oob_poi;
1626         int length = mtd->oobsize;
1627         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1628         int eccsize = chip->ecc.size;
1629         uint8_t *bufpoi = buf;
1630         int i, toread, sndrnd = 0, pos;
1631
1632         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1633         for (i = 0; i < chip->ecc.steps; i++) {
1634                 if (sndrnd) {
1635                         pos = eccsize + i * (eccsize + chunk);
1636                         if (mtd->writesize > 512)
1637                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1638                         else
1639                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1640                 } else
1641                         sndrnd = 1;
1642                 toread = min_t(int, length, chunk);
1643                 chip->read_buf(mtd, bufpoi, toread);
1644                 bufpoi += toread;
1645                 length -= toread;
1646         }
1647         if (length > 0)
1648                 chip->read_buf(mtd, bufpoi, length);
1649
1650         return 0;
1651 }
1652
1653 /**
1654  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1655  * @mtd: mtd info structure
1656  * @chip: nand chip info structure
1657  * @page: page number to write
1658  */
1659 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1660                               int page)
1661 {
1662         int status = 0;
1663         const uint8_t *buf = chip->oob_poi;
1664         int length = mtd->oobsize;
1665
1666         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1667         chip->write_buf(mtd, buf, length);
1668         /* Send command to program the OOB data */
1669         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1670
1671         status = chip->waitfunc(mtd, chip);
1672
1673         return status & NAND_STATUS_FAIL ? -EIO : 0;
1674 }
1675
1676 /**
1677  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1678  *                           with syndrome - only for large page flash
1679  * @mtd: mtd info structure
1680  * @chip: nand chip info structure
1681  * @page: page number to write
1682  */
1683 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1684                                    struct nand_chip *chip, int page)
1685 {
1686         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1687         int eccsize = chip->ecc.size, length = mtd->oobsize;
1688         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1689         const uint8_t *bufpoi = chip->oob_poi;
1690
1691         /*
1692          * data-ecc-data-ecc ... ecc-oob
1693          * or
1694          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1695          */
1696         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1697                 pos = steps * (eccsize + chunk);
1698                 steps = 0;
1699         } else
1700                 pos = eccsize;
1701
1702         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1703         for (i = 0; i < steps; i++) {
1704                 if (sndcmd) {
1705                         if (mtd->writesize <= 512) {
1706                                 uint32_t fill = 0xFFFFFFFF;
1707
1708                                 len = eccsize;
1709                                 while (len > 0) {
1710                                         int num = min_t(int, len, 4);
1711                                         chip->write_buf(mtd, (uint8_t *)&fill,
1712                                                         num);
1713                                         len -= num;
1714                                 }
1715                         } else {
1716                                 pos = eccsize + i * (eccsize + chunk);
1717                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1718                         }
1719                 } else
1720                         sndcmd = 1;
1721                 len = min_t(int, length, chunk);
1722                 chip->write_buf(mtd, bufpoi, len);
1723                 bufpoi += len;
1724                 length -= len;
1725         }
1726         if (length > 0)
1727                 chip->write_buf(mtd, bufpoi, length);
1728
1729         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1730         status = chip->waitfunc(mtd, chip);
1731
1732         return status & NAND_STATUS_FAIL ? -EIO : 0;
1733 }
1734
1735 /**
1736  * nand_do_read_oob - [INTERN] NAND read out-of-band
1737  * @mtd: MTD device structure
1738  * @from: offset to read from
1739  * @ops: oob operations description structure
1740  *
1741  * NAND read out-of-band data from the spare area.
1742  */
1743 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1744                             struct mtd_oob_ops *ops)
1745 {
1746         int page, realpage, chipnr;
1747         struct nand_chip *chip = mtd->priv;
1748         struct mtd_ecc_stats stats;
1749         int readlen = ops->ooblen;
1750         int len;
1751         uint8_t *buf = ops->oobbuf;
1752         int ret = 0;
1753
1754         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1755                         __func__, (unsigned long long)from, readlen);
1756
1757         stats = mtd->ecc_stats;
1758
1759         if (ops->mode == MTD_OPS_AUTO_OOB)
1760                 len = chip->ecc.layout->oobavail;
1761         else
1762                 len = mtd->oobsize;
1763
1764         if (unlikely(ops->ooboffs >= len)) {
1765                 pr_debug("%s: attempt to start read outside oob\n",
1766                                 __func__);
1767                 return -EINVAL;
1768         }
1769
1770         /* Do not allow reads past end of device */
1771         if (unlikely(from >= mtd->size ||
1772                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1773                                         (from >> chip->page_shift)) * len)) {
1774                 pr_debug("%s: attempt to read beyond end of device\n",
1775                                 __func__);
1776                 return -EINVAL;
1777         }
1778
1779         chipnr = (int)(from >> chip->chip_shift);
1780         chip->select_chip(mtd, chipnr);
1781
1782         /* Shift to get page */
1783         realpage = (int)(from >> chip->page_shift);
1784         page = realpage & chip->pagemask;
1785
1786         while (1) {
1787                 if (ops->mode == MTD_OPS_RAW)
1788                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1789                 else
1790                         ret = chip->ecc.read_oob(mtd, chip, page);
1791
1792                 if (ret < 0)
1793                         break;
1794
1795                 len = min(len, readlen);
1796                 buf = nand_transfer_oob(chip, buf, ops, len);
1797
1798                 if (chip->options & NAND_NEED_READRDY) {
1799                         /* Apply delay or wait for ready/busy pin */
1800                         if (!chip->dev_ready)
1801                                 udelay(chip->chip_delay);
1802                         else
1803                                 nand_wait_ready(mtd);
1804                 }
1805
1806                 readlen -= len;
1807                 if (!readlen)
1808                         break;
1809
1810                 /* Increment page address */
1811                 realpage++;
1812
1813                 page = realpage & chip->pagemask;
1814                 /* Check, if we cross a chip boundary */
1815                 if (!page) {
1816                         chipnr++;
1817                         chip->select_chip(mtd, -1);
1818                         chip->select_chip(mtd, chipnr);
1819                 }
1820         }
1821         chip->select_chip(mtd, -1);
1822
1823         ops->oobretlen = ops->ooblen - readlen;
1824
1825         if (ret < 0)
1826                 return ret;
1827
1828         if (mtd->ecc_stats.failed - stats.failed)
1829                 return -EBADMSG;
1830
1831         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1832 }
1833
1834 /**
1835  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1836  * @mtd: MTD device structure
1837  * @from: offset to read from
1838  * @ops: oob operation description structure
1839  *
1840  * NAND read data and/or out-of-band data.
1841  */
1842 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1843                          struct mtd_oob_ops *ops)
1844 {
1845         int ret = -ENOTSUPP;
1846
1847         ops->retlen = 0;
1848
1849         /* Do not allow reads past end of device */
1850         if (ops->datbuf && (from + ops->len) > mtd->size) {
1851                 pr_debug("%s: attempt to read beyond end of device\n",
1852                                 __func__);
1853                 return -EINVAL;
1854         }
1855
1856         nand_get_device(mtd, FL_READING);
1857
1858         switch (ops->mode) {
1859         case MTD_OPS_PLACE_OOB:
1860         case MTD_OPS_AUTO_OOB:
1861         case MTD_OPS_RAW:
1862                 break;
1863
1864         default:
1865                 goto out;
1866         }
1867
1868         if (!ops->datbuf)
1869                 ret = nand_do_read_oob(mtd, from, ops);
1870         else
1871                 ret = nand_do_read_ops(mtd, from, ops);
1872
1873 out:
1874         nand_release_device(mtd);
1875         return ret;
1876 }
1877
1878
1879 /**
1880  * nand_write_page_raw - [INTERN] raw page write function
1881  * @mtd: mtd info structure
1882  * @chip: nand chip info structure
1883  * @buf: data buffer
1884  * @oob_required: must write chip->oob_poi to OOB
1885  *
1886  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1887  */
1888 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1889                                 const uint8_t *buf, int oob_required)
1890 {
1891         chip->write_buf(mtd, buf, mtd->writesize);
1892         if (oob_required)
1893                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1894
1895         return 0;
1896 }
1897
1898 /**
1899  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1900  * @mtd: mtd info structure
1901  * @chip: nand chip info structure
1902  * @buf: data buffer
1903  * @oob_required: must write chip->oob_poi to OOB
1904  *
1905  * We need a special oob layout and handling even when ECC isn't checked.
1906  */
1907 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1908                                         struct nand_chip *chip,
1909                                         const uint8_t *buf, int oob_required)
1910 {
1911         int eccsize = chip->ecc.size;
1912         int eccbytes = chip->ecc.bytes;
1913         uint8_t *oob = chip->oob_poi;
1914         int steps, size;
1915
1916         for (steps = chip->ecc.steps; steps > 0; steps--) {
1917                 chip->write_buf(mtd, buf, eccsize);
1918                 buf += eccsize;
1919
1920                 if (chip->ecc.prepad) {
1921                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1922                         oob += chip->ecc.prepad;
1923                 }
1924
1925                 chip->read_buf(mtd, oob, eccbytes);
1926                 oob += eccbytes;
1927
1928                 if (chip->ecc.postpad) {
1929                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1930                         oob += chip->ecc.postpad;
1931                 }
1932         }
1933
1934         size = mtd->oobsize - (oob - chip->oob_poi);
1935         if (size)
1936                 chip->write_buf(mtd, oob, size);
1937
1938         return 0;
1939 }
1940 /**
1941  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1942  * @mtd: mtd info structure
1943  * @chip: nand chip info structure
1944  * @buf: data buffer
1945  * @oob_required: must write chip->oob_poi to OOB
1946  */
1947 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1948                                   const uint8_t *buf, int oob_required)
1949 {
1950         int i, eccsize = chip->ecc.size;
1951         int eccbytes = chip->ecc.bytes;
1952         int eccsteps = chip->ecc.steps;
1953         uint8_t *ecc_calc = chip->buffers->ecccalc;
1954         const uint8_t *p = buf;
1955         uint32_t *eccpos = chip->ecc.layout->eccpos;
1956
1957         /* Software ECC calculation */
1958         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1959                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1960
1961         for (i = 0; i < chip->ecc.total; i++)
1962                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1963
1964         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1965 }
1966
1967 /**
1968  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1969  * @mtd: mtd info structure
1970  * @chip: nand chip info structure
1971  * @buf: data buffer
1972  * @oob_required: must write chip->oob_poi to OOB
1973  */
1974 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1975                                   const uint8_t *buf, int oob_required)
1976 {
1977         int i, eccsize = chip->ecc.size;
1978         int eccbytes = chip->ecc.bytes;
1979         int eccsteps = chip->ecc.steps;
1980         uint8_t *ecc_calc = chip->buffers->ecccalc;
1981         const uint8_t *p = buf;
1982         uint32_t *eccpos = chip->ecc.layout->eccpos;
1983
1984         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1985                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1986                 chip->write_buf(mtd, p, eccsize);
1987                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1988         }
1989
1990         for (i = 0; i < chip->ecc.total; i++)
1991                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1992
1993         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1994
1995         return 0;
1996 }
1997
1998 /**
1999  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2000  * @mtd: mtd info structure
2001  * @chip: nand chip info structure
2002  * @buf: data buffer
2003  * @oob_required: must write chip->oob_poi to OOB
2004  *
2005  * The hw generator calculates the error syndrome automatically. Therefore we
2006  * need a special oob layout and handling.
2007  */
2008 static int nand_write_page_syndrome(struct mtd_info *mtd,
2009                                     struct nand_chip *chip,
2010                                     const uint8_t *buf, int oob_required)
2011 {
2012         int i, eccsize = chip->ecc.size;
2013         int eccbytes = chip->ecc.bytes;
2014         int eccsteps = chip->ecc.steps;
2015         const uint8_t *p = buf;
2016         uint8_t *oob = chip->oob_poi;
2017
2018         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2019
2020                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2021                 chip->write_buf(mtd, p, eccsize);
2022
2023                 if (chip->ecc.prepad) {
2024                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2025                         oob += chip->ecc.prepad;
2026                 }
2027
2028                 chip->ecc.calculate(mtd, p, oob);
2029                 chip->write_buf(mtd, oob, eccbytes);
2030                 oob += eccbytes;
2031
2032                 if (chip->ecc.postpad) {
2033                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2034                         oob += chip->ecc.postpad;
2035                 }
2036         }
2037
2038         /* Calculate remaining oob bytes */
2039         i = mtd->oobsize - (oob - chip->oob_poi);
2040         if (i)
2041                 chip->write_buf(mtd, oob, i);
2042
2043         return 0;
2044 }
2045
2046 /**
2047  * nand_write_page - [REPLACEABLE] write one page
2048  * @mtd: MTD device structure
2049  * @chip: NAND chip descriptor
2050  * @buf: the data to write
2051  * @oob_required: must write chip->oob_poi to OOB
2052  * @page: page number to write
2053  * @cached: cached programming
2054  * @raw: use _raw version of write_page
2055  */
2056 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2057                            const uint8_t *buf, int oob_required, int page,
2058                            int cached, int raw)
2059 {
2060         int status;
2061
2062         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2063
2064         if (unlikely(raw))
2065                 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2066         else
2067                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2068
2069         if (status < 0)
2070                 return status;
2071
2072         /*
2073          * Cached progamming disabled for now. Not sure if it's worth the
2074          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2075          */
2076         cached = 0;
2077
2078         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2079
2080                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2081                 status = chip->waitfunc(mtd, chip);
2082                 /*
2083                  * See if operation failed and additional status checks are
2084                  * available.
2085                  */
2086                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2087                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2088                                                page);
2089
2090                 if (status & NAND_STATUS_FAIL)
2091                         return -EIO;
2092         } else {
2093                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2094                 status = chip->waitfunc(mtd, chip);
2095         }
2096
2097         return 0;
2098 }
2099
2100 /**
2101  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2102  * @mtd: MTD device structure
2103  * @oob: oob data buffer
2104  * @len: oob data write length
2105  * @ops: oob ops structure
2106  */
2107 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2108                               struct mtd_oob_ops *ops)
2109 {
2110         struct nand_chip *chip = mtd->priv;
2111
2112         /*
2113          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2114          * data from a previous OOB read.
2115          */
2116         memset(chip->oob_poi, 0xff, mtd->oobsize);
2117
2118         switch (ops->mode) {
2119
2120         case MTD_OPS_PLACE_OOB:
2121         case MTD_OPS_RAW:
2122                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2123                 return oob + len;
2124
2125         case MTD_OPS_AUTO_OOB: {
2126                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2127                 uint32_t boffs = 0, woffs = ops->ooboffs;
2128                 size_t bytes = 0;
2129
2130                 for (; free->length && len; free++, len -= bytes) {
2131                         /* Write request not from offset 0? */
2132                         if (unlikely(woffs)) {
2133                                 if (woffs >= free->length) {
2134                                         woffs -= free->length;
2135                                         continue;
2136                                 }
2137                                 boffs = free->offset + woffs;
2138                                 bytes = min_t(size_t, len,
2139                                               (free->length - woffs));
2140                                 woffs = 0;
2141                         } else {
2142                                 bytes = min_t(size_t, len, free->length);
2143                                 boffs = free->offset;
2144                         }
2145                         memcpy(chip->oob_poi + boffs, oob, bytes);
2146                         oob += bytes;
2147                 }
2148                 return oob;
2149         }
2150         default:
2151                 BUG();
2152         }
2153         return NULL;
2154 }
2155
2156 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2157
2158 /**
2159  * nand_do_write_ops - [INTERN] NAND write with ECC
2160  * @mtd: MTD device structure
2161  * @to: offset to write to
2162  * @ops: oob operations description structure
2163  *
2164  * NAND write with ECC.
2165  */
2166 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2167                              struct mtd_oob_ops *ops)
2168 {
2169         int chipnr, realpage, page, blockmask, column;
2170         struct nand_chip *chip = mtd->priv;
2171         uint32_t writelen = ops->len;
2172
2173         uint32_t oobwritelen = ops->ooblen;
2174         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2175                                 mtd->oobavail : mtd->oobsize;
2176
2177         uint8_t *oob = ops->oobbuf;
2178         uint8_t *buf = ops->datbuf;
2179         int ret, subpage;
2180         int oob_required = oob ? 1 : 0;
2181
2182         ops->retlen = 0;
2183         if (!writelen)
2184                 return 0;
2185
2186         /* Reject writes, which are not page aligned */
2187         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2188                 pr_notice("%s: attempt to write non page aligned data\n",
2189                            __func__);
2190                 return -EINVAL;
2191         }
2192
2193         column = to & (mtd->writesize - 1);
2194         subpage = column || (writelen & (mtd->writesize - 1));
2195
2196         if (subpage && oob)
2197                 return -EINVAL;
2198
2199         chipnr = (int)(to >> chip->chip_shift);
2200         chip->select_chip(mtd, chipnr);
2201
2202         /* Check, if it is write protected */
2203         if (nand_check_wp(mtd)) {
2204                 ret = -EIO;
2205                 goto err_out;
2206         }
2207
2208         realpage = (int)(to >> chip->page_shift);
2209         page = realpage & chip->pagemask;
2210         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2211
2212         /* Invalidate the page cache, when we write to the cached page */
2213         if (to <= (chip->pagebuf << chip->page_shift) &&
2214             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2215                 chip->pagebuf = -1;
2216
2217         /* Don't allow multipage oob writes with offset */
2218         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2219                 ret = -EINVAL;
2220                 goto err_out;
2221         }
2222
2223         while (1) {
2224                 int bytes = mtd->writesize;
2225                 int cached = writelen > bytes && page != blockmask;
2226                 uint8_t *wbuf = buf;
2227
2228                 /* Partial page write? */
2229                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2230                         cached = 0;
2231                         bytes = min_t(int, bytes - column, (int) writelen);
2232                         chip->pagebuf = -1;
2233                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2234                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2235                         wbuf = chip->buffers->databuf;
2236                 }
2237
2238                 if (unlikely(oob)) {
2239                         size_t len = min(oobwritelen, oobmaxlen);
2240                         oob = nand_fill_oob(mtd, oob, len, ops);
2241                         oobwritelen -= len;
2242                 } else {
2243                         /* We still need to erase leftover OOB data */
2244                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2245                 }
2246
2247                 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2248                                        cached, (ops->mode == MTD_OPS_RAW));
2249                 if (ret)
2250                         break;
2251
2252                 writelen -= bytes;
2253                 if (!writelen)
2254                         break;
2255
2256                 column = 0;
2257                 buf += bytes;
2258                 realpage++;
2259
2260                 page = realpage & chip->pagemask;
2261                 /* Check, if we cross a chip boundary */
2262                 if (!page) {
2263                         chipnr++;
2264                         chip->select_chip(mtd, -1);
2265                         chip->select_chip(mtd, chipnr);
2266                 }
2267         }
2268
2269         ops->retlen = ops->len - writelen;
2270         if (unlikely(oob))
2271                 ops->oobretlen = ops->ooblen;
2272
2273 err_out:
2274         chip->select_chip(mtd, -1);
2275         return ret;
2276 }
2277
2278 /**
2279  * panic_nand_write - [MTD Interface] NAND write with ECC
2280  * @mtd: MTD device structure
2281  * @to: offset to write to
2282  * @len: number of bytes to write
2283  * @retlen: pointer to variable to store the number of written bytes
2284  * @buf: the data to write
2285  *
2286  * NAND write with ECC. Used when performing writes in interrupt context, this
2287  * may for example be called by mtdoops when writing an oops while in panic.
2288  */
2289 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2290                             size_t *retlen, const uint8_t *buf)
2291 {
2292         struct nand_chip *chip = mtd->priv;
2293         struct mtd_oob_ops ops;
2294         int ret;
2295
2296         /* Wait for the device to get ready */
2297         panic_nand_wait(mtd, chip, 400);
2298
2299         /* Grab the device */
2300         panic_nand_get_device(chip, mtd, FL_WRITING);
2301
2302         ops.len = len;
2303         ops.datbuf = (uint8_t *)buf;
2304         ops.oobbuf = NULL;
2305         ops.mode = MTD_OPS_PLACE_OOB;
2306
2307         ret = nand_do_write_ops(mtd, to, &ops);
2308
2309         *retlen = ops.retlen;
2310         return ret;
2311 }
2312
2313 /**
2314  * nand_write - [MTD Interface] NAND write with ECC
2315  * @mtd: MTD device structure
2316  * @to: offset to write to
2317  * @len: number of bytes to write
2318  * @retlen: pointer to variable to store the number of written bytes
2319  * @buf: the data to write
2320  *
2321  * NAND write with ECC.
2322  */
2323 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2324                           size_t *retlen, const uint8_t *buf)
2325 {
2326         struct mtd_oob_ops ops;
2327         int ret;
2328
2329         nand_get_device(mtd, FL_WRITING);
2330         ops.len = len;
2331         ops.datbuf = (uint8_t *)buf;
2332         ops.oobbuf = NULL;
2333         ops.mode = MTD_OPS_PLACE_OOB;
2334         ret = nand_do_write_ops(mtd, to, &ops);
2335         *retlen = ops.retlen;
2336         nand_release_device(mtd);
2337         return ret;
2338 }
2339
2340 /**
2341  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2342  * @mtd: MTD device structure
2343  * @to: offset to write to
2344  * @ops: oob operation description structure
2345  *
2346  * NAND write out-of-band.
2347  */
2348 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2349                              struct mtd_oob_ops *ops)
2350 {
2351         int chipnr, page, status, len;
2352         struct nand_chip *chip = mtd->priv;
2353
2354         pr_debug("%s: to = 0x%08x, len = %i\n",
2355                          __func__, (unsigned int)to, (int)ops->ooblen);
2356
2357         if (ops->mode == MTD_OPS_AUTO_OOB)
2358                 len = chip->ecc.layout->oobavail;
2359         else
2360                 len = mtd->oobsize;
2361
2362         /* Do not allow write past end of page */
2363         if ((ops->ooboffs + ops->ooblen) > len) {
2364                 pr_debug("%s: attempt to write past end of page\n",
2365                                 __func__);
2366                 return -EINVAL;
2367         }
2368
2369         if (unlikely(ops->ooboffs >= len)) {
2370                 pr_debug("%s: attempt to start write outside oob\n",
2371                                 __func__);
2372                 return -EINVAL;
2373         }
2374
2375         /* Do not allow write past end of device */
2376         if (unlikely(to >= mtd->size ||
2377                      ops->ooboffs + ops->ooblen >
2378                         ((mtd->size >> chip->page_shift) -
2379                          (to >> chip->page_shift)) * len)) {
2380                 pr_debug("%s: attempt to write beyond end of device\n",
2381                                 __func__);
2382                 return -EINVAL;
2383         }
2384
2385         chipnr = (int)(to >> chip->chip_shift);
2386         chip->select_chip(mtd, chipnr);
2387
2388         /* Shift to get page */
2389         page = (int)(to >> chip->page_shift);
2390
2391         /*
2392          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2393          * of my DiskOnChip 2000 test units) will clear the whole data page too
2394          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2395          * it in the doc2000 driver in August 1999.  dwmw2.
2396          */
2397         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2398
2399         /* Check, if it is write protected */
2400         if (nand_check_wp(mtd)) {
2401                 chip->select_chip(mtd, -1);
2402                 return -EROFS;
2403         }
2404
2405         /* Invalidate the page cache, if we write to the cached page */
2406         if (page == chip->pagebuf)
2407                 chip->pagebuf = -1;
2408
2409         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2410
2411         if (ops->mode == MTD_OPS_RAW)
2412                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2413         else
2414                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2415
2416         chip->select_chip(mtd, -1);
2417
2418         if (status)
2419                 return status;
2420
2421         ops->oobretlen = ops->ooblen;
2422
2423         return 0;
2424 }
2425
2426 /**
2427  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2428  * @mtd: MTD device structure
2429  * @to: offset to write to
2430  * @ops: oob operation description structure
2431  */
2432 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2433                           struct mtd_oob_ops *ops)
2434 {
2435         int ret = -ENOTSUPP;
2436
2437         ops->retlen = 0;
2438
2439         /* Do not allow writes past end of device */
2440         if (ops->datbuf && (to + ops->len) > mtd->size) {
2441                 pr_debug("%s: attempt to write beyond end of device\n",
2442                                 __func__);
2443                 return -EINVAL;
2444         }
2445
2446         nand_get_device(mtd, FL_WRITING);
2447
2448         switch (ops->mode) {
2449         case MTD_OPS_PLACE_OOB:
2450         case MTD_OPS_AUTO_OOB:
2451         case MTD_OPS_RAW:
2452                 break;
2453
2454         default:
2455                 goto out;
2456         }
2457
2458         if (!ops->datbuf)
2459                 ret = nand_do_write_oob(mtd, to, ops);
2460         else
2461                 ret = nand_do_write_ops(mtd, to, ops);
2462
2463 out:
2464         nand_release_device(mtd);
2465         return ret;
2466 }
2467
2468 /**
2469  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2470  * @mtd: MTD device structure
2471  * @page: the page address of the block which will be erased
2472  *
2473  * Standard erase command for NAND chips.
2474  */
2475 static void single_erase_cmd(struct mtd_info *mtd, int page)
2476 {
2477         struct nand_chip *chip = mtd->priv;
2478         /* Send commands to erase a block */
2479         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2480         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2481 }
2482
2483 /**
2484  * multi_erase_cmd - [GENERIC] AND specific block erase command function
2485  * @mtd: MTD device structure
2486  * @page: the page address of the block which will be erased
2487  *
2488  * AND multi block erase command function. Erase 4 consecutive blocks.
2489  */
2490 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492         struct nand_chip *chip = mtd->priv;
2493         /* Send commands to erase a block */
2494         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2495         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2496         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2498         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2499 }
2500
2501 /**
2502  * nand_erase - [MTD Interface] erase block(s)
2503  * @mtd: MTD device structure
2504  * @instr: erase instruction
2505  *
2506  * Erase one ore more blocks.
2507  */
2508 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2509 {
2510         return nand_erase_nand(mtd, instr, 0);
2511 }
2512
2513 #define BBT_PAGE_MASK   0xffffff3f
2514 /**
2515  * nand_erase_nand - [INTERN] erase block(s)
2516  * @mtd: MTD device structure
2517  * @instr: erase instruction
2518  * @allowbbt: allow erasing the bbt area
2519  *
2520  * Erase one ore more blocks.
2521  */
2522 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2523                     int allowbbt)
2524 {
2525         int page, status, pages_per_block, ret, chipnr;
2526         struct nand_chip *chip = mtd->priv;
2527         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2528         unsigned int bbt_masked_page = 0xffffffff;
2529         loff_t len;
2530
2531         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2532                         __func__, (unsigned long long)instr->addr,
2533                         (unsigned long long)instr->len);
2534
2535         if (check_offs_len(mtd, instr->addr, instr->len))
2536                 return -EINVAL;
2537
2538         /* Grab the lock and see if the device is available */
2539         nand_get_device(mtd, FL_ERASING);
2540
2541         /* Shift to get first page */
2542         page = (int)(instr->addr >> chip->page_shift);
2543         chipnr = (int)(instr->addr >> chip->chip_shift);
2544
2545         /* Calculate pages in each block */
2546         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2547
2548         /* Select the NAND device */
2549         chip->select_chip(mtd, chipnr);
2550
2551         /* Check, if it is write protected */
2552         if (nand_check_wp(mtd)) {
2553                 pr_debug("%s: device is write protected!\n",
2554                                 __func__);
2555                 instr->state = MTD_ERASE_FAILED;
2556                 goto erase_exit;
2557         }
2558
2559         /*
2560          * If BBT requires refresh, set the BBT page mask to see if the BBT
2561          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2562          * can not be matched. This is also done when the bbt is actually
2563          * erased to avoid recursive updates.
2564          */
2565         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2566                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2567
2568         /* Loop through the pages */
2569         len = instr->len;
2570
2571         instr->state = MTD_ERASING;
2572
2573         while (len) {
2574                 /* Check if we have a bad block, we do not erase bad blocks! */
2575                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2576                                         chip->page_shift, 0, allowbbt)) {
2577                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2578                                     __func__, page);
2579                         instr->state = MTD_ERASE_FAILED;
2580                         goto erase_exit;
2581                 }
2582
2583                 /*
2584                  * Invalidate the page cache, if we erase the block which
2585                  * contains the current cached page.
2586                  */
2587                 if (page <= chip->pagebuf && chip->pagebuf <
2588                     (page + pages_per_block))
2589                         chip->pagebuf = -1;
2590
2591                 chip->erase_cmd(mtd, page & chip->pagemask);
2592
2593                 status = chip->waitfunc(mtd, chip);
2594
2595                 /*
2596                  * See if operation failed and additional status checks are
2597                  * available
2598                  */
2599                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2600                         status = chip->errstat(mtd, chip, FL_ERASING,
2601                                                status, page);
2602
2603                 /* See if block erase succeeded */
2604                 if (status & NAND_STATUS_FAIL) {
2605                         pr_debug("%s: failed erase, page 0x%08x\n",
2606                                         __func__, page);
2607                         instr->state = MTD_ERASE_FAILED;
2608                         instr->fail_addr =
2609                                 ((loff_t)page << chip->page_shift);
2610                         goto erase_exit;
2611                 }
2612
2613                 /*
2614                  * If BBT requires refresh, set the BBT rewrite flag to the
2615                  * page being erased.
2616                  */
2617                 if (bbt_masked_page != 0xffffffff &&
2618                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2619                             rewrite_bbt[chipnr] =
2620                                         ((loff_t)page << chip->page_shift);
2621
2622                 /* Increment page address and decrement length */
2623                 len -= (1 << chip->phys_erase_shift);
2624                 page += pages_per_block;
2625
2626                 /* Check, if we cross a chip boundary */
2627                 if (len && !(page & chip->pagemask)) {
2628                         chipnr++;
2629                         chip->select_chip(mtd, -1);
2630                         chip->select_chip(mtd, chipnr);
2631
2632                         /*
2633                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2634                          * page mask to see if this BBT should be rewritten.
2635                          */
2636                         if (bbt_masked_page != 0xffffffff &&
2637                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2638                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2639                                         BBT_PAGE_MASK;
2640                 }
2641         }
2642         instr->state = MTD_ERASE_DONE;
2643
2644 erase_exit:
2645
2646         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2647
2648         /* Deselect and wake up anyone waiting on the device */
2649         chip->select_chip(mtd, -1);
2650         nand_release_device(mtd);
2651
2652         /* Do call back function */
2653         if (!ret)
2654                 mtd_erase_callback(instr);
2655
2656         /*
2657          * If BBT requires refresh and erase was successful, rewrite any
2658          * selected bad block tables.
2659          */
2660         if (bbt_masked_page == 0xffffffff || ret)
2661                 return ret;
2662
2663         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2664                 if (!rewrite_bbt[chipnr])
2665                         continue;
2666                 /* Update the BBT for chip */
2667                 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2668                                 __func__, chipnr, rewrite_bbt[chipnr],
2669                                 chip->bbt_td->pages[chipnr]);
2670                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2671         }
2672
2673         /* Return more or less happy */
2674         return ret;
2675 }
2676
2677 /**
2678  * nand_sync - [MTD Interface] sync
2679  * @mtd: MTD device structure
2680  *
2681  * Sync is actually a wait for chip ready function.
2682  */
2683 static void nand_sync(struct mtd_info *mtd)
2684 {
2685         pr_debug("%s: called\n", __func__);
2686
2687         /* Grab the lock and see if the device is available */
2688         nand_get_device(mtd, FL_SYNCING);
2689         /* Release it and go back */
2690         nand_release_device(mtd);
2691 }
2692
2693 /**
2694  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2695  * @mtd: MTD device structure
2696  * @offs: offset relative to mtd start
2697  */
2698 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2699 {
2700         return nand_block_checkbad(mtd, offs, 1, 0);
2701 }
2702
2703 /**
2704  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2705  * @mtd: MTD device structure
2706  * @ofs: offset relative to mtd start
2707  */
2708 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2709 {
2710         struct nand_chip *chip = mtd->priv;
2711         int ret;
2712
2713         ret = nand_block_isbad(mtd, ofs);
2714         if (ret) {
2715                 /* If it was bad already, return success and do nothing */
2716                 if (ret > 0)
2717                         return 0;
2718                 return ret;
2719         }
2720
2721         return chip->block_markbad(mtd, ofs);
2722 }
2723
2724 /**
2725  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2726  * @mtd: MTD device structure
2727  * @chip: nand chip info structure
2728  * @addr: feature address.
2729  * @subfeature_param: the subfeature parameters, a four bytes array.
2730  */
2731 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2732                         int addr, uint8_t *subfeature_param)
2733 {
2734         int status;
2735
2736         if (!chip->onfi_version)
2737                 return -EINVAL;
2738
2739         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2740         chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2741         status = chip->waitfunc(mtd, chip);
2742         if (status & NAND_STATUS_FAIL)
2743                 return -EIO;
2744         return 0;
2745 }
2746
2747 /**
2748  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2749  * @mtd: MTD device structure
2750  * @chip: nand chip info structure
2751  * @addr: feature address.
2752  * @subfeature_param: the subfeature parameters, a four bytes array.
2753  */
2754 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2755                         int addr, uint8_t *subfeature_param)
2756 {
2757         if (!chip->onfi_version)
2758                 return -EINVAL;
2759
2760         /* clear the sub feature parameters */
2761         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2762
2763         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2764         chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2765         return 0;
2766 }
2767
2768 /**
2769  * nand_suspend - [MTD Interface] Suspend the NAND flash
2770  * @mtd: MTD device structure
2771  */
2772 static int nand_suspend(struct mtd_info *mtd)
2773 {
2774         return nand_get_device(mtd, FL_PM_SUSPENDED);
2775 }
2776
2777 /**
2778  * nand_resume - [MTD Interface] Resume the NAND flash
2779  * @mtd: MTD device structure
2780  */
2781 static void nand_resume(struct mtd_info *mtd)
2782 {
2783         struct nand_chip *chip = mtd->priv;
2784
2785         if (chip->state == FL_PM_SUSPENDED)
2786                 nand_release_device(mtd);
2787         else
2788                 pr_err("%s called for a chip which is not in suspended state\n",
2789                         __func__);
2790 }
2791
2792 /* Set default functions */
2793 static void nand_set_defaults(struct nand_chip *chip, int busw)
2794 {
2795         /* check for proper chip_delay setup, set 20us if not */
2796         if (!chip->chip_delay)
2797                 chip->chip_delay = 20;
2798
2799         /* check, if a user supplied command function given */
2800         if (chip->cmdfunc == NULL)
2801                 chip->cmdfunc = nand_command;
2802
2803         /* check, if a user supplied wait function given */
2804         if (chip->waitfunc == NULL)
2805                 chip->waitfunc = nand_wait;
2806
2807         if (!chip->select_chip)
2808                 chip->select_chip = nand_select_chip;
2809         if (!chip->read_byte)
2810                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2811         if (!chip->read_word)
2812                 chip->read_word = nand_read_word;
2813         if (!chip->block_bad)
2814                 chip->block_bad = nand_block_bad;
2815         if (!chip->block_markbad)
2816                 chip->block_markbad = nand_default_block_markbad;
2817         if (!chip->write_buf)
2818                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2819         if (!chip->read_buf)
2820                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2821         if (!chip->scan_bbt)
2822                 chip->scan_bbt = nand_default_bbt;
2823
2824         if (!chip->controller) {
2825                 chip->controller = &chip->hwcontrol;
2826                 spin_lock_init(&chip->controller->lock);
2827                 init_waitqueue_head(&chip->controller->wq);
2828         }
2829
2830 }
2831
2832 /* Sanitize ONFI strings so we can safely print them */
2833 static void sanitize_string(uint8_t *s, size_t len)
2834 {
2835         ssize_t i;
2836
2837         /* Null terminate */
2838         s[len - 1] = 0;
2839
2840         /* Remove non printable chars */
2841         for (i = 0; i < len - 1; i++) {
2842                 if (s[i] < ' ' || s[i] > 127)
2843                         s[i] = '?';
2844         }
2845
2846         /* Remove trailing spaces */
2847         strim(s);
2848 }
2849
2850 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2851 {
2852         int i;
2853         while (len--) {
2854                 crc ^= *p++ << 8;
2855                 for (i = 0; i < 8; i++)
2856                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2857         }
2858
2859         return crc;
2860 }
2861
2862 /*
2863  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2864  */
2865 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2866                                         int *busw)
2867 {
2868         struct nand_onfi_params *p = &chip->onfi_params;
2869         int i;
2870         int val;
2871
2872         /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2873         if (chip->options & NAND_BUSWIDTH_16) {
2874                 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2875                 return 0;
2876         }
2877         /* Try ONFI for unknown chip or LP */
2878         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2879         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2880                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2881                 return 0;
2882
2883         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2884         for (i = 0; i < 3; i++) {
2885                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2886                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2887                                 le16_to_cpu(p->crc)) {
2888                         pr_info("ONFI param page %d valid\n", i);
2889                         break;
2890                 }
2891         }
2892
2893         if (i == 3)
2894                 return 0;
2895
2896         /* Check version */
2897         val = le16_to_cpu(p->revision);
2898         if (val & (1 << 5))
2899                 chip->onfi_version = 23;
2900         else if (val & (1 << 4))
2901                 chip->onfi_version = 22;
2902         else if (val & (1 << 3))
2903                 chip->onfi_version = 21;
2904         else if (val & (1 << 2))
2905                 chip->onfi_version = 20;
2906         else if (val & (1 << 1))
2907                 chip->onfi_version = 10;
2908         else
2909                 chip->onfi_version = 0;
2910
2911         if (!chip->onfi_version) {
2912                 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2913                 return 0;
2914         }
2915
2916         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2917         sanitize_string(p->model, sizeof(p->model));
2918         if (!mtd->name)
2919                 mtd->name = p->model;
2920         mtd->writesize = le32_to_cpu(p->byte_per_page);
2921         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2922         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2923         chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2924         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2925         *busw = 0;
2926         if (le16_to_cpu(p->features) & 1)
2927                 *busw = NAND_BUSWIDTH_16;
2928
2929         pr_info("ONFI flash detected\n");
2930         return 1;
2931 }
2932
2933 /*
2934  * nand_id_has_period - Check if an ID string has a given wraparound period
2935  * @id_data: the ID string
2936  * @arrlen: the length of the @id_data array
2937  * @period: the period of repitition
2938  *
2939  * Check if an ID string is repeated within a given sequence of bytes at
2940  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2941  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
2942  * if the repetition has a period of @period; otherwise, returns zero.
2943  */
2944 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2945 {
2946         int i, j;
2947         for (i = 0; i < period; i++)
2948                 for (j = i + period; j < arrlen; j += period)
2949                         if (id_data[i] != id_data[j])
2950                                 return 0;
2951         return 1;
2952 }
2953
2954 /*
2955  * nand_id_len - Get the length of an ID string returned by CMD_READID
2956  * @id_data: the ID string
2957  * @arrlen: the length of the @id_data array
2958
2959  * Returns the length of the ID string, according to known wraparound/trailing
2960  * zero patterns. If no pattern exists, returns the length of the array.
2961  */
2962 static int nand_id_len(u8 *id_data, int arrlen)
2963 {
2964         int last_nonzero, period;
2965
2966         /* Find last non-zero byte */
2967         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2968                 if (id_data[last_nonzero])
2969                         break;
2970
2971         /* All zeros */
2972         if (last_nonzero < 0)
2973                 return 0;
2974
2975         /* Calculate wraparound period */
2976         for (period = 1; period < arrlen; period++)
2977                 if (nand_id_has_period(id_data, arrlen, period))
2978                         break;
2979
2980         /* There's a repeated pattern */
2981         if (period < arrlen)
2982                 return period;
2983
2984         /* There are trailing zeros */
2985         if (last_nonzero < arrlen - 1)
2986                 return last_nonzero + 1;
2987
2988         /* No pattern detected */
2989         return arrlen;
2990 }
2991
2992 /*
2993  * Many new NAND share similar device ID codes, which represent the size of the
2994  * chip. The rest of the parameters must be decoded according to generic or
2995  * manufacturer-specific "extended ID" decoding patterns.
2996  */
2997 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2998                                 u8 id_data[8], int *busw)
2999 {
3000         int extid, id_len;
3001         /* The 3rd id byte holds MLC / multichip data */
3002         chip->cellinfo = id_data[2];
3003         /* The 4th id byte is the important one */
3004         extid = id_data[3];
3005
3006         id_len = nand_id_len(id_data, 8);
3007
3008         /*
3009          * Field definitions are in the following datasheets:
3010          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3011          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3012          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3013          *
3014          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3015          * ID to decide what to do.
3016          */
3017         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3018                         (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3019                         id_data[5] != 0x00) {
3020                 /* Calc pagesize */
3021                 mtd->writesize = 2048 << (extid & 0x03);
3022                 extid >>= 2;
3023                 /* Calc oobsize */
3024                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3025                 case 1:
3026                         mtd->oobsize = 128;
3027                         break;
3028                 case 2:
3029                         mtd->oobsize = 218;
3030                         break;
3031                 case 3:
3032                         mtd->oobsize = 400;
3033                         break;
3034                 case 4:
3035                         mtd->oobsize = 436;
3036                         break;
3037                 case 5:
3038                         mtd->oobsize = 512;
3039                         break;
3040                 case 6:
3041                 default: /* Other cases are "reserved" (unknown) */
3042                         mtd->oobsize = 640;
3043                         break;
3044                 }
3045                 extid >>= 2;
3046                 /* Calc blocksize */
3047                 mtd->erasesize = (128 * 1024) <<
3048                         (((extid >> 1) & 0x04) | (extid & 0x03));
3049                 *busw = 0;
3050         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3051                         (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3052                 unsigned int tmp;
3053
3054                 /* Calc pagesize */
3055                 mtd->writesize = 2048 << (extid & 0x03);
3056                 extid >>= 2;
3057                 /* Calc oobsize */
3058                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3059                 case 0:
3060                         mtd->oobsize = 128;
3061                         break;
3062                 case 1:
3063                         mtd->oobsize = 224;
3064                         break;
3065                 case 2:
3066                         mtd->oobsize = 448;
3067                         break;
3068                 case 3:
3069                         mtd->oobsize = 64;
3070                         break;
3071                 case 4:
3072                         mtd->oobsize = 32;
3073                         break;
3074                 case 5:
3075                         mtd->oobsize = 16;
3076                         break;
3077                 default:
3078                         mtd->oobsize = 640;
3079                         break;
3080                 }
3081                 extid >>= 2;
3082                 /* Calc blocksize */
3083                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3084                 if (tmp < 0x03)
3085                         mtd->erasesize = (128 * 1024) << tmp;
3086                 else if (tmp == 0x03)
3087                         mtd->erasesize = 768 * 1024;
3088                 else
3089                         mtd->erasesize = (64 * 1024) << tmp;
3090                 *busw = 0;
3091         } else {
3092                 /* Calc pagesize */
3093                 mtd->writesize = 1024 << (extid & 0x03);
3094                 extid >>= 2;
3095                 /* Calc oobsize */
3096                 mtd->oobsize = (8 << (extid & 0x01)) *
3097                         (mtd->writesize >> 9);
3098                 extid >>= 2;
3099                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3100                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3101                 extid >>= 2;
3102                 /* Get buswidth information */
3103                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3104         }
3105 }
3106
3107 /*
3108  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3109  * decodes a matching ID table entry and assigns the MTD size parameters for
3110  * the chip.
3111  */
3112 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3113                                 struct nand_flash_dev *type, u8 id_data[8],
3114                                 int *busw)
3115 {
3116         int maf_id = id_data[0];
3117
3118         mtd->erasesize = type->erasesize;
3119         mtd->writesize = type->pagesize;
3120         mtd->oobsize = mtd->writesize / 32;
3121         *busw = type->options & NAND_BUSWIDTH_16;
3122
3123         /*
3124          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3125          * some Spansion chips have erasesize that conflicts with size
3126          * listed in nand_ids table.
3127          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3128          */
3129         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3130                         && id_data[6] == 0x00 && id_data[7] == 0x00
3131                         && mtd->writesize == 512) {
3132                 mtd->erasesize = 128 * 1024;
3133                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3134         }
3135 }
3136
3137 /*
3138  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3139  * heuristic patterns using various detected parameters (e.g., manufacturer,
3140  * page size, cell-type information).
3141  */
3142 static void nand_decode_bbm_options(struct mtd_info *mtd,
3143                                     struct nand_chip *chip, u8 id_data[8])
3144 {
3145         int maf_id = id_data[0];
3146
3147         /* Set the bad block position */
3148         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3149                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3150         else
3151                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3152
3153         /*
3154          * Bad block marker is stored in the last page of each block on Samsung
3155          * and Hynix MLC devices; stored in first two pages of each block on
3156          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3157          * AMD/Spansion, and Macronix.  All others scan only the first page.
3158          */
3159         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3160                         (maf_id == NAND_MFR_SAMSUNG ||
3161                          maf_id == NAND_MFR_HYNIX))
3162                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3163         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3164                                 (maf_id == NAND_MFR_SAMSUNG ||
3165                                  maf_id == NAND_MFR_HYNIX ||
3166                                  maf_id == NAND_MFR_TOSHIBA ||
3167                                  maf_id == NAND_MFR_AMD ||
3168                                  maf_id == NAND_MFR_MACRONIX)) ||
3169                         (mtd->writesize == 2048 &&
3170                          maf_id == NAND_MFR_MICRON))
3171                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3172 }
3173
3174 /*
3175  * Get the flash and manufacturer id and lookup if the type is supported.
3176  */
3177 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3178                                                   struct nand_chip *chip,
3179                                                   int busw,
3180                                                   int *maf_id, int *dev_id,
3181                                                   struct nand_flash_dev *type)
3182 {
3183         int i, maf_idx;
3184         u8 id_data[8];
3185
3186         /* Select the device */
3187         chip->select_chip(mtd, 0);
3188
3189         /*
3190          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3191          * after power-up.
3192          */
3193         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3194
3195         /* Send the command for reading device ID */
3196         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3197
3198         /* Read manufacturer and device IDs */
3199         *maf_id = chip->read_byte(mtd);
3200         *dev_id = chip->read_byte(mtd);
3201
3202         /*
3203          * Try again to make sure, as some systems the bus-hold or other
3204          * interface concerns can cause random data which looks like a
3205          * possibly credible NAND flash to appear. If the two results do
3206          * not match, ignore the device completely.
3207          */
3208
3209         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3210
3211         /* Read entire ID string */
3212         for (i = 0; i < 8; i++)
3213                 id_data[i] = chip->read_byte(mtd);
3214
3215         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3216                 pr_info("%s: second ID read did not match "
3217                         "%02x,%02x against %02x,%02x\n", __func__,
3218                         *maf_id, *dev_id, id_data[0], id_data[1]);
3219                 return ERR_PTR(-ENODEV);
3220         }
3221
3222         if (!type)
3223                 type = nand_flash_ids;
3224
3225         for (; type->name != NULL; type++)
3226                 if (*dev_id == type->id)
3227                         break;
3228
3229         chip->onfi_version = 0;
3230         if (!type->name || !type->pagesize) {
3231                 /* Check is chip is ONFI compliant */
3232                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3233                         goto ident_done;
3234         }
3235
3236         if (!type->name)
3237                 return ERR_PTR(-ENODEV);
3238
3239         if (!mtd->name)
3240                 mtd->name = type->name;
3241
3242         chip->chipsize = (uint64_t)type->chipsize << 20;
3243
3244         if (!type->pagesize && chip->init_size) {
3245                 /* Set the pagesize, oobsize, erasesize by the driver */
3246                 busw = chip->init_size(mtd, chip, id_data);
3247         } else if (!type->pagesize) {
3248                 /* Decode parameters from extended ID */
3249                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3250         } else {
3251                 nand_decode_id(mtd, chip, type, id_data, &busw);
3252         }
3253         /* Get chip options */
3254         chip->options |= type->options;
3255
3256         /*
3257          * Check if chip is not a Samsung device. Do not clear the
3258          * options for chips which do not have an extended id.
3259          */
3260         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3261                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3262 ident_done:
3263
3264         /* Try to identify manufacturer */
3265         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3266                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3267                         break;
3268         }
3269
3270         if (chip->options & NAND_BUSWIDTH_AUTO) {
3271                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3272                 chip->options |= busw;
3273                 nand_set_defaults(chip, busw);
3274         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3275                 /*
3276                  * Check, if buswidth is correct. Hardware drivers should set
3277                  * chip correct!
3278                  */
3279                 pr_info("NAND device: Manufacturer ID:"
3280                         " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3281                         *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3282                 pr_warn("NAND bus width %d instead %d bit\n",
3283                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3284                            busw ? 16 : 8);
3285                 return ERR_PTR(-EINVAL);
3286         }
3287
3288         nand_decode_bbm_options(mtd, chip, id_data);
3289
3290         /* Calculate the address shift from the page size */
3291         chip->page_shift = ffs(mtd->writesize) - 1;
3292         /* Convert chipsize to number of pages per chip -1 */
3293         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3294
3295         chip->bbt_erase_shift = chip->phys_erase_shift =
3296                 ffs(mtd->erasesize) - 1;
3297         if (chip->chipsize & 0xffffffff)
3298                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3299         else {
3300                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3301                 chip->chip_shift += 32 - 1;
3302         }
3303
3304         chip->badblockbits = 8;
3305
3306         /* Check for AND chips with 4 page planes */
3307         if (chip->options & NAND_4PAGE_ARRAY)
3308                 chip->erase_cmd = multi_erase_cmd;
3309         else
3310                 chip->erase_cmd = single_erase_cmd;
3311
3312         /* Do not replace user supplied command function! */
3313         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3314                 chip->cmdfunc = nand_command_lp;
3315
3316         pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3317                 " %dMiB, page size: %d, OOB size: %d\n",
3318                 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3319                 chip->onfi_version ? chip->onfi_params.model : type->name,
3320                 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3321
3322         return type;
3323 }
3324
3325 /**
3326  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3327  * @mtd: MTD device structure
3328  * @maxchips: number of chips to scan for
3329  * @table: alternative NAND ID table
3330  *
3331  * This is the first phase of the normal nand_scan() function. It reads the
3332  * flash ID and sets up MTD fields accordingly.
3333  *
3334  * The mtd->owner field must be set to the module of the caller.
3335  */
3336 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3337                     struct nand_flash_dev *table)
3338 {
3339         int i, busw, nand_maf_id, nand_dev_id;
3340         struct nand_chip *chip = mtd->priv;
3341         struct nand_flash_dev *type;
3342
3343         /* Get buswidth to select the correct functions */
3344         busw = chip->options & NAND_BUSWIDTH_16;
3345         /* Set the default functions */
3346         nand_set_defaults(chip, busw);
3347
3348         /* Read the flash type */
3349         type = nand_get_flash_type(mtd, chip, busw,
3350                                 &nand_maf_id, &nand_dev_id, table);
3351
3352         if (IS_ERR(type)) {
3353                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3354                         pr_warn("No NAND device found\n");
3355                 chip->select_chip(mtd, -1);
3356                 return PTR_ERR(type);
3357         }
3358
3359         chip->select_chip(mtd, -1);
3360
3361         /* Check for a chip array */
3362         for (i = 1; i < maxchips; i++) {
3363                 chip->select_chip(mtd, i);
3364                 /* See comment in nand_get_flash_type for reset */
3365                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3366                 /* Send the command for reading device ID */
3367                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3368                 /* Read manufacturer and device IDs */
3369                 if (nand_maf_id != chip->read_byte(mtd) ||
3370                     nand_dev_id != chip->read_byte(mtd)) {
3371                         chip->select_chip(mtd, -1);
3372                         break;
3373                 }
3374                 chip->select_chip(mtd, -1);
3375         }
3376         if (i > 1)
3377                 pr_info("%d NAND chips detected\n", i);
3378
3379         /* Store the number of chips and calc total size for mtd */
3380         chip->numchips = i;
3381         mtd->size = i * chip->chipsize;
3382
3383         return 0;
3384 }
3385 EXPORT_SYMBOL(nand_scan_ident);
3386
3387
3388 /**
3389  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3390  * @mtd: MTD device structure
3391  *
3392  * This is the second phase of the normal nand_scan() function. It fills out
3393  * all the uninitialized function pointers with the defaults and scans for a
3394  * bad block table if appropriate.
3395  */
3396 int nand_scan_tail(struct mtd_info *mtd)
3397 {
3398         int i;
3399         struct nand_chip *chip = mtd->priv;
3400
3401         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3402         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3403                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3404
3405         if (!(chip->options & NAND_OWN_BUFFERS))
3406                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3407         if (!chip->buffers)
3408                 return -ENOMEM;
3409
3410         /* Set the internal oob buffer location, just after the page data */
3411         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3412
3413         /*
3414          * If no default placement scheme is given, select an appropriate one.
3415          */
3416         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3417                 switch (mtd->oobsize) {
3418                 case 8:
3419                         chip->ecc.layout = &nand_oob_8;
3420                         break;
3421                 case 16:
3422                         chip->ecc.layout = &nand_oob_16;
3423                         break;
3424                 case 64:
3425                         chip->ecc.layout = &nand_oob_64;
3426                         break;
3427                 case 128:
3428                         chip->ecc.layout = &nand_oob_128;
3429                         break;
3430                 default:
3431                         pr_warn("No oob scheme defined for oobsize %d\n",
3432                                    mtd->oobsize);
3433                         BUG();
3434                 }
3435         }
3436
3437         if (!chip->write_page)
3438                 chip->write_page = nand_write_page;
3439
3440         /* set for ONFI nand */
3441         if (!chip->onfi_set_features)
3442                 chip->onfi_set_features = nand_onfi_set_features;
3443         if (!chip->onfi_get_features)
3444                 chip->onfi_get_features = nand_onfi_get_features;
3445
3446         /*
3447          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3448          * selected and we have 256 byte pagesize fallback to software ECC
3449          */
3450
3451         switch (chip->ecc.mode) {
3452         case NAND_ECC_HW_OOB_FIRST:
3453                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3454                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3455                      !chip->ecc.hwctl) {
3456                         pr_warn("No ECC functions supplied; "
3457                                    "hardware ECC not possible\n");
3458                         BUG();
3459                 }
3460                 if (!chip->ecc.read_page)
3461                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3462
3463         case NAND_ECC_HW:
3464                 /* Use standard hwecc read page function? */
3465                 if (!chip->ecc.read_page)
3466                         chip->ecc.read_page = nand_read_page_hwecc;
3467                 if (!chip->ecc.write_page)
3468                         chip->ecc.write_page = nand_write_page_hwecc;
3469                 if (!chip->ecc.read_page_raw)
3470                         chip->ecc.read_page_raw = nand_read_page_raw;
3471                 if (!chip->ecc.write_page_raw)
3472                         chip->ecc.write_page_raw = nand_write_page_raw;
3473                 if (!chip->ecc.read_oob)
3474                         chip->ecc.read_oob = nand_read_oob_std;
3475                 if (!chip->ecc.write_oob)
3476                         chip->ecc.write_oob = nand_write_oob_std;
3477
3478         case NAND_ECC_HW_SYNDROME:
3479                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3480                      !chip->ecc.hwctl) &&
3481                     (!chip->ecc.read_page ||
3482                      chip->ecc.read_page == nand_read_page_hwecc ||
3483                      !chip->ecc.write_page ||
3484                      chip->ecc.write_page == nand_write_page_hwecc)) {
3485                         pr_warn("No ECC functions supplied; "
3486                                    "hardware ECC not possible\n");
3487                         BUG();
3488                 }
3489                 /* Use standard syndrome read/write page function? */
3490                 if (!chip->ecc.read_page)
3491                         chip->ecc.read_page = nand_read_page_syndrome;
3492                 if (!chip->ecc.write_page)
3493                         chip->ecc.write_page = nand_write_page_syndrome;
3494                 if (!chip->ecc.read_page_raw)
3495                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3496                 if (!chip->ecc.write_page_raw)
3497                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3498                 if (!chip->ecc.read_oob)
3499                         chip->ecc.read_oob = nand_read_oob_syndrome;
3500                 if (!chip->ecc.write_oob)
3501                         chip->ecc.write_oob = nand_write_oob_syndrome;
3502
3503                 if (mtd->writesize >= chip->ecc.size) {
3504                         if (!chip->ecc.strength) {
3505                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3506                                 BUG();
3507                         }
3508                         break;
3509                 }
3510                 pr_warn("%d byte HW ECC not possible on "
3511                            "%d byte page size, fallback to SW ECC\n",
3512                            chip->ecc.size, mtd->writesize);
3513                 chip->ecc.mode = NAND_ECC_SOFT;
3514
3515         case NAND_ECC_SOFT:
3516                 chip->ecc.calculate = nand_calculate_ecc;
3517                 chip->ecc.correct = nand_correct_data;
3518                 chip->ecc.read_page = nand_read_page_swecc;
3519                 chip->ecc.read_subpage = nand_read_subpage;
3520                 chip->ecc.write_page = nand_write_page_swecc;
3521                 chip->ecc.read_page_raw = nand_read_page_raw;
3522                 chip->ecc.write_page_raw = nand_write_page_raw;
3523                 chip->ecc.read_oob = nand_read_oob_std;
3524                 chip->ecc.write_oob = nand_write_oob_std;
3525                 if (!chip->ecc.size)
3526                         chip->ecc.size = 256;
3527                 chip->ecc.bytes = 3;
3528                 chip->ecc.strength = 1;
3529                 break;
3530
3531         case NAND_ECC_SOFT_BCH:
3532                 if (!mtd_nand_has_bch()) {
3533                         pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3534                         BUG();
3535                 }
3536                 chip->ecc.calculate = nand_bch_calculate_ecc;
3537                 chip->ecc.correct = nand_bch_correct_data;
3538                 chip->ecc.read_page = nand_read_page_swecc;
3539                 chip->ecc.read_subpage = nand_read_subpage;
3540                 chip->ecc.write_page = nand_write_page_swecc;
3541                 chip->ecc.read_page_raw = nand_read_page_raw;
3542                 chip->ecc.write_page_raw = nand_write_page_raw;
3543                 chip->ecc.read_oob = nand_read_oob_std;
3544                 chip->ecc.write_oob = nand_write_oob_std;
3545                 /*
3546                  * Board driver should supply ecc.size and ecc.bytes values to
3547                  * select how many bits are correctable; see nand_bch_init()
3548                  * for details. Otherwise, default to 4 bits for large page
3549                  * devices.
3550                  */
3551                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3552                         chip->ecc.size = 512;
3553                         chip->ecc.bytes = 7;
3554                 }
3555                 chip->ecc.priv = nand_bch_init(mtd,
3556                                                chip->ecc.size,
3557                                                chip->ecc.bytes,
3558                                                &chip->ecc.layout);
3559                 if (!chip->ecc.priv) {
3560                         pr_warn("BCH ECC initialization failed!\n");
3561                         BUG();
3562                 }
3563                 chip->ecc.strength =
3564                         chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3565                 break;
3566
3567         case NAND_ECC_NONE:
3568                 pr_warn("NAND_ECC_NONE selected by board driver. "
3569                            "This is not recommended!\n");
3570                 chip->ecc.read_page = nand_read_page_raw;
3571                 chip->ecc.write_page = nand_write_page_raw;
3572                 chip->ecc.read_oob = nand_read_oob_std;
3573                 chip->ecc.read_page_raw = nand_read_page_raw;
3574                 chip->ecc.write_page_raw = nand_write_page_raw;
3575                 chip->ecc.write_oob = nand_write_oob_std;
3576                 chip->ecc.size = mtd->writesize;
3577                 chip->ecc.bytes = 0;
3578                 chip->ecc.strength = 0;
3579                 break;
3580
3581         default:
3582                 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3583                 BUG();
3584         }
3585
3586         /* For many systems, the standard OOB write also works for raw */
3587         if (!chip->ecc.read_oob_raw)
3588                 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3589         if (!chip->ecc.write_oob_raw)
3590                 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3591
3592         /*
3593          * The number of bytes available for a client to place data into
3594          * the out of band area.
3595          */
3596         chip->ecc.layout->oobavail = 0;
3597         for (i = 0; chip->ecc.layout->oobfree[i].length
3598                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3599                 chip->ecc.layout->oobavail +=
3600                         chip->ecc.layout->oobfree[i].length;
3601         mtd->oobavail = chip->ecc.layout->oobavail;
3602
3603         /*
3604          * Set the number of read / write steps for one page depending on ECC
3605          * mode.
3606          */
3607         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3608         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3609                 pr_warn("Invalid ECC parameters\n");
3610                 BUG();
3611         }
3612         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3613
3614         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3615         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3616             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3617                 switch (chip->ecc.steps) {
3618                 case 2:
3619                         mtd->subpage_sft = 1;
3620                         break;
3621                 case 4:
3622                 case 8:
3623                 case 16:
3624                         mtd->subpage_sft = 2;
3625                         break;
3626                 }
3627         }
3628         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3629
3630         /* Initialize state */
3631         chip->state = FL_READY;
3632
3633         /* Invalidate the pagebuffer reference */
3634         chip->pagebuf = -1;
3635
3636         /* Large page NAND with SOFT_ECC should support subpage reads */
3637         if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3638                 chip->options |= NAND_SUBPAGE_READ;
3639
3640         /* Fill in remaining MTD driver data */
3641         mtd->type = MTD_NANDFLASH;
3642         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3643                                                 MTD_CAP_NANDFLASH;
3644         mtd->_erase = nand_erase;
3645         mtd->_point = NULL;
3646         mtd->_unpoint = NULL;
3647         mtd->_read = nand_read;
3648         mtd->_write = nand_write;
3649         mtd->_panic_write = panic_nand_write;
3650         mtd->_read_oob = nand_read_oob;
3651         mtd->_write_oob = nand_write_oob;
3652         mtd->_sync = nand_sync;
3653         mtd->_lock = NULL;
3654         mtd->_unlock = NULL;
3655         mtd->_suspend = nand_suspend;
3656         mtd->_resume = nand_resume;
3657         mtd->_block_isbad = nand_block_isbad;
3658         mtd->_block_markbad = nand_block_markbad;
3659         mtd->writebufsize = mtd->writesize;
3660
3661         /* propagate ecc info to mtd_info */
3662         mtd->ecclayout = chip->ecc.layout;
3663         mtd->ecc_strength = chip->ecc.strength;
3664         /*
3665          * Initialize bitflip_threshold to its default prior scan_bbt() call.
3666          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3667          * properly set.
3668          */
3669         if (!mtd->bitflip_threshold)
3670                 mtd->bitflip_threshold = mtd->ecc_strength;
3671
3672         /* Check, if we should skip the bad block table scan */
3673         if (chip->options & NAND_SKIP_BBTSCAN)
3674                 return 0;
3675
3676         /* Build bad block table */
3677         return chip->scan_bbt(mtd);
3678 }
3679 EXPORT_SYMBOL(nand_scan_tail);
3680
3681 /*
3682  * is_module_text_address() isn't exported, and it's mostly a pointless
3683  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3684  * to call us from in-kernel code if the core NAND support is modular.
3685  */
3686 #ifdef MODULE
3687 #define caller_is_module() (1)
3688 #else
3689 #define caller_is_module() \
3690         is_module_text_address((unsigned long)__builtin_return_address(0))
3691 #endif
3692
3693 /**
3694  * nand_scan - [NAND Interface] Scan for the NAND device
3695  * @mtd: MTD device structure
3696  * @maxchips: number of chips to scan for
3697  *
3698  * This fills out all the uninitialized function pointers with the defaults.
3699  * The flash ID is read and the mtd/chip structures are filled with the
3700  * appropriate values. The mtd->owner field must be set to the module of the
3701  * caller.
3702  */
3703 int nand_scan(struct mtd_info *mtd, int maxchips)
3704 {
3705         int ret;
3706
3707         /* Many callers got this wrong, so check for it for a while... */
3708         if (!mtd->owner && caller_is_module()) {
3709                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3710                 BUG();
3711         }
3712
3713         ret = nand_scan_ident(mtd, maxchips, NULL);
3714         if (!ret)
3715                 ret = nand_scan_tail(mtd);
3716         return ret;
3717 }
3718 EXPORT_SYMBOL(nand_scan);
3719
3720 /**
3721  * nand_release - [NAND Interface] Free resources held by the NAND device
3722  * @mtd: MTD device structure
3723  */
3724 void nand_release(struct mtd_info *mtd)
3725 {
3726         struct nand_chip *chip = mtd->priv;
3727
3728         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3729                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3730
3731         mtd_device_unregister(mtd);
3732
3733         /* Free bad block table memory */
3734         kfree(chip->bbt);
3735         if (!(chip->options & NAND_OWN_BUFFERS))
3736                 kfree(chip->buffers);
3737
3738         /* Free bad block descriptor memory */
3739         if (chip->badblock_pattern && chip->badblock_pattern->options
3740                         & NAND_BBT_DYNAMICSTRUCT)
3741                 kfree(chip->badblock_pattern);
3742 }
3743 EXPORT_SYMBOL_GPL(nand_release);
3744
3745 static int __init nand_base_init(void)
3746 {
3747         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3748         return 0;
3749 }
3750
3751 static void __exit nand_base_exit(void)
3752 {
3753         led_trigger_unregister_simple(nand_led_trigger);
3754 }
3755
3756 module_init(nand_base_init);
3757 module_exit(nand_base_exit);
3758
3759 MODULE_LICENSE("GPL");
3760 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3761 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3762 MODULE_DESCRIPTION("Generic NAND flash driver code");