]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[karo-tx-linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ECC support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97                            int new_state);
98
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100                              struct mtd_oob_ops *ops);
101
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107
108 static int check_offs_len(struct mtd_info *mtd,
109                                         loff_t ofs, uint64_t len)
110 {
111         struct nand_chip *chip = mtd->priv;
112         int ret = 0;
113
114         /* Start address must align on block boundary */
115         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116                 pr_debug("%s: unaligned address\n", __func__);
117                 ret = -EINVAL;
118         }
119
120         /* Length must align on block boundary */
121         if (len & ((1 << chip->phys_erase_shift) - 1)) {
122                 pr_debug("%s: length not block aligned\n", __func__);
123                 ret = -EINVAL;
124         }
125
126         return ret;
127 }
128
129 /**
130  * nand_release_device - [GENERIC] release chip
131  * @mtd: MTD device structure
132  *
133  * Deselect, release chip lock and wake up anyone waiting on the device.
134  */
135 static void nand_release_device(struct mtd_info *mtd)
136 {
137         struct nand_chip *chip = mtd->priv;
138
139         /* De-select the NAND device */
140         chip->select_chip(mtd, -1);
141
142         /* Release the controller and the chip */
143         spin_lock(&chip->controller->lock);
144         chip->controller->active = NULL;
145         chip->state = FL_READY;
146         wake_up(&chip->controller->wq);
147         spin_unlock(&chip->controller->lock);
148 }
149
150 /**
151  * nand_read_byte - [DEFAULT] read one byte from the chip
152  * @mtd: MTD device structure
153  *
154  * Default read function for 8bit buswidth
155  */
156 static uint8_t nand_read_byte(struct mtd_info *mtd)
157 {
158         struct nand_chip *chip = mtd->priv;
159         return readb(chip->IO_ADDR_R);
160 }
161
162 /**
163  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
164  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
165  * @mtd: MTD device structure
166  *
167  * Default read function for 16bit buswidth with endianness conversion.
168  *
169  */
170 static uint8_t nand_read_byte16(struct mtd_info *mtd)
171 {
172         struct nand_chip *chip = mtd->priv;
173         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
174 }
175
176 /**
177  * nand_read_word - [DEFAULT] read one word from the chip
178  * @mtd: MTD device structure
179  *
180  * Default read function for 16bit buswidth without endianness conversion.
181  */
182 static u16 nand_read_word(struct mtd_info *mtd)
183 {
184         struct nand_chip *chip = mtd->priv;
185         return readw(chip->IO_ADDR_R);
186 }
187
188 /**
189  * nand_select_chip - [DEFAULT] control CE line
190  * @mtd: MTD device structure
191  * @chipnr: chipnumber to select, -1 for deselect
192  *
193  * Default select function for 1 chip devices.
194  */
195 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
196 {
197         struct nand_chip *chip = mtd->priv;
198
199         switch (chipnr) {
200         case -1:
201                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
202                 break;
203         case 0:
204                 break;
205
206         default:
207                 BUG();
208         }
209 }
210
211 /**
212  * nand_write_buf - [DEFAULT] write buffer to chip
213  * @mtd: MTD device structure
214  * @buf: data buffer
215  * @len: number of bytes to write
216  *
217  * Default write function for 8bit buswidth.
218  */
219 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
220 {
221         int i;
222         struct nand_chip *chip = mtd->priv;
223
224         for (i = 0; i < len; i++)
225                 writeb(buf[i], chip->IO_ADDR_W);
226 }
227
228 /**
229  * nand_read_buf - [DEFAULT] read chip data into buffer
230  * @mtd: MTD device structure
231  * @buf: buffer to store date
232  * @len: number of bytes to read
233  *
234  * Default read function for 8bit buswidth.
235  */
236 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
237 {
238         int i;
239         struct nand_chip *chip = mtd->priv;
240
241         for (i = 0; i < len; i++)
242                 buf[i] = readb(chip->IO_ADDR_R);
243 }
244
245 /**
246  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
247  * @mtd: MTD device structure
248  * @buf: buffer containing the data to compare
249  * @len: number of bytes to compare
250  *
251  * Default verify function for 8bit buswidth.
252  */
253 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255         int i;
256         struct nand_chip *chip = mtd->priv;
257
258         for (i = 0; i < len; i++)
259                 if (buf[i] != readb(chip->IO_ADDR_R))
260                         return -EFAULT;
261         return 0;
262 }
263
264 /**
265  * nand_write_buf16 - [DEFAULT] write buffer to chip
266  * @mtd: MTD device structure
267  * @buf: data buffer
268  * @len: number of bytes to write
269  *
270  * Default write function for 16bit buswidth.
271  */
272 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
273 {
274         int i;
275         struct nand_chip *chip = mtd->priv;
276         u16 *p = (u16 *) buf;
277         len >>= 1;
278
279         for (i = 0; i < len; i++)
280                 writew(p[i], chip->IO_ADDR_W);
281
282 }
283
284 /**
285  * nand_read_buf16 - [DEFAULT] read chip data into buffer
286  * @mtd: MTD device structure
287  * @buf: buffer to store date
288  * @len: number of bytes to read
289  *
290  * Default read function for 16bit buswidth.
291  */
292 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
293 {
294         int i;
295         struct nand_chip *chip = mtd->priv;
296         u16 *p = (u16 *) buf;
297         len >>= 1;
298
299         for (i = 0; i < len; i++)
300                 p[i] = readw(chip->IO_ADDR_R);
301 }
302
303 /**
304  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
305  * @mtd: MTD device structure
306  * @buf: buffer containing the data to compare
307  * @len: number of bytes to compare
308  *
309  * Default verify function for 16bit buswidth.
310  */
311 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
312 {
313         int i;
314         struct nand_chip *chip = mtd->priv;
315         u16 *p = (u16 *) buf;
316         len >>= 1;
317
318         for (i = 0; i < len; i++)
319                 if (p[i] != readw(chip->IO_ADDR_R))
320                         return -EFAULT;
321
322         return 0;
323 }
324
325 /**
326  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
327  * @mtd: MTD device structure
328  * @ofs: offset from device start
329  * @getchip: 0, if the chip is already selected
330  *
331  * Check, if the block is bad.
332  */
333 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
334 {
335         int page, chipnr, res = 0, i = 0;
336         struct nand_chip *chip = mtd->priv;
337         u16 bad;
338
339         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
340                 ofs += mtd->erasesize - mtd->writesize;
341
342         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
343
344         if (getchip) {
345                 chipnr = (int)(ofs >> chip->chip_shift);
346
347                 nand_get_device(chip, mtd, FL_READING);
348
349                 /* Select the NAND device */
350                 chip->select_chip(mtd, chipnr);
351         }
352
353         do {
354                 if (chip->options & NAND_BUSWIDTH_16) {
355                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
356                                         chip->badblockpos & 0xFE, page);
357                         bad = cpu_to_le16(chip->read_word(mtd));
358                         if (chip->badblockpos & 0x1)
359                                 bad >>= 8;
360                         else
361                                 bad &= 0xFF;
362                 } else {
363                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
364                                         page);
365                         bad = chip->read_byte(mtd);
366                 }
367
368                 if (likely(chip->badblockbits == 8))
369                         res = bad != 0xFF;
370                 else
371                         res = hweight8(bad) < chip->badblockbits;
372                 ofs += mtd->writesize;
373                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374                 i++;
375         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
376
377         if (getchip)
378                 nand_release_device(mtd);
379
380         return res;
381 }
382
383 /**
384  * nand_default_block_markbad - [DEFAULT] mark a block bad
385  * @mtd: MTD device structure
386  * @ofs: offset from device start
387  *
388  * This is the default implementation, which can be overridden by a hardware
389  * specific driver. We try operations in the following order, according to our
390  * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
391  *  (1) erase the affected block, to allow OOB marker to be written cleanly
392  *  (2) update in-memory BBT
393  *  (3) write bad block marker to OOB area of affected block
394  *  (4) update flash-based BBT
395  * Note that we retain the first error encountered in (3) or (4), finish the
396  * procedures, and dump the error in the end.
397 */
398 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
399 {
400         struct nand_chip *chip = mtd->priv;
401         uint8_t buf[2] = { 0, 0 };
402         int block, res, ret = 0, i = 0;
403         int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
404
405         if (write_oob) {
406                 struct erase_info einfo;
407
408                 /* Attempt erase before marking OOB */
409                 memset(&einfo, 0, sizeof(einfo));
410                 einfo.mtd = mtd;
411                 einfo.addr = ofs;
412                 einfo.len = 1 << chip->phys_erase_shift;
413                 nand_erase_nand(mtd, &einfo, 0);
414         }
415
416         /* Get block number */
417         block = (int)(ofs >> chip->bbt_erase_shift);
418         /* Mark block bad in memory-based BBT */
419         if (chip->bbt)
420                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
421
422         /* Write bad block marker to OOB */
423         if (write_oob) {
424                 struct mtd_oob_ops ops;
425                 loff_t wr_ofs = ofs;
426
427                 nand_get_device(chip, mtd, FL_WRITING);
428
429                 ops.datbuf = NULL;
430                 ops.oobbuf = buf;
431                 ops.ooboffs = chip->badblockpos;
432                 if (chip->options & NAND_BUSWIDTH_16) {
433                         ops.ooboffs &= ~0x01;
434                         ops.len = ops.ooblen = 2;
435                 } else {
436                         ops.len = ops.ooblen = 1;
437                 }
438                 ops.mode = MTD_OPS_PLACE_OOB;
439
440                 /* Write to first/last page(s) if necessary */
441                 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
442                         wr_ofs += mtd->erasesize - mtd->writesize;
443                 do {
444                         res = nand_do_write_oob(mtd, wr_ofs, &ops);
445                         if (!ret)
446                                 ret = res;
447
448                         i++;
449                         wr_ofs += mtd->writesize;
450                 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
451
452                 nand_release_device(mtd);
453         }
454
455         /* Update flash-based bad block table */
456         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
457                 res = nand_update_bbt(mtd, ofs);
458                 if (!ret)
459                         ret = res;
460         }
461
462         if (!ret)
463                 mtd->ecc_stats.badblocks++;
464
465         return ret;
466 }
467
468 /**
469  * nand_check_wp - [GENERIC] check if the chip is write protected
470  * @mtd: MTD device structure
471  *
472  * Check, if the device is write protected. The function expects, that the
473  * device is already selected.
474  */
475 static int nand_check_wp(struct mtd_info *mtd)
476 {
477         struct nand_chip *chip = mtd->priv;
478
479         /* Broken xD cards report WP despite being writable */
480         if (chip->options & NAND_BROKEN_XD)
481                 return 0;
482
483         /* Check the WP bit */
484         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
485         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
486 }
487
488 /**
489  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
490  * @mtd: MTD device structure
491  * @ofs: offset from device start
492  * @getchip: 0, if the chip is already selected
493  * @allowbbt: 1, if its allowed to access the bbt area
494  *
495  * Check, if the block is bad. Either by reading the bad block table or
496  * calling of the scan function.
497  */
498 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
499                                int allowbbt)
500 {
501         struct nand_chip *chip = mtd->priv;
502
503         if (!chip->bbt)
504                 return chip->block_bad(mtd, ofs, getchip);
505
506         /* Return info from the table */
507         return nand_isbad_bbt(mtd, ofs, allowbbt);
508 }
509
510 /**
511  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
512  * @mtd: MTD device structure
513  * @timeo: Timeout
514  *
515  * Helper function for nand_wait_ready used when needing to wait in interrupt
516  * context.
517  */
518 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
519 {
520         struct nand_chip *chip = mtd->priv;
521         int i;
522
523         /* Wait for the device to get ready */
524         for (i = 0; i < timeo; i++) {
525                 if (chip->dev_ready(mtd))
526                         break;
527                 touch_softlockup_watchdog();
528                 mdelay(1);
529         }
530 }
531
532 /* Wait for the ready pin, after a command. The timeout is caught later. */
533 void nand_wait_ready(struct mtd_info *mtd)
534 {
535         struct nand_chip *chip = mtd->priv;
536         unsigned long timeo = jiffies + 2;
537
538         /* 400ms timeout */
539         if (in_interrupt() || oops_in_progress)
540                 return panic_nand_wait_ready(mtd, 400);
541
542         led_trigger_event(nand_led_trigger, LED_FULL);
543         /* Wait until command is processed or timeout occurs */
544         do {
545                 if (chip->dev_ready(mtd))
546                         break;
547                 touch_softlockup_watchdog();
548         } while (time_before(jiffies, timeo));
549         led_trigger_event(nand_led_trigger, LED_OFF);
550 }
551 EXPORT_SYMBOL_GPL(nand_wait_ready);
552
553 /**
554  * nand_command - [DEFAULT] Send command to NAND device
555  * @mtd: MTD device structure
556  * @command: the command to be sent
557  * @column: the column address for this command, -1 if none
558  * @page_addr: the page address for this command, -1 if none
559  *
560  * Send command to NAND device. This function is used for small page devices
561  * (256/512 Bytes per page).
562  */
563 static void nand_command(struct mtd_info *mtd, unsigned int command,
564                          int column, int page_addr)
565 {
566         register struct nand_chip *chip = mtd->priv;
567         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
568
569         /* Write out the command to the device */
570         if (command == NAND_CMD_SEQIN) {
571                 int readcmd;
572
573                 if (column >= mtd->writesize) {
574                         /* OOB area */
575                         column -= mtd->writesize;
576                         readcmd = NAND_CMD_READOOB;
577                 } else if (column < 256) {
578                         /* First 256 bytes --> READ0 */
579                         readcmd = NAND_CMD_READ0;
580                 } else {
581                         column -= 256;
582                         readcmd = NAND_CMD_READ1;
583                 }
584                 chip->cmd_ctrl(mtd, readcmd, ctrl);
585                 ctrl &= ~NAND_CTRL_CHANGE;
586         }
587         chip->cmd_ctrl(mtd, command, ctrl);
588
589         /* Address cycle, when necessary */
590         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
591         /* Serially input address */
592         if (column != -1) {
593                 /* Adjust columns for 16 bit buswidth */
594                 if (chip->options & NAND_BUSWIDTH_16)
595                         column >>= 1;
596                 chip->cmd_ctrl(mtd, column, ctrl);
597                 ctrl &= ~NAND_CTRL_CHANGE;
598         }
599         if (page_addr != -1) {
600                 chip->cmd_ctrl(mtd, page_addr, ctrl);
601                 ctrl &= ~NAND_CTRL_CHANGE;
602                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
603                 /* One more address cycle for devices > 32MiB */
604                 if (chip->chipsize > (32 << 20))
605                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
606         }
607         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
608
609         /*
610          * Program and erase have their own busy handlers status and sequential
611          * in needs no delay
612          */
613         switch (command) {
614
615         case NAND_CMD_PAGEPROG:
616         case NAND_CMD_ERASE1:
617         case NAND_CMD_ERASE2:
618         case NAND_CMD_SEQIN:
619         case NAND_CMD_STATUS:
620                 return;
621
622         case NAND_CMD_RESET:
623                 if (chip->dev_ready)
624                         break;
625                 udelay(chip->chip_delay);
626                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
627                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
628                 chip->cmd_ctrl(mtd,
629                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
631                                 ;
632                 return;
633
634                 /* This applies to read commands */
635         default:
636                 /*
637                  * If we don't have access to the busy pin, we apply the given
638                  * command delay
639                  */
640                 if (!chip->dev_ready) {
641                         udelay(chip->chip_delay);
642                         return;
643                 }
644         }
645         /*
646          * Apply this short delay always to ensure that we do wait tWB in
647          * any case on any machine.
648          */
649         ndelay(100);
650
651         nand_wait_ready(mtd);
652 }
653
654 /**
655  * nand_command_lp - [DEFAULT] Send command to NAND large page device
656  * @mtd: MTD device structure
657  * @command: the command to be sent
658  * @column: the column address for this command, -1 if none
659  * @page_addr: the page address for this command, -1 if none
660  *
661  * Send command to NAND device. This is the version for the new large page
662  * devices. We don't have the separate regions as we have in the small page
663  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
664  */
665 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
666                             int column, int page_addr)
667 {
668         register struct nand_chip *chip = mtd->priv;
669
670         /* Emulate NAND_CMD_READOOB */
671         if (command == NAND_CMD_READOOB) {
672                 column += mtd->writesize;
673                 command = NAND_CMD_READ0;
674         }
675
676         /* Command latch cycle */
677         chip->cmd_ctrl(mtd, command & 0xff,
678                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
679
680         if (column != -1 || page_addr != -1) {
681                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
682
683                 /* Serially input address */
684                 if (column != -1) {
685                         /* Adjust columns for 16 bit buswidth */
686                         if (chip->options & NAND_BUSWIDTH_16)
687                                 column >>= 1;
688                         chip->cmd_ctrl(mtd, column, ctrl);
689                         ctrl &= ~NAND_CTRL_CHANGE;
690                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
691                 }
692                 if (page_addr != -1) {
693                         chip->cmd_ctrl(mtd, page_addr, ctrl);
694                         chip->cmd_ctrl(mtd, page_addr >> 8,
695                                        NAND_NCE | NAND_ALE);
696                         /* One more address cycle for devices > 128MiB */
697                         if (chip->chipsize > (128 << 20))
698                                 chip->cmd_ctrl(mtd, page_addr >> 16,
699                                                NAND_NCE | NAND_ALE);
700                 }
701         }
702         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
703
704         /*
705          * Program and erase have their own busy handlers status, sequential
706          * in, and deplete1 need no delay.
707          */
708         switch (command) {
709
710         case NAND_CMD_CACHEDPROG:
711         case NAND_CMD_PAGEPROG:
712         case NAND_CMD_ERASE1:
713         case NAND_CMD_ERASE2:
714         case NAND_CMD_SEQIN:
715         case NAND_CMD_RNDIN:
716         case NAND_CMD_STATUS:
717         case NAND_CMD_DEPLETE1:
718                 return;
719
720         case NAND_CMD_STATUS_ERROR:
721         case NAND_CMD_STATUS_ERROR0:
722         case NAND_CMD_STATUS_ERROR1:
723         case NAND_CMD_STATUS_ERROR2:
724         case NAND_CMD_STATUS_ERROR3:
725                 /* Read error status commands require only a short delay */
726                 udelay(chip->chip_delay);
727                 return;
728
729         case NAND_CMD_RESET:
730                 if (chip->dev_ready)
731                         break;
732                 udelay(chip->chip_delay);
733                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
734                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736                                NAND_NCE | NAND_CTRL_CHANGE);
737                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
738                                 ;
739                 return;
740
741         case NAND_CMD_RNDOUT:
742                 /* No ready / busy check necessary */
743                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
744                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
745                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
746                                NAND_NCE | NAND_CTRL_CHANGE);
747                 return;
748
749         case NAND_CMD_READ0:
750                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
751                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753                                NAND_NCE | NAND_CTRL_CHANGE);
754
755                 /* This applies to read commands */
756         default:
757                 /*
758                  * If we don't have access to the busy pin, we apply the given
759                  * command delay.
760                  */
761                 if (!chip->dev_ready) {
762                         udelay(chip->chip_delay);
763                         return;
764                 }
765         }
766
767         /*
768          * Apply this short delay always to ensure that we do wait tWB in
769          * any case on any machine.
770          */
771         ndelay(100);
772
773         nand_wait_ready(mtd);
774 }
775
776 /**
777  * panic_nand_get_device - [GENERIC] Get chip for selected access
778  * @chip: the nand chip descriptor
779  * @mtd: MTD device structure
780  * @new_state: the state which is requested
781  *
782  * Used when in panic, no locks are taken.
783  */
784 static void panic_nand_get_device(struct nand_chip *chip,
785                       struct mtd_info *mtd, int new_state)
786 {
787         /* Hardware controller shared among independent devices */
788         chip->controller->active = chip;
789         chip->state = new_state;
790 }
791
792 /**
793  * nand_get_device - [GENERIC] Get chip for selected access
794  * @chip: the nand chip descriptor
795  * @mtd: MTD device structure
796  * @new_state: the state which is requested
797  *
798  * Get the device and lock it for exclusive access
799  */
800 static int
801 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
802 {
803         spinlock_t *lock = &chip->controller->lock;
804         wait_queue_head_t *wq = &chip->controller->wq;
805         DECLARE_WAITQUEUE(wait, current);
806 retry:
807         spin_lock(lock);
808
809         /* Hardware controller shared among independent devices */
810         if (!chip->controller->active)
811                 chip->controller->active = chip;
812
813         if (chip->controller->active == chip && chip->state == FL_READY) {
814                 chip->state = new_state;
815                 spin_unlock(lock);
816                 return 0;
817         }
818         if (new_state == FL_PM_SUSPENDED) {
819                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
820                         chip->state = FL_PM_SUSPENDED;
821                         spin_unlock(lock);
822                         return 0;
823                 }
824         }
825         set_current_state(TASK_UNINTERRUPTIBLE);
826         add_wait_queue(wq, &wait);
827         spin_unlock(lock);
828         schedule();
829         remove_wait_queue(wq, &wait);
830         goto retry;
831 }
832
833 /**
834  * panic_nand_wait - [GENERIC] wait until the command is done
835  * @mtd: MTD device structure
836  * @chip: NAND chip structure
837  * @timeo: timeout
838  *
839  * Wait for command done. This is a helper function for nand_wait used when
840  * we are in interrupt context. May happen when in panic and trying to write
841  * an oops through mtdoops.
842  */
843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
844                             unsigned long timeo)
845 {
846         int i;
847         for (i = 0; i < timeo; i++) {
848                 if (chip->dev_ready) {
849                         if (chip->dev_ready(mtd))
850                                 break;
851                 } else {
852                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
853                                 break;
854                 }
855                 mdelay(1);
856         }
857 }
858
859 /**
860  * nand_wait - [DEFAULT] wait until the command is done
861  * @mtd: MTD device structure
862  * @chip: NAND chip structure
863  *
864  * Wait for command done. This applies to erase and program only. Erase can
865  * take up to 400ms and program up to 20ms according to general NAND and
866  * SmartMedia specs.
867  */
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869 {
870
871         unsigned long timeo = jiffies;
872         int status, state = chip->state;
873
874         if (state == FL_ERASING)
875                 timeo += (HZ * 400) / 1000;
876         else
877                 timeo += (HZ * 20) / 1000;
878
879         led_trigger_event(nand_led_trigger, LED_FULL);
880
881         /*
882          * Apply this short delay always to ensure that we do wait tWB in any
883          * case on any machine.
884          */
885         ndelay(100);
886
887         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
888                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
889         else
890                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
891
892         if (in_interrupt() || oops_in_progress)
893                 panic_nand_wait(mtd, chip, timeo);
894         else {
895                 while (time_before(jiffies, timeo)) {
896                         if (chip->dev_ready) {
897                                 if (chip->dev_ready(mtd))
898                                         break;
899                         } else {
900                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901                                         break;
902                         }
903                         cond_resched();
904                 }
905         }
906         led_trigger_event(nand_led_trigger, LED_OFF);
907
908         status = (int)chip->read_byte(mtd);
909         return status;
910 }
911
912 /**
913  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
914  * @mtd: mtd info
915  * @ofs: offset to start unlock from
916  * @len: length to unlock
917  * @invert: when = 0, unlock the range of blocks within the lower and
918  *                    upper boundary address
919  *          when = 1, unlock the range of blocks outside the boundaries
920  *                    of the lower and upper boundary address
921  *
922  * Returs unlock status.
923  */
924 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
925                                         uint64_t len, int invert)
926 {
927         int ret = 0;
928         int status, page;
929         struct nand_chip *chip = mtd->priv;
930
931         /* Submit address of first page to unlock */
932         page = ofs >> chip->page_shift;
933         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
934
935         /* Submit address of last page to unlock */
936         page = (ofs + len) >> chip->page_shift;
937         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
938                                 (page | invert) & chip->pagemask);
939
940         /* Call wait ready function */
941         status = chip->waitfunc(mtd, chip);
942         /* See if device thinks it succeeded */
943         if (status & 0x01) {
944                 pr_debug("%s: error status = 0x%08x\n",
945                                         __func__, status);
946                 ret = -EIO;
947         }
948
949         return ret;
950 }
951
952 /**
953  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
954  * @mtd: mtd info
955  * @ofs: offset to start unlock from
956  * @len: length to unlock
957  *
958  * Returns unlock status.
959  */
960 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
961 {
962         int ret = 0;
963         int chipnr;
964         struct nand_chip *chip = mtd->priv;
965
966         pr_debug("%s: start = 0x%012llx, len = %llu\n",
967                         __func__, (unsigned long long)ofs, len);
968
969         if (check_offs_len(mtd, ofs, len))
970                 ret = -EINVAL;
971
972         /* Align to last block address if size addresses end of the device */
973         if (ofs + len == mtd->size)
974                 len -= mtd->erasesize;
975
976         nand_get_device(chip, mtd, FL_UNLOCKING);
977
978         /* Shift to get chip number */
979         chipnr = ofs >> chip->chip_shift;
980
981         chip->select_chip(mtd, chipnr);
982
983         /* Check, if it is write protected */
984         if (nand_check_wp(mtd)) {
985                 pr_debug("%s: device is write protected!\n",
986                                         __func__);
987                 ret = -EIO;
988                 goto out;
989         }
990
991         ret = __nand_unlock(mtd, ofs, len, 0);
992
993 out:
994         nand_release_device(mtd);
995
996         return ret;
997 }
998 EXPORT_SYMBOL(nand_unlock);
999
1000 /**
1001  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1002  * @mtd: mtd info
1003  * @ofs: offset to start unlock from
1004  * @len: length to unlock
1005  *
1006  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1007  * have this feature, but it allows only to lock all blocks, not for specified
1008  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1009  * now.
1010  *
1011  * Returns lock status.
1012  */
1013 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1014 {
1015         int ret = 0;
1016         int chipnr, status, page;
1017         struct nand_chip *chip = mtd->priv;
1018
1019         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1020                         __func__, (unsigned long long)ofs, len);
1021
1022         if (check_offs_len(mtd, ofs, len))
1023                 ret = -EINVAL;
1024
1025         nand_get_device(chip, mtd, FL_LOCKING);
1026
1027         /* Shift to get chip number */
1028         chipnr = ofs >> chip->chip_shift;
1029
1030         chip->select_chip(mtd, chipnr);
1031
1032         /* Check, if it is write protected */
1033         if (nand_check_wp(mtd)) {
1034                 pr_debug("%s: device is write protected!\n",
1035                                         __func__);
1036                 status = MTD_ERASE_FAILED;
1037                 ret = -EIO;
1038                 goto out;
1039         }
1040
1041         /* Submit address of first page to lock */
1042         page = ofs >> chip->page_shift;
1043         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1044
1045         /* Call wait ready function */
1046         status = chip->waitfunc(mtd, chip);
1047         /* See if device thinks it succeeded */
1048         if (status & 0x01) {
1049                 pr_debug("%s: error status = 0x%08x\n",
1050                                         __func__, status);
1051                 ret = -EIO;
1052                 goto out;
1053         }
1054
1055         ret = __nand_unlock(mtd, ofs, len, 0x1);
1056
1057 out:
1058         nand_release_device(mtd);
1059
1060         return ret;
1061 }
1062 EXPORT_SYMBOL(nand_lock);
1063
1064 /**
1065  * nand_read_page_raw - [INTERN] read raw page data without ecc
1066  * @mtd: mtd info structure
1067  * @chip: nand chip info structure
1068  * @buf: buffer to store read data
1069  * @page: page number to read
1070  *
1071  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1072  */
1073 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1074                               uint8_t *buf, int page)
1075 {
1076         chip->read_buf(mtd, buf, mtd->writesize);
1077         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1078         return 0;
1079 }
1080
1081 /**
1082  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1083  * @mtd: mtd info structure
1084  * @chip: nand chip info structure
1085  * @buf: buffer to store read data
1086  * @page: page number to read
1087  *
1088  * We need a special oob layout and handling even when OOB isn't used.
1089  */
1090 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1091                                         struct nand_chip *chip,
1092                                         uint8_t *buf, int page)
1093 {
1094         int eccsize = chip->ecc.size;
1095         int eccbytes = chip->ecc.bytes;
1096         uint8_t *oob = chip->oob_poi;
1097         int steps, size;
1098
1099         for (steps = chip->ecc.steps; steps > 0; steps--) {
1100                 chip->read_buf(mtd, buf, eccsize);
1101                 buf += eccsize;
1102
1103                 if (chip->ecc.prepad) {
1104                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1105                         oob += chip->ecc.prepad;
1106                 }
1107
1108                 chip->read_buf(mtd, oob, eccbytes);
1109                 oob += eccbytes;
1110
1111                 if (chip->ecc.postpad) {
1112                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1113                         oob += chip->ecc.postpad;
1114                 }
1115         }
1116
1117         size = mtd->oobsize - (oob - chip->oob_poi);
1118         if (size)
1119                 chip->read_buf(mtd, oob, size);
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1126  * @mtd: mtd info structure
1127  * @chip: nand chip info structure
1128  * @buf: buffer to store read data
1129  * @page: page number to read
1130  */
1131 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1132                                 uint8_t *buf, int page)
1133 {
1134         int i, eccsize = chip->ecc.size;
1135         int eccbytes = chip->ecc.bytes;
1136         int eccsteps = chip->ecc.steps;
1137         uint8_t *p = buf;
1138         uint8_t *ecc_calc = chip->buffers->ecccalc;
1139         uint8_t *ecc_code = chip->buffers->ecccode;
1140         uint32_t *eccpos = chip->ecc.layout->eccpos;
1141
1142         chip->ecc.read_page_raw(mtd, chip, buf, page);
1143
1144         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1145                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1146
1147         for (i = 0; i < chip->ecc.total; i++)
1148                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1149
1150         eccsteps = chip->ecc.steps;
1151         p = buf;
1152
1153         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1154                 int stat;
1155
1156                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1157                 if (stat < 0)
1158                         mtd->ecc_stats.failed++;
1159                 else
1160                         mtd->ecc_stats.corrected += stat;
1161         }
1162         return 0;
1163 }
1164
1165 /**
1166  * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1167  * @mtd: mtd info structure
1168  * @chip: nand chip info structure
1169  * @data_offs: offset of requested data within the page
1170  * @readlen: data length
1171  * @bufpoi: buffer to store read data
1172  */
1173 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1174                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1175 {
1176         int start_step, end_step, num_steps;
1177         uint32_t *eccpos = chip->ecc.layout->eccpos;
1178         uint8_t *p;
1179         int data_col_addr, i, gaps = 0;
1180         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1181         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1182         int index = 0;
1183
1184         /* Column address within the page aligned to ECC size (256bytes) */
1185         start_step = data_offs / chip->ecc.size;
1186         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1187         num_steps = end_step - start_step + 1;
1188
1189         /* Data size aligned to ECC ecc.size */
1190         datafrag_len = num_steps * chip->ecc.size;
1191         eccfrag_len = num_steps * chip->ecc.bytes;
1192
1193         data_col_addr = start_step * chip->ecc.size;
1194         /* If we read not a page aligned data */
1195         if (data_col_addr != 0)
1196                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1197
1198         p = bufpoi + data_col_addr;
1199         chip->read_buf(mtd, p, datafrag_len);
1200
1201         /* Calculate ECC */
1202         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1203                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1204
1205         /*
1206          * The performance is faster if we position offsets according to
1207          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1208          */
1209         for (i = 0; i < eccfrag_len - 1; i++) {
1210                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1211                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1212                         gaps = 1;
1213                         break;
1214                 }
1215         }
1216         if (gaps) {
1217                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1218                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1219         } else {
1220                 /*
1221                  * Send the command to read the particular ECC bytes take care
1222                  * about buswidth alignment in read_buf.
1223                  */
1224                 index = start_step * chip->ecc.bytes;
1225
1226                 aligned_pos = eccpos[index] & ~(busw - 1);
1227                 aligned_len = eccfrag_len;
1228                 if (eccpos[index] & (busw - 1))
1229                         aligned_len++;
1230                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1231                         aligned_len++;
1232
1233                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1234                                         mtd->writesize + aligned_pos, -1);
1235                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1236         }
1237
1238         for (i = 0; i < eccfrag_len; i++)
1239                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1240
1241         p = bufpoi + data_col_addr;
1242         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1243                 int stat;
1244
1245                 stat = chip->ecc.correct(mtd, p,
1246                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1247                 if (stat < 0)
1248                         mtd->ecc_stats.failed++;
1249                 else
1250                         mtd->ecc_stats.corrected += stat;
1251         }
1252         return 0;
1253 }
1254
1255 /**
1256  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1257  * @mtd: mtd info structure
1258  * @chip: nand chip info structure
1259  * @buf: buffer to store read data
1260  * @page: page number to read
1261  *
1262  * Not for syndrome calculating ECC controllers which need a special oob layout.
1263  */
1264 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1265                                 uint8_t *buf, int page)
1266 {
1267         int i, eccsize = chip->ecc.size;
1268         int eccbytes = chip->ecc.bytes;
1269         int eccsteps = chip->ecc.steps;
1270         uint8_t *p = buf;
1271         uint8_t *ecc_calc = chip->buffers->ecccalc;
1272         uint8_t *ecc_code = chip->buffers->ecccode;
1273         uint32_t *eccpos = chip->ecc.layout->eccpos;
1274
1275         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1276                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1277                 chip->read_buf(mtd, p, eccsize);
1278                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1279         }
1280         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1281
1282         for (i = 0; i < chip->ecc.total; i++)
1283                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1284
1285         eccsteps = chip->ecc.steps;
1286         p = buf;
1287
1288         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1289                 int stat;
1290
1291                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1292                 if (stat < 0)
1293                         mtd->ecc_stats.failed++;
1294                 else
1295                         mtd->ecc_stats.corrected += stat;
1296         }
1297         return 0;
1298 }
1299
1300 /**
1301  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1302  * @mtd: mtd info structure
1303  * @chip: nand chip info structure
1304  * @buf: buffer to store read data
1305  * @page: page number to read
1306  *
1307  * Hardware ECC for large page chips, require OOB to be read first. For this
1308  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1309  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1310  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1311  * the data area, by overwriting the NAND manufacturer bad block markings.
1312  */
1313 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1314         struct nand_chip *chip, uint8_t *buf, int page)
1315 {
1316         int i, eccsize = chip->ecc.size;
1317         int eccbytes = chip->ecc.bytes;
1318         int eccsteps = chip->ecc.steps;
1319         uint8_t *p = buf;
1320         uint8_t *ecc_code = chip->buffers->ecccode;
1321         uint32_t *eccpos = chip->ecc.layout->eccpos;
1322         uint8_t *ecc_calc = chip->buffers->ecccalc;
1323
1324         /* Read the OOB area first */
1325         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1326         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1327         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1328
1329         for (i = 0; i < chip->ecc.total; i++)
1330                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1331
1332         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333                 int stat;
1334
1335                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1336                 chip->read_buf(mtd, p, eccsize);
1337                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1338
1339                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1340                 if (stat < 0)
1341                         mtd->ecc_stats.failed++;
1342                 else
1343                         mtd->ecc_stats.corrected += stat;
1344         }
1345         return 0;
1346 }
1347
1348 /**
1349  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1350  * @mtd: mtd info structure
1351  * @chip: nand chip info structure
1352  * @buf: buffer to store read data
1353  * @page: page number to read
1354  *
1355  * The hw generator calculates the error syndrome automatically. Therefore we
1356  * need a special oob layout and handling.
1357  */
1358 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1359                                    uint8_t *buf, int page)
1360 {
1361         int i, eccsize = chip->ecc.size;
1362         int eccbytes = chip->ecc.bytes;
1363         int eccsteps = chip->ecc.steps;
1364         uint8_t *p = buf;
1365         uint8_t *oob = chip->oob_poi;
1366
1367         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1368                 int stat;
1369
1370                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1371                 chip->read_buf(mtd, p, eccsize);
1372
1373                 if (chip->ecc.prepad) {
1374                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1375                         oob += chip->ecc.prepad;
1376                 }
1377
1378                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1379                 chip->read_buf(mtd, oob, eccbytes);
1380                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1381
1382                 if (stat < 0)
1383                         mtd->ecc_stats.failed++;
1384                 else
1385                         mtd->ecc_stats.corrected += stat;
1386
1387                 oob += eccbytes;
1388
1389                 if (chip->ecc.postpad) {
1390                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1391                         oob += chip->ecc.postpad;
1392                 }
1393         }
1394
1395         /* Calculate remaining oob bytes */
1396         i = mtd->oobsize - (oob - chip->oob_poi);
1397         if (i)
1398                 chip->read_buf(mtd, oob, i);
1399
1400         return 0;
1401 }
1402
1403 /**
1404  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1405  * @chip: nand chip structure
1406  * @oob: oob destination address
1407  * @ops: oob ops structure
1408  * @len: size of oob to transfer
1409  */
1410 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1411                                   struct mtd_oob_ops *ops, size_t len)
1412 {
1413         switch (ops->mode) {
1414
1415         case MTD_OPS_PLACE_OOB:
1416         case MTD_OPS_RAW:
1417                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1418                 return oob + len;
1419
1420         case MTD_OPS_AUTO_OOB: {
1421                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1422                 uint32_t boffs = 0, roffs = ops->ooboffs;
1423                 size_t bytes = 0;
1424
1425                 for (; free->length && len; free++, len -= bytes) {
1426                         /* Read request not from offset 0? */
1427                         if (unlikely(roffs)) {
1428                                 if (roffs >= free->length) {
1429                                         roffs -= free->length;
1430                                         continue;
1431                                 }
1432                                 boffs = free->offset + roffs;
1433                                 bytes = min_t(size_t, len,
1434                                               (free->length - roffs));
1435                                 roffs = 0;
1436                         } else {
1437                                 bytes = min_t(size_t, len, free->length);
1438                                 boffs = free->offset;
1439                         }
1440                         memcpy(oob, chip->oob_poi + boffs, bytes);
1441                         oob += bytes;
1442                 }
1443                 return oob;
1444         }
1445         default:
1446                 BUG();
1447         }
1448         return NULL;
1449 }
1450
1451 /**
1452  * nand_do_read_ops - [INTERN] Read data with ECC
1453  * @mtd: MTD device structure
1454  * @from: offset to read from
1455  * @ops: oob ops structure
1456  *
1457  * Internal function. Called with chip held.
1458  */
1459 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1460                             struct mtd_oob_ops *ops)
1461 {
1462         int chipnr, page, realpage, col, bytes, aligned;
1463         struct nand_chip *chip = mtd->priv;
1464         struct mtd_ecc_stats stats;
1465         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1466         int sndcmd = 1;
1467         int ret = 0;
1468         uint32_t readlen = ops->len;
1469         uint32_t oobreadlen = ops->ooblen;
1470         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1471                 mtd->oobavail : mtd->oobsize;
1472
1473         uint8_t *bufpoi, *oob, *buf;
1474
1475         stats = mtd->ecc_stats;
1476
1477         chipnr = (int)(from >> chip->chip_shift);
1478         chip->select_chip(mtd, chipnr);
1479
1480         realpage = (int)(from >> chip->page_shift);
1481         page = realpage & chip->pagemask;
1482
1483         col = (int)(from & (mtd->writesize - 1));
1484
1485         buf = ops->datbuf;
1486         oob = ops->oobbuf;
1487
1488         while (1) {
1489                 bytes = min(mtd->writesize - col, readlen);
1490                 aligned = (bytes == mtd->writesize);
1491
1492                 /* Is the current page in the buffer? */
1493                 if (realpage != chip->pagebuf || oob) {
1494                         bufpoi = aligned ? buf : chip->buffers->databuf;
1495
1496                         if (likely(sndcmd)) {
1497                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1498                                 sndcmd = 0;
1499                         }
1500
1501                         /* Now read the page into the buffer */
1502                         if (unlikely(ops->mode == MTD_OPS_RAW))
1503                                 ret = chip->ecc.read_page_raw(mtd, chip,
1504                                                               bufpoi, page);
1505                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1506                                 ret = chip->ecc.read_subpage(mtd, chip,
1507                                                         col, bytes, bufpoi);
1508                         else
1509                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1510                                                           page);
1511                         if (ret < 0) {
1512                                 if (!aligned)
1513                                         /* Invalidate page cache */
1514                                         chip->pagebuf = -1;
1515                                 break;
1516                         }
1517
1518                         /* Transfer not aligned data */
1519                         if (!aligned) {
1520                                 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1521                                     !(mtd->ecc_stats.failed - stats.failed) &&
1522                                     (ops->mode != MTD_OPS_RAW))
1523                                         chip->pagebuf = realpage;
1524                                 else
1525                                         /* Invalidate page cache */
1526                                         chip->pagebuf = -1;
1527                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1528                         }
1529
1530                         buf += bytes;
1531
1532                         if (unlikely(oob)) {
1533
1534                                 int toread = min(oobreadlen, max_oobsize);
1535
1536                                 if (toread) {
1537                                         oob = nand_transfer_oob(chip,
1538                                                 oob, ops, toread);
1539                                         oobreadlen -= toread;
1540                                 }
1541                         }
1542
1543                         if (!(chip->options & NAND_NO_READRDY)) {
1544                                 /*
1545                                  * Apply delay or wait for ready/busy pin. Do
1546                                  * this before the AUTOINCR check, so no
1547                                  * problems arise if a chip which does auto
1548                                  * increment is marked as NOAUTOINCR by the
1549                                  * board driver.
1550                                  */
1551                                 if (!chip->dev_ready)
1552                                         udelay(chip->chip_delay);
1553                                 else
1554                                         nand_wait_ready(mtd);
1555                         }
1556                 } else {
1557                         memcpy(buf, chip->buffers->databuf + col, bytes);
1558                         buf += bytes;
1559                 }
1560
1561                 readlen -= bytes;
1562
1563                 if (!readlen)
1564                         break;
1565
1566                 /* For subsequent reads align to page boundary */
1567                 col = 0;
1568                 /* Increment page address */
1569                 realpage++;
1570
1571                 page = realpage & chip->pagemask;
1572                 /* Check, if we cross a chip boundary */
1573                 if (!page) {
1574                         chipnr++;
1575                         chip->select_chip(mtd, -1);
1576                         chip->select_chip(mtd, chipnr);
1577                 }
1578
1579                 /*
1580                  * Check, if the chip supports auto page increment or if we
1581                  * have hit a block boundary.
1582                  */
1583                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1584                         sndcmd = 1;
1585         }
1586
1587         ops->retlen = ops->len - (size_t) readlen;
1588         if (oob)
1589                 ops->oobretlen = ops->ooblen - oobreadlen;
1590
1591         if (ret)
1592                 return ret;
1593
1594         if (mtd->ecc_stats.failed - stats.failed)
1595                 return -EBADMSG;
1596
1597         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1598 }
1599
1600 /**
1601  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1602  * @mtd: MTD device structure
1603  * @from: offset to read from
1604  * @len: number of bytes to read
1605  * @retlen: pointer to variable to store the number of read bytes
1606  * @buf: the databuffer to put data
1607  *
1608  * Get hold of the chip and call nand_do_read.
1609  */
1610 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1611                      size_t *retlen, uint8_t *buf)
1612 {
1613         struct nand_chip *chip = mtd->priv;
1614         struct mtd_oob_ops ops;
1615         int ret;
1616
1617         nand_get_device(chip, mtd, FL_READING);
1618         ops.len = len;
1619         ops.datbuf = buf;
1620         ops.oobbuf = NULL;
1621         ops.mode = 0;
1622         ret = nand_do_read_ops(mtd, from, &ops);
1623         *retlen = ops.retlen;
1624         nand_release_device(mtd);
1625         return ret;
1626 }
1627
1628 /**
1629  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1630  * @mtd: mtd info structure
1631  * @chip: nand chip info structure
1632  * @page: page number to read
1633  * @sndcmd: flag whether to issue read command or not
1634  */
1635 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1636                              int page, int sndcmd)
1637 {
1638         if (sndcmd) {
1639                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1640                 sndcmd = 0;
1641         }
1642         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1643         return sndcmd;
1644 }
1645
1646 /**
1647  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1648  *                          with syndromes
1649  * @mtd: mtd info structure
1650  * @chip: nand chip info structure
1651  * @page: page number to read
1652  * @sndcmd: flag whether to issue read command or not
1653  */
1654 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1655                                   int page, int sndcmd)
1656 {
1657         uint8_t *buf = chip->oob_poi;
1658         int length = mtd->oobsize;
1659         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1660         int eccsize = chip->ecc.size;
1661         uint8_t *bufpoi = buf;
1662         int i, toread, sndrnd = 0, pos;
1663
1664         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1665         for (i = 0; i < chip->ecc.steps; i++) {
1666                 if (sndrnd) {
1667                         pos = eccsize + i * (eccsize + chunk);
1668                         if (mtd->writesize > 512)
1669                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1670                         else
1671                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1672                 } else
1673                         sndrnd = 1;
1674                 toread = min_t(int, length, chunk);
1675                 chip->read_buf(mtd, bufpoi, toread);
1676                 bufpoi += toread;
1677                 length -= toread;
1678         }
1679         if (length > 0)
1680                 chip->read_buf(mtd, bufpoi, length);
1681
1682         return 1;
1683 }
1684
1685 /**
1686  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1687  * @mtd: mtd info structure
1688  * @chip: nand chip info structure
1689  * @page: page number to write
1690  */
1691 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1692                               int page)
1693 {
1694         int status = 0;
1695         const uint8_t *buf = chip->oob_poi;
1696         int length = mtd->oobsize;
1697
1698         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1699         chip->write_buf(mtd, buf, length);
1700         /* Send command to program the OOB data */
1701         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1702
1703         status = chip->waitfunc(mtd, chip);
1704
1705         return status & NAND_STATUS_FAIL ? -EIO : 0;
1706 }
1707
1708 /**
1709  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1710  *                           with syndrome - only for large page flash
1711  * @mtd: mtd info structure
1712  * @chip: nand chip info structure
1713  * @page: page number to write
1714  */
1715 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1716                                    struct nand_chip *chip, int page)
1717 {
1718         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1719         int eccsize = chip->ecc.size, length = mtd->oobsize;
1720         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1721         const uint8_t *bufpoi = chip->oob_poi;
1722
1723         /*
1724          * data-ecc-data-ecc ... ecc-oob
1725          * or
1726          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1727          */
1728         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1729                 pos = steps * (eccsize + chunk);
1730                 steps = 0;
1731         } else
1732                 pos = eccsize;
1733
1734         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1735         for (i = 0; i < steps; i++) {
1736                 if (sndcmd) {
1737                         if (mtd->writesize <= 512) {
1738                                 uint32_t fill = 0xFFFFFFFF;
1739
1740                                 len = eccsize;
1741                                 while (len > 0) {
1742                                         int num = min_t(int, len, 4);
1743                                         chip->write_buf(mtd, (uint8_t *)&fill,
1744                                                         num);
1745                                         len -= num;
1746                                 }
1747                         } else {
1748                                 pos = eccsize + i * (eccsize + chunk);
1749                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1750                         }
1751                 } else
1752                         sndcmd = 1;
1753                 len = min_t(int, length, chunk);
1754                 chip->write_buf(mtd, bufpoi, len);
1755                 bufpoi += len;
1756                 length -= len;
1757         }
1758         if (length > 0)
1759                 chip->write_buf(mtd, bufpoi, length);
1760
1761         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1762         status = chip->waitfunc(mtd, chip);
1763
1764         return status & NAND_STATUS_FAIL ? -EIO : 0;
1765 }
1766
1767 /**
1768  * nand_do_read_oob - [INTERN] NAND read out-of-band
1769  * @mtd: MTD device structure
1770  * @from: offset to read from
1771  * @ops: oob operations description structure
1772  *
1773  * NAND read out-of-band data from the spare area.
1774  */
1775 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1776                             struct mtd_oob_ops *ops)
1777 {
1778         int page, realpage, chipnr, sndcmd = 1;
1779         struct nand_chip *chip = mtd->priv;
1780         struct mtd_ecc_stats stats;
1781         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1782         int readlen = ops->ooblen;
1783         int len;
1784         uint8_t *buf = ops->oobbuf;
1785
1786         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1787                         __func__, (unsigned long long)from, readlen);
1788
1789         stats = mtd->ecc_stats;
1790
1791         if (ops->mode == MTD_OPS_AUTO_OOB)
1792                 len = chip->ecc.layout->oobavail;
1793         else
1794                 len = mtd->oobsize;
1795
1796         if (unlikely(ops->ooboffs >= len)) {
1797                 pr_debug("%s: attempt to start read outside oob\n",
1798                                 __func__);
1799                 return -EINVAL;
1800         }
1801
1802         /* Do not allow reads past end of device */
1803         if (unlikely(from >= mtd->size ||
1804                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1805                                         (from >> chip->page_shift)) * len)) {
1806                 pr_debug("%s: attempt to read beyond end of device\n",
1807                                 __func__);
1808                 return -EINVAL;
1809         }
1810
1811         chipnr = (int)(from >> chip->chip_shift);
1812         chip->select_chip(mtd, chipnr);
1813
1814         /* Shift to get page */
1815         realpage = (int)(from >> chip->page_shift);
1816         page = realpage & chip->pagemask;
1817
1818         while (1) {
1819                 if (ops->mode == MTD_OPS_RAW)
1820                         sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1821                 else
1822                         sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1823
1824                 len = min(len, readlen);
1825                 buf = nand_transfer_oob(chip, buf, ops, len);
1826
1827                 if (!(chip->options & NAND_NO_READRDY)) {
1828                         /*
1829                          * Apply delay or wait for ready/busy pin. Do this
1830                          * before the AUTOINCR check, so no problems arise if a
1831                          * chip which does auto increment is marked as
1832                          * NOAUTOINCR by the board driver.
1833                          */
1834                         if (!chip->dev_ready)
1835                                 udelay(chip->chip_delay);
1836                         else
1837                                 nand_wait_ready(mtd);
1838                 }
1839
1840                 readlen -= len;
1841                 if (!readlen)
1842                         break;
1843
1844                 /* Increment page address */
1845                 realpage++;
1846
1847                 page = realpage & chip->pagemask;
1848                 /* Check, if we cross a chip boundary */
1849                 if (!page) {
1850                         chipnr++;
1851                         chip->select_chip(mtd, -1);
1852                         chip->select_chip(mtd, chipnr);
1853                 }
1854
1855                 /*
1856                  * Check, if the chip supports auto page increment or if we
1857                  * have hit a block boundary.
1858                  */
1859                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1860                         sndcmd = 1;
1861         }
1862
1863         ops->oobretlen = ops->ooblen;
1864
1865         if (mtd->ecc_stats.failed - stats.failed)
1866                 return -EBADMSG;
1867
1868         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1869 }
1870
1871 /**
1872  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1873  * @mtd: MTD device structure
1874  * @from: offset to read from
1875  * @ops: oob operation description structure
1876  *
1877  * NAND read data and/or out-of-band data.
1878  */
1879 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1880                          struct mtd_oob_ops *ops)
1881 {
1882         struct nand_chip *chip = mtd->priv;
1883         int ret = -ENOTSUPP;
1884
1885         ops->retlen = 0;
1886
1887         /* Do not allow reads past end of device */
1888         if (ops->datbuf && (from + ops->len) > mtd->size) {
1889                 pr_debug("%s: attempt to read beyond end of device\n",
1890                                 __func__);
1891                 return -EINVAL;
1892         }
1893
1894         nand_get_device(chip, mtd, FL_READING);
1895
1896         switch (ops->mode) {
1897         case MTD_OPS_PLACE_OOB:
1898         case MTD_OPS_AUTO_OOB:
1899         case MTD_OPS_RAW:
1900                 break;
1901
1902         default:
1903                 goto out;
1904         }
1905
1906         if (!ops->datbuf)
1907                 ret = nand_do_read_oob(mtd, from, ops);
1908         else
1909                 ret = nand_do_read_ops(mtd, from, ops);
1910
1911 out:
1912         nand_release_device(mtd);
1913         return ret;
1914 }
1915
1916
1917 /**
1918  * nand_write_page_raw - [INTERN] raw page write function
1919  * @mtd: mtd info structure
1920  * @chip: nand chip info structure
1921  * @buf: data buffer
1922  *
1923  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1924  */
1925 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1926                                 const uint8_t *buf)
1927 {
1928         chip->write_buf(mtd, buf, mtd->writesize);
1929         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1930 }
1931
1932 /**
1933  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1934  * @mtd: mtd info structure
1935  * @chip: nand chip info structure
1936  * @buf: data buffer
1937  *
1938  * We need a special oob layout and handling even when ECC isn't checked.
1939  */
1940 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1941                                         struct nand_chip *chip,
1942                                         const uint8_t *buf)
1943 {
1944         int eccsize = chip->ecc.size;
1945         int eccbytes = chip->ecc.bytes;
1946         uint8_t *oob = chip->oob_poi;
1947         int steps, size;
1948
1949         for (steps = chip->ecc.steps; steps > 0; steps--) {
1950                 chip->write_buf(mtd, buf, eccsize);
1951                 buf += eccsize;
1952
1953                 if (chip->ecc.prepad) {
1954                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1955                         oob += chip->ecc.prepad;
1956                 }
1957
1958                 chip->read_buf(mtd, oob, eccbytes);
1959                 oob += eccbytes;
1960
1961                 if (chip->ecc.postpad) {
1962                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1963                         oob += chip->ecc.postpad;
1964                 }
1965         }
1966
1967         size = mtd->oobsize - (oob - chip->oob_poi);
1968         if (size)
1969                 chip->write_buf(mtd, oob, size);
1970 }
1971 /**
1972  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1973  * @mtd: mtd info structure
1974  * @chip: nand chip info structure
1975  * @buf: data buffer
1976  */
1977 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1978                                   const uint8_t *buf)
1979 {
1980         int i, eccsize = chip->ecc.size;
1981         int eccbytes = chip->ecc.bytes;
1982         int eccsteps = chip->ecc.steps;
1983         uint8_t *ecc_calc = chip->buffers->ecccalc;
1984         const uint8_t *p = buf;
1985         uint32_t *eccpos = chip->ecc.layout->eccpos;
1986
1987         /* Software ECC calculation */
1988         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1989                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1990
1991         for (i = 0; i < chip->ecc.total; i++)
1992                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1993
1994         chip->ecc.write_page_raw(mtd, chip, buf);
1995 }
1996
1997 /**
1998  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1999  * @mtd: mtd info structure
2000  * @chip: nand chip info structure
2001  * @buf: data buffer
2002  */
2003 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2004                                   const uint8_t *buf)
2005 {
2006         int i, eccsize = chip->ecc.size;
2007         int eccbytes = chip->ecc.bytes;
2008         int eccsteps = chip->ecc.steps;
2009         uint8_t *ecc_calc = chip->buffers->ecccalc;
2010         const uint8_t *p = buf;
2011         uint32_t *eccpos = chip->ecc.layout->eccpos;
2012
2013         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2014                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2015                 chip->write_buf(mtd, p, eccsize);
2016                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2017         }
2018
2019         for (i = 0; i < chip->ecc.total; i++)
2020                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2021
2022         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2023 }
2024
2025 /**
2026  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2027  * @mtd: mtd info structure
2028  * @chip: nand chip info structure
2029  * @buf: data buffer
2030  *
2031  * The hw generator calculates the error syndrome automatically. Therefore we
2032  * need a special oob layout and handling.
2033  */
2034 static void nand_write_page_syndrome(struct mtd_info *mtd,
2035                                     struct nand_chip *chip, const uint8_t *buf)
2036 {
2037         int i, eccsize = chip->ecc.size;
2038         int eccbytes = chip->ecc.bytes;
2039         int eccsteps = chip->ecc.steps;
2040         const uint8_t *p = buf;
2041         uint8_t *oob = chip->oob_poi;
2042
2043         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2044
2045                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2046                 chip->write_buf(mtd, p, eccsize);
2047
2048                 if (chip->ecc.prepad) {
2049                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2050                         oob += chip->ecc.prepad;
2051                 }
2052
2053                 chip->ecc.calculate(mtd, p, oob);
2054                 chip->write_buf(mtd, oob, eccbytes);
2055                 oob += eccbytes;
2056
2057                 if (chip->ecc.postpad) {
2058                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2059                         oob += chip->ecc.postpad;
2060                 }
2061         }
2062
2063         /* Calculate remaining oob bytes */
2064         i = mtd->oobsize - (oob - chip->oob_poi);
2065         if (i)
2066                 chip->write_buf(mtd, oob, i);
2067 }
2068
2069 /**
2070  * nand_write_page - [REPLACEABLE] write one page
2071  * @mtd: MTD device structure
2072  * @chip: NAND chip descriptor
2073  * @buf: the data to write
2074  * @page: page number to write
2075  * @cached: cached programming
2076  * @raw: use _raw version of write_page
2077  */
2078 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2079                            const uint8_t *buf, int page, int cached, int raw)
2080 {
2081         int status;
2082
2083         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2084
2085         if (unlikely(raw))
2086                 chip->ecc.write_page_raw(mtd, chip, buf);
2087         else
2088                 chip->ecc.write_page(mtd, chip, buf);
2089
2090         /*
2091          * Cached progamming disabled for now. Not sure if it's worth the
2092          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2093          */
2094         cached = 0;
2095
2096         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2097
2098                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2099                 status = chip->waitfunc(mtd, chip);
2100                 /*
2101                  * See if operation failed and additional status checks are
2102                  * available.
2103                  */
2104                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2105                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2106                                                page);
2107
2108                 if (status & NAND_STATUS_FAIL)
2109                         return -EIO;
2110         } else {
2111                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2112                 status = chip->waitfunc(mtd, chip);
2113         }
2114
2115 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2116         /* Send command to read back the data */
2117         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2118
2119         if (chip->verify_buf(mtd, buf, mtd->writesize))
2120                 return -EIO;
2121 #endif
2122         return 0;
2123 }
2124
2125 /**
2126  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2127  * @mtd: MTD device structure
2128  * @oob: oob data buffer
2129  * @len: oob data write length
2130  * @ops: oob ops structure
2131  */
2132 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2133                               struct mtd_oob_ops *ops)
2134 {
2135         struct nand_chip *chip = mtd->priv;
2136
2137         /*
2138          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2139          * data from a previous OOB read.
2140          */
2141         memset(chip->oob_poi, 0xff, mtd->oobsize);
2142
2143         switch (ops->mode) {
2144
2145         case MTD_OPS_PLACE_OOB:
2146         case MTD_OPS_RAW:
2147                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2148                 return oob + len;
2149
2150         case MTD_OPS_AUTO_OOB: {
2151                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2152                 uint32_t boffs = 0, woffs = ops->ooboffs;
2153                 size_t bytes = 0;
2154
2155                 for (; free->length && len; free++, len -= bytes) {
2156                         /* Write request not from offset 0? */
2157                         if (unlikely(woffs)) {
2158                                 if (woffs >= free->length) {
2159                                         woffs -= free->length;
2160                                         continue;
2161                                 }
2162                                 boffs = free->offset + woffs;
2163                                 bytes = min_t(size_t, len,
2164                                               (free->length - woffs));
2165                                 woffs = 0;
2166                         } else {
2167                                 bytes = min_t(size_t, len, free->length);
2168                                 boffs = free->offset;
2169                         }
2170                         memcpy(chip->oob_poi + boffs, oob, bytes);
2171                         oob += bytes;
2172                 }
2173                 return oob;
2174         }
2175         default:
2176                 BUG();
2177         }
2178         return NULL;
2179 }
2180
2181 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2182
2183 /**
2184  * nand_do_write_ops - [INTERN] NAND write with ECC
2185  * @mtd: MTD device structure
2186  * @to: offset to write to
2187  * @ops: oob operations description structure
2188  *
2189  * NAND write with ECC.
2190  */
2191 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2192                              struct mtd_oob_ops *ops)
2193 {
2194         int chipnr, realpage, page, blockmask, column;
2195         struct nand_chip *chip = mtd->priv;
2196         uint32_t writelen = ops->len;
2197
2198         uint32_t oobwritelen = ops->ooblen;
2199         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2200                                 mtd->oobavail : mtd->oobsize;
2201
2202         uint8_t *oob = ops->oobbuf;
2203         uint8_t *buf = ops->datbuf;
2204         int ret, subpage;
2205
2206         ops->retlen = 0;
2207         if (!writelen)
2208                 return 0;
2209
2210         /* Reject writes, which are not page aligned */
2211         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2212                 pr_notice("%s: attempt to write non page aligned data\n",
2213                            __func__);
2214                 return -EINVAL;
2215         }
2216
2217         column = to & (mtd->writesize - 1);
2218         subpage = column || (writelen & (mtd->writesize - 1));
2219
2220         if (subpage && oob)
2221                 return -EINVAL;
2222
2223         chipnr = (int)(to >> chip->chip_shift);
2224         chip->select_chip(mtd, chipnr);
2225
2226         /* Check, if it is write protected */
2227         if (nand_check_wp(mtd))
2228                 return -EIO;
2229
2230         realpage = (int)(to >> chip->page_shift);
2231         page = realpage & chip->pagemask;
2232         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2233
2234         /* Invalidate the page cache, when we write to the cached page */
2235         if (to <= (chip->pagebuf << chip->page_shift) &&
2236             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2237                 chip->pagebuf = -1;
2238
2239         /* Don't allow multipage oob writes with offset */
2240         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2241                 return -EINVAL;
2242
2243         while (1) {
2244                 int bytes = mtd->writesize;
2245                 int cached = writelen > bytes && page != blockmask;
2246                 uint8_t *wbuf = buf;
2247
2248                 /* Partial page write? */
2249                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2250                         cached = 0;
2251                         bytes = min_t(int, bytes - column, (int) writelen);
2252                         chip->pagebuf = -1;
2253                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2254                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2255                         wbuf = chip->buffers->databuf;
2256                 }
2257
2258                 if (unlikely(oob)) {
2259                         size_t len = min(oobwritelen, oobmaxlen);
2260                         oob = nand_fill_oob(mtd, oob, len, ops);
2261                         oobwritelen -= len;
2262                 } else {
2263                         /* We still need to erase leftover OOB data */
2264                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2265                 }
2266
2267                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2268                                        (ops->mode == MTD_OPS_RAW));
2269                 if (ret)
2270                         break;
2271
2272                 writelen -= bytes;
2273                 if (!writelen)
2274                         break;
2275
2276                 column = 0;
2277                 buf += bytes;
2278                 realpage++;
2279
2280                 page = realpage & chip->pagemask;
2281                 /* Check, if we cross a chip boundary */
2282                 if (!page) {
2283                         chipnr++;
2284                         chip->select_chip(mtd, -1);
2285                         chip->select_chip(mtd, chipnr);
2286                 }
2287         }
2288
2289         ops->retlen = ops->len - writelen;
2290         if (unlikely(oob))
2291                 ops->oobretlen = ops->ooblen;
2292         return ret;
2293 }
2294
2295 /**
2296  * panic_nand_write - [MTD Interface] NAND write with ECC
2297  * @mtd: MTD device structure
2298  * @to: offset to write to
2299  * @len: number of bytes to write
2300  * @retlen: pointer to variable to store the number of written bytes
2301  * @buf: the data to write
2302  *
2303  * NAND write with ECC. Used when performing writes in interrupt context, this
2304  * may for example be called by mtdoops when writing an oops while in panic.
2305  */
2306 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2307                             size_t *retlen, const uint8_t *buf)
2308 {
2309         struct nand_chip *chip = mtd->priv;
2310         struct mtd_oob_ops ops;
2311         int ret;
2312
2313         /* Wait for the device to get ready */
2314         panic_nand_wait(mtd, chip, 400);
2315
2316         /* Grab the device */
2317         panic_nand_get_device(chip, mtd, FL_WRITING);
2318
2319         ops.len = len;
2320         ops.datbuf = (uint8_t *)buf;
2321         ops.oobbuf = NULL;
2322         ops.mode = 0;
2323
2324         ret = nand_do_write_ops(mtd, to, &ops);
2325
2326         *retlen = ops.retlen;
2327         return ret;
2328 }
2329
2330 /**
2331  * nand_write - [MTD Interface] NAND write with ECC
2332  * @mtd: MTD device structure
2333  * @to: offset to write to
2334  * @len: number of bytes to write
2335  * @retlen: pointer to variable to store the number of written bytes
2336  * @buf: the data to write
2337  *
2338  * NAND write with ECC.
2339  */
2340 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2341                           size_t *retlen, const uint8_t *buf)
2342 {
2343         struct nand_chip *chip = mtd->priv;
2344         struct mtd_oob_ops ops;
2345         int ret;
2346
2347         nand_get_device(chip, mtd, FL_WRITING);
2348         ops.len = len;
2349         ops.datbuf = (uint8_t *)buf;
2350         ops.oobbuf = NULL;
2351         ops.mode = 0;
2352         ret = nand_do_write_ops(mtd, to, &ops);
2353         *retlen = ops.retlen;
2354         nand_release_device(mtd);
2355         return ret;
2356 }
2357
2358 /**
2359  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360  * @mtd: MTD device structure
2361  * @to: offset to write to
2362  * @ops: oob operation description structure
2363  *
2364  * NAND write out-of-band.
2365  */
2366 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2367                              struct mtd_oob_ops *ops)
2368 {
2369         int chipnr, page, status, len;
2370         struct nand_chip *chip = mtd->priv;
2371
2372         pr_debug("%s: to = 0x%08x, len = %i\n",
2373                          __func__, (unsigned int)to, (int)ops->ooblen);
2374
2375         if (ops->mode == MTD_OPS_AUTO_OOB)
2376                 len = chip->ecc.layout->oobavail;
2377         else
2378                 len = mtd->oobsize;
2379
2380         /* Do not allow write past end of page */
2381         if ((ops->ooboffs + ops->ooblen) > len) {
2382                 pr_debug("%s: attempt to write past end of page\n",
2383                                 __func__);
2384                 return -EINVAL;
2385         }
2386
2387         if (unlikely(ops->ooboffs >= len)) {
2388                 pr_debug("%s: attempt to start write outside oob\n",
2389                                 __func__);
2390                 return -EINVAL;
2391         }
2392
2393         /* Do not allow write past end of device */
2394         if (unlikely(to >= mtd->size ||
2395                      ops->ooboffs + ops->ooblen >
2396                         ((mtd->size >> chip->page_shift) -
2397                          (to >> chip->page_shift)) * len)) {
2398                 pr_debug("%s: attempt to write beyond end of device\n",
2399                                 __func__);
2400                 return -EINVAL;
2401         }
2402
2403         chipnr = (int)(to >> chip->chip_shift);
2404         chip->select_chip(mtd, chipnr);
2405
2406         /* Shift to get page */
2407         page = (int)(to >> chip->page_shift);
2408
2409         /*
2410          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411          * of my DiskOnChip 2000 test units) will clear the whole data page too
2412          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413          * it in the doc2000 driver in August 1999.  dwmw2.
2414          */
2415         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2416
2417         /* Check, if it is write protected */
2418         if (nand_check_wp(mtd))
2419                 return -EROFS;
2420
2421         /* Invalidate the page cache, if we write to the cached page */
2422         if (page == chip->pagebuf)
2423                 chip->pagebuf = -1;
2424
2425         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2426
2427         if (ops->mode == MTD_OPS_RAW)
2428                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2429         else
2430                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2431
2432         if (status)
2433                 return status;
2434
2435         ops->oobretlen = ops->ooblen;
2436
2437         return 0;
2438 }
2439
2440 /**
2441  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442  * @mtd: MTD device structure
2443  * @to: offset to write to
2444  * @ops: oob operation description structure
2445  */
2446 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2447                           struct mtd_oob_ops *ops)
2448 {
2449         struct nand_chip *chip = mtd->priv;
2450         int ret = -ENOTSUPP;
2451
2452         ops->retlen = 0;
2453
2454         /* Do not allow writes past end of device */
2455         if (ops->datbuf && (to + ops->len) > mtd->size) {
2456                 pr_debug("%s: attempt to write beyond end of device\n",
2457                                 __func__);
2458                 return -EINVAL;
2459         }
2460
2461         nand_get_device(chip, mtd, FL_WRITING);
2462
2463         switch (ops->mode) {
2464         case MTD_OPS_PLACE_OOB:
2465         case MTD_OPS_AUTO_OOB:
2466         case MTD_OPS_RAW:
2467                 break;
2468
2469         default:
2470                 goto out;
2471         }
2472
2473         if (!ops->datbuf)
2474                 ret = nand_do_write_oob(mtd, to, ops);
2475         else
2476                 ret = nand_do_write_ops(mtd, to, ops);
2477
2478 out:
2479         nand_release_device(mtd);
2480         return ret;
2481 }
2482
2483 /**
2484  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485  * @mtd: MTD device structure
2486  * @page: the page address of the block which will be erased
2487  *
2488  * Standard erase command for NAND chips.
2489  */
2490 static void single_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492         struct nand_chip *chip = mtd->priv;
2493         /* Send commands to erase a block */
2494         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2495         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2496 }
2497
2498 /**
2499  * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500  * @mtd: MTD device structure
2501  * @page: the page address of the block which will be erased
2502  *
2503  * AND multi block erase command function. Erase 4 consecutive blocks.
2504  */
2505 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2506 {
2507         struct nand_chip *chip = mtd->priv;
2508         /* Send commands to erase a block */
2509         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2510         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2511         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2512         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2513         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2514 }
2515
2516 /**
2517  * nand_erase - [MTD Interface] erase block(s)
2518  * @mtd: MTD device structure
2519  * @instr: erase instruction
2520  *
2521  * Erase one ore more blocks.
2522  */
2523 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2524 {
2525         return nand_erase_nand(mtd, instr, 0);
2526 }
2527
2528 #define BBT_PAGE_MASK   0xffffff3f
2529 /**
2530  * nand_erase_nand - [INTERN] erase block(s)
2531  * @mtd: MTD device structure
2532  * @instr: erase instruction
2533  * @allowbbt: allow erasing the bbt area
2534  *
2535  * Erase one ore more blocks.
2536  */
2537 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2538                     int allowbbt)
2539 {
2540         int page, status, pages_per_block, ret, chipnr;
2541         struct nand_chip *chip = mtd->priv;
2542         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2543         unsigned int bbt_masked_page = 0xffffffff;
2544         loff_t len;
2545
2546         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547                         __func__, (unsigned long long)instr->addr,
2548                         (unsigned long long)instr->len);
2549
2550         if (check_offs_len(mtd, instr->addr, instr->len))
2551                 return -EINVAL;
2552
2553         /* Grab the lock and see if the device is available */
2554         nand_get_device(chip, mtd, FL_ERASING);
2555
2556         /* Shift to get first page */
2557         page = (int)(instr->addr >> chip->page_shift);
2558         chipnr = (int)(instr->addr >> chip->chip_shift);
2559
2560         /* Calculate pages in each block */
2561         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2562
2563         /* Select the NAND device */
2564         chip->select_chip(mtd, chipnr);
2565
2566         /* Check, if it is write protected */
2567         if (nand_check_wp(mtd)) {
2568                 pr_debug("%s: device is write protected!\n",
2569                                 __func__);
2570                 instr->state = MTD_ERASE_FAILED;
2571                 goto erase_exit;
2572         }
2573
2574         /*
2575          * If BBT requires refresh, set the BBT page mask to see if the BBT
2576          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2577          * can not be matched. This is also done when the bbt is actually
2578          * erased to avoid recursive updates.
2579          */
2580         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2581                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2582
2583         /* Loop through the pages */
2584         len = instr->len;
2585
2586         instr->state = MTD_ERASING;
2587
2588         while (len) {
2589                 /* Check if we have a bad block, we do not erase bad blocks! */
2590                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2591                                         chip->page_shift, 0, allowbbt)) {
2592                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2593                                     __func__, page);
2594                         instr->state = MTD_ERASE_FAILED;
2595                         goto erase_exit;
2596                 }
2597
2598                 /*
2599                  * Invalidate the page cache, if we erase the block which
2600                  * contains the current cached page.
2601                  */
2602                 if (page <= chip->pagebuf && chip->pagebuf <
2603                     (page + pages_per_block))
2604                         chip->pagebuf = -1;
2605
2606                 chip->erase_cmd(mtd, page & chip->pagemask);
2607
2608                 status = chip->waitfunc(mtd, chip);
2609
2610                 /*
2611                  * See if operation failed and additional status checks are
2612                  * available
2613                  */
2614                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2615                         status = chip->errstat(mtd, chip, FL_ERASING,
2616                                                status, page);
2617
2618                 /* See if block erase succeeded */
2619                 if (status & NAND_STATUS_FAIL) {
2620                         pr_debug("%s: failed erase, page 0x%08x\n",
2621                                         __func__, page);
2622                         instr->state = MTD_ERASE_FAILED;
2623                         instr->fail_addr =
2624                                 ((loff_t)page << chip->page_shift);
2625                         goto erase_exit;
2626                 }
2627
2628                 /*
2629                  * If BBT requires refresh, set the BBT rewrite flag to the
2630                  * page being erased.
2631                  */
2632                 if (bbt_masked_page != 0xffffffff &&
2633                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2634                             rewrite_bbt[chipnr] =
2635                                         ((loff_t)page << chip->page_shift);
2636
2637                 /* Increment page address and decrement length */
2638                 len -= (1 << chip->phys_erase_shift);
2639                 page += pages_per_block;
2640
2641                 /* Check, if we cross a chip boundary */
2642                 if (len && !(page & chip->pagemask)) {
2643                         chipnr++;
2644                         chip->select_chip(mtd, -1);
2645                         chip->select_chip(mtd, chipnr);
2646
2647                         /*
2648                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2649                          * page mask to see if this BBT should be rewritten.
2650                          */
2651                         if (bbt_masked_page != 0xffffffff &&
2652                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2653                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2654                                         BBT_PAGE_MASK;
2655                 }
2656         }
2657         instr->state = MTD_ERASE_DONE;
2658
2659 erase_exit:
2660
2661         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2662
2663         /* Deselect and wake up anyone waiting on the device */
2664         nand_release_device(mtd);
2665
2666         /* Do call back function */
2667         if (!ret)
2668                 mtd_erase_callback(instr);
2669
2670         /*
2671          * If BBT requires refresh and erase was successful, rewrite any
2672          * selected bad block tables.
2673          */
2674         if (bbt_masked_page == 0xffffffff || ret)
2675                 return ret;
2676
2677         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2678                 if (!rewrite_bbt[chipnr])
2679                         continue;
2680                 /* Update the BBT for chip */
2681                 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2682                                 __func__, chipnr, rewrite_bbt[chipnr],
2683                                 chip->bbt_td->pages[chipnr]);
2684                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2685         }
2686
2687         /* Return more or less happy */
2688         return ret;
2689 }
2690
2691 /**
2692  * nand_sync - [MTD Interface] sync
2693  * @mtd: MTD device structure
2694  *
2695  * Sync is actually a wait for chip ready function.
2696  */
2697 static void nand_sync(struct mtd_info *mtd)
2698 {
2699         struct nand_chip *chip = mtd->priv;
2700
2701         pr_debug("%s: called\n", __func__);
2702
2703         /* Grab the lock and see if the device is available */
2704         nand_get_device(chip, mtd, FL_SYNCING);
2705         /* Release it and go back */
2706         nand_release_device(mtd);
2707 }
2708
2709 /**
2710  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2711  * @mtd: MTD device structure
2712  * @offs: offset relative to mtd start
2713  */
2714 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2715 {
2716         return nand_block_checkbad(mtd, offs, 1, 0);
2717 }
2718
2719 /**
2720  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2721  * @mtd: MTD device structure
2722  * @ofs: offset relative to mtd start
2723  */
2724 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2725 {
2726         struct nand_chip *chip = mtd->priv;
2727         int ret;
2728
2729         ret = nand_block_isbad(mtd, ofs);
2730         if (ret) {
2731                 /* If it was bad already, return success and do nothing */
2732                 if (ret > 0)
2733                         return 0;
2734                 return ret;
2735         }
2736
2737         return chip->block_markbad(mtd, ofs);
2738 }
2739
2740 /**
2741  * nand_suspend - [MTD Interface] Suspend the NAND flash
2742  * @mtd: MTD device structure
2743  */
2744 static int nand_suspend(struct mtd_info *mtd)
2745 {
2746         struct nand_chip *chip = mtd->priv;
2747
2748         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2749 }
2750
2751 /**
2752  * nand_resume - [MTD Interface] Resume the NAND flash
2753  * @mtd: MTD device structure
2754  */
2755 static void nand_resume(struct mtd_info *mtd)
2756 {
2757         struct nand_chip *chip = mtd->priv;
2758
2759         if (chip->state == FL_PM_SUSPENDED)
2760                 nand_release_device(mtd);
2761         else
2762                 pr_err("%s called for a chip which is not in suspended state\n",
2763                         __func__);
2764 }
2765
2766 /* Set default functions */
2767 static void nand_set_defaults(struct nand_chip *chip, int busw)
2768 {
2769         /* check for proper chip_delay setup, set 20us if not */
2770         if (!chip->chip_delay)
2771                 chip->chip_delay = 20;
2772
2773         /* check, if a user supplied command function given */
2774         if (chip->cmdfunc == NULL)
2775                 chip->cmdfunc = nand_command;
2776
2777         /* check, if a user supplied wait function given */
2778         if (chip->waitfunc == NULL)
2779                 chip->waitfunc = nand_wait;
2780
2781         if (!chip->select_chip)
2782                 chip->select_chip = nand_select_chip;
2783         if (!chip->read_byte)
2784                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2785         if (!chip->read_word)
2786                 chip->read_word = nand_read_word;
2787         if (!chip->block_bad)
2788                 chip->block_bad = nand_block_bad;
2789         if (!chip->block_markbad)
2790                 chip->block_markbad = nand_default_block_markbad;
2791         if (!chip->write_buf)
2792                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2793         if (!chip->read_buf)
2794                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2795         if (!chip->verify_buf)
2796                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2797         if (!chip->scan_bbt)
2798                 chip->scan_bbt = nand_default_bbt;
2799
2800         if (!chip->controller) {
2801                 chip->controller = &chip->hwcontrol;
2802                 spin_lock_init(&chip->controller->lock);
2803                 init_waitqueue_head(&chip->controller->wq);
2804         }
2805
2806 }
2807
2808 /* Sanitize ONFI strings so we can safely print them */
2809 static void sanitize_string(uint8_t *s, size_t len)
2810 {
2811         ssize_t i;
2812
2813         /* Null terminate */
2814         s[len - 1] = 0;
2815
2816         /* Remove non printable chars */
2817         for (i = 0; i < len - 1; i++) {
2818                 if (s[i] < ' ' || s[i] > 127)
2819                         s[i] = '?';
2820         }
2821
2822         /* Remove trailing spaces */
2823         strim(s);
2824 }
2825
2826 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2827 {
2828         int i;
2829         while (len--) {
2830                 crc ^= *p++ << 8;
2831                 for (i = 0; i < 8; i++)
2832                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2833         }
2834
2835         return crc;
2836 }
2837
2838 /*
2839  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2840  */
2841 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2842                                         int *busw)
2843 {
2844         struct nand_onfi_params *p = &chip->onfi_params;
2845         int i;
2846         int val;
2847
2848         /* Try ONFI for unknown chip or LP */
2849         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2850         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2851                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2852                 return 0;
2853
2854         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2855         for (i = 0; i < 3; i++) {
2856                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2857                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2858                                 le16_to_cpu(p->crc)) {
2859                         pr_info("ONFI param page %d valid\n", i);
2860                         break;
2861                 }
2862         }
2863
2864         if (i == 3)
2865                 return 0;
2866
2867         /* Check version */
2868         val = le16_to_cpu(p->revision);
2869         if (val & (1 << 5))
2870                 chip->onfi_version = 23;
2871         else if (val & (1 << 4))
2872                 chip->onfi_version = 22;
2873         else if (val & (1 << 3))
2874                 chip->onfi_version = 21;
2875         else if (val & (1 << 2))
2876                 chip->onfi_version = 20;
2877         else if (val & (1 << 1))
2878                 chip->onfi_version = 10;
2879         else
2880                 chip->onfi_version = 0;
2881
2882         if (!chip->onfi_version) {
2883                 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2884                 return 0;
2885         }
2886
2887         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2888         sanitize_string(p->model, sizeof(p->model));
2889         if (!mtd->name)
2890                 mtd->name = p->model;
2891         mtd->writesize = le32_to_cpu(p->byte_per_page);
2892         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2893         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2894         chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2895         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2896         *busw = 0;
2897         if (le16_to_cpu(p->features) & 1)
2898                 *busw = NAND_BUSWIDTH_16;
2899
2900         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2901         chip->options |= (NAND_NO_READRDY |
2902                         NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2903
2904         pr_info("ONFI flash detected\n");
2905         return 1;
2906 }
2907
2908 /*
2909  * Get the flash and manufacturer id and lookup if the type is supported.
2910  */
2911 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2912                                                   struct nand_chip *chip,
2913                                                   int busw,
2914                                                   int *maf_id, int *dev_id,
2915                                                   struct nand_flash_dev *type)
2916 {
2917         int i, maf_idx;
2918         u8 id_data[8];
2919         int ret;
2920
2921         /* Select the device */
2922         chip->select_chip(mtd, 0);
2923
2924         /*
2925          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2926          * after power-up.
2927          */
2928         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2929
2930         /* Send the command for reading device ID */
2931         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2932
2933         /* Read manufacturer and device IDs */
2934         *maf_id = chip->read_byte(mtd);
2935         *dev_id = chip->read_byte(mtd);
2936
2937         /*
2938          * Try again to make sure, as some systems the bus-hold or other
2939          * interface concerns can cause random data which looks like a
2940          * possibly credible NAND flash to appear. If the two results do
2941          * not match, ignore the device completely.
2942          */
2943
2944         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2945
2946         for (i = 0; i < 2; i++)
2947                 id_data[i] = chip->read_byte(mtd);
2948
2949         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2950                 pr_info("%s: second ID read did not match "
2951                         "%02x,%02x against %02x,%02x\n", __func__,
2952                         *maf_id, *dev_id, id_data[0], id_data[1]);
2953                 return ERR_PTR(-ENODEV);
2954         }
2955
2956         if (!type)
2957                 type = nand_flash_ids;
2958
2959         for (; type->name != NULL; type++)
2960                 if (*dev_id == type->id)
2961                         break;
2962
2963         chip->onfi_version = 0;
2964         if (!type->name || !type->pagesize) {
2965                 /* Check is chip is ONFI compliant */
2966                 ret = nand_flash_detect_onfi(mtd, chip, &busw);
2967                 if (ret)
2968                         goto ident_done;
2969         }
2970
2971         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2972
2973         /* Read entire ID string */
2974
2975         for (i = 0; i < 8; i++)
2976                 id_data[i] = chip->read_byte(mtd);
2977
2978         if (!type->name)
2979                 return ERR_PTR(-ENODEV);
2980
2981         if (!mtd->name)
2982                 mtd->name = type->name;
2983
2984         chip->chipsize = (uint64_t)type->chipsize << 20;
2985
2986         if (!type->pagesize && chip->init_size) {
2987                 /* Set the pagesize, oobsize, erasesize by the driver */
2988                 busw = chip->init_size(mtd, chip, id_data);
2989         } else if (!type->pagesize) {
2990                 int extid;
2991                 /* The 3rd id byte holds MLC / multichip data */
2992                 chip->cellinfo = id_data[2];
2993                 /* The 4th id byte is the important one */
2994                 extid = id_data[3];
2995
2996                 /*
2997                  * Field definitions are in the following datasheets:
2998                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2999                  * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
3000                  *
3001                  * Check for wraparound + Samsung ID + nonzero 6th byte
3002                  * to decide what to do.
3003                  */
3004                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3005                                 id_data[0] == NAND_MFR_SAMSUNG &&
3006                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3007                                 id_data[5] != 0x00) {
3008                         /* Calc pagesize */
3009                         mtd->writesize = 2048 << (extid & 0x03);
3010                         extid >>= 2;
3011                         /* Calc oobsize */
3012                         switch (extid & 0x03) {
3013                         case 1:
3014                                 mtd->oobsize = 128;
3015                                 break;
3016                         case 2:
3017                                 mtd->oobsize = 218;
3018                                 break;
3019                         case 3:
3020                                 mtd->oobsize = 400;
3021                                 break;
3022                         default:
3023                                 mtd->oobsize = 436;
3024                                 break;
3025                         }
3026                         extid >>= 2;
3027                         /* Calc blocksize */
3028                         mtd->erasesize = (128 * 1024) <<
3029                                 (((extid >> 1) & 0x04) | (extid & 0x03));
3030                         busw = 0;
3031                 } else {
3032                         /* Calc pagesize */
3033                         mtd->writesize = 1024 << (extid & 0x03);
3034                         extid >>= 2;
3035                         /* Calc oobsize */
3036                         mtd->oobsize = (8 << (extid & 0x01)) *
3037                                 (mtd->writesize >> 9);
3038                         extid >>= 2;
3039                         /* Calc blocksize. Blocksize is multiples of 64KiB */
3040                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3041                         extid >>= 2;
3042                         /* Get buswidth information */
3043                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3044                 }
3045         } else {
3046                 /*
3047                  * Old devices have chip data hardcoded in the device id table.
3048                  */
3049                 mtd->erasesize = type->erasesize;
3050                 mtd->writesize = type->pagesize;
3051                 mtd->oobsize = mtd->writesize / 32;
3052                 busw = type->options & NAND_BUSWIDTH_16;
3053
3054                 /*
3055                  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3056                  * some Spansion chips have erasesize that conflicts with size
3057                  * listed in nand_ids table.
3058                  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3059                  */
3060                 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3061                                 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3062                                 id_data[7] == 0x00 && mtd->writesize == 512) {
3063                         mtd->erasesize = 128 * 1024;
3064                         mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3065                 }
3066         }
3067         /* Get chip options, preserve non chip based options */
3068         chip->options &= ~NAND_CHIPOPTIONS_MSK;
3069         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3070
3071         /*
3072          * Check if chip is not a Samsung device. Do not clear the
3073          * options for chips which do not have an extended id.
3074          */
3075         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3076                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3077 ident_done:
3078
3079         /*
3080          * Set chip as a default. Board drivers can override it, if necessary.
3081          */
3082         chip->options |= NAND_NO_AUTOINCR;
3083
3084         /* Try to identify manufacturer */
3085         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3086                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3087                         break;
3088         }
3089
3090         /*
3091          * Check, if buswidth is correct. Hardware drivers should set
3092          * chip correct!
3093          */
3094         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3095                 pr_info("NAND device: Manufacturer ID:"
3096                         " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3097                         *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3098                 pr_warn("NAND bus width %d instead %d bit\n",
3099                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3100                            busw ? 16 : 8);
3101                 return ERR_PTR(-EINVAL);
3102         }
3103
3104         /* Calculate the address shift from the page size */
3105         chip->page_shift = ffs(mtd->writesize) - 1;
3106         /* Convert chipsize to number of pages per chip -1 */
3107         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3108
3109         chip->bbt_erase_shift = chip->phys_erase_shift =
3110                 ffs(mtd->erasesize) - 1;
3111         if (chip->chipsize & 0xffffffff)
3112                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3113         else {
3114                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3115                 chip->chip_shift += 32 - 1;
3116         }
3117
3118         chip->badblockbits = 8;
3119
3120         /* Set the bad block position */
3121         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3122                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3123         else
3124                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3125
3126         /*
3127          * Bad block marker is stored in the last page of each block
3128          * on Samsung and Hynix MLC devices; stored in first two pages
3129          * of each block on Micron devices with 2KiB pages and on
3130          * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3131          * All others scan only the first page.
3132          */
3133         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3134                         (*maf_id == NAND_MFR_SAMSUNG ||
3135                          *maf_id == NAND_MFR_HYNIX))
3136                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3137         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3138                                 (*maf_id == NAND_MFR_SAMSUNG ||
3139                                  *maf_id == NAND_MFR_HYNIX ||
3140                                  *maf_id == NAND_MFR_TOSHIBA ||
3141                                  *maf_id == NAND_MFR_AMD ||
3142                                  *maf_id == NAND_MFR_MACRONIX)) ||
3143                         (mtd->writesize == 2048 &&
3144                          *maf_id == NAND_MFR_MICRON))
3145                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3146
3147         /* Check for AND chips with 4 page planes */
3148         if (chip->options & NAND_4PAGE_ARRAY)
3149                 chip->erase_cmd = multi_erase_cmd;
3150         else
3151                 chip->erase_cmd = single_erase_cmd;
3152
3153         /* Do not replace user supplied command function! */
3154         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3155                 chip->cmdfunc = nand_command_lp;
3156
3157         pr_info("NAND device: Manufacturer ID:"
3158                 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3159                 nand_manuf_ids[maf_idx].name,
3160                 chip->onfi_version ? chip->onfi_params.model : type->name);
3161
3162         return type;
3163 }
3164
3165 /**
3166  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3167  * @mtd: MTD device structure
3168  * @maxchips: number of chips to scan for
3169  * @table: alternative NAND ID table
3170  *
3171  * This is the first phase of the normal nand_scan() function. It reads the
3172  * flash ID and sets up MTD fields accordingly.
3173  *
3174  * The mtd->owner field must be set to the module of the caller.
3175  */
3176 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3177                     struct nand_flash_dev *table)
3178 {
3179         int i, busw, nand_maf_id, nand_dev_id;
3180         struct nand_chip *chip = mtd->priv;
3181         struct nand_flash_dev *type;
3182
3183         /* Get buswidth to select the correct functions */
3184         busw = chip->options & NAND_BUSWIDTH_16;
3185         /* Set the default functions */
3186         nand_set_defaults(chip, busw);
3187
3188         /* Read the flash type */
3189         type = nand_get_flash_type(mtd, chip, busw,
3190                                 &nand_maf_id, &nand_dev_id, table);
3191
3192         if (IS_ERR(type)) {
3193                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3194                         pr_warn("No NAND device found\n");
3195                 chip->select_chip(mtd, -1);
3196                 return PTR_ERR(type);
3197         }
3198
3199         /* Check for a chip array */
3200         for (i = 1; i < maxchips; i++) {
3201                 chip->select_chip(mtd, i);
3202                 /* See comment in nand_get_flash_type for reset */
3203                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3204                 /* Send the command for reading device ID */
3205                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3206                 /* Read manufacturer and device IDs */
3207                 if (nand_maf_id != chip->read_byte(mtd) ||
3208                     nand_dev_id != chip->read_byte(mtd))
3209                         break;
3210         }
3211         if (i > 1)
3212                 pr_info("%d NAND chips detected\n", i);
3213
3214         /* Store the number of chips and calc total size for mtd */
3215         chip->numchips = i;
3216         mtd->size = i * chip->chipsize;
3217
3218         return 0;
3219 }
3220 EXPORT_SYMBOL(nand_scan_ident);
3221
3222
3223 /**
3224  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3225  * @mtd: MTD device structure
3226  *
3227  * This is the second phase of the normal nand_scan() function. It fills out
3228  * all the uninitialized function pointers with the defaults and scans for a
3229  * bad block table if appropriate.
3230  */
3231 int nand_scan_tail(struct mtd_info *mtd)
3232 {
3233         int i;
3234         struct nand_chip *chip = mtd->priv;
3235
3236         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3237         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3238                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3239
3240         if (!(chip->options & NAND_OWN_BUFFERS))
3241                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3242         if (!chip->buffers)
3243                 return -ENOMEM;
3244
3245         /* Set the internal oob buffer location, just after the page data */
3246         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3247
3248         /*
3249          * If no default placement scheme is given, select an appropriate one.
3250          */
3251         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3252                 switch (mtd->oobsize) {
3253                 case 8:
3254                         chip->ecc.layout = &nand_oob_8;
3255                         break;
3256                 case 16:
3257                         chip->ecc.layout = &nand_oob_16;
3258                         break;
3259                 case 64:
3260                         chip->ecc.layout = &nand_oob_64;
3261                         break;
3262                 case 128:
3263                         chip->ecc.layout = &nand_oob_128;
3264                         break;
3265                 default:
3266                         pr_warn("No oob scheme defined for oobsize %d\n",
3267                                    mtd->oobsize);
3268                         BUG();
3269                 }
3270         }
3271
3272         if (!chip->write_page)
3273                 chip->write_page = nand_write_page;
3274
3275         /*
3276          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3277          * selected and we have 256 byte pagesize fallback to software ECC
3278          */
3279
3280         switch (chip->ecc.mode) {
3281         case NAND_ECC_HW_OOB_FIRST:
3282                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3283                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3284                      !chip->ecc.hwctl) {
3285                         pr_warn("No ECC functions supplied; "
3286                                    "hardware ECC not possible\n");
3287                         BUG();
3288                 }
3289                 if (!chip->ecc.read_page)
3290                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3291
3292         case NAND_ECC_HW:
3293                 /* Use standard hwecc read page function? */
3294                 if (!chip->ecc.read_page)
3295                         chip->ecc.read_page = nand_read_page_hwecc;
3296                 if (!chip->ecc.write_page)
3297                         chip->ecc.write_page = nand_write_page_hwecc;
3298                 if (!chip->ecc.read_page_raw)
3299                         chip->ecc.read_page_raw = nand_read_page_raw;
3300                 if (!chip->ecc.write_page_raw)
3301                         chip->ecc.write_page_raw = nand_write_page_raw;
3302                 if (!chip->ecc.read_oob)
3303                         chip->ecc.read_oob = nand_read_oob_std;
3304                 if (!chip->ecc.write_oob)
3305                         chip->ecc.write_oob = nand_write_oob_std;
3306
3307         case NAND_ECC_HW_SYNDROME:
3308                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3309                      !chip->ecc.hwctl) &&
3310                     (!chip->ecc.read_page ||
3311                      chip->ecc.read_page == nand_read_page_hwecc ||
3312                      !chip->ecc.write_page ||
3313                      chip->ecc.write_page == nand_write_page_hwecc)) {
3314                         pr_warn("No ECC functions supplied; "
3315                                    "hardware ECC not possible\n");
3316                         BUG();
3317                 }
3318                 /* Use standard syndrome read/write page function? */
3319                 if (!chip->ecc.read_page)
3320                         chip->ecc.read_page = nand_read_page_syndrome;
3321                 if (!chip->ecc.write_page)
3322                         chip->ecc.write_page = nand_write_page_syndrome;
3323                 if (!chip->ecc.read_page_raw)
3324                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3325                 if (!chip->ecc.write_page_raw)
3326                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3327                 if (!chip->ecc.read_oob)
3328                         chip->ecc.read_oob = nand_read_oob_syndrome;
3329                 if (!chip->ecc.write_oob)
3330                         chip->ecc.write_oob = nand_write_oob_syndrome;
3331
3332                 if (mtd->writesize >= chip->ecc.size)
3333                         break;
3334                 pr_warn("%d byte HW ECC not possible on "
3335                            "%d byte page size, fallback to SW ECC\n",
3336                            chip->ecc.size, mtd->writesize);
3337                 chip->ecc.mode = NAND_ECC_SOFT;
3338
3339         case NAND_ECC_SOFT:
3340                 chip->ecc.calculate = nand_calculate_ecc;
3341                 chip->ecc.correct = nand_correct_data;
3342                 chip->ecc.read_page = nand_read_page_swecc;
3343                 chip->ecc.read_subpage = nand_read_subpage;
3344                 chip->ecc.write_page = nand_write_page_swecc;
3345                 chip->ecc.read_page_raw = nand_read_page_raw;
3346                 chip->ecc.write_page_raw = nand_write_page_raw;
3347                 chip->ecc.read_oob = nand_read_oob_std;
3348                 chip->ecc.write_oob = nand_write_oob_std;
3349                 if (!chip->ecc.size)
3350                         chip->ecc.size = 256;
3351                 chip->ecc.bytes = 3;
3352                 chip->ecc.strength = 1;
3353                 break;
3354
3355         case NAND_ECC_SOFT_BCH:
3356                 if (!mtd_nand_has_bch()) {
3357                         pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3358                         BUG();
3359                 }
3360                 chip->ecc.calculate = nand_bch_calculate_ecc;
3361                 chip->ecc.correct = nand_bch_correct_data;
3362                 chip->ecc.read_page = nand_read_page_swecc;
3363                 chip->ecc.read_subpage = nand_read_subpage;
3364                 chip->ecc.write_page = nand_write_page_swecc;
3365                 chip->ecc.read_page_raw = nand_read_page_raw;
3366                 chip->ecc.write_page_raw = nand_write_page_raw;
3367                 chip->ecc.read_oob = nand_read_oob_std;
3368                 chip->ecc.write_oob = nand_write_oob_std;
3369                 /*
3370                  * Board driver should supply ecc.size and ecc.bytes values to
3371                  * select how many bits are correctable; see nand_bch_init()
3372                  * for details. Otherwise, default to 4 bits for large page
3373                  * devices.
3374                  */
3375                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3376                         chip->ecc.size = 512;
3377                         chip->ecc.bytes = 7;
3378                 }
3379                 chip->ecc.priv = nand_bch_init(mtd,
3380                                                chip->ecc.size,
3381                                                chip->ecc.bytes,
3382                                                &chip->ecc.layout);
3383                 if (!chip->ecc.priv) {
3384                         pr_warn("BCH ECC initialization failed!\n");
3385                         BUG();
3386                 }
3387                 chip->ecc.strength =
3388                         chip->ecc.bytes*8 / fls(8*chip->ecc.size);
3389                 break;
3390
3391         case NAND_ECC_NONE:
3392                 pr_warn("NAND_ECC_NONE selected by board driver. "
3393                            "This is not recommended!\n");
3394                 chip->ecc.read_page = nand_read_page_raw;
3395                 chip->ecc.write_page = nand_write_page_raw;
3396                 chip->ecc.read_oob = nand_read_oob_std;
3397                 chip->ecc.read_page_raw = nand_read_page_raw;
3398                 chip->ecc.write_page_raw = nand_write_page_raw;
3399                 chip->ecc.write_oob = nand_write_oob_std;
3400                 chip->ecc.size = mtd->writesize;
3401                 chip->ecc.bytes = 0;
3402                 chip->ecc.strength = 0;
3403                 break;
3404
3405         default:
3406                 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3407                 BUG();
3408         }
3409
3410         /* For many systems, the standard OOB write also works for raw */
3411         if (!chip->ecc.read_oob_raw)
3412                 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3413         if (!chip->ecc.write_oob_raw)
3414                 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3415
3416         /*
3417          * The number of bytes available for a client to place data into
3418          * the out of band area.
3419          */
3420         chip->ecc.layout->oobavail = 0;
3421         for (i = 0; chip->ecc.layout->oobfree[i].length
3422                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3423                 chip->ecc.layout->oobavail +=
3424                         chip->ecc.layout->oobfree[i].length;
3425         mtd->oobavail = chip->ecc.layout->oobavail;
3426
3427         /*
3428          * Set the number of read / write steps for one page depending on ECC
3429          * mode.
3430          */
3431         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3432         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3433                 pr_warn("Invalid ECC parameters\n");
3434                 BUG();
3435         }
3436         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3437
3438         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3439         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3440             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3441                 switch (chip->ecc.steps) {
3442                 case 2:
3443                         mtd->subpage_sft = 1;
3444                         break;
3445                 case 4:
3446                 case 8:
3447                 case 16:
3448                         mtd->subpage_sft = 2;
3449                         break;
3450                 }
3451         }
3452         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3453
3454         /* Initialize state */
3455         chip->state = FL_READY;
3456
3457         /* De-select the device */
3458         chip->select_chip(mtd, -1);
3459
3460         /* Invalidate the pagebuffer reference */
3461         chip->pagebuf = -1;
3462
3463         /* Fill in remaining MTD driver data */
3464         mtd->type = MTD_NANDFLASH;
3465         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3466                                                 MTD_CAP_NANDFLASH;
3467         mtd->_erase = nand_erase;
3468         mtd->_point = NULL;
3469         mtd->_unpoint = NULL;
3470         mtd->_read = nand_read;
3471         mtd->_write = nand_write;
3472         mtd->_panic_write = panic_nand_write;
3473         mtd->_read_oob = nand_read_oob;
3474         mtd->_write_oob = nand_write_oob;
3475         mtd->_sync = nand_sync;
3476         mtd->_lock = NULL;
3477         mtd->_unlock = NULL;
3478         mtd->_suspend = nand_suspend;
3479         mtd->_resume = nand_resume;
3480         mtd->_block_isbad = nand_block_isbad;
3481         mtd->_block_markbad = nand_block_markbad;
3482         mtd->writebufsize = mtd->writesize;
3483
3484         /* propagate ecc info to mtd_info */
3485         mtd->ecclayout = chip->ecc.layout;
3486         mtd->ecc_strength = chip->ecc.strength * chip->ecc.steps;
3487
3488         /* Check, if we should skip the bad block table scan */
3489         if (chip->options & NAND_SKIP_BBTSCAN)
3490                 return 0;
3491
3492         /* Build bad block table */
3493         return chip->scan_bbt(mtd);
3494 }
3495 EXPORT_SYMBOL(nand_scan_tail);
3496
3497 /*
3498  * is_module_text_address() isn't exported, and it's mostly a pointless
3499  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3500  * to call us from in-kernel code if the core NAND support is modular.
3501  */
3502 #ifdef MODULE
3503 #define caller_is_module() (1)
3504 #else
3505 #define caller_is_module() \
3506         is_module_text_address((unsigned long)__builtin_return_address(0))
3507 #endif
3508
3509 /**
3510  * nand_scan - [NAND Interface] Scan for the NAND device
3511  * @mtd: MTD device structure
3512  * @maxchips: number of chips to scan for
3513  *
3514  * This fills out all the uninitialized function pointers with the defaults.
3515  * The flash ID is read and the mtd/chip structures are filled with the
3516  * appropriate values. The mtd->owner field must be set to the module of the
3517  * caller.
3518  */
3519 int nand_scan(struct mtd_info *mtd, int maxchips)
3520 {
3521         int ret;
3522
3523         /* Many callers got this wrong, so check for it for a while... */
3524         if (!mtd->owner && caller_is_module()) {
3525                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3526                 BUG();
3527         }
3528
3529         ret = nand_scan_ident(mtd, maxchips, NULL);
3530         if (!ret)
3531                 ret = nand_scan_tail(mtd);
3532         return ret;
3533 }
3534 EXPORT_SYMBOL(nand_scan);
3535
3536 /**
3537  * nand_release - [NAND Interface] Free resources held by the NAND device
3538  * @mtd: MTD device structure
3539  */
3540 void nand_release(struct mtd_info *mtd)
3541 {
3542         struct nand_chip *chip = mtd->priv;
3543
3544         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3545                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3546
3547         mtd_device_unregister(mtd);
3548
3549         /* Free bad block table memory */
3550         kfree(chip->bbt);
3551         if (!(chip->options & NAND_OWN_BUFFERS))
3552                 kfree(chip->buffers);
3553
3554         /* Free bad block descriptor memory */
3555         if (chip->badblock_pattern && chip->badblock_pattern->options
3556                         & NAND_BBT_DYNAMICSTRUCT)
3557                 kfree(chip->badblock_pattern);
3558 }
3559 EXPORT_SYMBOL_GPL(nand_release);
3560
3561 static int __init nand_base_init(void)
3562 {
3563         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3564         return 0;
3565 }
3566
3567 static void __exit nand_base_exit(void)
3568 {
3569         led_trigger_unregister_simple(nand_led_trigger);
3570 }
3571
3572 module_init(nand_base_init);
3573 module_exit(nand_base_exit);
3574
3575 MODULE_LICENSE("GPL");
3576 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3577 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3578 MODULE_DESCRIPTION("Generic NAND flash driver code");