]> git.karo-electronics.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'master' of git://git.denx.de/u-boot-net
[karo-tx-uboot.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <common.h>
36
37 #define ENOTSUPP        524     /* Operation is not supported */
38
39 #include <malloc.h>
40 #include <watchdog.h>
41 #include <linux/err.h>
42 #include <linux/mtd/compat.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46
47 #ifdef CONFIG_MTD_PARTITIONS
48 #include <linux/mtd/partitions.h>
49 #endif
50
51 #include <asm/io.h>
52 #include <asm/errno.h>
53
54 /*
55  * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
56  * a flash.  NAND flash is initialized prior to interrupts so standard timers
57  * can't be used.  CONFIG_SYS_NAND_RESET_CNT should be set to a value
58  * which is greater than (max NAND reset time / NAND status read time).
59  * A conservative default of 200000 (500 us / 25 ns) is used as a default.
60  */
61 #ifndef CONFIG_SYS_NAND_RESET_CNT
62 #define CONFIG_SYS_NAND_RESET_CNT 200000
63 #endif
64
65 /* Define default oob placement schemes for large and small page devices */
66 static struct nand_ecclayout nand_oob_8 = {
67         .eccbytes = 3,
68         .eccpos = {0, 1, 2},
69         .oobfree = {
70                 {.offset = 3,
71                  .length = 2},
72                 {.offset = 6,
73                  .length = 2}}
74 };
75
76 static struct nand_ecclayout nand_oob_16 = {
77         .eccbytes = 6,
78         .eccpos = {0, 1, 2, 3, 6, 7},
79         .oobfree = {
80                 {.offset = 8,
81                  . length = 8}}
82 };
83
84 static struct nand_ecclayout nand_oob_64 = {
85         .eccbytes = 24,
86         .eccpos = {
87                    40, 41, 42, 43, 44, 45, 46, 47,
88                    48, 49, 50, 51, 52, 53, 54, 55,
89                    56, 57, 58, 59, 60, 61, 62, 63},
90         .oobfree = {
91                 {.offset = 2,
92                  .length = 38}}
93 };
94
95 static struct nand_ecclayout nand_oob_128 = {
96         .eccbytes = 48,
97         .eccpos = {
98                     80,  81,  82,  83,  84,  85,  86,  87,
99                     88,  89,  90,  91,  92,  93,  94,  95,
100                     96,  97,  98,  99, 100, 101, 102, 103,
101                    104, 105, 106, 107, 108, 109, 110, 111,
102                    112, 113, 114, 115, 116, 117, 118, 119,
103                    120, 121, 122, 123, 124, 125, 126, 127},
104         .oobfree = {
105                 {.offset = 2,
106                  .length = 78}}
107 };
108
109
110 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
111                            int new_state);
112
113 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
114                              struct mtd_oob_ops *ops);
115
116 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
117
118 /**
119  * nand_release_device - [GENERIC] release chip
120  * @mtd:        MTD device structure
121  *
122  * Deselect, release chip lock and wake up anyone waiting on the device
123  */
124 static void nand_release_device (struct mtd_info *mtd)
125 {
126         struct nand_chip *this = mtd->priv;
127         this->select_chip(mtd, -1);     /* De-select the NAND device */
128 }
129
130 /**
131  * nand_read_byte - [DEFAULT] read one byte from the chip
132  * @mtd:        MTD device structure
133  *
134  * Default read function for 8bit buswith
135  */
136 static uint8_t nand_read_byte(struct mtd_info *mtd)
137 {
138         struct nand_chip *chip = mtd->priv;
139         return readb(chip->IO_ADDR_R);
140 }
141
142 /**
143  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
144  * @mtd:        MTD device structure
145  *
146  * Default read function for 16bit buswith with
147  * endianess conversion
148  */
149 static uint8_t nand_read_byte16(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
153 }
154
155 /**
156  * nand_read_word - [DEFAULT] read one word from the chip
157  * @mtd:        MTD device structure
158  *
159  * Default read function for 16bit buswith without
160  * endianess conversion
161  */
162 static u16 nand_read_word(struct mtd_info *mtd)
163 {
164         struct nand_chip *chip = mtd->priv;
165         return readw(chip->IO_ADDR_R);
166 }
167
168 /**
169  * nand_select_chip - [DEFAULT] control CE line
170  * @mtd:        MTD device structure
171  * @chipnr:     chipnumber to select, -1 for deselect
172  *
173  * Default select function for 1 chip devices.
174  */
175 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
176 {
177         struct nand_chip *chip = mtd->priv;
178
179         switch (chipnr) {
180         case -1:
181                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
182                 break;
183         case 0:
184                 break;
185
186         default:
187                 BUG();
188         }
189 }
190
191 /**
192  * nand_write_buf - [DEFAULT] write buffer to chip
193  * @mtd:        MTD device structure
194  * @buf:        data buffer
195  * @len:        number of bytes to write
196  *
197  * Default write function for 8bit buswith
198  */
199 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
200 {
201         int i;
202         struct nand_chip *chip = mtd->priv;
203
204         for (i = 0; i < len; i++)
205                 writeb(buf[i], chip->IO_ADDR_W);
206 }
207
208 /**
209  * nand_read_buf - [DEFAULT] read chip data into buffer
210  * @mtd:        MTD device structure
211  * @buf:        buffer to store date
212  * @len:        number of bytes to read
213  *
214  * Default read function for 8bit buswith
215  */
216 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
217 {
218         int i;
219         struct nand_chip *chip = mtd->priv;
220
221         for (i = 0; i < len; i++)
222                 buf[i] = readb(chip->IO_ADDR_R);
223 }
224
225 /**
226  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
227  * @mtd:        MTD device structure
228  * @buf:        buffer containing the data to compare
229  * @len:        number of bytes to compare
230  *
231  * Default verify function for 8bit buswith
232  */
233 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
234 {
235         int i;
236         struct nand_chip *chip = mtd->priv;
237
238         for (i = 0; i < len; i++)
239                 if (buf[i] != readb(chip->IO_ADDR_R))
240                         return -EFAULT;
241         return 0;
242 }
243
244 /**
245  * nand_write_buf16 - [DEFAULT] write buffer to chip
246  * @mtd:        MTD device structure
247  * @buf:        data buffer
248  * @len:        number of bytes to write
249  *
250  * Default write function for 16bit buswith
251  */
252 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
253 {
254         int i;
255         struct nand_chip *chip = mtd->priv;
256         u16 *p = (u16 *) buf;
257         len >>= 1;
258
259         for (i = 0; i < len; i++)
260                 writew(p[i], chip->IO_ADDR_W);
261
262 }
263
264 /**
265  * nand_read_buf16 - [DEFAULT] read chip data into buffer
266  * @mtd:        MTD device structure
267  * @buf:        buffer to store date
268  * @len:        number of bytes to read
269  *
270  * Default read function for 16bit buswith
271  */
272 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
273 {
274         int i;
275         struct nand_chip *chip = mtd->priv;
276         u16 *p = (u16 *) buf;
277         len >>= 1;
278
279         for (i = 0; i < len; i++)
280                 p[i] = readw(chip->IO_ADDR_R);
281 }
282
283 /**
284  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
285  * @mtd:        MTD device structure
286  * @buf:        buffer containing the data to compare
287  * @len:        number of bytes to compare
288  *
289  * Default verify function for 16bit buswith
290  */
291 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
292 {
293         int i;
294         struct nand_chip *chip = mtd->priv;
295         u16 *p = (u16 *) buf;
296         len >>= 1;
297
298         for (i = 0; i < len; i++)
299                 if (p[i] != readw(chip->IO_ADDR_R))
300                         return -EFAULT;
301
302         return 0;
303 }
304
305 /**
306  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
307  * @mtd:        MTD device structure
308  * @ofs:        offset from device start
309  * @getchip:    0, if the chip is already selected
310  *
311  * Check, if the block is bad.
312  */
313 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
314 {
315         int page, chipnr, res = 0;
316         struct nand_chip *chip = mtd->priv;
317         u16 bad;
318
319         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
320
321         if (getchip) {
322                 chipnr = (int)(ofs >> chip->chip_shift);
323
324                 nand_get_device(chip, mtd, FL_READING);
325
326                 /* Select the NAND device */
327                 chip->select_chip(mtd, chipnr);
328         }
329
330         if (chip->options & NAND_BUSWIDTH_16) {
331                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
332                               page);
333                 bad = cpu_to_le16(chip->read_word(mtd));
334                 if (chip->badblockpos & 0x1)
335                         bad >>= 8;
336                 if ((bad & 0xFF) != 0xff)
337                         res = 1;
338         } else {
339                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
340                 if (chip->read_byte(mtd) != 0xff)
341                         res = 1;
342         }
343
344         if (getchip)
345                 nand_release_device(mtd);
346
347         return res;
348 }
349
350 /**
351  * nand_default_block_markbad - [DEFAULT] mark a block bad
352  * @mtd:        MTD device structure
353  * @ofs:        offset from device start
354  *
355  * This is the default implementation, which can be overridden by
356  * a hardware specific driver.
357 */
358 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
359 {
360         struct nand_chip *chip = mtd->priv;
361         uint8_t buf[2] = { 0, 0 };
362         int block, ret;
363
364         /* Get block number */
365         block = (int)(ofs >> chip->bbt_erase_shift);
366         if (chip->bbt)
367                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
368
369         /* Do we have a flash based bad block table ? */
370         if (chip->options & NAND_USE_FLASH_BBT)
371                 ret = nand_update_bbt(mtd, ofs);
372         else {
373                 /* We write two bytes, so we dont have to mess with 16 bit
374                  * access
375                  */
376                 nand_get_device(chip, mtd, FL_WRITING);
377                 ofs += mtd->oobsize;
378                 chip->ops.len = chip->ops.ooblen = 2;
379                 chip->ops.datbuf = NULL;
380                 chip->ops.oobbuf = buf;
381                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
382
383                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
384                 nand_release_device(mtd);
385         }
386         if (!ret)
387                 mtd->ecc_stats.badblocks++;
388
389         return ret;
390 }
391
392 /**
393  * nand_check_wp - [GENERIC] check if the chip is write protected
394  * @mtd:        MTD device structure
395  * Check, if the device is write protected
396  *
397  * The function expects, that the device is already selected
398  */
399 static int nand_check_wp(struct mtd_info *mtd)
400 {
401         struct nand_chip *chip = mtd->priv;
402         /* Check the WP bit */
403         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
404         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
405 }
406
407 /**
408  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
409  * @mtd:        MTD device structure
410  * @ofs:        offset from device start
411  * @getchip:    0, if the chip is already selected
412  * @allowbbt:   1, if its allowed to access the bbt area
413  *
414  * Check, if the block is bad. Either by reading the bad block table or
415  * calling of the scan function.
416  */
417 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
418                                int allowbbt)
419 {
420         struct nand_chip *chip = mtd->priv;
421
422         if (!(chip->options & NAND_BBT_SCANNED)) {
423                 chip->options |= NAND_BBT_SCANNED;
424                 chip->scan_bbt(mtd);
425         }
426
427         if (!chip->bbt)
428                 return chip->block_bad(mtd, ofs, getchip);
429
430         /* Return info from the table */
431         return nand_isbad_bbt(mtd, ofs, allowbbt);
432 }
433
434 /*
435  * Wait for the ready pin, after a command
436  * The timeout is catched later.
437  */
438 void nand_wait_ready(struct mtd_info *mtd)
439 {
440         struct nand_chip *chip = mtd->priv;
441         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
442
443         reset_timer();
444
445         /* wait until command is processed or timeout occures */
446         while (get_timer(0) < timeo) {
447                 if (chip->dev_ready)
448                         if (chip->dev_ready(mtd))
449                                 break;
450         }
451 }
452
453 /**
454  * nand_command - [DEFAULT] Send command to NAND device
455  * @mtd:        MTD device structure
456  * @command:    the command to be sent
457  * @column:     the column address for this command, -1 if none
458  * @page_addr:  the page address for this command, -1 if none
459  *
460  * Send command to NAND device. This function is used for small page
461  * devices (256/512 Bytes per page)
462  */
463 static void nand_command(struct mtd_info *mtd, unsigned int command,
464                          int column, int page_addr)
465 {
466         register struct nand_chip *chip = mtd->priv;
467         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
468         uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
469
470         /*
471          * Write out the command to the device.
472          */
473         if (command == NAND_CMD_SEQIN) {
474                 int readcmd;
475
476                 if (column >= mtd->writesize) {
477                         /* OOB area */
478                         column -= mtd->writesize;
479                         readcmd = NAND_CMD_READOOB;
480                 } else if (column < 256) {
481                         /* First 256 bytes --> READ0 */
482                         readcmd = NAND_CMD_READ0;
483                 } else {
484                         column -= 256;
485                         readcmd = NAND_CMD_READ1;
486                 }
487                 chip->cmd_ctrl(mtd, readcmd, ctrl);
488                 ctrl &= ~NAND_CTRL_CHANGE;
489         }
490         chip->cmd_ctrl(mtd, command, ctrl);
491
492         /*
493          * Address cycle, when necessary
494          */
495         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
496         /* Serially input address */
497         if (column != -1) {
498                 /* Adjust columns for 16 bit buswidth */
499                 if (chip->options & NAND_BUSWIDTH_16)
500                         column >>= 1;
501                 chip->cmd_ctrl(mtd, column, ctrl);
502                 ctrl &= ~NAND_CTRL_CHANGE;
503         }
504         if (page_addr != -1) {
505                 chip->cmd_ctrl(mtd, page_addr, ctrl);
506                 ctrl &= ~NAND_CTRL_CHANGE;
507                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
508                 /* One more address cycle for devices > 32MiB */
509                 if (chip->chipsize > (32 << 20))
510                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
511         }
512         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
513
514         /*
515          * program and erase have their own busy handlers
516          * status and sequential in needs no delay
517          */
518         switch (command) {
519
520         case NAND_CMD_PAGEPROG:
521         case NAND_CMD_ERASE1:
522         case NAND_CMD_ERASE2:
523         case NAND_CMD_SEQIN:
524         case NAND_CMD_STATUS:
525                 return;
526
527         case NAND_CMD_RESET:
528                 if (chip->dev_ready)
529                         break;
530                 udelay(chip->chip_delay);
531                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
532                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
533                 chip->cmd_ctrl(mtd,
534                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
535                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
536                         (rst_sts_cnt--));
537                 return;
538
539                 /* This applies to read commands */
540         default:
541                 /*
542                  * If we don't have access to the busy pin, we apply the given
543                  * command delay
544                  */
545                 if (!chip->dev_ready) {
546                         udelay(chip->chip_delay);
547                         return;
548                 }
549         }
550         /* Apply this short delay always to ensure that we do wait tWB in
551          * any case on any machine. */
552         ndelay(100);
553
554         nand_wait_ready(mtd);
555 }
556
557 /**
558  * nand_command_lp - [DEFAULT] Send command to NAND large page device
559  * @mtd:        MTD device structure
560  * @command:    the command to be sent
561  * @column:     the column address for this command, -1 if none
562  * @page_addr:  the page address for this command, -1 if none
563  *
564  * Send command to NAND device. This is the version for the new large page
565  * devices We dont have the separate regions as we have in the small page
566  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
567  */
568 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
569                             int column, int page_addr)
570 {
571         register struct nand_chip *chip = mtd->priv;
572         uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
573
574         /* Emulate NAND_CMD_READOOB */
575         if (command == NAND_CMD_READOOB) {
576                 column += mtd->writesize;
577                 command = NAND_CMD_READ0;
578         }
579
580         /* Command latch cycle */
581         chip->cmd_ctrl(mtd, command & 0xff,
582                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
583
584         if (column != -1 || page_addr != -1) {
585                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
586
587                 /* Serially input address */
588                 if (column != -1) {
589                         /* Adjust columns for 16 bit buswidth */
590                         if (chip->options & NAND_BUSWIDTH_16)
591                                 column >>= 1;
592                         chip->cmd_ctrl(mtd, column, ctrl);
593                         ctrl &= ~NAND_CTRL_CHANGE;
594                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
595                 }
596                 if (page_addr != -1) {
597                         chip->cmd_ctrl(mtd, page_addr, ctrl);
598                         chip->cmd_ctrl(mtd, page_addr >> 8,
599                                        NAND_NCE | NAND_ALE);
600                         /* One more address cycle for devices > 128MiB */
601                         if (chip->chipsize > (128 << 20))
602                                 chip->cmd_ctrl(mtd, page_addr >> 16,
603                                                NAND_NCE | NAND_ALE);
604                 }
605         }
606         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
607
608         /*
609          * program and erase have their own busy handlers
610          * status, sequential in, and deplete1 need no delay
611          */
612         switch (command) {
613
614         case NAND_CMD_CACHEDPROG:
615         case NAND_CMD_PAGEPROG:
616         case NAND_CMD_ERASE1:
617         case NAND_CMD_ERASE2:
618         case NAND_CMD_SEQIN:
619         case NAND_CMD_RNDIN:
620         case NAND_CMD_STATUS:
621         case NAND_CMD_DEPLETE1:
622                 return;
623
624                 /*
625                  * read error status commands require only a short delay
626                  */
627         case NAND_CMD_STATUS_ERROR:
628         case NAND_CMD_STATUS_ERROR0:
629         case NAND_CMD_STATUS_ERROR1:
630         case NAND_CMD_STATUS_ERROR2:
631         case NAND_CMD_STATUS_ERROR3:
632                 udelay(chip->chip_delay);
633                 return;
634
635         case NAND_CMD_RESET:
636                 if (chip->dev_ready)
637                         break;
638                 udelay(chip->chip_delay);
639                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
640                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
641                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
642                                NAND_NCE | NAND_CTRL_CHANGE);
643                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
644                         (rst_sts_cnt--));
645                 return;
646
647         case NAND_CMD_RNDOUT:
648                 /* No ready / busy check necessary */
649                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
650                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
651                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
652                                NAND_NCE | NAND_CTRL_CHANGE);
653                 return;
654
655         case NAND_CMD_READ0:
656                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
657                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
658                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
659                                NAND_NCE | NAND_CTRL_CHANGE);
660
661                 /* This applies to read commands */
662         default:
663                 /*
664                  * If we don't have access to the busy pin, we apply the given
665                  * command delay
666                  */
667                 if (!chip->dev_ready) {
668                         udelay(chip->chip_delay);
669                         return;
670                 }
671         }
672
673         /* Apply this short delay always to ensure that we do wait tWB in
674          * any case on any machine. */
675         ndelay(100);
676
677         nand_wait_ready(mtd);
678 }
679
680 /**
681  * nand_get_device - [GENERIC] Get chip for selected access
682  * @chip:       the nand chip descriptor
683  * @mtd:        MTD device structure
684  * @new_state:  the state which is requested
685  *
686  * Get the device and lock it for exclusive access
687  */
688 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
689 {
690         this->state = new_state;
691         return 0;
692 }
693
694 /**
695  * nand_wait - [DEFAULT]  wait until the command is done
696  * @mtd:        MTD device structure
697  * @chip:       NAND chip structure
698  *
699  * Wait for command done. This applies to erase and program only
700  * Erase can take up to 400ms and program up to 20ms according to
701  * general NAND and SmartMedia specs
702  */
703 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
704 {
705         unsigned long   timeo;
706         int state = this->state;
707
708         if (state == FL_ERASING)
709                 timeo = (CONFIG_SYS_HZ * 400) / 1000;
710         else
711                 timeo = (CONFIG_SYS_HZ * 20) / 1000;
712
713         if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
714                 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
715         else
716                 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
717
718         reset_timer();
719
720         while (1) {
721                 if (get_timer(0) > timeo) {
722                         printf("Timeout!");
723                         return 0x01;
724                 }
725
726                 if (this->dev_ready) {
727                         if (this->dev_ready(mtd))
728                                 break;
729                 } else {
730                         if (this->read_byte(mtd) & NAND_STATUS_READY)
731                                 break;
732                 }
733         }
734 #ifdef PPCHAMELON_NAND_TIMER_HACK
735         reset_timer();
736         while (get_timer(0) < 10);
737 #endif /*  PPCHAMELON_NAND_TIMER_HACK */
738
739         return this->read_byte(mtd);
740 }
741
742 /**
743  * nand_read_page_raw - [Intern] read raw page data without ecc
744  * @mtd:        mtd info structure
745  * @chip:       nand chip info structure
746  * @buf:        buffer to store read data
747  * @page:       page number to read
748  *
749  * Not for syndrome calculating ecc controllers, which use a special oob layout
750  */
751 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
752                               uint8_t *buf, int page)
753 {
754         chip->read_buf(mtd, buf, mtd->writesize);
755         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
756         return 0;
757 }
758
759 /**
760  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
761  * @mtd:        mtd info structure
762  * @chip:       nand chip info structure
763  * @buf:        buffer to store read data
764  * @page:       page number to read
765  *
766  * We need a special oob layout and handling even when OOB isn't used.
767  */
768 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
769                               uint8_t *buf, int page)
770 {
771         int eccsize = chip->ecc.size;
772         int eccbytes = chip->ecc.bytes;
773         uint8_t *oob = chip->oob_poi;
774         int steps, size;
775
776         for (steps = chip->ecc.steps; steps > 0; steps--) {
777                 chip->read_buf(mtd, buf, eccsize);
778                 buf += eccsize;
779
780                 if (chip->ecc.prepad) {
781                         chip->read_buf(mtd, oob, chip->ecc.prepad);
782                         oob += chip->ecc.prepad;
783                 }
784
785                 chip->read_buf(mtd, oob, eccbytes);
786                 oob += eccbytes;
787
788                 if (chip->ecc.postpad) {
789                         chip->read_buf(mtd, oob, chip->ecc.postpad);
790                         oob += chip->ecc.postpad;
791                 }
792         }
793
794         size = mtd->oobsize - (oob - chip->oob_poi);
795         if (size)
796                 chip->read_buf(mtd, oob, size);
797
798         return 0;
799 }
800
801 /**
802  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
803  * @mtd:        mtd info structure
804  * @chip:       nand chip info structure
805  * @buf:        buffer to store read data
806  * @page:       page number to read
807  */
808 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
809                                 uint8_t *buf, int page)
810 {
811         int i, eccsize = chip->ecc.size;
812         int eccbytes = chip->ecc.bytes;
813         int eccsteps = chip->ecc.steps;
814         uint8_t *p = buf;
815         uint8_t *ecc_calc = chip->buffers->ecccalc;
816         uint8_t *ecc_code = chip->buffers->ecccode;
817         uint32_t *eccpos = chip->ecc.layout->eccpos;
818
819         chip->ecc.read_page_raw(mtd, chip, buf, page);
820
821         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
822                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
823
824         for (i = 0; i < chip->ecc.total; i++)
825                 ecc_code[i] = chip->oob_poi[eccpos[i]];
826
827         eccsteps = chip->ecc.steps;
828         p = buf;
829
830         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
831                 int stat;
832
833                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
834                 if (stat < 0)
835                         mtd->ecc_stats.failed++;
836                 else
837                         mtd->ecc_stats.corrected += stat;
838         }
839         return 0;
840 }
841
842 /**
843  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
844  * @mtd:        mtd info structure
845  * @chip:       nand chip info structure
846  * @data_offs:  offset of requested data within the page
847  * @readlen:    data length
848  * @bufpoi:     buffer to store read data
849  */
850 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
851 {
852         int start_step, end_step, num_steps;
853         uint32_t *eccpos = chip->ecc.layout->eccpos;
854         uint8_t *p;
855         int data_col_addr, i, gaps = 0;
856         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
857         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
858
859         /* Column address wihin the page aligned to ECC size (256bytes). */
860         start_step = data_offs / chip->ecc.size;
861         end_step = (data_offs + readlen - 1) / chip->ecc.size;
862         num_steps = end_step - start_step + 1;
863
864         /* Data size aligned to ECC ecc.size*/
865         datafrag_len = num_steps * chip->ecc.size;
866         eccfrag_len = num_steps * chip->ecc.bytes;
867
868         data_col_addr = start_step * chip->ecc.size;
869         /* If we read not a page aligned data */
870         if (data_col_addr != 0)
871                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
872
873         p = bufpoi + data_col_addr;
874         chip->read_buf(mtd, p, datafrag_len);
875
876         /* Calculate  ECC */
877         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
878                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
879
880         /* The performance is faster if to position offsets
881            according to ecc.pos. Let make sure here that
882            there are no gaps in ecc positions */
883         for (i = 0; i < eccfrag_len - 1; i++) {
884                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
885                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
886                         gaps = 1;
887                         break;
888                 }
889         }
890         if (gaps) {
891                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
892                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
893         } else {
894                 /* send the command to read the particular ecc bytes */
895                 /* take care about buswidth alignment in read_buf */
896                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
897                 aligned_len = eccfrag_len;
898                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
899                         aligned_len++;
900                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
901                         aligned_len++;
902
903                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
904                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
905         }
906
907         for (i = 0; i < eccfrag_len; i++)
908                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
909
910         p = bufpoi + data_col_addr;
911         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
912                 int stat;
913
914                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
915                 if (stat == -1)
916                         mtd->ecc_stats.failed++;
917                 else
918                         mtd->ecc_stats.corrected += stat;
919         }
920         return 0;
921 }
922
923 /**
924  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
925  * @mtd:        mtd info structure
926  * @chip:       nand chip info structure
927  * @buf:        buffer to store read data
928  * @page:       page number to read
929  *
930  * Not for syndrome calculating ecc controllers which need a special oob layout
931  */
932 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
933                                 uint8_t *buf, int page)
934 {
935         int i, eccsize = chip->ecc.size;
936         int eccbytes = chip->ecc.bytes;
937         int eccsteps = chip->ecc.steps;
938         uint8_t *p = buf;
939         uint8_t *ecc_calc = chip->buffers->ecccalc;
940         uint8_t *ecc_code = chip->buffers->ecccode;
941         uint32_t *eccpos = chip->ecc.layout->eccpos;
942
943         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
944                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
945                 chip->read_buf(mtd, p, eccsize);
946                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
947         }
948         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
949
950         for (i = 0; i < chip->ecc.total; i++)
951                 ecc_code[i] = chip->oob_poi[eccpos[i]];
952
953         eccsteps = chip->ecc.steps;
954         p = buf;
955
956         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
957                 int stat;
958
959                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
960                 if (stat < 0)
961                         mtd->ecc_stats.failed++;
962                 else
963                         mtd->ecc_stats.corrected += stat;
964         }
965         return 0;
966 }
967
968 /**
969  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
970  * @mtd:        mtd info structure
971  * @chip:       nand chip info structure
972  * @buf:        buffer to store read data
973  * @page:       page number to read
974  *
975  * Hardware ECC for large page chips, require OOB to be read first.
976  * For this ECC mode, the write_page method is re-used from ECC_HW.
977  * These methods read/write ECC from the OOB area, unlike the
978  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
979  * "infix ECC" scheme and reads/writes ECC from the data area, by
980  * overwriting the NAND manufacturer bad block markings.
981  */
982 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
983         struct nand_chip *chip, uint8_t *buf, int page)
984 {
985         int i, eccsize = chip->ecc.size;
986         int eccbytes = chip->ecc.bytes;
987         int eccsteps = chip->ecc.steps;
988         uint8_t *p = buf;
989         uint8_t *ecc_code = chip->buffers->ecccode;
990         uint32_t *eccpos = chip->ecc.layout->eccpos;
991         uint8_t *ecc_calc = chip->buffers->ecccalc;
992
993         /* Read the OOB area first */
994         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
995         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
996         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
997
998         for (i = 0; i < chip->ecc.total; i++)
999                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1000
1001         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1002                 int stat;
1003
1004                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1005                 chip->read_buf(mtd, p, eccsize);
1006                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1007
1008                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1009                 if (stat < 0)
1010                         mtd->ecc_stats.failed++;
1011                 else
1012                         mtd->ecc_stats.corrected += stat;
1013         }
1014         return 0;
1015 }
1016
1017 /**
1018  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1019  * @mtd:        mtd info structure
1020  * @chip:       nand chip info structure
1021  * @buf:        buffer to store read data
1022  * @page:       page number to read
1023  *
1024  * The hw generator calculates the error syndrome automatically. Therefor
1025  * we need a special oob layout and handling.
1026  */
1027 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1028                                    uint8_t *buf, int page)
1029 {
1030         int i, eccsize = chip->ecc.size;
1031         int eccbytes = chip->ecc.bytes;
1032         int eccsteps = chip->ecc.steps;
1033         uint8_t *p = buf;
1034         uint8_t *oob = chip->oob_poi;
1035
1036         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1037                 int stat;
1038
1039                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1040                 chip->read_buf(mtd, p, eccsize);
1041
1042                 if (chip->ecc.prepad) {
1043                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1044                         oob += chip->ecc.prepad;
1045                 }
1046
1047                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1048                 chip->read_buf(mtd, oob, eccbytes);
1049                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1050
1051                 if (stat < 0)
1052                         mtd->ecc_stats.failed++;
1053                 else
1054                         mtd->ecc_stats.corrected += stat;
1055
1056                 oob += eccbytes;
1057
1058                 if (chip->ecc.postpad) {
1059                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1060                         oob += chip->ecc.postpad;
1061                 }
1062         }
1063
1064         /* Calculate remaining oob bytes */
1065         i = mtd->oobsize - (oob - chip->oob_poi);
1066         if (i)
1067                 chip->read_buf(mtd, oob, i);
1068
1069         return 0;
1070 }
1071
1072 /**
1073  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1074  * @chip:       nand chip structure
1075  * @oob:        oob destination address
1076  * @ops:        oob ops structure
1077  * @len:        size of oob to transfer
1078  */
1079 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1080                                   struct mtd_oob_ops *ops, size_t len)
1081 {
1082         switch(ops->mode) {
1083
1084         case MTD_OOB_PLACE:
1085         case MTD_OOB_RAW:
1086                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1087                 return oob + len;
1088
1089         case MTD_OOB_AUTO: {
1090                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1091                 uint32_t boffs = 0, roffs = ops->ooboffs;
1092                 size_t bytes = 0;
1093
1094                 for(; free->length && len; free++, len -= bytes) {
1095                         /* Read request not from offset 0 ? */
1096                         if (unlikely(roffs)) {
1097                                 if (roffs >= free->length) {
1098                                         roffs -= free->length;
1099                                         continue;
1100                                 }
1101                                 boffs = free->offset + roffs;
1102                                 bytes = min_t(size_t, len,
1103                                               (free->length - roffs));
1104                                 roffs = 0;
1105                         } else {
1106                                 bytes = min_t(size_t, len, free->length);
1107                                 boffs = free->offset;
1108                         }
1109                         memcpy(oob, chip->oob_poi + boffs, bytes);
1110                         oob += bytes;
1111                 }
1112                 return oob;
1113         }
1114         default:
1115                 BUG();
1116         }
1117         return NULL;
1118 }
1119
1120 /**
1121  * nand_do_read_ops - [Internal] Read data with ECC
1122  *
1123  * @mtd:        MTD device structure
1124  * @from:       offset to read from
1125  * @ops:        oob ops structure
1126  *
1127  * Internal function. Called with chip held.
1128  */
1129 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1130                             struct mtd_oob_ops *ops)
1131 {
1132         int chipnr, page, realpage, col, bytes, aligned;
1133         struct nand_chip *chip = mtd->priv;
1134         struct mtd_ecc_stats stats;
1135         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1136         int sndcmd = 1;
1137         int ret = 0;
1138         uint32_t readlen = ops->len;
1139         uint32_t oobreadlen = ops->ooblen;
1140         uint8_t *bufpoi, *oob, *buf;
1141
1142         stats = mtd->ecc_stats;
1143
1144         chipnr = (int)(from >> chip->chip_shift);
1145         chip->select_chip(mtd, chipnr);
1146
1147         realpage = (int)(from >> chip->page_shift);
1148         page = realpage & chip->pagemask;
1149
1150         col = (int)(from & (mtd->writesize - 1));
1151
1152         buf = ops->datbuf;
1153         oob = ops->oobbuf;
1154
1155         while(1) {
1156                 bytes = min(mtd->writesize - col, readlen);
1157                 aligned = (bytes == mtd->writesize);
1158
1159                 /* Is the current page in the buffer ? */
1160                 if (realpage != chip->pagebuf || oob) {
1161                         bufpoi = aligned ? buf : chip->buffers->databuf;
1162
1163                         if (likely(sndcmd)) {
1164                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1165                                 sndcmd = 0;
1166                         }
1167
1168                         /* Now read the page into the buffer */
1169                         if (unlikely(ops->mode == MTD_OOB_RAW))
1170                                 ret = chip->ecc.read_page_raw(mtd, chip,
1171                                                 bufpoi, page);
1172                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1173                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1174                         else
1175                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1176                                                 page);
1177                         if (ret < 0)
1178                                 break;
1179
1180                         /* Transfer not aligned data */
1181                         if (!aligned) {
1182                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1183                                         chip->pagebuf = realpage;
1184                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1185                         }
1186
1187                         buf += bytes;
1188
1189                         if (unlikely(oob)) {
1190                                 /* Raw mode does data:oob:data:oob */
1191                                 if (ops->mode != MTD_OOB_RAW) {
1192                                         int toread = min(oobreadlen,
1193                                                 chip->ecc.layout->oobavail);
1194                                         if (toread) {
1195                                                 oob = nand_transfer_oob(chip,
1196                                                         oob, ops, toread);
1197                                                 oobreadlen -= toread;
1198                                         }
1199                                 } else
1200                                         buf = nand_transfer_oob(chip,
1201                                                 buf, ops, mtd->oobsize);
1202                         }
1203
1204                         if (!(chip->options & NAND_NO_READRDY)) {
1205                                 /*
1206                                  * Apply delay or wait for ready/busy pin. Do
1207                                  * this before the AUTOINCR check, so no
1208                                  * problems arise if a chip which does auto
1209                                  * increment is marked as NOAUTOINCR by the
1210                                  * board driver.
1211                                  */
1212                                 if (!chip->dev_ready)
1213                                         udelay(chip->chip_delay);
1214                                 else
1215                                         nand_wait_ready(mtd);
1216                         }
1217                 } else {
1218                         memcpy(buf, chip->buffers->databuf + col, bytes);
1219                         buf += bytes;
1220                 }
1221
1222                 readlen -= bytes;
1223
1224                 if (!readlen)
1225                         break;
1226
1227                 /* For subsequent reads align to page boundary. */
1228                 col = 0;
1229                 /* Increment page address */
1230                 realpage++;
1231
1232                 page = realpage & chip->pagemask;
1233                 /* Check, if we cross a chip boundary */
1234                 if (!page) {
1235                         chipnr++;
1236                         chip->select_chip(mtd, -1);
1237                         chip->select_chip(mtd, chipnr);
1238                 }
1239
1240                 /* Check, if the chip supports auto page increment
1241                  * or if we have hit a block boundary.
1242                  */
1243                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1244                         sndcmd = 1;
1245         }
1246
1247         ops->retlen = ops->len - (size_t) readlen;
1248         if (oob)
1249                 ops->oobretlen = ops->ooblen - oobreadlen;
1250
1251         if (ret)
1252                 return ret;
1253
1254         if (mtd->ecc_stats.failed - stats.failed)
1255                 return -EBADMSG;
1256
1257         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1258 }
1259
1260 /**
1261  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1262  * @mtd:        MTD device structure
1263  * @from:       offset to read from
1264  * @len:        number of bytes to read
1265  * @retlen:     pointer to variable to store the number of read bytes
1266  * @buf:        the databuffer to put data
1267  *
1268  * Get hold of the chip and call nand_do_read
1269  */
1270 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1271                      size_t *retlen, uint8_t *buf)
1272 {
1273         struct nand_chip *chip = mtd->priv;
1274         int ret;
1275
1276         /* Do not allow reads past end of device */
1277         if ((from + len) > mtd->size)
1278                 return -EINVAL;
1279         if (!len)
1280                 return 0;
1281
1282         nand_get_device(chip, mtd, FL_READING);
1283
1284         chip->ops.len = len;
1285         chip->ops.datbuf = buf;
1286         chip->ops.oobbuf = NULL;
1287
1288         ret = nand_do_read_ops(mtd, from, &chip->ops);
1289
1290         *retlen = chip->ops.retlen;
1291
1292         nand_release_device(mtd);
1293
1294         return ret;
1295 }
1296
1297 /**
1298  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1299  * @mtd:        mtd info structure
1300  * @chip:       nand chip info structure
1301  * @page:       page number to read
1302  * @sndcmd:     flag whether to issue read command or not
1303  */
1304 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1305                              int page, int sndcmd)
1306 {
1307         if (sndcmd) {
1308                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309                 sndcmd = 0;
1310         }
1311         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1312         return sndcmd;
1313 }
1314
1315 /**
1316  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1317  *                          with syndromes
1318  * @mtd:        mtd info structure
1319  * @chip:       nand chip info structure
1320  * @page:       page number to read
1321  * @sndcmd:     flag whether to issue read command or not
1322  */
1323 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1324                                   int page, int sndcmd)
1325 {
1326         uint8_t *buf = chip->oob_poi;
1327         int length = mtd->oobsize;
1328         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1329         int eccsize = chip->ecc.size;
1330         uint8_t *bufpoi = buf;
1331         int i, toread, sndrnd = 0, pos;
1332
1333         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1334         for (i = 0; i < chip->ecc.steps; i++) {
1335                 if (sndrnd) {
1336                         pos = eccsize + i * (eccsize + chunk);
1337                         if (mtd->writesize > 512)
1338                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1339                         else
1340                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1341                 } else
1342                         sndrnd = 1;
1343                 toread = min_t(int, length, chunk);
1344                 chip->read_buf(mtd, bufpoi, toread);
1345                 bufpoi += toread;
1346                 length -= toread;
1347         }
1348         if (length > 0)
1349                 chip->read_buf(mtd, bufpoi, length);
1350
1351         return 1;
1352 }
1353
1354 /**
1355  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1356  * @mtd:        mtd info structure
1357  * @chip:       nand chip info structure
1358  * @page:       page number to write
1359  */
1360 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1361                               int page)
1362 {
1363         int status = 0;
1364         const uint8_t *buf = chip->oob_poi;
1365         int length = mtd->oobsize;
1366
1367         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1368         chip->write_buf(mtd, buf, length);
1369         /* Send command to program the OOB data */
1370         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1371
1372         status = chip->waitfunc(mtd, chip);
1373
1374         return status & NAND_STATUS_FAIL ? -EIO : 0;
1375 }
1376
1377 /**
1378  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1379  *                           with syndrome - only for large page flash !
1380  * @mtd:        mtd info structure
1381  * @chip:       nand chip info structure
1382  * @page:       page number to write
1383  */
1384 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1385                                    struct nand_chip *chip, int page)
1386 {
1387         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1388         int eccsize = chip->ecc.size, length = mtd->oobsize;
1389         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1390         const uint8_t *bufpoi = chip->oob_poi;
1391
1392         /*
1393          * data-ecc-data-ecc ... ecc-oob
1394          * or
1395          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1396          */
1397         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1398                 pos = steps * (eccsize + chunk);
1399                 steps = 0;
1400         } else
1401                 pos = eccsize;
1402
1403         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1404         for (i = 0; i < steps; i++) {
1405                 if (sndcmd) {
1406                         if (mtd->writesize <= 512) {
1407                                 uint32_t fill = 0xFFFFFFFF;
1408
1409                                 len = eccsize;
1410                                 while (len > 0) {
1411                                         int num = min_t(int, len, 4);
1412                                         chip->write_buf(mtd, (uint8_t *)&fill,
1413                                                         num);
1414                                         len -= num;
1415                                 }
1416                         } else {
1417                                 pos = eccsize + i * (eccsize + chunk);
1418                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1419                         }
1420                 } else
1421                         sndcmd = 1;
1422                 len = min_t(int, length, chunk);
1423                 chip->write_buf(mtd, bufpoi, len);
1424                 bufpoi += len;
1425                 length -= len;
1426         }
1427         if (length > 0)
1428                 chip->write_buf(mtd, bufpoi, length);
1429
1430         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1431         status = chip->waitfunc(mtd, chip);
1432
1433         return status & NAND_STATUS_FAIL ? -EIO : 0;
1434 }
1435
1436 /**
1437  * nand_do_read_oob - [Intern] NAND read out-of-band
1438  * @mtd:        MTD device structure
1439  * @from:       offset to read from
1440  * @ops:        oob operations description structure
1441  *
1442  * NAND read out-of-band data from the spare area
1443  */
1444 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1445                             struct mtd_oob_ops *ops)
1446 {
1447         int page, realpage, chipnr, sndcmd = 1;
1448         struct nand_chip *chip = mtd->priv;
1449         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1450         int readlen = ops->ooblen;
1451         int len;
1452         uint8_t *buf = ops->oobbuf;
1453
1454         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1455                   (unsigned long long)from, readlen);
1456
1457         if (ops->mode == MTD_OOB_AUTO)
1458                 len = chip->ecc.layout->oobavail;
1459         else
1460                 len = mtd->oobsize;
1461
1462         if (unlikely(ops->ooboffs >= len)) {
1463                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1464                           "Attempt to start read outside oob\n");
1465                 return -EINVAL;
1466         }
1467
1468         /* Do not allow reads past end of device */
1469         if (unlikely(from >= mtd->size ||
1470                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1471                                         (from >> chip->page_shift)) * len)) {
1472                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1473                           "Attempt read beyond end of device\n");
1474                 return -EINVAL;
1475         }
1476
1477         chipnr = (int)(from >> chip->chip_shift);
1478         chip->select_chip(mtd, chipnr);
1479
1480         /* Shift to get page */
1481         realpage = (int)(from >> chip->page_shift);
1482         page = realpage & chip->pagemask;
1483
1484         while(1) {
1485                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1486
1487                 len = min(len, readlen);
1488                 buf = nand_transfer_oob(chip, buf, ops, len);
1489
1490                 if (!(chip->options & NAND_NO_READRDY)) {
1491                         /*
1492                          * Apply delay or wait for ready/busy pin. Do this
1493                          * before the AUTOINCR check, so no problems arise if a
1494                          * chip which does auto increment is marked as
1495                          * NOAUTOINCR by the board driver.
1496                          */
1497                         if (!chip->dev_ready)
1498                                 udelay(chip->chip_delay);
1499                         else
1500                                 nand_wait_ready(mtd);
1501                 }
1502
1503                 readlen -= len;
1504                 if (!readlen)
1505                         break;
1506
1507                 /* Increment page address */
1508                 realpage++;
1509
1510                 page = realpage & chip->pagemask;
1511                 /* Check, if we cross a chip boundary */
1512                 if (!page) {
1513                         chipnr++;
1514                         chip->select_chip(mtd, -1);
1515                         chip->select_chip(mtd, chipnr);
1516                 }
1517
1518                 /* Check, if the chip supports auto page increment
1519                  * or if we have hit a block boundary.
1520                  */
1521                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1522                         sndcmd = 1;
1523         }
1524
1525         ops->oobretlen = ops->ooblen;
1526         return 0;
1527 }
1528
1529 /**
1530  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1531  * @mtd:        MTD device structure
1532  * @from:       offset to read from
1533  * @ops:        oob operation description structure
1534  *
1535  * NAND read data and/or out-of-band data
1536  */
1537 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1538                          struct mtd_oob_ops *ops)
1539 {
1540         struct nand_chip *chip = mtd->priv;
1541         int ret = -ENOTSUPP;
1542
1543         ops->retlen = 0;
1544
1545         /* Do not allow reads past end of device */
1546         if (ops->datbuf && (from + ops->len) > mtd->size) {
1547                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1548                           "Attempt read beyond end of device\n");
1549                 return -EINVAL;
1550         }
1551
1552         nand_get_device(chip, mtd, FL_READING);
1553
1554         switch(ops->mode) {
1555         case MTD_OOB_PLACE:
1556         case MTD_OOB_AUTO:
1557         case MTD_OOB_RAW:
1558                 break;
1559
1560         default:
1561                 goto out;
1562         }
1563
1564         if (!ops->datbuf)
1565                 ret = nand_do_read_oob(mtd, from, ops);
1566         else
1567                 ret = nand_do_read_ops(mtd, from, ops);
1568
1569  out:
1570         nand_release_device(mtd);
1571         return ret;
1572 }
1573
1574
1575 /**
1576  * nand_write_page_raw - [Intern] raw page write function
1577  * @mtd:        mtd info structure
1578  * @chip:       nand chip info structure
1579  * @buf:        data buffer
1580  *
1581  * Not for syndrome calculating ecc controllers, which use a special oob layout
1582  */
1583 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1584                                 const uint8_t *buf)
1585 {
1586         chip->write_buf(mtd, buf, mtd->writesize);
1587         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1588 }
1589
1590 /**
1591  * nand_write_page_raw_syndrome - [Intern] raw page write function
1592  * @mtd:        mtd info structure
1593  * @chip:       nand chip info structure
1594  * @buf:        data buffer
1595  *
1596  * We need a special oob layout and handling even when ECC isn't checked.
1597  */
1598 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1599                                 const uint8_t *buf)
1600 {
1601         int eccsize = chip->ecc.size;
1602         int eccbytes = chip->ecc.bytes;
1603         uint8_t *oob = chip->oob_poi;
1604         int steps, size;
1605
1606         for (steps = chip->ecc.steps; steps > 0; steps--) {
1607                 chip->write_buf(mtd, buf, eccsize);
1608                 buf += eccsize;
1609
1610                 if (chip->ecc.prepad) {
1611                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1612                         oob += chip->ecc.prepad;
1613                 }
1614
1615                 chip->read_buf(mtd, oob, eccbytes);
1616                 oob += eccbytes;
1617
1618                 if (chip->ecc.postpad) {
1619                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1620                         oob += chip->ecc.postpad;
1621                 }
1622         }
1623
1624         size = mtd->oobsize - (oob - chip->oob_poi);
1625         if (size)
1626                 chip->write_buf(mtd, oob, size);
1627 }
1628 /**
1629  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1630  * @mtd:        mtd info structure
1631  * @chip:       nand chip info structure
1632  * @buf:        data buffer
1633  */
1634 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1635                                   const uint8_t *buf)
1636 {
1637         int i, eccsize = chip->ecc.size;
1638         int eccbytes = chip->ecc.bytes;
1639         int eccsteps = chip->ecc.steps;
1640         uint8_t *ecc_calc = chip->buffers->ecccalc;
1641         const uint8_t *p = buf;
1642         uint32_t *eccpos = chip->ecc.layout->eccpos;
1643
1644         /* Software ecc calculation */
1645         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1646                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1647
1648         for (i = 0; i < chip->ecc.total; i++)
1649                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1650
1651         chip->ecc.write_page_raw(mtd, chip, buf);
1652 }
1653
1654 /**
1655  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1656  * @mtd:        mtd info structure
1657  * @chip:       nand chip info structure
1658  * @buf:        data buffer
1659  */
1660 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1661                                   const uint8_t *buf)
1662 {
1663         int i, eccsize = chip->ecc.size;
1664         int eccbytes = chip->ecc.bytes;
1665         int eccsteps = chip->ecc.steps;
1666         uint8_t *ecc_calc = chip->buffers->ecccalc;
1667         const uint8_t *p = buf;
1668         uint32_t *eccpos = chip->ecc.layout->eccpos;
1669
1670         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1671                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1672                 chip->write_buf(mtd, p, eccsize);
1673                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1674         }
1675
1676         for (i = 0; i < chip->ecc.total; i++)
1677                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1678
1679         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1680 }
1681
1682 /**
1683  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1684  * @mtd:        mtd info structure
1685  * @chip:       nand chip info structure
1686  * @buf:        data buffer
1687  *
1688  * The hw generator calculates the error syndrome automatically. Therefor
1689  * we need a special oob layout and handling.
1690  */
1691 static void nand_write_page_syndrome(struct mtd_info *mtd,
1692                                     struct nand_chip *chip, const uint8_t *buf)
1693 {
1694         int i, eccsize = chip->ecc.size;
1695         int eccbytes = chip->ecc.bytes;
1696         int eccsteps = chip->ecc.steps;
1697         const uint8_t *p = buf;
1698         uint8_t *oob = chip->oob_poi;
1699
1700         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1701
1702                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1703                 chip->write_buf(mtd, p, eccsize);
1704
1705                 if (chip->ecc.prepad) {
1706                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1707                         oob += chip->ecc.prepad;
1708                 }
1709
1710                 chip->ecc.calculate(mtd, p, oob);
1711                 chip->write_buf(mtd, oob, eccbytes);
1712                 oob += eccbytes;
1713
1714                 if (chip->ecc.postpad) {
1715                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1716                         oob += chip->ecc.postpad;
1717                 }
1718         }
1719
1720         /* Calculate remaining oob bytes */
1721         i = mtd->oobsize - (oob - chip->oob_poi);
1722         if (i)
1723                 chip->write_buf(mtd, oob, i);
1724 }
1725
1726 /**
1727  * nand_write_page - [REPLACEABLE] write one page
1728  * @mtd:        MTD device structure
1729  * @chip:       NAND chip descriptor
1730  * @buf:        the data to write
1731  * @page:       page number to write
1732  * @cached:     cached programming
1733  * @raw:        use _raw version of write_page
1734  */
1735 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1736                            const uint8_t *buf, int page, int cached, int raw)
1737 {
1738         int status;
1739
1740         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1741
1742         if (unlikely(raw))
1743                 chip->ecc.write_page_raw(mtd, chip, buf);
1744         else
1745                 chip->ecc.write_page(mtd, chip, buf);
1746
1747         /*
1748          * Cached progamming disabled for now, Not sure if its worth the
1749          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1750          */
1751         cached = 0;
1752
1753         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1754
1755                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1756                 status = chip->waitfunc(mtd, chip);
1757                 /*
1758                  * See if operation failed and additional status checks are
1759                  * available
1760                  */
1761                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1762                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1763                                                page);
1764
1765                 if (status & NAND_STATUS_FAIL)
1766                         return -EIO;
1767         } else {
1768                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1769                 status = chip->waitfunc(mtd, chip);
1770         }
1771
1772 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1773         /* Send command to read back the data */
1774         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1775
1776         if (chip->verify_buf(mtd, buf, mtd->writesize))
1777                 return -EIO;
1778 #endif
1779         return 0;
1780 }
1781
1782 /**
1783  * nand_fill_oob - [Internal] Transfer client buffer to oob
1784  * @chip:       nand chip structure
1785  * @oob:        oob data buffer
1786  * @ops:        oob ops structure
1787  */
1788 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1789                                   struct mtd_oob_ops *ops)
1790 {
1791         size_t len = ops->ooblen;
1792
1793         switch(ops->mode) {
1794
1795         case MTD_OOB_PLACE:
1796         case MTD_OOB_RAW:
1797                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1798                 return oob + len;
1799
1800         case MTD_OOB_AUTO: {
1801                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1802                 uint32_t boffs = 0, woffs = ops->ooboffs;
1803                 size_t bytes = 0;
1804
1805                 for(; free->length && len; free++, len -= bytes) {
1806                         /* Write request not from offset 0 ? */
1807                         if (unlikely(woffs)) {
1808                                 if (woffs >= free->length) {
1809                                         woffs -= free->length;
1810                                         continue;
1811                                 }
1812                                 boffs = free->offset + woffs;
1813                                 bytes = min_t(size_t, len,
1814                                               (free->length - woffs));
1815                                 woffs = 0;
1816                         } else {
1817                                 bytes = min_t(size_t, len, free->length);
1818                                 boffs = free->offset;
1819                         }
1820                         memcpy(chip->oob_poi + boffs, oob, bytes);
1821                         oob += bytes;
1822                 }
1823                 return oob;
1824         }
1825         default:
1826                 BUG();
1827         }
1828         return NULL;
1829 }
1830
1831 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
1832
1833 /**
1834  * nand_do_write_ops - [Internal] NAND write with ECC
1835  * @mtd:        MTD device structure
1836  * @to:         offset to write to
1837  * @ops:        oob operations description structure
1838  *
1839  * NAND write with ECC
1840  */
1841 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1842                              struct mtd_oob_ops *ops)
1843 {
1844         int chipnr, realpage, page, blockmask, column;
1845         struct nand_chip *chip = mtd->priv;
1846         uint32_t writelen = ops->len;
1847         uint8_t *oob = ops->oobbuf;
1848         uint8_t *buf = ops->datbuf;
1849         int ret, subpage;
1850
1851         ops->retlen = 0;
1852         if (!writelen)
1853                 return 0;
1854
1855         column = to & (mtd->writesize - 1);
1856         subpage = column || (writelen & (mtd->writesize - 1));
1857
1858         if (subpage && oob)
1859                 return -EINVAL;
1860
1861         chipnr = (int)(to >> chip->chip_shift);
1862         chip->select_chip(mtd, chipnr);
1863
1864         /* Check, if it is write protected */
1865         if (nand_check_wp(mtd)) {
1866                 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1867                 return -EIO;
1868         }
1869
1870         realpage = (int)(to >> chip->page_shift);
1871         page = realpage & chip->pagemask;
1872         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1873
1874         /* Invalidate the page cache, when we write to the cached page */
1875         if (to <= (chip->pagebuf << chip->page_shift) &&
1876             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1877                 chip->pagebuf = -1;
1878
1879         /* If we're not given explicit OOB data, let it be 0xFF */
1880         if (likely(!oob))
1881                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1882
1883         while(1) {
1884                 int bytes = mtd->writesize;
1885                 int cached = writelen > bytes && page != blockmask;
1886                 uint8_t *wbuf = buf;
1887
1888                 /* Partial page write ? */
1889                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1890                         cached = 0;
1891                         bytes = min_t(int, bytes - column, (int) writelen);
1892                         chip->pagebuf = -1;
1893                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
1894                         memcpy(&chip->buffers->databuf[column], buf, bytes);
1895                         wbuf = chip->buffers->databuf;
1896                 }
1897
1898                 if (unlikely(oob))
1899                         oob = nand_fill_oob(chip, oob, ops);
1900
1901                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1902                                        (ops->mode == MTD_OOB_RAW));
1903                 if (ret)
1904                         break;
1905
1906                 writelen -= bytes;
1907                 if (!writelen)
1908                         break;
1909
1910                 column = 0;
1911                 buf += bytes;
1912                 realpage++;
1913
1914                 page = realpage & chip->pagemask;
1915                 /* Check, if we cross a chip boundary */
1916                 if (!page) {
1917                         chipnr++;
1918                         chip->select_chip(mtd, -1);
1919                         chip->select_chip(mtd, chipnr);
1920                 }
1921         }
1922
1923         ops->retlen = ops->len - writelen;
1924         if (unlikely(oob))
1925                 ops->oobretlen = ops->ooblen;
1926         return ret;
1927 }
1928
1929 /**
1930  * nand_write - [MTD Interface] NAND write with ECC
1931  * @mtd:        MTD device structure
1932  * @to:         offset to write to
1933  * @len:        number of bytes to write
1934  * @retlen:     pointer to variable to store the number of written bytes
1935  * @buf:        the data to write
1936  *
1937  * NAND write with ECC
1938  */
1939 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1940                           size_t *retlen, const uint8_t *buf)
1941 {
1942         struct nand_chip *chip = mtd->priv;
1943         int ret;
1944
1945         /* Do not allow reads past end of device */
1946         if ((to + len) > mtd->size)
1947                 return -EINVAL;
1948         if (!len)
1949                 return 0;
1950
1951         nand_get_device(chip, mtd, FL_WRITING);
1952
1953         chip->ops.len = len;
1954         chip->ops.datbuf = (uint8_t *)buf;
1955         chip->ops.oobbuf = NULL;
1956
1957         ret = nand_do_write_ops(mtd, to, &chip->ops);
1958
1959         *retlen = chip->ops.retlen;
1960
1961         nand_release_device(mtd);
1962
1963         return ret;
1964 }
1965
1966 /**
1967  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1968  * @mtd:        MTD device structure
1969  * @to:         offset to write to
1970  * @ops:        oob operation description structure
1971  *
1972  * NAND write out-of-band
1973  */
1974 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1975                              struct mtd_oob_ops *ops)
1976 {
1977         int chipnr, page, status, len;
1978         struct nand_chip *chip = mtd->priv;
1979
1980         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1981                   (unsigned int)to, (int)ops->ooblen);
1982
1983         if (ops->mode == MTD_OOB_AUTO)
1984                 len = chip->ecc.layout->oobavail;
1985         else
1986                 len = mtd->oobsize;
1987
1988         /* Do not allow write past end of page */
1989         if ((ops->ooboffs + ops->ooblen) > len) {
1990                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
1991                           "Attempt to write past end of page\n");
1992                 return -EINVAL;
1993         }
1994
1995         if (unlikely(ops->ooboffs >= len)) {
1996                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1997                           "Attempt to start write outside oob\n");
1998                 return -EINVAL;
1999         }
2000
2001         /* Do not allow reads past end of device */
2002         if (unlikely(to >= mtd->size ||
2003                      ops->ooboffs + ops->ooblen >
2004                         ((mtd->size >> chip->page_shift) -
2005                          (to >> chip->page_shift)) * len)) {
2006                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2007                           "Attempt write beyond end of device\n");
2008                 return -EINVAL;
2009         }
2010
2011         chipnr = (int)(to >> chip->chip_shift);
2012         chip->select_chip(mtd, chipnr);
2013
2014         /* Shift to get page */
2015         page = (int)(to >> chip->page_shift);
2016
2017         /*
2018          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2019          * of my DiskOnChip 2000 test units) will clear the whole data page too
2020          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2021          * it in the doc2000 driver in August 1999.  dwmw2.
2022          */
2023         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2024
2025         /* Check, if it is write protected */
2026         if (nand_check_wp(mtd))
2027                 return -EROFS;
2028
2029         /* Invalidate the page cache, if we write to the cached page */
2030         if (page == chip->pagebuf)
2031                 chip->pagebuf = -1;
2032
2033         memset(chip->oob_poi, 0xff, mtd->oobsize);
2034         nand_fill_oob(chip, ops->oobbuf, ops);
2035         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2036         memset(chip->oob_poi, 0xff, mtd->oobsize);
2037
2038         if (status)
2039                 return status;
2040
2041         ops->oobretlen = ops->ooblen;
2042
2043         return 0;
2044 }
2045
2046 /**
2047  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2048  * @mtd:        MTD device structure
2049  * @to:         offset to write to
2050  * @ops:        oob operation description structure
2051  */
2052 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2053                           struct mtd_oob_ops *ops)
2054 {
2055         struct nand_chip *chip = mtd->priv;
2056         int ret = -ENOTSUPP;
2057
2058         ops->retlen = 0;
2059
2060         /* Do not allow writes past end of device */
2061         if (ops->datbuf && (to + ops->len) > mtd->size) {
2062                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2063                           "Attempt read beyond end of device\n");
2064                 return -EINVAL;
2065         }
2066
2067         nand_get_device(chip, mtd, FL_WRITING);
2068
2069         switch(ops->mode) {
2070         case MTD_OOB_PLACE:
2071         case MTD_OOB_AUTO:
2072         case MTD_OOB_RAW:
2073                 break;
2074
2075         default:
2076                 goto out;
2077         }
2078
2079         if (!ops->datbuf)
2080                 ret = nand_do_write_oob(mtd, to, ops);
2081         else
2082                 ret = nand_do_write_ops(mtd, to, ops);
2083
2084  out:
2085         nand_release_device(mtd);
2086         return ret;
2087 }
2088
2089 /**
2090  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2091  * @mtd:        MTD device structure
2092  * @page:       the page address of the block which will be erased
2093  *
2094  * Standard erase command for NAND chips
2095  */
2096 static void single_erase_cmd(struct mtd_info *mtd, int page)
2097 {
2098         struct nand_chip *chip = mtd->priv;
2099         /* Send commands to erase a block */
2100         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2101         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2102 }
2103
2104 /**
2105  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2106  * @mtd:        MTD device structure
2107  * @page:       the page address of the block which will be erased
2108  *
2109  * AND multi block erase command function
2110  * Erase 4 consecutive blocks
2111  */
2112 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2113 {
2114         struct nand_chip *chip = mtd->priv;
2115         /* Send commands to erase a block */
2116         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2117         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2118         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2119         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2120         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2121 }
2122
2123 /**
2124  * nand_erase - [MTD Interface] erase block(s)
2125  * @mtd:        MTD device structure
2126  * @instr:      erase instruction
2127  *
2128  * Erase one ore more blocks
2129  */
2130 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2131 {
2132         return nand_erase_nand(mtd, instr, 0);
2133 }
2134
2135 #define BBT_PAGE_MASK   0xffffff3f
2136 /**
2137  * nand_erase_nand - [Internal] erase block(s)
2138  * @mtd:        MTD device structure
2139  * @instr:      erase instruction
2140  * @allowbbt:   allow erasing the bbt area
2141  *
2142  * Erase one ore more blocks
2143  */
2144 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2145                     int allowbbt)
2146 {
2147         int page, status, pages_per_block, ret, chipnr;
2148         struct nand_chip *chip = mtd->priv;
2149         loff_t rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS] = {0};
2150         unsigned int bbt_masked_page = 0xffffffff;
2151         loff_t len;
2152
2153         MTDDEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%012llx, "
2154                  "len = %llu\n", (unsigned long long) instr->addr,
2155                  (unsigned long long) instr->len);
2156
2157         /* Start address must align on block boundary */
2158         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2159                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2160                 return -EINVAL;
2161         }
2162
2163         /* Length must align on block boundary */
2164         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2165                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2166                           "nand_erase: Length not block aligned\n");
2167                 return -EINVAL;
2168         }
2169
2170         /* Do not allow erase past end of device */
2171         if ((instr->len + instr->addr) > mtd->size) {
2172                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2173                           "nand_erase: Erase past end of device\n");
2174                 return -EINVAL;
2175         }
2176
2177         instr->fail_addr = 0xffffffff;
2178
2179         /* Grab the lock and see if the device is available */
2180         nand_get_device(chip, mtd, FL_ERASING);
2181
2182         /* Shift to get first page */
2183         page = (int)(instr->addr >> chip->page_shift);
2184         chipnr = (int)(instr->addr >> chip->chip_shift);
2185
2186         /* Calculate pages in each block */
2187         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2188
2189         /* Select the NAND device */
2190         chip->select_chip(mtd, chipnr);
2191
2192         /* Check, if it is write protected */
2193         if (nand_check_wp(mtd)) {
2194                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2195                           "nand_erase: Device is write protected!!!\n");
2196                 instr->state = MTD_ERASE_FAILED;
2197                 goto erase_exit;
2198         }
2199
2200         /*
2201          * If BBT requires refresh, set the BBT page mask to see if the BBT
2202          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2203          * can not be matched. This is also done when the bbt is actually
2204          * erased to avoid recusrsive updates
2205          */
2206         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2207                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2208
2209         /* Loop through the pages */
2210         len = instr->len;
2211
2212         instr->state = MTD_ERASING;
2213
2214         while (len) {
2215                 /*
2216                  * heck if we have a bad block, we do not erase bad blocks !
2217                  */
2218                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2219                                         chip->page_shift, 0, allowbbt)) {
2220                         printk(KERN_WARNING "nand_erase: attempt to erase a "
2221                                "bad block at page 0x%08x\n", page);
2222                         instr->state = MTD_ERASE_FAILED;
2223                         goto erase_exit;
2224                 }
2225
2226                 /*
2227                  * Invalidate the page cache, if we erase the block which
2228                  * contains the current cached page
2229                  */
2230                 if (page <= chip->pagebuf && chip->pagebuf <
2231                     (page + pages_per_block))
2232                         chip->pagebuf = -1;
2233
2234                 chip->erase_cmd(mtd, page & chip->pagemask);
2235
2236                 status = chip->waitfunc(mtd, chip);
2237
2238                 /*
2239                  * See if operation failed and additional status checks are
2240                  * available
2241                  */
2242                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2243                         status = chip->errstat(mtd, chip, FL_ERASING,
2244                                                status, page);
2245
2246                 /* See if block erase succeeded */
2247                 if (status & NAND_STATUS_FAIL) {
2248                         MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2249                                   "Failed erase, page 0x%08x\n", page);
2250                         instr->state = MTD_ERASE_FAILED;
2251                         instr->fail_addr = ((loff_t)page << chip->page_shift);
2252                         goto erase_exit;
2253                 }
2254
2255                 /*
2256                  * If BBT requires refresh, set the BBT rewrite flag to the
2257                  * page being erased
2258                  */
2259                 if (bbt_masked_page != 0xffffffff &&
2260                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2261                         rewrite_bbt[chipnr] =
2262                                 ((loff_t)page << chip->page_shift);
2263
2264                 /* Increment page address and decrement length */
2265                 len -= (1 << chip->phys_erase_shift);
2266                 page += pages_per_block;
2267
2268                 /* Check, if we cross a chip boundary */
2269                 if (len && !(page & chip->pagemask)) {
2270                         chipnr++;
2271                         chip->select_chip(mtd, -1);
2272                         chip->select_chip(mtd, chipnr);
2273
2274                         /*
2275                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2276                          * page mask to see if this BBT should be rewritten
2277                          */
2278                         if (bbt_masked_page != 0xffffffff &&
2279                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2280                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2281                                         BBT_PAGE_MASK;
2282                 }
2283         }
2284         instr->state = MTD_ERASE_DONE;
2285
2286  erase_exit:
2287
2288         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2289
2290         /* Deselect and wake up anyone waiting on the device */
2291         nand_release_device(mtd);
2292
2293         /* Do call back function */
2294         if (!ret)
2295                 mtd_erase_callback(instr);
2296
2297         /*
2298          * If BBT requires refresh and erase was successful, rewrite any
2299          * selected bad block tables
2300          */
2301         if (bbt_masked_page == 0xffffffff || ret)
2302                 return ret;
2303
2304         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2305                 if (!rewrite_bbt[chipnr])
2306                         continue;
2307                 /* update the BBT for chip */
2308                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2309                           "(%d:0x%0llx 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2310                           chip->bbt_td->pages[chipnr]);
2311                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2312         }
2313
2314         /* Return more or less happy */
2315         return ret;
2316 }
2317
2318 /**
2319  * nand_sync - [MTD Interface] sync
2320  * @mtd:        MTD device structure
2321  *
2322  * Sync is actually a wait for chip ready function
2323  */
2324 static void nand_sync(struct mtd_info *mtd)
2325 {
2326         struct nand_chip *chip = mtd->priv;
2327
2328         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2329
2330         /* Grab the lock and see if the device is available */
2331         nand_get_device(chip, mtd, FL_SYNCING);
2332         /* Release it and go back */
2333         nand_release_device(mtd);
2334 }
2335
2336 /**
2337  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2338  * @mtd:        MTD device structure
2339  * @offs:       offset relative to mtd start
2340  */
2341 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2342 {
2343         /* Check for invalid offset */
2344         if (offs > mtd->size)
2345                 return -EINVAL;
2346
2347         return nand_block_checkbad(mtd, offs, 1, 0);
2348 }
2349
2350 /**
2351  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2352  * @mtd:        MTD device structure
2353  * @ofs:        offset relative to mtd start
2354  */
2355 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2356 {
2357         struct nand_chip *chip = mtd->priv;
2358         int ret;
2359
2360         if ((ret = nand_block_isbad(mtd, ofs))) {
2361                 /* If it was bad already, return success and do nothing. */
2362                 if (ret > 0)
2363                         return 0;
2364                 return ret;
2365         }
2366
2367         return chip->block_markbad(mtd, ofs);
2368 }
2369
2370 /*
2371  * Set default functions
2372  */
2373 static void nand_set_defaults(struct nand_chip *chip, int busw)
2374 {
2375         /* check for proper chip_delay setup, set 20us if not */
2376         if (!chip->chip_delay)
2377                 chip->chip_delay = 20;
2378
2379         /* check, if a user supplied command function given */
2380         if (chip->cmdfunc == NULL)
2381                 chip->cmdfunc = nand_command;
2382
2383         /* check, if a user supplied wait function given */
2384         if (chip->waitfunc == NULL)
2385                 chip->waitfunc = nand_wait;
2386
2387         if (!chip->select_chip)
2388                 chip->select_chip = nand_select_chip;
2389         if (!chip->read_byte)
2390                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2391         if (!chip->read_word)
2392                 chip->read_word = nand_read_word;
2393         if (!chip->block_bad)
2394                 chip->block_bad = nand_block_bad;
2395         if (!chip->block_markbad)
2396                 chip->block_markbad = nand_default_block_markbad;
2397         if (!chip->write_buf)
2398                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2399         if (!chip->read_buf)
2400                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2401         if (!chip->verify_buf)
2402                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2403         if (!chip->scan_bbt)
2404                 chip->scan_bbt = nand_default_bbt;
2405         if (!chip->controller)
2406                 chip->controller = &chip->hwcontrol;
2407 }
2408
2409 /*
2410  * Get the flash and manufacturer id and lookup if the type is supported
2411  */
2412 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2413                                                   struct nand_chip *chip,
2414                                                   int busw, int *maf_id)
2415 {
2416         struct nand_flash_dev *type = NULL;
2417         int i, dev_id, maf_idx;
2418         int tmp_id, tmp_manf;
2419
2420         /* Select the device */
2421         chip->select_chip(mtd, 0);
2422
2423         /*
2424          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2425          * after power-up
2426          */
2427         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2428
2429         /* Send the command for reading device ID */
2430         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2431
2432         /* Read manufacturer and device IDs */
2433         *maf_id = chip->read_byte(mtd);
2434         dev_id = chip->read_byte(mtd);
2435
2436         /* Try again to make sure, as some systems the bus-hold or other
2437          * interface concerns can cause random data which looks like a
2438          * possibly credible NAND flash to appear. If the two results do
2439          * not match, ignore the device completely.
2440          */
2441
2442         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2443
2444         /* Read manufacturer and device IDs */
2445
2446         tmp_manf = chip->read_byte(mtd);
2447         tmp_id = chip->read_byte(mtd);
2448
2449         if (tmp_manf != *maf_id || tmp_id != dev_id) {
2450                 printk(KERN_INFO "%s: second ID read did not match "
2451                        "%02x,%02x against %02x,%02x\n", __func__,
2452                        *maf_id, dev_id, tmp_manf, tmp_id);
2453                 return ERR_PTR(-ENODEV);
2454         }
2455
2456         /* Lookup the flash id */
2457         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2458                 if (dev_id == nand_flash_ids[i].id) {
2459                         type =  &nand_flash_ids[i];
2460                         break;
2461                 }
2462         }
2463
2464         if (!type) {
2465                 /* supress warning if there is no nand */
2466                 if (*maf_id != 0x00 && *maf_id != 0xff &&
2467                     dev_id  != 0x00 && dev_id  != 0xff)
2468                         printk(KERN_INFO "%s: unknown NAND device: "
2469                                 "Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
2470                                 __func__, *maf_id, dev_id);
2471                 return ERR_PTR(-ENODEV);
2472         }
2473
2474         if (!mtd->name)
2475                 mtd->name = type->name;
2476
2477         chip->chipsize = (uint64_t)type->chipsize << 20;
2478
2479         /* Newer devices have all the information in additional id bytes */
2480         if (!type->pagesize) {
2481                 int extid;
2482                 /* The 3rd id byte holds MLC / multichip data */
2483                 chip->cellinfo = chip->read_byte(mtd);
2484                 /* The 4th id byte is the important one */
2485                 extid = chip->read_byte(mtd);
2486                 /* Calc pagesize */
2487                 mtd->writesize = 1024 << (extid & 0x3);
2488                 extid >>= 2;
2489                 /* Calc oobsize */
2490                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2491                 extid >>= 2;
2492                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2493                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2494                 extid >>= 2;
2495                 /* Get buswidth information */
2496                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2497
2498         } else {
2499                 /*
2500                  * Old devices have chip data hardcoded in the device id table
2501                  */
2502                 mtd->erasesize = type->erasesize;
2503                 mtd->writesize = type->pagesize;
2504                 mtd->oobsize = mtd->writesize / 32;
2505                 busw = type->options & NAND_BUSWIDTH_16;
2506         }
2507
2508         /* Try to identify manufacturer */
2509         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2510                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2511                         break;
2512         }
2513
2514         /*
2515          * Check, if buswidth is correct. Hardware drivers should set
2516          * chip correct !
2517          */
2518         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2519                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2520                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2521                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2522                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2523                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2524                        busw ? 16 : 8);
2525                 return ERR_PTR(-EINVAL);
2526         }
2527
2528         /* Calculate the address shift from the page size */
2529         chip->page_shift = ffs(mtd->writesize) - 1;
2530         /* Convert chipsize to number of pages per chip -1. */
2531         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2532
2533         chip->bbt_erase_shift = chip->phys_erase_shift =
2534                 ffs(mtd->erasesize) - 1;
2535         if (chip->chipsize & 0xffffffff)
2536                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2537         else
2538                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 31;
2539
2540         /* Set the bad block position */
2541         chip->badblockpos = mtd->writesize > 512 ?
2542                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2543
2544         /* Get chip options, preserve non chip based options */
2545         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2546         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2547
2548         /*
2549          * Set chip as a default. Board drivers can override it, if necessary
2550          */
2551         chip->options |= NAND_NO_AUTOINCR;
2552
2553         /* Check if chip is a not a samsung device. Do not clear the
2554          * options for chips which are not having an extended id.
2555          */
2556         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2557                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2558
2559         /* Check for AND chips with 4 page planes */
2560         if (chip->options & NAND_4PAGE_ARRAY)
2561                 chip->erase_cmd = multi_erase_cmd;
2562         else
2563                 chip->erase_cmd = single_erase_cmd;
2564
2565         /* Do not replace user supplied command function ! */
2566         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2567                 chip->cmdfunc = nand_command_lp;
2568
2569         MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2570                   " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2571                   nand_manuf_ids[maf_idx].name, type->name);
2572
2573         return type;
2574 }
2575
2576 /**
2577  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2578  * @mtd:             MTD device structure
2579  * @maxchips:        Number of chips to scan for
2580  *
2581  * This is the first phase of the normal nand_scan() function. It
2582  * reads the flash ID and sets up MTD fields accordingly.
2583  *
2584  * The mtd->owner field must be set to the module of the caller.
2585  */
2586 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2587 {
2588         int i, busw, nand_maf_id;
2589         struct nand_chip *chip = mtd->priv;
2590         struct nand_flash_dev *type;
2591
2592         /* Get buswidth to select the correct functions */
2593         busw = chip->options & NAND_BUSWIDTH_16;
2594         /* Set the default functions */
2595         nand_set_defaults(chip, busw);
2596
2597         /* Read the flash type */
2598         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2599
2600         if (IS_ERR(type)) {
2601 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2602                 printk(KERN_WARNING "No NAND device found!!!\n");
2603 #endif
2604                 chip->select_chip(mtd, -1);
2605                 return PTR_ERR(type);
2606         }
2607
2608         /* Check for a chip array */
2609         for (i = 1; i < maxchips; i++) {
2610                 chip->select_chip(mtd, i);
2611                 /* See comment in nand_get_flash_type for reset */
2612                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2613                 /* Send the command for reading device ID */
2614                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2615                 /* Read manufacturer and device IDs */
2616                 if (nand_maf_id != chip->read_byte(mtd) ||
2617                     type->id != chip->read_byte(mtd))
2618                         break;
2619         }
2620 #ifdef DEBUG
2621         if (i > 1)
2622                 printk(KERN_INFO "%d NAND chips detected\n", i);
2623 #endif
2624
2625         /* Store the number of chips and calc total size for mtd */
2626         chip->numchips = i;
2627         mtd->size = i * chip->chipsize;
2628
2629         return 0;
2630 }
2631
2632
2633 /**
2634  * nand_scan_tail - [NAND Interface] Scan for the NAND device
2635  * @mtd:            MTD device structure
2636  *
2637  * This is the second phase of the normal nand_scan() function. It
2638  * fills out all the uninitialized function pointers with the defaults
2639  * and scans for a bad block table if appropriate.
2640  */
2641 int nand_scan_tail(struct mtd_info *mtd)
2642 {
2643         int i;
2644         struct nand_chip *chip = mtd->priv;
2645
2646         if (!(chip->options & NAND_OWN_BUFFERS))
2647                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2648         if (!chip->buffers)
2649                 return -ENOMEM;
2650
2651         /* Set the internal oob buffer location, just after the page data */
2652         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2653
2654         /*
2655          * If no default placement scheme is given, select an appropriate one
2656          */
2657         if (!chip->ecc.layout) {
2658                 switch (mtd->oobsize) {
2659                 case 8:
2660                         chip->ecc.layout = &nand_oob_8;
2661                         break;
2662                 case 16:
2663                         chip->ecc.layout = &nand_oob_16;
2664                         break;
2665                 case 64:
2666                         chip->ecc.layout = &nand_oob_64;
2667                         break;
2668                 case 128:
2669                         chip->ecc.layout = &nand_oob_128;
2670                         break;
2671                 default:
2672                         printk(KERN_WARNING "No oob scheme defined for "
2673                                "oobsize %d\n", mtd->oobsize);
2674                 }
2675         }
2676
2677         if (!chip->write_page)
2678                 chip->write_page = nand_write_page;
2679
2680         /*
2681          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2682          * selected and we have 256 byte pagesize fallback to software ECC
2683          */
2684
2685         switch (chip->ecc.mode) {
2686         case NAND_ECC_HW_OOB_FIRST:
2687                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2688                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2689                      !chip->ecc.hwctl) {
2690                         printk(KERN_WARNING "No ECC functions supplied, "
2691                                "Hardware ECC not possible\n");
2692                         BUG();
2693                 }
2694                 if (!chip->ecc.read_page)
2695                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2696
2697         case NAND_ECC_HW:
2698                 /* Use standard hwecc read page function ? */
2699                 if (!chip->ecc.read_page)
2700                         chip->ecc.read_page = nand_read_page_hwecc;
2701                 if (!chip->ecc.write_page)
2702                         chip->ecc.write_page = nand_write_page_hwecc;
2703                 if (!chip->ecc.read_page_raw)
2704                         chip->ecc.read_page_raw = nand_read_page_raw;
2705                 if (!chip->ecc.write_page_raw)
2706                         chip->ecc.write_page_raw = nand_write_page_raw;
2707                 if (!chip->ecc.read_oob)
2708                         chip->ecc.read_oob = nand_read_oob_std;
2709                 if (!chip->ecc.write_oob)
2710                         chip->ecc.write_oob = nand_write_oob_std;
2711
2712         case NAND_ECC_HW_SYNDROME:
2713                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2714                      !chip->ecc.hwctl) &&
2715                     (!chip->ecc.read_page ||
2716                      chip->ecc.read_page == nand_read_page_hwecc ||
2717                      !chip->ecc.write_page ||
2718                      chip->ecc.write_page == nand_write_page_hwecc)) {
2719                         printk(KERN_WARNING "No ECC functions supplied, "
2720                                "Hardware ECC not possible\n");
2721                         BUG();
2722                 }
2723                 /* Use standard syndrome read/write page function ? */
2724                 if (!chip->ecc.read_page)
2725                         chip->ecc.read_page = nand_read_page_syndrome;
2726                 if (!chip->ecc.write_page)
2727                         chip->ecc.write_page = nand_write_page_syndrome;
2728                 if (!chip->ecc.read_page_raw)
2729                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2730                 if (!chip->ecc.write_page_raw)
2731                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2732                 if (!chip->ecc.read_oob)
2733                         chip->ecc.read_oob = nand_read_oob_syndrome;
2734                 if (!chip->ecc.write_oob)
2735                         chip->ecc.write_oob = nand_write_oob_syndrome;
2736
2737                 if (mtd->writesize >= chip->ecc.size)
2738                         break;
2739                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2740                        "%d byte page size, fallback to SW ECC\n",
2741                        chip->ecc.size, mtd->writesize);
2742                 chip->ecc.mode = NAND_ECC_SOFT;
2743
2744         case NAND_ECC_SOFT:
2745                 chip->ecc.calculate = nand_calculate_ecc;
2746                 chip->ecc.correct = nand_correct_data;
2747                 chip->ecc.read_page = nand_read_page_swecc;
2748                 chip->ecc.read_subpage = nand_read_subpage;
2749                 chip->ecc.write_page = nand_write_page_swecc;
2750                 chip->ecc.read_page_raw = nand_read_page_raw;
2751                 chip->ecc.write_page_raw = nand_write_page_raw;
2752                 chip->ecc.read_oob = nand_read_oob_std;
2753                 chip->ecc.write_oob = nand_write_oob_std;
2754                 chip->ecc.size = 256;
2755                 chip->ecc.bytes = 3;
2756                 break;
2757
2758         case NAND_ECC_NONE:
2759                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2760                        "This is not recommended !!\n");
2761                 chip->ecc.read_page = nand_read_page_raw;
2762                 chip->ecc.write_page = nand_write_page_raw;
2763                 chip->ecc.read_oob = nand_read_oob_std;
2764                 chip->ecc.read_page_raw = nand_read_page_raw;
2765                 chip->ecc.write_page_raw = nand_write_page_raw;
2766                 chip->ecc.write_oob = nand_write_oob_std;
2767                 chip->ecc.size = mtd->writesize;
2768                 chip->ecc.bytes = 0;
2769                 break;
2770
2771         default:
2772                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2773                        chip->ecc.mode);
2774                 BUG();
2775         }
2776
2777         /*
2778          * The number of bytes available for a client to place data into
2779          * the out of band area
2780          */
2781         chip->ecc.layout->oobavail = 0;
2782         for (i = 0; chip->ecc.layout->oobfree[i].length
2783                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2784                 chip->ecc.layout->oobavail +=
2785                         chip->ecc.layout->oobfree[i].length;
2786         mtd->oobavail = chip->ecc.layout->oobavail;
2787
2788         /*
2789          * Set the number of read / write steps for one page depending on ECC
2790          * mode
2791          */
2792         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2793         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2794                 printk(KERN_WARNING "Invalid ecc parameters\n");
2795                 BUG();
2796         }
2797         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2798
2799         /*
2800          * Allow subpage writes up to ecc.steps. Not possible for MLC
2801          * FLASH.
2802          */
2803         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2804             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2805                 switch(chip->ecc.steps) {
2806                 case 2:
2807                         mtd->subpage_sft = 1;
2808                         break;
2809                 case 4:
2810                 case 8:
2811                 case 16:
2812                         mtd->subpage_sft = 2;
2813                         break;
2814                 }
2815         }
2816         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2817
2818         /* Initialize state */
2819         chip->state = FL_READY;
2820
2821         /* De-select the device */
2822         chip->select_chip(mtd, -1);
2823
2824         /* Invalidate the pagebuffer reference */
2825         chip->pagebuf = -1;
2826
2827         /* Fill in remaining MTD driver data */
2828         mtd->type = MTD_NANDFLASH;
2829         mtd->flags = MTD_CAP_NANDFLASH;
2830         mtd->erase = nand_erase;
2831         mtd->point = NULL;
2832         mtd->unpoint = NULL;
2833         mtd->read = nand_read;
2834         mtd->write = nand_write;
2835         mtd->read_oob = nand_read_oob;
2836         mtd->write_oob = nand_write_oob;
2837         mtd->sync = nand_sync;
2838         mtd->lock = NULL;
2839         mtd->unlock = NULL;
2840         mtd->block_isbad = nand_block_isbad;
2841         mtd->block_markbad = nand_block_markbad;
2842
2843         /* propagate ecc.layout to mtd_info */
2844         mtd->ecclayout = chip->ecc.layout;
2845
2846         /* Check, if we should skip the bad block table scan */
2847         if (chip->options & NAND_SKIP_BBTSCAN)
2848                 chip->options |= NAND_BBT_SCANNED;
2849
2850         return 0;
2851 }
2852
2853 /**
2854  * nand_scan - [NAND Interface] Scan for the NAND device
2855  * @mtd:        MTD device structure
2856  * @maxchips:   Number of chips to scan for
2857  *
2858  * This fills out all the uninitialized function pointers
2859  * with the defaults.
2860  * The flash ID is read and the mtd/chip structures are
2861  * filled with the appropriate values.
2862  * The mtd->owner field must be set to the module of the caller
2863  *
2864  */
2865 int nand_scan(struct mtd_info *mtd, int maxchips)
2866 {
2867         int ret;
2868
2869         ret = nand_scan_ident(mtd, maxchips);
2870         if (!ret)
2871                 ret = nand_scan_tail(mtd);
2872         return ret;
2873 }
2874
2875 /**
2876  * nand_release - [NAND Interface] Free resources held by the NAND device
2877  * @mtd:        MTD device structure
2878 */
2879 void nand_release(struct mtd_info *mtd)
2880 {
2881         struct nand_chip *chip = mtd->priv;
2882
2883 #ifdef CONFIG_MTD_PARTITIONS
2884         /* Deregister partitions */
2885         del_mtd_partitions(mtd);
2886 #endif
2887
2888         /* Free bad block table memory */
2889         kfree(chip->bbt);
2890         if (!(chip->options & NAND_OWN_BUFFERS))
2891                 kfree(chip->buffers);
2892 }