]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/nandsim.c
a5aa99f014baced88b637de9e3aa61e32e6c6925
[mv-sheeva.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
44
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
49     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE  50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH  8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS  0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG        0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_MAX_PARTS
84 #define CONFIG_NANDSIM_MAX_PARTS  32
85 #endif
86
87 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
88 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
89 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
90 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
91 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
92 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
93 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
94 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
95 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
96 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
97 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
98 static uint log            = CONFIG_NANDSIM_LOG;
99 static uint dbg            = CONFIG_NANDSIM_DBG;
100 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
101 static unsigned int parts_num;
102 static char *badblocks = NULL;
103 static char *weakblocks = NULL;
104 static char *weakpages = NULL;
105 static unsigned int bitflips = 0;
106 static char *gravepages = NULL;
107 static unsigned int rptwear = 0;
108 static unsigned int overridesize = 0;
109 static char *cache_file = NULL;
110 static unsigned int bbt;
111
112 module_param(first_id_byte,  uint, 0400);
113 module_param(second_id_byte, uint, 0400);
114 module_param(third_id_byte,  uint, 0400);
115 module_param(fourth_id_byte, uint, 0400);
116 module_param(access_delay,   uint, 0400);
117 module_param(programm_delay, uint, 0400);
118 module_param(erase_delay,    uint, 0400);
119 module_param(output_cycle,   uint, 0400);
120 module_param(input_cycle,    uint, 0400);
121 module_param(bus_width,      uint, 0400);
122 module_param(do_delays,      uint, 0400);
123 module_param(log,            uint, 0400);
124 module_param(dbg,            uint, 0400);
125 module_param_array(parts, ulong, &parts_num, 0400);
126 module_param(badblocks,      charp, 0400);
127 module_param(weakblocks,     charp, 0400);
128 module_param(weakpages,      charp, 0400);
129 module_param(bitflips,       uint, 0400);
130 module_param(gravepages,     charp, 0400);
131 module_param(rptwear,        uint, 0400);
132 module_param(overridesize,   uint, 0400);
133 module_param(cache_file,     charp, 0400);
134 module_param(bbt,            uint, 0400);
135
136 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
137 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
138 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
139 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
140 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
141 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
142 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
143 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
144 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
145 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
146 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
147 MODULE_PARM_DESC(log,            "Perform logging if not zero");
148 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
149 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
150 /* Page and erase block positions for the following parameters are independent of any partitions */
151 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
152 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
153                                  " separated by commas e.g. 113:2 means eb 113"
154                                  " can be erased only twice before failing");
155 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
156                                  " separated by commas e.g. 1401:2 means page 1401"
157                                  " can be written only twice before failing");
158 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
159 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
160                                  " separated by commas e.g. 1401:2 means page 1401"
161                                  " can be read only twice before failing");
162 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
163 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
164                                  "The size is specified in erase blocks and as the exponent of a power of two"
165                                  " e.g. 5 means a size of 32 erase blocks");
166 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
167 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
168
169 /* The largest possible page size */
170 #define NS_LARGEST_PAGE_SIZE    4096
171
172 /* The prefix for simulator output */
173 #define NS_OUTPUT_PREFIX "[nandsim]"
174
175 /* Simulator's output macros (logging, debugging, warning, error) */
176 #define NS_LOG(args...) \
177         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
178 #define NS_DBG(args...) \
179         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
180 #define NS_WARN(args...) \
181         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
182 #define NS_ERR(args...) \
183         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
184 #define NS_INFO(args...) \
185         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
186
187 /* Busy-wait delay macros (microseconds, milliseconds) */
188 #define NS_UDELAY(us) \
189         do { if (do_delays) udelay(us); } while(0)
190 #define NS_MDELAY(us) \
191         do { if (do_delays) mdelay(us); } while(0)
192
193 /* Is the nandsim structure initialized ? */
194 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
195
196 /* Good operation completion status */
197 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
198
199 /* Operation failed completion status */
200 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
201
202 /* Calculate the page offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET(ns) \
204         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
205
206 /* Calculate the OOB offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
208
209 /* After a command is input, the simulator goes to one of the following states */
210 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
211 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
212 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
213 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
214 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
215 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
216 #define STATE_CMD_STATUS       0x00000007 /* read status */
217 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
218 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
219 #define STATE_CMD_READID       0x0000000A /* read ID */
220 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
221 #define STATE_CMD_RESET        0x0000000C /* reset */
222 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
223 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
224 #define STATE_CMD_MASK         0x0000000F /* command states mask */
225
226 /* After an address is input, the simulator goes to one of these states */
227 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
228 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
229 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
230 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
231 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
232
233 /* During data input/output the simulator is in these states */
234 #define STATE_DATAIN           0x00000100 /* waiting for data input */
235 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
236
237 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
238 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
239 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
240 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
241 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
242
243 /* Previous operation is done, ready to accept new requests */
244 #define STATE_READY            0x00000000
245
246 /* This state is used to mark that the next state isn't known yet */
247 #define STATE_UNKNOWN          0x10000000
248
249 /* Simulator's actions bit masks */
250 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
251 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
252 #define ACTION_SECERASE  0x00300000 /* erase sector */
253 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
254 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
255 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
256 #define ACTION_MASK      0x00700000 /* action mask */
257
258 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
259 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
260
261 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
262 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
263 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
264 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
265 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
266 #define OPT_AUTOINCR     0x00000020 /* page number auto incrementation is possible */
267 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
268 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
269 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
270 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
271
272 /* Remove action bits from state */
273 #define NS_STATE(x) ((x) & ~ACTION_MASK)
274
275 /*
276  * Maximum previous states which need to be saved. Currently saving is
277  * only needed for page program operation with preceded read command
278  * (which is only valid for 512-byte pages).
279  */
280 #define NS_MAX_PREVSTATES 1
281
282 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
283 #define NS_MAX_HELD_PAGES 16
284
285 /*
286  * A union to represent flash memory contents and flash buffer.
287  */
288 union ns_mem {
289         u_char *byte;    /* for byte access */
290         uint16_t *word;  /* for 16-bit word access */
291 };
292
293 /*
294  * The structure which describes all the internal simulator data.
295  */
296 struct nandsim {
297         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
298         unsigned int nbparts;
299
300         uint busw;              /* flash chip bus width (8 or 16) */
301         u_char ids[4];          /* chip's ID bytes */
302         uint32_t options;       /* chip's characteristic bits */
303         uint32_t state;         /* current chip state */
304         uint32_t nxstate;       /* next expected state */
305
306         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
307         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
308         uint16_t npstates;      /* number of previous states saved */
309         uint16_t stateidx;      /* current state index */
310
311         /* The simulated NAND flash pages array */
312         union ns_mem *pages;
313
314         /* Slab allocator for nand pages */
315         struct kmem_cache *nand_pages_slab;
316
317         /* Internal buffer of page + OOB size bytes */
318         union ns_mem buf;
319
320         /* NAND flash "geometry" */
321         struct {
322                 uint64_t totsz;     /* total flash size, bytes */
323                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
324                 uint pgsz;          /* NAND flash page size, bytes */
325                 uint oobsz;         /* page OOB area size, bytes */
326                 uint64_t totszoob;  /* total flash size including OOB, bytes */
327                 uint pgszoob;       /* page size including OOB , bytes*/
328                 uint secszoob;      /* sector size including OOB, bytes */
329                 uint pgnum;         /* total number of pages */
330                 uint pgsec;         /* number of pages per sector */
331                 uint secshift;      /* bits number in sector size */
332                 uint pgshift;       /* bits number in page size */
333                 uint oobshift;      /* bits number in OOB size */
334                 uint pgaddrbytes;   /* bytes per page address */
335                 uint secaddrbytes;  /* bytes per sector address */
336                 uint idbytes;       /* the number ID bytes that this chip outputs */
337         } geom;
338
339         /* NAND flash internal registers */
340         struct {
341                 unsigned command; /* the command register */
342                 u_char   status;  /* the status register */
343                 uint     row;     /* the page number */
344                 uint     column;  /* the offset within page */
345                 uint     count;   /* internal counter */
346                 uint     num;     /* number of bytes which must be processed */
347                 uint     off;     /* fixed page offset */
348         } regs;
349
350         /* NAND flash lines state */
351         struct {
352                 int ce;  /* chip Enable */
353                 int cle; /* command Latch Enable */
354                 int ale; /* address Latch Enable */
355                 int wp;  /* write Protect */
356         } lines;
357
358         /* Fields needed when using a cache file */
359         struct file *cfile; /* Open file */
360         unsigned char *pages_written; /* Which pages have been written */
361         void *file_buf;
362         struct page *held_pages[NS_MAX_HELD_PAGES];
363         int held_cnt;
364 };
365
366 /*
367  * Operations array. To perform any operation the simulator must pass
368  * through the correspondent states chain.
369  */
370 static struct nandsim_operations {
371         uint32_t reqopts;  /* options which are required to perform the operation */
372         uint32_t states[NS_OPER_STATES]; /* operation's states */
373 } ops[NS_OPER_NUM] = {
374         /* Read page + OOB from the beginning */
375         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
376                         STATE_DATAOUT, STATE_READY}},
377         /* Read page + OOB from the second half */
378         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
379                         STATE_DATAOUT, STATE_READY}},
380         /* Read OOB */
381         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
382                         STATE_DATAOUT, STATE_READY}},
383         /* Program page starting from the beginning */
384         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
385                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386         /* Program page starting from the beginning */
387         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
388                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389         /* Program page starting from the second half */
390         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
391                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392         /* Program OOB */
393         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
394                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
395         /* Erase sector */
396         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
397         /* Read status */
398         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
399         /* Read multi-plane status */
400         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
401         /* Read ID */
402         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
403         /* Large page devices read page */
404         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
405                                STATE_DATAOUT, STATE_READY}},
406         /* Large page devices random page read */
407         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
408                                STATE_DATAOUT, STATE_READY}},
409 };
410
411 struct weak_block {
412         struct list_head list;
413         unsigned int erase_block_no;
414         unsigned int max_erases;
415         unsigned int erases_done;
416 };
417
418 static LIST_HEAD(weak_blocks);
419
420 struct weak_page {
421         struct list_head list;
422         unsigned int page_no;
423         unsigned int max_writes;
424         unsigned int writes_done;
425 };
426
427 static LIST_HEAD(weak_pages);
428
429 struct grave_page {
430         struct list_head list;
431         unsigned int page_no;
432         unsigned int max_reads;
433         unsigned int reads_done;
434 };
435
436 static LIST_HEAD(grave_pages);
437
438 static unsigned long *erase_block_wear = NULL;
439 static unsigned int wear_eb_count = 0;
440 static unsigned long total_wear = 0;
441 static unsigned int rptwear_cnt = 0;
442
443 /* MTD structure for NAND controller */
444 static struct mtd_info *nsmtd;
445
446 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
447
448 /*
449  * Allocate array of page pointers, create slab allocation for an array
450  * and initialize the array by NULL pointers.
451  *
452  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
453  */
454 static int alloc_device(struct nandsim *ns)
455 {
456         struct file *cfile;
457         int i, err;
458
459         if (cache_file) {
460                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
461                 if (IS_ERR(cfile))
462                         return PTR_ERR(cfile);
463                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
464                         NS_ERR("alloc_device: cache file not readable\n");
465                         err = -EINVAL;
466                         goto err_close;
467                 }
468                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
469                         NS_ERR("alloc_device: cache file not writeable\n");
470                         err = -EINVAL;
471                         goto err_close;
472                 }
473                 ns->pages_written = vzalloc(ns->geom.pgnum);
474                 if (!ns->pages_written) {
475                         NS_ERR("alloc_device: unable to allocate pages written array\n");
476                         err = -ENOMEM;
477                         goto err_close;
478                 }
479                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
480                 if (!ns->file_buf) {
481                         NS_ERR("alloc_device: unable to allocate file buf\n");
482                         err = -ENOMEM;
483                         goto err_free;
484                 }
485                 ns->cfile = cfile;
486                 return 0;
487         }
488
489         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
490         if (!ns->pages) {
491                 NS_ERR("alloc_device: unable to allocate page array\n");
492                 return -ENOMEM;
493         }
494         for (i = 0; i < ns->geom.pgnum; i++) {
495                 ns->pages[i].byte = NULL;
496         }
497         ns->nand_pages_slab = kmem_cache_create("nandsim",
498                                                 ns->geom.pgszoob, 0, 0, NULL);
499         if (!ns->nand_pages_slab) {
500                 NS_ERR("cache_create: unable to create kmem_cache\n");
501                 return -ENOMEM;
502         }
503
504         return 0;
505
506 err_free:
507         vfree(ns->pages_written);
508 err_close:
509         filp_close(cfile, NULL);
510         return err;
511 }
512
513 /*
514  * Free any allocated pages, and free the array of page pointers.
515  */
516 static void free_device(struct nandsim *ns)
517 {
518         int i;
519
520         if (ns->cfile) {
521                 kfree(ns->file_buf);
522                 vfree(ns->pages_written);
523                 filp_close(ns->cfile, NULL);
524                 return;
525         }
526
527         if (ns->pages) {
528                 for (i = 0; i < ns->geom.pgnum; i++) {
529                         if (ns->pages[i].byte)
530                                 kmem_cache_free(ns->nand_pages_slab,
531                                                 ns->pages[i].byte);
532                 }
533                 kmem_cache_destroy(ns->nand_pages_slab);
534                 vfree(ns->pages);
535         }
536 }
537
538 static char *get_partition_name(int i)
539 {
540         char buf[64];
541         sprintf(buf, "NAND simulator partition %d", i);
542         return kstrdup(buf, GFP_KERNEL);
543 }
544
545 static uint64_t divide(uint64_t n, uint32_t d)
546 {
547         do_div(n, d);
548         return n;
549 }
550
551 /*
552  * Initialize the nandsim structure.
553  *
554  * RETURNS: 0 if success, -ERRNO if failure.
555  */
556 static int init_nandsim(struct mtd_info *mtd)
557 {
558         struct nand_chip *chip = mtd->priv;
559         struct nandsim   *ns   = chip->priv;
560         int i, ret = 0;
561         uint64_t remains;
562         uint64_t next_offset;
563
564         if (NS_IS_INITIALIZED(ns)) {
565                 NS_ERR("init_nandsim: nandsim is already initialized\n");
566                 return -EIO;
567         }
568
569         /* Force mtd to not do delays */
570         chip->chip_delay = 0;
571
572         /* Initialize the NAND flash parameters */
573         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
574         ns->geom.totsz    = mtd->size;
575         ns->geom.pgsz     = mtd->writesize;
576         ns->geom.oobsz    = mtd->oobsize;
577         ns->geom.secsz    = mtd->erasesize;
578         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
579         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
580         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
581         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
582         ns->geom.pgshift  = chip->page_shift;
583         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
584         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
585         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
586         ns->options = 0;
587
588         if (ns->geom.pgsz == 256) {
589                 ns->options |= OPT_PAGE256;
590         }
591         else if (ns->geom.pgsz == 512) {
592                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
593                 if (ns->busw == 8)
594                         ns->options |= OPT_PAGE512_8BIT;
595         } else if (ns->geom.pgsz == 2048) {
596                 ns->options |= OPT_PAGE2048;
597         } else if (ns->geom.pgsz == 4096) {
598                 ns->options |= OPT_PAGE4096;
599         } else {
600                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
601                 return -EIO;
602         }
603
604         if (ns->options & OPT_SMALLPAGE) {
605                 if (ns->geom.totsz <= (32 << 20)) {
606                         ns->geom.pgaddrbytes  = 3;
607                         ns->geom.secaddrbytes = 2;
608                 } else {
609                         ns->geom.pgaddrbytes  = 4;
610                         ns->geom.secaddrbytes = 3;
611                 }
612         } else {
613                 if (ns->geom.totsz <= (128 << 20)) {
614                         ns->geom.pgaddrbytes  = 4;
615                         ns->geom.secaddrbytes = 2;
616                 } else {
617                         ns->geom.pgaddrbytes  = 5;
618                         ns->geom.secaddrbytes = 3;
619                 }
620         }
621
622         /* Fill the partition_info structure */
623         if (parts_num > ARRAY_SIZE(ns->partitions)) {
624                 NS_ERR("too many partitions.\n");
625                 ret = -EINVAL;
626                 goto error;
627         }
628         remains = ns->geom.totsz;
629         next_offset = 0;
630         for (i = 0; i < parts_num; ++i) {
631                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
632
633                 if (!part_sz || part_sz > remains) {
634                         NS_ERR("bad partition size.\n");
635                         ret = -EINVAL;
636                         goto error;
637                 }
638                 ns->partitions[i].name   = get_partition_name(i);
639                 ns->partitions[i].offset = next_offset;
640                 ns->partitions[i].size   = part_sz;
641                 next_offset += ns->partitions[i].size;
642                 remains -= ns->partitions[i].size;
643         }
644         ns->nbparts = parts_num;
645         if (remains) {
646                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
647                         NS_ERR("too many partitions.\n");
648                         ret = -EINVAL;
649                         goto error;
650                 }
651                 ns->partitions[i].name   = get_partition_name(i);
652                 ns->partitions[i].offset = next_offset;
653                 ns->partitions[i].size   = remains;
654                 ns->nbparts += 1;
655         }
656
657         /* Detect how many ID bytes the NAND chip outputs */
658         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
659                 if (second_id_byte != nand_flash_ids[i].id)
660                         continue;
661                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
662                         ns->options |= OPT_AUTOINCR;
663         }
664
665         if (ns->busw == 16)
666                 NS_WARN("16-bit flashes support wasn't tested\n");
667
668         printk("flash size: %llu MiB\n",
669                         (unsigned long long)ns->geom.totsz >> 20);
670         printk("page size: %u bytes\n",         ns->geom.pgsz);
671         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
672         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
673         printk("pages number: %u\n",            ns->geom.pgnum);
674         printk("pages per sector: %u\n",        ns->geom.pgsec);
675         printk("bus width: %u\n",               ns->busw);
676         printk("bits in sector size: %u\n",     ns->geom.secshift);
677         printk("bits in page size: %u\n",       ns->geom.pgshift);
678         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
679         printk("flash size with OOB: %llu KiB\n",
680                         (unsigned long long)ns->geom.totszoob >> 10);
681         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
682         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
683         printk("options: %#x\n",                ns->options);
684
685         if ((ret = alloc_device(ns)) != 0)
686                 goto error;
687
688         /* Allocate / initialize the internal buffer */
689         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
690         if (!ns->buf.byte) {
691                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
692                         ns->geom.pgszoob);
693                 ret = -ENOMEM;
694                 goto error;
695         }
696         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
697
698         return 0;
699
700 error:
701         free_device(ns);
702
703         return ret;
704 }
705
706 /*
707  * Free the nandsim structure.
708  */
709 static void free_nandsim(struct nandsim *ns)
710 {
711         kfree(ns->buf.byte);
712         free_device(ns);
713
714         return;
715 }
716
717 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
718 {
719         char *w;
720         int zero_ok;
721         unsigned int erase_block_no;
722         loff_t offset;
723
724         if (!badblocks)
725                 return 0;
726         w = badblocks;
727         do {
728                 zero_ok = (*w == '0' ? 1 : 0);
729                 erase_block_no = simple_strtoul(w, &w, 0);
730                 if (!zero_ok && !erase_block_no) {
731                         NS_ERR("invalid badblocks.\n");
732                         return -EINVAL;
733                 }
734                 offset = erase_block_no * ns->geom.secsz;
735                 if (mtd->block_markbad(mtd, offset)) {
736                         NS_ERR("invalid badblocks.\n");
737                         return -EINVAL;
738                 }
739                 if (*w == ',')
740                         w += 1;
741         } while (*w);
742         return 0;
743 }
744
745 static int parse_weakblocks(void)
746 {
747         char *w;
748         int zero_ok;
749         unsigned int erase_block_no;
750         unsigned int max_erases;
751         struct weak_block *wb;
752
753         if (!weakblocks)
754                 return 0;
755         w = weakblocks;
756         do {
757                 zero_ok = (*w == '0' ? 1 : 0);
758                 erase_block_no = simple_strtoul(w, &w, 0);
759                 if (!zero_ok && !erase_block_no) {
760                         NS_ERR("invalid weakblocks.\n");
761                         return -EINVAL;
762                 }
763                 max_erases = 3;
764                 if (*w == ':') {
765                         w += 1;
766                         max_erases = simple_strtoul(w, &w, 0);
767                 }
768                 if (*w == ',')
769                         w += 1;
770                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
771                 if (!wb) {
772                         NS_ERR("unable to allocate memory.\n");
773                         return -ENOMEM;
774                 }
775                 wb->erase_block_no = erase_block_no;
776                 wb->max_erases = max_erases;
777                 list_add(&wb->list, &weak_blocks);
778         } while (*w);
779         return 0;
780 }
781
782 static int erase_error(unsigned int erase_block_no)
783 {
784         struct weak_block *wb;
785
786         list_for_each_entry(wb, &weak_blocks, list)
787                 if (wb->erase_block_no == erase_block_no) {
788                         if (wb->erases_done >= wb->max_erases)
789                                 return 1;
790                         wb->erases_done += 1;
791                         return 0;
792                 }
793         return 0;
794 }
795
796 static int parse_weakpages(void)
797 {
798         char *w;
799         int zero_ok;
800         unsigned int page_no;
801         unsigned int max_writes;
802         struct weak_page *wp;
803
804         if (!weakpages)
805                 return 0;
806         w = weakpages;
807         do {
808                 zero_ok = (*w == '0' ? 1 : 0);
809                 page_no = simple_strtoul(w, &w, 0);
810                 if (!zero_ok && !page_no) {
811                         NS_ERR("invalid weakpagess.\n");
812                         return -EINVAL;
813                 }
814                 max_writes = 3;
815                 if (*w == ':') {
816                         w += 1;
817                         max_writes = simple_strtoul(w, &w, 0);
818                 }
819                 if (*w == ',')
820                         w += 1;
821                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
822                 if (!wp) {
823                         NS_ERR("unable to allocate memory.\n");
824                         return -ENOMEM;
825                 }
826                 wp->page_no = page_no;
827                 wp->max_writes = max_writes;
828                 list_add(&wp->list, &weak_pages);
829         } while (*w);
830         return 0;
831 }
832
833 static int write_error(unsigned int page_no)
834 {
835         struct weak_page *wp;
836
837         list_for_each_entry(wp, &weak_pages, list)
838                 if (wp->page_no == page_no) {
839                         if (wp->writes_done >= wp->max_writes)
840                                 return 1;
841                         wp->writes_done += 1;
842                         return 0;
843                 }
844         return 0;
845 }
846
847 static int parse_gravepages(void)
848 {
849         char *g;
850         int zero_ok;
851         unsigned int page_no;
852         unsigned int max_reads;
853         struct grave_page *gp;
854
855         if (!gravepages)
856                 return 0;
857         g = gravepages;
858         do {
859                 zero_ok = (*g == '0' ? 1 : 0);
860                 page_no = simple_strtoul(g, &g, 0);
861                 if (!zero_ok && !page_no) {
862                         NS_ERR("invalid gravepagess.\n");
863                         return -EINVAL;
864                 }
865                 max_reads = 3;
866                 if (*g == ':') {
867                         g += 1;
868                         max_reads = simple_strtoul(g, &g, 0);
869                 }
870                 if (*g == ',')
871                         g += 1;
872                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
873                 if (!gp) {
874                         NS_ERR("unable to allocate memory.\n");
875                         return -ENOMEM;
876                 }
877                 gp->page_no = page_no;
878                 gp->max_reads = max_reads;
879                 list_add(&gp->list, &grave_pages);
880         } while (*g);
881         return 0;
882 }
883
884 static int read_error(unsigned int page_no)
885 {
886         struct grave_page *gp;
887
888         list_for_each_entry(gp, &grave_pages, list)
889                 if (gp->page_no == page_no) {
890                         if (gp->reads_done >= gp->max_reads)
891                                 return 1;
892                         gp->reads_done += 1;
893                         return 0;
894                 }
895         return 0;
896 }
897
898 static void free_lists(void)
899 {
900         struct list_head *pos, *n;
901         list_for_each_safe(pos, n, &weak_blocks) {
902                 list_del(pos);
903                 kfree(list_entry(pos, struct weak_block, list));
904         }
905         list_for_each_safe(pos, n, &weak_pages) {
906                 list_del(pos);
907                 kfree(list_entry(pos, struct weak_page, list));
908         }
909         list_for_each_safe(pos, n, &grave_pages) {
910                 list_del(pos);
911                 kfree(list_entry(pos, struct grave_page, list));
912         }
913         kfree(erase_block_wear);
914 }
915
916 static int setup_wear_reporting(struct mtd_info *mtd)
917 {
918         size_t mem;
919
920         if (!rptwear)
921                 return 0;
922         wear_eb_count = divide(mtd->size, mtd->erasesize);
923         mem = wear_eb_count * sizeof(unsigned long);
924         if (mem / sizeof(unsigned long) != wear_eb_count) {
925                 NS_ERR("Too many erase blocks for wear reporting\n");
926                 return -ENOMEM;
927         }
928         erase_block_wear = kzalloc(mem, GFP_KERNEL);
929         if (!erase_block_wear) {
930                 NS_ERR("Too many erase blocks for wear reporting\n");
931                 return -ENOMEM;
932         }
933         return 0;
934 }
935
936 static void update_wear(unsigned int erase_block_no)
937 {
938         unsigned long wmin = -1, wmax = 0, avg;
939         unsigned long deciles[10], decile_max[10], tot = 0;
940         unsigned int i;
941
942         if (!erase_block_wear)
943                 return;
944         total_wear += 1;
945         if (total_wear == 0)
946                 NS_ERR("Erase counter total overflow\n");
947         erase_block_wear[erase_block_no] += 1;
948         if (erase_block_wear[erase_block_no] == 0)
949                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
950         rptwear_cnt += 1;
951         if (rptwear_cnt < rptwear)
952                 return;
953         rptwear_cnt = 0;
954         /* Calc wear stats */
955         for (i = 0; i < wear_eb_count; ++i) {
956                 unsigned long wear = erase_block_wear[i];
957                 if (wear < wmin)
958                         wmin = wear;
959                 if (wear > wmax)
960                         wmax = wear;
961                 tot += wear;
962         }
963         for (i = 0; i < 9; ++i) {
964                 deciles[i] = 0;
965                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
966         }
967         deciles[9] = 0;
968         decile_max[9] = wmax;
969         for (i = 0; i < wear_eb_count; ++i) {
970                 int d;
971                 unsigned long wear = erase_block_wear[i];
972                 for (d = 0; d < 10; ++d)
973                         if (wear <= decile_max[d]) {
974                                 deciles[d] += 1;
975                                 break;
976                         }
977         }
978         avg = tot / wear_eb_count;
979         /* Output wear report */
980         NS_INFO("*** Wear Report ***\n");
981         NS_INFO("Total numbers of erases:  %lu\n", tot);
982         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
983         NS_INFO("Average number of erases: %lu\n", avg);
984         NS_INFO("Maximum number of erases: %lu\n", wmax);
985         NS_INFO("Minimum number of erases: %lu\n", wmin);
986         for (i = 0; i < 10; ++i) {
987                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
988                 if (from > decile_max[i])
989                         continue;
990                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
991                         from,
992                         decile_max[i],
993                         deciles[i]);
994         }
995         NS_INFO("*** End of Wear Report ***\n");
996 }
997
998 /*
999  * Returns the string representation of 'state' state.
1000  */
1001 static char *get_state_name(uint32_t state)
1002 {
1003         switch (NS_STATE(state)) {
1004                 case STATE_CMD_READ0:
1005                         return "STATE_CMD_READ0";
1006                 case STATE_CMD_READ1:
1007                         return "STATE_CMD_READ1";
1008                 case STATE_CMD_PAGEPROG:
1009                         return "STATE_CMD_PAGEPROG";
1010                 case STATE_CMD_READOOB:
1011                         return "STATE_CMD_READOOB";
1012                 case STATE_CMD_READSTART:
1013                         return "STATE_CMD_READSTART";
1014                 case STATE_CMD_ERASE1:
1015                         return "STATE_CMD_ERASE1";
1016                 case STATE_CMD_STATUS:
1017                         return "STATE_CMD_STATUS";
1018                 case STATE_CMD_STATUS_M:
1019                         return "STATE_CMD_STATUS_M";
1020                 case STATE_CMD_SEQIN:
1021                         return "STATE_CMD_SEQIN";
1022                 case STATE_CMD_READID:
1023                         return "STATE_CMD_READID";
1024                 case STATE_CMD_ERASE2:
1025                         return "STATE_CMD_ERASE2";
1026                 case STATE_CMD_RESET:
1027                         return "STATE_CMD_RESET";
1028                 case STATE_CMD_RNDOUT:
1029                         return "STATE_CMD_RNDOUT";
1030                 case STATE_CMD_RNDOUTSTART:
1031                         return "STATE_CMD_RNDOUTSTART";
1032                 case STATE_ADDR_PAGE:
1033                         return "STATE_ADDR_PAGE";
1034                 case STATE_ADDR_SEC:
1035                         return "STATE_ADDR_SEC";
1036                 case STATE_ADDR_ZERO:
1037                         return "STATE_ADDR_ZERO";
1038                 case STATE_ADDR_COLUMN:
1039                         return "STATE_ADDR_COLUMN";
1040                 case STATE_DATAIN:
1041                         return "STATE_DATAIN";
1042                 case STATE_DATAOUT:
1043                         return "STATE_DATAOUT";
1044                 case STATE_DATAOUT_ID:
1045                         return "STATE_DATAOUT_ID";
1046                 case STATE_DATAOUT_STATUS:
1047                         return "STATE_DATAOUT_STATUS";
1048                 case STATE_DATAOUT_STATUS_M:
1049                         return "STATE_DATAOUT_STATUS_M";
1050                 case STATE_READY:
1051                         return "STATE_READY";
1052                 case STATE_UNKNOWN:
1053                         return "STATE_UNKNOWN";
1054         }
1055
1056         NS_ERR("get_state_name: unknown state, BUG\n");
1057         return NULL;
1058 }
1059
1060 /*
1061  * Check if command is valid.
1062  *
1063  * RETURNS: 1 if wrong command, 0 if right.
1064  */
1065 static int check_command(int cmd)
1066 {
1067         switch (cmd) {
1068
1069         case NAND_CMD_READ0:
1070         case NAND_CMD_READ1:
1071         case NAND_CMD_READSTART:
1072         case NAND_CMD_PAGEPROG:
1073         case NAND_CMD_READOOB:
1074         case NAND_CMD_ERASE1:
1075         case NAND_CMD_STATUS:
1076         case NAND_CMD_SEQIN:
1077         case NAND_CMD_READID:
1078         case NAND_CMD_ERASE2:
1079         case NAND_CMD_RESET:
1080         case NAND_CMD_RNDOUT:
1081         case NAND_CMD_RNDOUTSTART:
1082                 return 0;
1083
1084         case NAND_CMD_STATUS_MULTI:
1085         default:
1086                 return 1;
1087         }
1088 }
1089
1090 /*
1091  * Returns state after command is accepted by command number.
1092  */
1093 static uint32_t get_state_by_command(unsigned command)
1094 {
1095         switch (command) {
1096                 case NAND_CMD_READ0:
1097                         return STATE_CMD_READ0;
1098                 case NAND_CMD_READ1:
1099                         return STATE_CMD_READ1;
1100                 case NAND_CMD_PAGEPROG:
1101                         return STATE_CMD_PAGEPROG;
1102                 case NAND_CMD_READSTART:
1103                         return STATE_CMD_READSTART;
1104                 case NAND_CMD_READOOB:
1105                         return STATE_CMD_READOOB;
1106                 case NAND_CMD_ERASE1:
1107                         return STATE_CMD_ERASE1;
1108                 case NAND_CMD_STATUS:
1109                         return STATE_CMD_STATUS;
1110                 case NAND_CMD_STATUS_MULTI:
1111                         return STATE_CMD_STATUS_M;
1112                 case NAND_CMD_SEQIN:
1113                         return STATE_CMD_SEQIN;
1114                 case NAND_CMD_READID:
1115                         return STATE_CMD_READID;
1116                 case NAND_CMD_ERASE2:
1117                         return STATE_CMD_ERASE2;
1118                 case NAND_CMD_RESET:
1119                         return STATE_CMD_RESET;
1120                 case NAND_CMD_RNDOUT:
1121                         return STATE_CMD_RNDOUT;
1122                 case NAND_CMD_RNDOUTSTART:
1123                         return STATE_CMD_RNDOUTSTART;
1124         }
1125
1126         NS_ERR("get_state_by_command: unknown command, BUG\n");
1127         return 0;
1128 }
1129
1130 /*
1131  * Move an address byte to the correspondent internal register.
1132  */
1133 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1134 {
1135         uint byte = (uint)bt;
1136
1137         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1138                 ns->regs.column |= (byte << 8 * ns->regs.count);
1139         else {
1140                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1141                                                 ns->geom.pgaddrbytes +
1142                                                 ns->geom.secaddrbytes));
1143         }
1144
1145         return;
1146 }
1147
1148 /*
1149  * Switch to STATE_READY state.
1150  */
1151 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1152 {
1153         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1154
1155         ns->state       = STATE_READY;
1156         ns->nxstate     = STATE_UNKNOWN;
1157         ns->op          = NULL;
1158         ns->npstates    = 0;
1159         ns->stateidx    = 0;
1160         ns->regs.num    = 0;
1161         ns->regs.count  = 0;
1162         ns->regs.off    = 0;
1163         ns->regs.row    = 0;
1164         ns->regs.column = 0;
1165         ns->regs.status = status;
1166 }
1167
1168 /*
1169  * If the operation isn't known yet, try to find it in the global array
1170  * of supported operations.
1171  *
1172  * Operation can be unknown because of the following.
1173  *   1. New command was accepted and this is the first call to find the
1174  *      correspondent states chain. In this case ns->npstates = 0;
1175  *   2. There are several operations which begin with the same command(s)
1176  *      (for example program from the second half and read from the
1177  *      second half operations both begin with the READ1 command). In this
1178  *      case the ns->pstates[] array contains previous states.
1179  *
1180  * Thus, the function tries to find operation containing the following
1181  * states (if the 'flag' parameter is 0):
1182  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1183  *
1184  * If (one and only one) matching operation is found, it is accepted (
1185  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1186  * zeroed).
1187  *
1188  * If there are several matches, the current state is pushed to the
1189  * ns->pstates.
1190  *
1191  * The operation can be unknown only while commands are input to the chip.
1192  * As soon as address command is accepted, the operation must be known.
1193  * In such situation the function is called with 'flag' != 0, and the
1194  * operation is searched using the following pattern:
1195  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1196  *
1197  * It is supposed that this pattern must either match one operation or
1198  * none. There can't be ambiguity in that case.
1199  *
1200  * If no matches found, the function does the following:
1201  *   1. if there are saved states present, try to ignore them and search
1202  *      again only using the last command. If nothing was found, switch
1203  *      to the STATE_READY state.
1204  *   2. if there are no saved states, switch to the STATE_READY state.
1205  *
1206  * RETURNS: -2 - no matched operations found.
1207  *          -1 - several matches.
1208  *           0 - operation is found.
1209  */
1210 static int find_operation(struct nandsim *ns, uint32_t flag)
1211 {
1212         int opsfound = 0;
1213         int i, j, idx = 0;
1214
1215         for (i = 0; i < NS_OPER_NUM; i++) {
1216
1217                 int found = 1;
1218
1219                 if (!(ns->options & ops[i].reqopts))
1220                         /* Ignore operations we can't perform */
1221                         continue;
1222
1223                 if (flag) {
1224                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1225                                 continue;
1226                 } else {
1227                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1228                                 continue;
1229                 }
1230
1231                 for (j = 0; j < ns->npstates; j++)
1232                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1233                                 && (ns->options & ops[idx].reqopts)) {
1234                                 found = 0;
1235                                 break;
1236                         }
1237
1238                 if (found) {
1239                         idx = i;
1240                         opsfound += 1;
1241                 }
1242         }
1243
1244         if (opsfound == 1) {
1245                 /* Exact match */
1246                 ns->op = &ops[idx].states[0];
1247                 if (flag) {
1248                         /*
1249                          * In this case the find_operation function was
1250                          * called when address has just began input. But it isn't
1251                          * yet fully input and the current state must
1252                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1253                          * state must be the next state (ns->nxstate).
1254                          */
1255                         ns->stateidx = ns->npstates - 1;
1256                 } else {
1257                         ns->stateidx = ns->npstates;
1258                 }
1259                 ns->npstates = 0;
1260                 ns->state = ns->op[ns->stateidx];
1261                 ns->nxstate = ns->op[ns->stateidx + 1];
1262                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1263                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1264                 return 0;
1265         }
1266
1267         if (opsfound == 0) {
1268                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1269                 if (ns->npstates != 0) {
1270                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1271                                         get_state_name(ns->state));
1272                         ns->npstates = 0;
1273                         return find_operation(ns, 0);
1274
1275                 }
1276                 NS_DBG("find_operation: no operations found\n");
1277                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1278                 return -2;
1279         }
1280
1281         if (flag) {
1282                 /* This shouldn't happen */
1283                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1284                 return -2;
1285         }
1286
1287         NS_DBG("find_operation: there is still ambiguity\n");
1288
1289         ns->pstates[ns->npstates++] = ns->state;
1290
1291         return -1;
1292 }
1293
1294 static void put_pages(struct nandsim *ns)
1295 {
1296         int i;
1297
1298         for (i = 0; i < ns->held_cnt; i++)
1299                 page_cache_release(ns->held_pages[i]);
1300 }
1301
1302 /* Get page cache pages in advance to provide NOFS memory allocation */
1303 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1304 {
1305         pgoff_t index, start_index, end_index;
1306         struct page *page;
1307         struct address_space *mapping = file->f_mapping;
1308
1309         start_index = pos >> PAGE_CACHE_SHIFT;
1310         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1311         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1312                 return -EINVAL;
1313         ns->held_cnt = 0;
1314         for (index = start_index; index <= end_index; index++) {
1315                 page = find_get_page(mapping, index);
1316                 if (page == NULL) {
1317                         page = find_or_create_page(mapping, index, GFP_NOFS);
1318                         if (page == NULL) {
1319                                 write_inode_now(mapping->host, 1);
1320                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1321                         }
1322                         if (page == NULL) {
1323                                 put_pages(ns);
1324                                 return -ENOMEM;
1325                         }
1326                         unlock_page(page);
1327                 }
1328                 ns->held_pages[ns->held_cnt++] = page;
1329         }
1330         return 0;
1331 }
1332
1333 static int set_memalloc(void)
1334 {
1335         if (current->flags & PF_MEMALLOC)
1336                 return 0;
1337         current->flags |= PF_MEMALLOC;
1338         return 1;
1339 }
1340
1341 static void clear_memalloc(int memalloc)
1342 {
1343         if (memalloc)
1344                 current->flags &= ~PF_MEMALLOC;
1345 }
1346
1347 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1348 {
1349         mm_segment_t old_fs;
1350         ssize_t tx;
1351         int err, memalloc;
1352
1353         err = get_pages(ns, file, count, *pos);
1354         if (err)
1355                 return err;
1356         old_fs = get_fs();
1357         set_fs(get_ds());
1358         memalloc = set_memalloc();
1359         tx = vfs_read(file, (char __user *)buf, count, pos);
1360         clear_memalloc(memalloc);
1361         set_fs(old_fs);
1362         put_pages(ns);
1363         return tx;
1364 }
1365
1366 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1367 {
1368         mm_segment_t old_fs;
1369         ssize_t tx;
1370         int err, memalloc;
1371
1372         err = get_pages(ns, file, count, *pos);
1373         if (err)
1374                 return err;
1375         old_fs = get_fs();
1376         set_fs(get_ds());
1377         memalloc = set_memalloc();
1378         tx = vfs_write(file, (char __user *)buf, count, pos);
1379         clear_memalloc(memalloc);
1380         set_fs(old_fs);
1381         put_pages(ns);
1382         return tx;
1383 }
1384
1385 /*
1386  * Returns a pointer to the current page.
1387  */
1388 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1389 {
1390         return &(ns->pages[ns->regs.row]);
1391 }
1392
1393 /*
1394  * Retuns a pointer to the current byte, within the current page.
1395  */
1396 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1397 {
1398         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1399 }
1400
1401 int do_read_error(struct nandsim *ns, int num)
1402 {
1403         unsigned int page_no = ns->regs.row;
1404
1405         if (read_error(page_no)) {
1406                 int i;
1407                 memset(ns->buf.byte, 0xFF, num);
1408                 for (i = 0; i < num; ++i)
1409                         ns->buf.byte[i] = random32();
1410                 NS_WARN("simulating read error in page %u\n", page_no);
1411                 return 1;
1412         }
1413         return 0;
1414 }
1415
1416 void do_bit_flips(struct nandsim *ns, int num)
1417 {
1418         if (bitflips && random32() < (1 << 22)) {
1419                 int flips = 1;
1420                 if (bitflips > 1)
1421                         flips = (random32() % (int) bitflips) + 1;
1422                 while (flips--) {
1423                         int pos = random32() % (num * 8);
1424                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1425                         NS_WARN("read_page: flipping bit %d in page %d "
1426                                 "reading from %d ecc: corrected=%u failed=%u\n",
1427                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1428                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1429                 }
1430         }
1431 }
1432
1433 /*
1434  * Fill the NAND buffer with data read from the specified page.
1435  */
1436 static void read_page(struct nandsim *ns, int num)
1437 {
1438         union ns_mem *mypage;
1439
1440         if (ns->cfile) {
1441                 if (!ns->pages_written[ns->regs.row]) {
1442                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1443                         memset(ns->buf.byte, 0xFF, num);
1444                 } else {
1445                         loff_t pos;
1446                         ssize_t tx;
1447
1448                         NS_DBG("read_page: page %d written, reading from %d\n",
1449                                 ns->regs.row, ns->regs.column + ns->regs.off);
1450                         if (do_read_error(ns, num))
1451                                 return;
1452                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1453                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1454                         if (tx != num) {
1455                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1456                                 return;
1457                         }
1458                         do_bit_flips(ns, num);
1459                 }
1460                 return;
1461         }
1462
1463         mypage = NS_GET_PAGE(ns);
1464         if (mypage->byte == NULL) {
1465                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1466                 memset(ns->buf.byte, 0xFF, num);
1467         } else {
1468                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1469                         ns->regs.row, ns->regs.column + ns->regs.off);
1470                 if (do_read_error(ns, num))
1471                         return;
1472                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1473                 do_bit_flips(ns, num);
1474         }
1475 }
1476
1477 /*
1478  * Erase all pages in the specified sector.
1479  */
1480 static void erase_sector(struct nandsim *ns)
1481 {
1482         union ns_mem *mypage;
1483         int i;
1484
1485         if (ns->cfile) {
1486                 for (i = 0; i < ns->geom.pgsec; i++)
1487                         if (ns->pages_written[ns->regs.row + i]) {
1488                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1489                                 ns->pages_written[ns->regs.row + i] = 0;
1490                         }
1491                 return;
1492         }
1493
1494         mypage = NS_GET_PAGE(ns);
1495         for (i = 0; i < ns->geom.pgsec; i++) {
1496                 if (mypage->byte != NULL) {
1497                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1498                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1499                         mypage->byte = NULL;
1500                 }
1501                 mypage++;
1502         }
1503 }
1504
1505 /*
1506  * Program the specified page with the contents from the NAND buffer.
1507  */
1508 static int prog_page(struct nandsim *ns, int num)
1509 {
1510         int i;
1511         union ns_mem *mypage;
1512         u_char *pg_off;
1513
1514         if (ns->cfile) {
1515                 loff_t off, pos;
1516                 ssize_t tx;
1517                 int all;
1518
1519                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1520                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1521                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1522                 if (!ns->pages_written[ns->regs.row]) {
1523                         all = 1;
1524                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1525                 } else {
1526                         all = 0;
1527                         pos = off;
1528                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1529                         if (tx != num) {
1530                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1531                                 return -1;
1532                         }
1533                 }
1534                 for (i = 0; i < num; i++)
1535                         pg_off[i] &= ns->buf.byte[i];
1536                 if (all) {
1537                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1538                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1539                         if (tx != ns->geom.pgszoob) {
1540                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1541                                 return -1;
1542                         }
1543                         ns->pages_written[ns->regs.row] = 1;
1544                 } else {
1545                         pos = off;
1546                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1547                         if (tx != num) {
1548                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1549                                 return -1;
1550                         }
1551                 }
1552                 return 0;
1553         }
1554
1555         mypage = NS_GET_PAGE(ns);
1556         if (mypage->byte == NULL) {
1557                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1558                 /*
1559                  * We allocate memory with GFP_NOFS because a flash FS may
1560                  * utilize this. If it is holding an FS lock, then gets here,
1561                  * then kernel memory alloc runs writeback which goes to the FS
1562                  * again and deadlocks. This was seen in practice.
1563                  */
1564                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1565                 if (mypage->byte == NULL) {
1566                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1567                         return -1;
1568                 }
1569                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1570         }
1571
1572         pg_off = NS_PAGE_BYTE_OFF(ns);
1573         for (i = 0; i < num; i++)
1574                 pg_off[i] &= ns->buf.byte[i];
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * If state has any action bit, perform this action.
1581  *
1582  * RETURNS: 0 if success, -1 if error.
1583  */
1584 static int do_state_action(struct nandsim *ns, uint32_t action)
1585 {
1586         int num;
1587         int busdiv = ns->busw == 8 ? 1 : 2;
1588         unsigned int erase_block_no, page_no;
1589
1590         action &= ACTION_MASK;
1591
1592         /* Check that page address input is correct */
1593         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1594                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1595                 return -1;
1596         }
1597
1598         switch (action) {
1599
1600         case ACTION_CPY:
1601                 /*
1602                  * Copy page data to the internal buffer.
1603                  */
1604
1605                 /* Column shouldn't be very large */
1606                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1607                         NS_ERR("do_state_action: column number is too large\n");
1608                         break;
1609                 }
1610                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1611                 read_page(ns, num);
1612
1613                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1614                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1615
1616                 if (ns->regs.off == 0)
1617                         NS_LOG("read page %d\n", ns->regs.row);
1618                 else if (ns->regs.off < ns->geom.pgsz)
1619                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1620                 else
1621                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1622
1623                 NS_UDELAY(access_delay);
1624                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1625
1626                 break;
1627
1628         case ACTION_SECERASE:
1629                 /*
1630                  * Erase sector.
1631                  */
1632
1633                 if (ns->lines.wp) {
1634                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1635                         return -1;
1636                 }
1637
1638                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1639                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1640                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1641                         return -1;
1642                 }
1643
1644                 ns->regs.row = (ns->regs.row <<
1645                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1646                 ns->regs.column = 0;
1647
1648                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1649
1650                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1651                                 ns->regs.row, NS_RAW_OFFSET(ns));
1652                 NS_LOG("erase sector %u\n", erase_block_no);
1653
1654                 erase_sector(ns);
1655
1656                 NS_MDELAY(erase_delay);
1657
1658                 if (erase_block_wear)
1659                         update_wear(erase_block_no);
1660
1661                 if (erase_error(erase_block_no)) {
1662                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1663                         return -1;
1664                 }
1665
1666                 break;
1667
1668         case ACTION_PRGPAGE:
1669                 /*
1670                  * Program page - move internal buffer data to the page.
1671                  */
1672
1673                 if (ns->lines.wp) {
1674                         NS_WARN("do_state_action: device is write-protected, programm\n");
1675                         return -1;
1676                 }
1677
1678                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1679                 if (num != ns->regs.count) {
1680                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1681                                         ns->regs.count, num);
1682                         return -1;
1683                 }
1684
1685                 if (prog_page(ns, num) == -1)
1686                         return -1;
1687
1688                 page_no = ns->regs.row;
1689
1690                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1691                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1692                 NS_LOG("programm page %d\n", ns->regs.row);
1693
1694                 NS_UDELAY(programm_delay);
1695                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1696
1697                 if (write_error(page_no)) {
1698                         NS_WARN("simulating write failure in page %u\n", page_no);
1699                         return -1;
1700                 }
1701
1702                 break;
1703
1704         case ACTION_ZEROOFF:
1705                 NS_DBG("do_state_action: set internal offset to 0\n");
1706                 ns->regs.off = 0;
1707                 break;
1708
1709         case ACTION_HALFOFF:
1710                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1711                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1712                                 "byte page size 8x chips\n");
1713                         return -1;
1714                 }
1715                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1716                 ns->regs.off = ns->geom.pgsz/2;
1717                 break;
1718
1719         case ACTION_OOBOFF:
1720                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1721                 ns->regs.off = ns->geom.pgsz;
1722                 break;
1723
1724         default:
1725                 NS_DBG("do_state_action: BUG! unknown action\n");
1726         }
1727
1728         return 0;
1729 }
1730
1731 /*
1732  * Switch simulator's state.
1733  */
1734 static void switch_state(struct nandsim *ns)
1735 {
1736         if (ns->op) {
1737                 /*
1738                  * The current operation have already been identified.
1739                  * Just follow the states chain.
1740                  */
1741
1742                 ns->stateidx += 1;
1743                 ns->state = ns->nxstate;
1744                 ns->nxstate = ns->op[ns->stateidx + 1];
1745
1746                 NS_DBG("switch_state: operation is known, switch to the next state, "
1747                         "state: %s, nxstate: %s\n",
1748                         get_state_name(ns->state), get_state_name(ns->nxstate));
1749
1750                 /* See, whether we need to do some action */
1751                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1752                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1753                         return;
1754                 }
1755
1756         } else {
1757                 /*
1758                  * We don't yet know which operation we perform.
1759                  * Try to identify it.
1760                  */
1761
1762                 /*
1763                  *  The only event causing the switch_state function to
1764                  *  be called with yet unknown operation is new command.
1765                  */
1766                 ns->state = get_state_by_command(ns->regs.command);
1767
1768                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1769
1770                 if (find_operation(ns, 0) != 0)
1771                         return;
1772
1773                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1774                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1775                         return;
1776                 }
1777         }
1778
1779         /* For 16x devices column means the page offset in words */
1780         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1781                 NS_DBG("switch_state: double the column number for 16x device\n");
1782                 ns->regs.column <<= 1;
1783         }
1784
1785         if (NS_STATE(ns->nxstate) == STATE_READY) {
1786                 /*
1787                  * The current state is the last. Return to STATE_READY
1788                  */
1789
1790                 u_char status = NS_STATUS_OK(ns);
1791
1792                 /* In case of data states, see if all bytes were input/output */
1793                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1794                         && ns->regs.count != ns->regs.num) {
1795                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1796                                         ns->regs.num - ns->regs.count);
1797                         status = NS_STATUS_FAILED(ns);
1798                 }
1799
1800                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1801
1802                 switch_to_ready_state(ns, status);
1803
1804                 return;
1805         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1806                 /*
1807                  * If the next state is data input/output, switch to it now
1808                  */
1809
1810                 ns->state      = ns->nxstate;
1811                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1812                 ns->regs.num   = ns->regs.count = 0;
1813
1814                 NS_DBG("switch_state: the next state is data I/O, switch, "
1815                         "state: %s, nxstate: %s\n",
1816                         get_state_name(ns->state), get_state_name(ns->nxstate));
1817
1818                 /*
1819                  * Set the internal register to the count of bytes which
1820                  * are expected to be input or output
1821                  */
1822                 switch (NS_STATE(ns->state)) {
1823                         case STATE_DATAIN:
1824                         case STATE_DATAOUT:
1825                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1826                                 break;
1827
1828                         case STATE_DATAOUT_ID:
1829                                 ns->regs.num = ns->geom.idbytes;
1830                                 break;
1831
1832                         case STATE_DATAOUT_STATUS:
1833                         case STATE_DATAOUT_STATUS_M:
1834                                 ns->regs.count = ns->regs.num = 0;
1835                                 break;
1836
1837                         default:
1838                                 NS_ERR("switch_state: BUG! unknown data state\n");
1839                 }
1840
1841         } else if (ns->nxstate & STATE_ADDR_MASK) {
1842                 /*
1843                  * If the next state is address input, set the internal
1844                  * register to the number of expected address bytes
1845                  */
1846
1847                 ns->regs.count = 0;
1848
1849                 switch (NS_STATE(ns->nxstate)) {
1850                         case STATE_ADDR_PAGE:
1851                                 ns->regs.num = ns->geom.pgaddrbytes;
1852
1853                                 break;
1854                         case STATE_ADDR_SEC:
1855                                 ns->regs.num = ns->geom.secaddrbytes;
1856                                 break;
1857
1858                         case STATE_ADDR_ZERO:
1859                                 ns->regs.num = 1;
1860                                 break;
1861
1862                         case STATE_ADDR_COLUMN:
1863                                 /* Column address is always 2 bytes */
1864                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1865                                 break;
1866
1867                         default:
1868                                 NS_ERR("switch_state: BUG! unknown address state\n");
1869                 }
1870         } else {
1871                 /*
1872                  * Just reset internal counters.
1873                  */
1874
1875                 ns->regs.num = 0;
1876                 ns->regs.count = 0;
1877         }
1878 }
1879
1880 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1881 {
1882         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1883         u_char outb = 0x00;
1884
1885         /* Sanity and correctness checks */
1886         if (!ns->lines.ce) {
1887                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1888                 return outb;
1889         }
1890         if (ns->lines.ale || ns->lines.cle) {
1891                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1892                 return outb;
1893         }
1894         if (!(ns->state & STATE_DATAOUT_MASK)) {
1895                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1896                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1897                 return outb;
1898         }
1899
1900         /* Status register may be read as many times as it is wanted */
1901         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1902                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1903                 return ns->regs.status;
1904         }
1905
1906         /* Check if there is any data in the internal buffer which may be read */
1907         if (ns->regs.count == ns->regs.num) {
1908                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1909                 return outb;
1910         }
1911
1912         switch (NS_STATE(ns->state)) {
1913                 case STATE_DATAOUT:
1914                         if (ns->busw == 8) {
1915                                 outb = ns->buf.byte[ns->regs.count];
1916                                 ns->regs.count += 1;
1917                         } else {
1918                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1919                                 ns->regs.count += 2;
1920                         }
1921                         break;
1922                 case STATE_DATAOUT_ID:
1923                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1924                         outb = ns->ids[ns->regs.count];
1925                         ns->regs.count += 1;
1926                         break;
1927                 default:
1928                         BUG();
1929         }
1930
1931         if (ns->regs.count == ns->regs.num) {
1932                 NS_DBG("read_byte: all bytes were read\n");
1933
1934                 /*
1935                  * The OPT_AUTOINCR allows to read next consecutive pages without
1936                  * new read operation cycle.
1937                  */
1938                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1939                         ns->regs.count = 0;
1940                         if (ns->regs.row + 1 < ns->geom.pgnum)
1941                                 ns->regs.row += 1;
1942                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1943                         do_state_action(ns, ACTION_CPY);
1944                 }
1945                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1946                         switch_state(ns);
1947
1948         }
1949
1950         return outb;
1951 }
1952
1953 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1954 {
1955         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1956
1957         /* Sanity and correctness checks */
1958         if (!ns->lines.ce) {
1959                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1960                 return;
1961         }
1962         if (ns->lines.ale && ns->lines.cle) {
1963                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1964                 return;
1965         }
1966
1967         if (ns->lines.cle == 1) {
1968                 /*
1969                  * The byte written is a command.
1970                  */
1971
1972                 if (byte == NAND_CMD_RESET) {
1973                         NS_LOG("reset chip\n");
1974                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1975                         return;
1976                 }
1977
1978                 /* Check that the command byte is correct */
1979                 if (check_command(byte)) {
1980                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1981                         return;
1982                 }
1983
1984                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1985                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1986                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1987                         int row = ns->regs.row;
1988
1989                         switch_state(ns);
1990                         if (byte == NAND_CMD_RNDOUT)
1991                                 ns->regs.row = row;
1992                 }
1993
1994                 /* Check if chip is expecting command */
1995                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1996                         /* Do not warn if only 2 id bytes are read */
1997                         if (!(ns->regs.command == NAND_CMD_READID &&
1998                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1999                                 /*
2000                                  * We are in situation when something else (not command)
2001                                  * was expected but command was input. In this case ignore
2002                                  * previous command(s)/state(s) and accept the last one.
2003                                  */
2004                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2005                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2006                         }
2007                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2008                 }
2009
2010                 NS_DBG("command byte corresponding to %s state accepted\n",
2011                         get_state_name(get_state_by_command(byte)));
2012                 ns->regs.command = byte;
2013                 switch_state(ns);
2014
2015         } else if (ns->lines.ale == 1) {
2016                 /*
2017                  * The byte written is an address.
2018                  */
2019
2020                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2021
2022                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2023
2024                         if (find_operation(ns, 1) < 0)
2025                                 return;
2026
2027                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2028                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2029                                 return;
2030                         }
2031
2032                         ns->regs.count = 0;
2033                         switch (NS_STATE(ns->nxstate)) {
2034                                 case STATE_ADDR_PAGE:
2035                                         ns->regs.num = ns->geom.pgaddrbytes;
2036                                         break;
2037                                 case STATE_ADDR_SEC:
2038                                         ns->regs.num = ns->geom.secaddrbytes;
2039                                         break;
2040                                 case STATE_ADDR_ZERO:
2041                                         ns->regs.num = 1;
2042                                         break;
2043                                 default:
2044                                         BUG();
2045                         }
2046                 }
2047
2048                 /* Check that chip is expecting address */
2049                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2050                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2051                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2052                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2053                         return;
2054                 }
2055
2056                 /* Check if this is expected byte */
2057                 if (ns->regs.count == ns->regs.num) {
2058                         NS_ERR("write_byte: no more address bytes expected\n");
2059                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2060                         return;
2061                 }
2062
2063                 accept_addr_byte(ns, byte);
2064
2065                 ns->regs.count += 1;
2066
2067                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2068                                 (uint)byte, ns->regs.count, ns->regs.num);
2069
2070                 if (ns->regs.count == ns->regs.num) {
2071                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2072                         switch_state(ns);
2073                 }
2074
2075         } else {
2076                 /*
2077                  * The byte written is an input data.
2078                  */
2079
2080                 /* Check that chip is expecting data input */
2081                 if (!(ns->state & STATE_DATAIN_MASK)) {
2082                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2083                                 "switch to %s\n", (uint)byte,
2084                                 get_state_name(ns->state), get_state_name(STATE_READY));
2085                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2086                         return;
2087                 }
2088
2089                 /* Check if this is expected byte */
2090                 if (ns->regs.count == ns->regs.num) {
2091                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2092                                         ns->regs.num);
2093                         return;
2094                 }
2095
2096                 if (ns->busw == 8) {
2097                         ns->buf.byte[ns->regs.count] = byte;
2098                         ns->regs.count += 1;
2099                 } else {
2100                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2101                         ns->regs.count += 2;
2102                 }
2103         }
2104
2105         return;
2106 }
2107
2108 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2109 {
2110         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2111
2112         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2113         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2114         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2115
2116         if (cmd != NAND_CMD_NONE)
2117                 ns_nand_write_byte(mtd, cmd);
2118 }
2119
2120 static int ns_device_ready(struct mtd_info *mtd)
2121 {
2122         NS_DBG("device_ready\n");
2123         return 1;
2124 }
2125
2126 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2127 {
2128         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2129
2130         NS_DBG("read_word\n");
2131
2132         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2133 }
2134
2135 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2136 {
2137         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2138
2139         /* Check that chip is expecting data input */
2140         if (!(ns->state & STATE_DATAIN_MASK)) {
2141                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2142                         "switch to STATE_READY\n", get_state_name(ns->state));
2143                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2144                 return;
2145         }
2146
2147         /* Check if these are expected bytes */
2148         if (ns->regs.count + len > ns->regs.num) {
2149                 NS_ERR("write_buf: too many input bytes\n");
2150                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2151                 return;
2152         }
2153
2154         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2155         ns->regs.count += len;
2156
2157         if (ns->regs.count == ns->regs.num) {
2158                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2159         }
2160 }
2161
2162 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2163 {
2164         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2165
2166         /* Sanity and correctness checks */
2167         if (!ns->lines.ce) {
2168                 NS_ERR("read_buf: chip is disabled\n");
2169                 return;
2170         }
2171         if (ns->lines.ale || ns->lines.cle) {
2172                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2173                 return;
2174         }
2175         if (!(ns->state & STATE_DATAOUT_MASK)) {
2176                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2177                         get_state_name(ns->state));
2178                 return;
2179         }
2180
2181         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2182                 int i;
2183
2184                 for (i = 0; i < len; i++)
2185                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2186
2187                 return;
2188         }
2189
2190         /* Check if these are expected bytes */
2191         if (ns->regs.count + len > ns->regs.num) {
2192                 NS_ERR("read_buf: too many bytes to read\n");
2193                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2194                 return;
2195         }
2196
2197         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2198         ns->regs.count += len;
2199
2200         if (ns->regs.count == ns->regs.num) {
2201                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2202                         ns->regs.count = 0;
2203                         if (ns->regs.row + 1 < ns->geom.pgnum)
2204                                 ns->regs.row += 1;
2205                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2206                         do_state_action(ns, ACTION_CPY);
2207                 }
2208                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2209                         switch_state(ns);
2210         }
2211
2212         return;
2213 }
2214
2215 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2216 {
2217         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2218
2219         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2220                 NS_DBG("verify_buf: the buffer is OK\n");
2221                 return 0;
2222         } else {
2223                 NS_DBG("verify_buf: the buffer is wrong\n");
2224                 return -EFAULT;
2225         }
2226 }
2227
2228 /*
2229  * Module initialization function
2230  */
2231 static int __init ns_init_module(void)
2232 {
2233         struct nand_chip *chip;
2234         struct nandsim *nand;
2235         int retval = -ENOMEM, i;
2236
2237         if (bus_width != 8 && bus_width != 16) {
2238                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2239                 return -EINVAL;
2240         }
2241
2242         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2243         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2244                                 + sizeof(struct nandsim), GFP_KERNEL);
2245         if (!nsmtd) {
2246                 NS_ERR("unable to allocate core structures.\n");
2247                 return -ENOMEM;
2248         }
2249         chip        = (struct nand_chip *)(nsmtd + 1);
2250         nsmtd->priv = (void *)chip;
2251         nand        = (struct nandsim *)(chip + 1);
2252         chip->priv  = (void *)nand;
2253
2254         /*
2255          * Register simulator's callbacks.
2256          */
2257         chip->cmd_ctrl   = ns_hwcontrol;
2258         chip->read_byte  = ns_nand_read_byte;
2259         chip->dev_ready  = ns_device_ready;
2260         chip->write_buf  = ns_nand_write_buf;
2261         chip->read_buf   = ns_nand_read_buf;
2262         chip->verify_buf = ns_nand_verify_buf;
2263         chip->read_word  = ns_nand_read_word;
2264         chip->ecc.mode   = NAND_ECC_SOFT;
2265         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2266         /* and 'badblocks' parameters to work */
2267         chip->options   |= NAND_SKIP_BBTSCAN;
2268
2269         switch (bbt) {
2270         case 2:
2271                  chip->options |= NAND_USE_FLASH_BBT_NO_OOB;
2272         case 1:
2273                  chip->options |= NAND_USE_FLASH_BBT;
2274         case 0:
2275                 break;
2276         default:
2277                 NS_ERR("bbt has to be 0..2\n");
2278                 retval = -EINVAL;
2279                 goto error;
2280         }
2281         /*
2282          * Perform minimum nandsim structure initialization to handle
2283          * the initial ID read command correctly
2284          */
2285         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2286                 nand->geom.idbytes = 4;
2287         else
2288                 nand->geom.idbytes = 2;
2289         nand->regs.status = NS_STATUS_OK(nand);
2290         nand->nxstate = STATE_UNKNOWN;
2291         nand->options |= OPT_PAGE256; /* temporary value */
2292         nand->ids[0] = first_id_byte;
2293         nand->ids[1] = second_id_byte;
2294         nand->ids[2] = third_id_byte;
2295         nand->ids[3] = fourth_id_byte;
2296         if (bus_width == 16) {
2297                 nand->busw = 16;
2298                 chip->options |= NAND_BUSWIDTH_16;
2299         }
2300
2301         nsmtd->owner = THIS_MODULE;
2302
2303         if ((retval = parse_weakblocks()) != 0)
2304                 goto error;
2305
2306         if ((retval = parse_weakpages()) != 0)
2307                 goto error;
2308
2309         if ((retval = parse_gravepages()) != 0)
2310                 goto error;
2311
2312         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2313                 NS_ERR("can't register NAND Simulator\n");
2314                 if (retval > 0)
2315                         retval = -ENXIO;
2316                 goto error;
2317         }
2318
2319         if (overridesize) {
2320                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2321                 if (new_size >> overridesize != nsmtd->erasesize) {
2322                         NS_ERR("overridesize is too big\n");
2323                         goto err_exit;
2324                 }
2325                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2326                 nsmtd->size = new_size;
2327                 chip->chipsize = new_size;
2328                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2329                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2330         }
2331
2332         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2333                 goto err_exit;
2334
2335         if ((retval = init_nandsim(nsmtd)) != 0)
2336                 goto err_exit;
2337
2338         if ((retval = nand_default_bbt(nsmtd)) != 0)
2339                 goto err_exit;
2340
2341         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2342                 goto err_exit;
2343
2344         /* Register NAND partitions */
2345         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2346                 goto err_exit;
2347
2348         return 0;
2349
2350 err_exit:
2351         free_nandsim(nand);
2352         nand_release(nsmtd);
2353         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2354                 kfree(nand->partitions[i].name);
2355 error:
2356         kfree(nsmtd);
2357         free_lists();
2358
2359         return retval;
2360 }
2361
2362 module_init(ns_init_module);
2363
2364 /*
2365  * Module clean-up function
2366  */
2367 static void __exit ns_cleanup_module(void)
2368 {
2369         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2370         int i;
2371
2372         free_nandsim(ns);    /* Free nandsim private resources */
2373         nand_release(nsmtd); /* Unregister driver */
2374         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2375                 kfree(ns->partitions[i].name);
2376         kfree(nsmtd);        /* Free other structures */
2377         free_lists();
2378 }
2379
2380 module_exit(ns_cleanup_module);
2381
2382 MODULE_LICENSE ("GPL");
2383 MODULE_AUTHOR ("Artem B. Bityuckiy");
2384 MODULE_DESCRIPTION ("The NAND flash simulator");