]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/omap2.c
39f46a0cf34e8d26e76320e51b94576244d66f89
[mv-sheeva.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
26
27 #define DRIVER_NAME     "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS    5000
29
30 #define NAND_Ecc_P1e            (1 << 0)
31 #define NAND_Ecc_P2e            (1 << 1)
32 #define NAND_Ecc_P4e            (1 << 2)
33 #define NAND_Ecc_P8e            (1 << 3)
34 #define NAND_Ecc_P16e           (1 << 4)
35 #define NAND_Ecc_P32e           (1 << 5)
36 #define NAND_Ecc_P64e           (1 << 6)
37 #define NAND_Ecc_P128e          (1 << 7)
38 #define NAND_Ecc_P256e          (1 << 8)
39 #define NAND_Ecc_P512e          (1 << 9)
40 #define NAND_Ecc_P1024e         (1 << 10)
41 #define NAND_Ecc_P2048e         (1 << 11)
42
43 #define NAND_Ecc_P1o            (1 << 16)
44 #define NAND_Ecc_P2o            (1 << 17)
45 #define NAND_Ecc_P4o            (1 << 18)
46 #define NAND_Ecc_P8o            (1 << 19)
47 #define NAND_Ecc_P16o           (1 << 20)
48 #define NAND_Ecc_P32o           (1 << 21)
49 #define NAND_Ecc_P64o           (1 << 22)
50 #define NAND_Ecc_P128o          (1 << 23)
51 #define NAND_Ecc_P256o          (1 << 24)
52 #define NAND_Ecc_P512o          (1 << 25)
53 #define NAND_Ecc_P1024o         (1 << 26)
54 #define NAND_Ecc_P2048o         (1 << 27)
55
56 #define TF(value)       (value ? 1 : 0)
57
58 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
59 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
60 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
61 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
62 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
63 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
64 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
65 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
66
67 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
68 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
69 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
70 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
71 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
72 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
73 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
74 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
75
76 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
77 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
78 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
79 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
80 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
81 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
82 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
83 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
84
85 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
86 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
87 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
88 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
89 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
90 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
91 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
92 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
93
94 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
95 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
96
97 #ifdef CONFIG_MTD_PARTITIONS
98 static const char *part_probes[] = { "cmdlinepart", NULL };
99 #endif
100
101 /* oob info generated runtime depending on ecc algorithm and layout selected */
102 static struct nand_ecclayout omap_oobinfo;
103 /* Define some generic bad / good block scan pattern which are used
104  * while scanning a device for factory marked good / bad blocks
105  */
106 static uint8_t scan_ff_pattern[] = { 0xff };
107 static struct nand_bbt_descr bb_descrip_flashbased = {
108         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
109         .offs = 0,
110         .len = 1,
111         .pattern = scan_ff_pattern,
112 };
113
114
115 struct omap_nand_info {
116         struct nand_hw_control          controller;
117         struct omap_nand_platform_data  *pdata;
118         struct mtd_info                 mtd;
119         struct mtd_partition            *parts;
120         struct nand_chip                nand;
121         struct platform_device          *pdev;
122
123         int                             gpmc_cs;
124         unsigned long                   phys_base;
125         struct completion               comp;
126         int                             dma_ch;
127         int                             gpmc_irq;
128         enum {
129                 OMAP_NAND_IO_READ = 0,  /* read */
130                 OMAP_NAND_IO_WRITE,     /* write */
131         } iomode;
132         u_char                          *buf;
133         int                                     buf_len;
134 };
135
136 /**
137  * omap_hwcontrol - hardware specific access to control-lines
138  * @mtd: MTD device structure
139  * @cmd: command to device
140  * @ctrl:
141  * NAND_NCE: bit 0 -> don't care
142  * NAND_CLE: bit 1 -> Command Latch
143  * NAND_ALE: bit 2 -> Address Latch
144  *
145  * NOTE: boards may use different bits for these!!
146  */
147 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
148 {
149         struct omap_nand_info *info = container_of(mtd,
150                                         struct omap_nand_info, mtd);
151
152         if (cmd != NAND_CMD_NONE) {
153                 if (ctrl & NAND_CLE)
154                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
155
156                 else if (ctrl & NAND_ALE)
157                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
158
159                 else /* NAND_NCE */
160                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
161         }
162 }
163
164 /**
165  * omap_read_buf8 - read data from NAND controller into buffer
166  * @mtd: MTD device structure
167  * @buf: buffer to store date
168  * @len: number of bytes to read
169  */
170 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
171 {
172         struct nand_chip *nand = mtd->priv;
173
174         ioread8_rep(nand->IO_ADDR_R, buf, len);
175 }
176
177 /**
178  * omap_write_buf8 - write buffer to NAND controller
179  * @mtd: MTD device structure
180  * @buf: data buffer
181  * @len: number of bytes to write
182  */
183 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
184 {
185         struct omap_nand_info *info = container_of(mtd,
186                                                 struct omap_nand_info, mtd);
187         u_char *p = (u_char *)buf;
188         u32     status = 0;
189
190         while (len--) {
191                 iowrite8(*p++, info->nand.IO_ADDR_W);
192                 /* wait until buffer is available for write */
193                 do {
194                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
195                 } while (!status);
196         }
197 }
198
199 /**
200  * omap_read_buf16 - read data from NAND controller into buffer
201  * @mtd: MTD device structure
202  * @buf: buffer to store date
203  * @len: number of bytes to read
204  */
205 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
206 {
207         struct nand_chip *nand = mtd->priv;
208
209         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
210 }
211
212 /**
213  * omap_write_buf16 - write buffer to NAND controller
214  * @mtd: MTD device structure
215  * @buf: data buffer
216  * @len: number of bytes to write
217  */
218 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
219 {
220         struct omap_nand_info *info = container_of(mtd,
221                                                 struct omap_nand_info, mtd);
222         u16 *p = (u16 *) buf;
223         u32     status = 0;
224         /* FIXME try bursts of writesw() or DMA ... */
225         len >>= 1;
226
227         while (len--) {
228                 iowrite16(*p++, info->nand.IO_ADDR_W);
229                 /* wait until buffer is available for write */
230                 do {
231                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
232                 } while (!status);
233         }
234 }
235
236 /**
237  * omap_read_buf_pref - read data from NAND controller into buffer
238  * @mtd: MTD device structure
239  * @buf: buffer to store date
240  * @len: number of bytes to read
241  */
242 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
243 {
244         struct omap_nand_info *info = container_of(mtd,
245                                                 struct omap_nand_info, mtd);
246         uint32_t r_count = 0;
247         int ret = 0;
248         u32 *p = (u32 *)buf;
249
250         /* take care of subpage reads */
251         if (len % 4) {
252                 if (info->nand.options & NAND_BUSWIDTH_16)
253                         omap_read_buf16(mtd, buf, len % 4);
254                 else
255                         omap_read_buf8(mtd, buf, len % 4);
256                 p = (u32 *) (buf + len % 4);
257                 len -= len % 4;
258         }
259
260         /* configure and start prefetch transfer */
261         ret = gpmc_prefetch_enable(info->gpmc_cs,
262                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
263         if (ret) {
264                 /* PFPW engine is busy, use cpu copy method */
265                 if (info->nand.options & NAND_BUSWIDTH_16)
266                         omap_read_buf16(mtd, (u_char *)p, len);
267                 else
268                         omap_read_buf8(mtd, (u_char *)p, len);
269         } else {
270                 do {
271                         r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
272                         r_count = r_count >> 2;
273                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
274                         p += r_count;
275                         len -= r_count << 2;
276                 } while (len);
277                 /* disable and stop the PFPW engine */
278                 gpmc_prefetch_reset(info->gpmc_cs);
279         }
280 }
281
282 /**
283  * omap_write_buf_pref - write buffer to NAND controller
284  * @mtd: MTD device structure
285  * @buf: data buffer
286  * @len: number of bytes to write
287  */
288 static void omap_write_buf_pref(struct mtd_info *mtd,
289                                         const u_char *buf, int len)
290 {
291         struct omap_nand_info *info = container_of(mtd,
292                                                 struct omap_nand_info, mtd);
293         uint32_t w_count = 0;
294         int i = 0, ret = 0;
295         u16 *p = (u16 *)buf;
296         unsigned long tim, limit;
297
298         /* take care of subpage writes */
299         if (len % 2 != 0) {
300                 writeb(*buf, info->nand.IO_ADDR_W);
301                 p = (u16 *)(buf + 1);
302                 len--;
303         }
304
305         /*  configure and start prefetch transfer */
306         ret = gpmc_prefetch_enable(info->gpmc_cs,
307                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
308         if (ret) {
309                 /* PFPW engine is busy, use cpu copy method */
310                 if (info->nand.options & NAND_BUSWIDTH_16)
311                         omap_write_buf16(mtd, (u_char *)p, len);
312                 else
313                         omap_write_buf8(mtd, (u_char *)p, len);
314         } else {
315                 while (len) {
316                         w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
317                         w_count = w_count >> 1;
318                         for (i = 0; (i < w_count) && len; i++, len -= 2)
319                                 iowrite16(*p++, info->nand.IO_ADDR_W);
320                 }
321                 /* wait for data to flushed-out before reset the prefetch */
322                 tim = 0;
323                 limit = (loops_per_jiffy *
324                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
325                 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
326                         cpu_relax();
327
328                 /* disable and stop the PFPW engine */
329                 gpmc_prefetch_reset(info->gpmc_cs);
330         }
331 }
332
333 /*
334  * omap_nand_dma_cb: callback on the completion of dma transfer
335  * @lch: logical channel
336  * @ch_satuts: channel status
337  * @data: pointer to completion data structure
338  */
339 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
340 {
341         complete((struct completion *) data);
342 }
343
344 /*
345  * omap_nand_dma_transfer: configer and start dma transfer
346  * @mtd: MTD device structure
347  * @addr: virtual address in RAM of source/destination
348  * @len: number of data bytes to be transferred
349  * @is_write: flag for read/write operation
350  */
351 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
352                                         unsigned int len, int is_write)
353 {
354         struct omap_nand_info *info = container_of(mtd,
355                                         struct omap_nand_info, mtd);
356         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
357                                                         DMA_FROM_DEVICE;
358         dma_addr_t dma_addr;
359         int ret;
360         unsigned long tim, limit;
361
362         /* The fifo depth is 64 bytes max.
363          * But configure the FIFO-threahold to 32 to get a sync at each frame
364          * and frame length is 32 bytes.
365          */
366         int buf_len = len >> 6;
367
368         if (addr >= high_memory) {
369                 struct page *p1;
370
371                 if (((size_t)addr & PAGE_MASK) !=
372                         ((size_t)(addr + len - 1) & PAGE_MASK))
373                         goto out_copy;
374                 p1 = vmalloc_to_page(addr);
375                 if (!p1)
376                         goto out_copy;
377                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
378         }
379
380         dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
381         if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
382                 dev_err(&info->pdev->dev,
383                         "Couldn't DMA map a %d byte buffer\n", len);
384                 goto out_copy;
385         }
386
387         if (is_write) {
388             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
389                                                 info->phys_base, 0, 0);
390             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
391                                                         dma_addr, 0, 0);
392             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
393                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
394                                         OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
395         } else {
396             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
397                                                 info->phys_base, 0, 0);
398             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
399                                                         dma_addr, 0, 0);
400             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
401                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
402                                         OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
403         }
404         /*  configure and start prefetch transfer */
405         ret = gpmc_prefetch_enable(info->gpmc_cs,
406                         PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
407         if (ret)
408                 /* PFPW engine is busy, use cpu copy method */
409                 goto out_copy;
410
411         init_completion(&info->comp);
412
413         omap_start_dma(info->dma_ch);
414
415         /* setup and start DMA using dma_addr */
416         wait_for_completion(&info->comp);
417         tim = 0;
418         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
419         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
420                 cpu_relax();
421
422         /* disable and stop the PFPW engine */
423         gpmc_prefetch_reset(info->gpmc_cs);
424
425         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
426         return 0;
427
428 out_copy:
429         if (info->nand.options & NAND_BUSWIDTH_16)
430                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
431                         : omap_write_buf16(mtd, (u_char *) addr, len);
432         else
433                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
434                         : omap_write_buf8(mtd, (u_char *) addr, len);
435         return 0;
436 }
437
438 /**
439  * omap_read_buf_dma_pref - read data from NAND controller into buffer
440  * @mtd: MTD device structure
441  * @buf: buffer to store date
442  * @len: number of bytes to read
443  */
444 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
445 {
446         if (len <= mtd->oobsize)
447                 omap_read_buf_pref(mtd, buf, len);
448         else
449                 /* start transfer in DMA mode */
450                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
451 }
452
453 /**
454  * omap_write_buf_dma_pref - write buffer to NAND controller
455  * @mtd: MTD device structure
456  * @buf: data buffer
457  * @len: number of bytes to write
458  */
459 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
460                                         const u_char *buf, int len)
461 {
462         if (len <= mtd->oobsize)
463                 omap_write_buf_pref(mtd, buf, len);
464         else
465                 /* start transfer in DMA mode */
466                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
467 }
468
469 /*
470  * omap_nand_irq - GMPC irq handler
471  * @this_irq: gpmc irq number
472  * @dev: omap_nand_info structure pointer is passed here
473  */
474 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
475 {
476         struct omap_nand_info *info = (struct omap_nand_info *) dev;
477         u32 bytes;
478         u32 irq_stat;
479
480         irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
481         bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
482         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
483         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
484                 if (irq_stat & 0x2)
485                         goto done;
486
487                 if (info->buf_len && (info->buf_len < bytes))
488                         bytes = info->buf_len;
489                 else if (!info->buf_len)
490                         bytes = 0;
491                 iowrite32_rep(info->nand.IO_ADDR_W,
492                                                 (u32 *)info->buf, bytes >> 2);
493                 info->buf = info->buf + bytes;
494                 info->buf_len -= bytes;
495
496         } else {
497                 ioread32_rep(info->nand.IO_ADDR_R,
498                                                 (u32 *)info->buf, bytes >> 2);
499                 info->buf = info->buf + bytes;
500
501                 if (irq_stat & 0x2)
502                         goto done;
503         }
504         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
505
506         return IRQ_HANDLED;
507
508 done:
509         complete(&info->comp);
510         /* disable irq */
511         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
512
513         /* clear status */
514         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
515
516         return IRQ_HANDLED;
517 }
518
519 /*
520  * omap_read_buf_irq_pref - read data from NAND controller into buffer
521  * @mtd: MTD device structure
522  * @buf: buffer to store date
523  * @len: number of bytes to read
524  */
525 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
526 {
527         struct omap_nand_info *info = container_of(mtd,
528                                                 struct omap_nand_info, mtd);
529         int ret = 0;
530
531         if (len <= mtd->oobsize) {
532                 omap_read_buf_pref(mtd, buf, len);
533                 return;
534         }
535
536         info->iomode = OMAP_NAND_IO_READ;
537         info->buf = buf;
538         init_completion(&info->comp);
539
540         /*  configure and start prefetch transfer */
541         ret = gpmc_prefetch_enable(info->gpmc_cs,
542                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
543         if (ret)
544                 /* PFPW engine is busy, use cpu copy method */
545                 goto out_copy;
546
547         info->buf_len = len;
548         /* enable irq */
549         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
550                 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
551
552         /* waiting for read to complete */
553         wait_for_completion(&info->comp);
554
555         /* disable and stop the PFPW engine */
556         gpmc_prefetch_reset(info->gpmc_cs);
557         return;
558
559 out_copy:
560         if (info->nand.options & NAND_BUSWIDTH_16)
561                 omap_read_buf16(mtd, buf, len);
562         else
563                 omap_read_buf8(mtd, buf, len);
564 }
565
566 /*
567  * omap_write_buf_irq_pref - write buffer to NAND controller
568  * @mtd: MTD device structure
569  * @buf: data buffer
570  * @len: number of bytes to write
571  */
572 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
573                                         const u_char *buf, int len)
574 {
575         struct omap_nand_info *info = container_of(mtd,
576                                                 struct omap_nand_info, mtd);
577         int ret = 0;
578         unsigned long tim, limit;
579
580         if (len <= mtd->oobsize) {
581                 omap_write_buf_pref(mtd, buf, len);
582                 return;
583         }
584
585         info->iomode = OMAP_NAND_IO_WRITE;
586         info->buf = (u_char *) buf;
587         init_completion(&info->comp);
588
589         /* configure and start prefetch transfer : size=24 */
590         ret = gpmc_prefetch_enable(info->gpmc_cs,
591                         (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
592         if (ret)
593                 /* PFPW engine is busy, use cpu copy method */
594                 goto out_copy;
595
596         info->buf_len = len;
597         /* enable irq */
598         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
599                         (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
600
601         /* waiting for write to complete */
602         wait_for_completion(&info->comp);
603         /* wait for data to flushed-out before reset the prefetch */
604         tim = 0;
605         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
606         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
607                 cpu_relax();
608
609         /* disable and stop the PFPW engine */
610         gpmc_prefetch_reset(info->gpmc_cs);
611         return;
612
613 out_copy:
614         if (info->nand.options & NAND_BUSWIDTH_16)
615                 omap_write_buf16(mtd, buf, len);
616         else
617                 omap_write_buf8(mtd, buf, len);
618 }
619
620 /**
621  * omap_verify_buf - Verify chip data against buffer
622  * @mtd: MTD device structure
623  * @buf: buffer containing the data to compare
624  * @len: number of bytes to compare
625  */
626 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
627 {
628         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
629                                                         mtd);
630         u16 *p = (u16 *) buf;
631
632         len >>= 1;
633         while (len--) {
634                 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
635                         return -EFAULT;
636         }
637
638         return 0;
639 }
640
641 /**
642  * gen_true_ecc - This function will generate true ECC value
643  * @ecc_buf: buffer to store ecc code
644  *
645  * This generated true ECC value can be used when correcting
646  * data read from NAND flash memory core
647  */
648 static void gen_true_ecc(u8 *ecc_buf)
649 {
650         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
651                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
652
653         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
654                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
655         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
656                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
657         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
658                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
659 }
660
661 /**
662  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
663  * @ecc_data1:  ecc code from nand spare area
664  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
665  * @page_data:  page data
666  *
667  * This function compares two ECC's and indicates if there is an error.
668  * If the error can be corrected it will be corrected to the buffer.
669  * If there is no error, %0 is returned. If there is an error but it
670  * was corrected, %1 is returned. Otherwise, %-1 is returned.
671  */
672 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
673                             u8 *ecc_data2,      /* read from register */
674                             u8 *page_data)
675 {
676         uint    i;
677         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
678         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
679         u8      ecc_bit[24];
680         u8      ecc_sum = 0;
681         u8      find_bit = 0;
682         uint    find_byte = 0;
683         int     isEccFF;
684
685         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
686
687         gen_true_ecc(ecc_data1);
688         gen_true_ecc(ecc_data2);
689
690         for (i = 0; i <= 2; i++) {
691                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
692                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
693         }
694
695         for (i = 0; i < 8; i++) {
696                 tmp0_bit[i]     = *ecc_data1 % 2;
697                 *ecc_data1      = *ecc_data1 / 2;
698         }
699
700         for (i = 0; i < 8; i++) {
701                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
702                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
703         }
704
705         for (i = 0; i < 8; i++) {
706                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
707                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
708         }
709
710         for (i = 0; i < 8; i++) {
711                 comp0_bit[i]     = *ecc_data2 % 2;
712                 *ecc_data2       = *ecc_data2 / 2;
713         }
714
715         for (i = 0; i < 8; i++) {
716                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
717                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
718         }
719
720         for (i = 0; i < 8; i++) {
721                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
722                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
723         }
724
725         for (i = 0; i < 6; i++)
726                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
727
728         for (i = 0; i < 8; i++)
729                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
730
731         for (i = 0; i < 8; i++)
732                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
733
734         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
735         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
736
737         for (i = 0; i < 24; i++)
738                 ecc_sum += ecc_bit[i];
739
740         switch (ecc_sum) {
741         case 0:
742                 /* Not reached because this function is not called if
743                  *  ECC values are equal
744                  */
745                 return 0;
746
747         case 1:
748                 /* Uncorrectable error */
749                 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
750                 return -1;
751
752         case 11:
753                 /* UN-Correctable error */
754                 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
755                 return -1;
756
757         case 12:
758                 /* Correctable error */
759                 find_byte = (ecc_bit[23] << 8) +
760                             (ecc_bit[21] << 7) +
761                             (ecc_bit[19] << 6) +
762                             (ecc_bit[17] << 5) +
763                             (ecc_bit[15] << 4) +
764                             (ecc_bit[13] << 3) +
765                             (ecc_bit[11] << 2) +
766                             (ecc_bit[9]  << 1) +
767                             ecc_bit[7];
768
769                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
770
771                 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
772                                 "offset: %d, bit: %d\n", find_byte, find_bit);
773
774                 page_data[find_byte] ^= (1 << find_bit);
775
776                 return 1;
777         default:
778                 if (isEccFF) {
779                         if (ecc_data2[0] == 0 &&
780                             ecc_data2[1] == 0 &&
781                             ecc_data2[2] == 0)
782                                 return 0;
783                 }
784                 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
785                 return -1;
786         }
787 }
788
789 /**
790  * omap_correct_data - Compares the ECC read with HW generated ECC
791  * @mtd: MTD device structure
792  * @dat: page data
793  * @read_ecc: ecc read from nand flash
794  * @calc_ecc: ecc read from HW ECC registers
795  *
796  * Compares the ecc read from nand spare area with ECC registers values
797  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
798  * detection and correction. If there are no errors, %0 is returned. If
799  * there were errors and all of the errors were corrected, the number of
800  * corrected errors is returned. If uncorrectable errors exist, %-1 is
801  * returned.
802  */
803 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
804                                 u_char *read_ecc, u_char *calc_ecc)
805 {
806         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
807                                                         mtd);
808         int blockCnt = 0, i = 0, ret = 0;
809         int stat = 0;
810
811         /* Ex NAND_ECC_HW12_2048 */
812         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
813                         (info->nand.ecc.size  == 2048))
814                 blockCnt = 4;
815         else
816                 blockCnt = 1;
817
818         for (i = 0; i < blockCnt; i++) {
819                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
820                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
821                         if (ret < 0)
822                                 return ret;
823                         /* keep track of the number of corrected errors */
824                         stat += ret;
825                 }
826                 read_ecc += 3;
827                 calc_ecc += 3;
828                 dat      += 512;
829         }
830         return stat;
831 }
832
833 /**
834  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
835  * @mtd: MTD device structure
836  * @dat: The pointer to data on which ecc is computed
837  * @ecc_code: The ecc_code buffer
838  *
839  * Using noninverted ECC can be considered ugly since writing a blank
840  * page ie. padding will clear the ECC bytes. This is no problem as long
841  * nobody is trying to write data on the seemingly unused page. Reading
842  * an erased page will produce an ECC mismatch between generated and read
843  * ECC bytes that has to be dealt with separately.
844  */
845 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
846                                 u_char *ecc_code)
847 {
848         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
849                                                         mtd);
850         return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
851 }
852
853 /**
854  * omap_enable_hwecc - This function enables the hardware ecc functionality
855  * @mtd: MTD device structure
856  * @mode: Read/Write mode
857  */
858 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
859 {
860         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
861                                                         mtd);
862         struct nand_chip *chip = mtd->priv;
863         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
864
865         gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
866 }
867
868 /**
869  * omap_wait - wait until the command is done
870  * @mtd: MTD device structure
871  * @chip: NAND Chip structure
872  *
873  * Wait function is called during Program and erase operations and
874  * the way it is called from MTD layer, we should wait till the NAND
875  * chip is ready after the programming/erase operation has completed.
876  *
877  * Erase can take up to 400ms and program up to 20ms according to
878  * general NAND and SmartMedia specs
879  */
880 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
881 {
882         struct nand_chip *this = mtd->priv;
883         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
884                                                         mtd);
885         unsigned long timeo = jiffies;
886         int status = NAND_STATUS_FAIL, state = this->state;
887
888         if (state == FL_ERASING)
889                 timeo += (HZ * 400) / 1000;
890         else
891                 timeo += (HZ * 20) / 1000;
892
893         gpmc_nand_write(info->gpmc_cs,
894                         GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
895         while (time_before(jiffies, timeo)) {
896                 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
897                 if (status & NAND_STATUS_READY)
898                         break;
899                 cond_resched();
900         }
901         return status;
902 }
903
904 /**
905  * omap_dev_ready - calls the platform specific dev_ready function
906  * @mtd: MTD device structure
907  */
908 static int omap_dev_ready(struct mtd_info *mtd)
909 {
910         unsigned int val = 0;
911         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
912                                                         mtd);
913
914         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
915         if ((val & 0x100) == 0x100) {
916                 /* Clear IRQ Interrupt */
917                 val |= 0x100;
918                 val &= ~(0x0);
919                 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
920         } else {
921                 unsigned int cnt = 0;
922                 while (cnt++ < 0x1FF) {
923                         if  ((val & 0x100) == 0x100)
924                                 return 0;
925                         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
926                 }
927         }
928
929         return 1;
930 }
931
932 static int __devinit omap_nand_probe(struct platform_device *pdev)
933 {
934         struct omap_nand_info           *info;
935         struct omap_nand_platform_data  *pdata;
936         int                             err;
937         int                             i, offset;
938
939         pdata = pdev->dev.platform_data;
940         if (pdata == NULL) {
941                 dev_err(&pdev->dev, "platform data missing\n");
942                 return -ENODEV;
943         }
944
945         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
946         if (!info)
947                 return -ENOMEM;
948
949         platform_set_drvdata(pdev, info);
950
951         spin_lock_init(&info->controller.lock);
952         init_waitqueue_head(&info->controller.wq);
953
954         info->pdev = pdev;
955
956         info->gpmc_cs           = pdata->cs;
957         info->phys_base         = pdata->phys_base;
958
959         info->mtd.priv          = &info->nand;
960         info->mtd.name          = dev_name(&pdev->dev);
961         info->mtd.owner         = THIS_MODULE;
962
963         info->nand.options      = pdata->devsize;
964         info->nand.options      |= NAND_SKIP_BBTSCAN;
965
966         /* NAND write protect off */
967         gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
968
969         if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
970                                 pdev->dev.driver->name)) {
971                 err = -EBUSY;
972                 goto out_free_info;
973         }
974
975         info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
976         if (!info->nand.IO_ADDR_R) {
977                 err = -ENOMEM;
978                 goto out_release_mem_region;
979         }
980
981         info->nand.controller = &info->controller;
982
983         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
984         info->nand.cmd_ctrl  = omap_hwcontrol;
985
986         /*
987          * If RDY/BSY line is connected to OMAP then use the omap ready
988          * funcrtion and the generic nand_wait function which reads the status
989          * register after monitoring the RDY/BSY line.Otherwise use a standard
990          * chip delay which is slightly more than tR (AC Timing) of the NAND
991          * device and read status register until you get a failure or success
992          */
993         if (pdata->dev_ready) {
994                 info->nand.dev_ready = omap_dev_ready;
995                 info->nand.chip_delay = 0;
996         } else {
997                 info->nand.waitfunc = omap_wait;
998                 info->nand.chip_delay = 50;
999         }
1000
1001         switch (pdata->xfer_type) {
1002         case NAND_OMAP_PREFETCH_POLLED:
1003                 info->nand.read_buf   = omap_read_buf_pref;
1004                 info->nand.write_buf  = omap_write_buf_pref;
1005                 break;
1006
1007         case NAND_OMAP_POLLED:
1008                 if (info->nand.options & NAND_BUSWIDTH_16) {
1009                         info->nand.read_buf   = omap_read_buf16;
1010                         info->nand.write_buf  = omap_write_buf16;
1011                 } else {
1012                         info->nand.read_buf   = omap_read_buf8;
1013                         info->nand.write_buf  = omap_write_buf8;
1014                 }
1015                 break;
1016
1017         case NAND_OMAP_PREFETCH_DMA:
1018                 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1019                                 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1020                 if (err < 0) {
1021                         info->dma_ch = -1;
1022                         dev_err(&pdev->dev, "DMA request failed!\n");
1023                         goto out_release_mem_region;
1024                 } else {
1025                         omap_set_dma_dest_burst_mode(info->dma_ch,
1026                                         OMAP_DMA_DATA_BURST_16);
1027                         omap_set_dma_src_burst_mode(info->dma_ch,
1028                                         OMAP_DMA_DATA_BURST_16);
1029
1030                         info->nand.read_buf   = omap_read_buf_dma_pref;
1031                         info->nand.write_buf  = omap_write_buf_dma_pref;
1032                 }
1033                 break;
1034
1035         case NAND_OMAP_PREFETCH_IRQ:
1036                 err = request_irq(pdata->gpmc_irq,
1037                                 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1038                 if (err) {
1039                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1040                                                         pdata->gpmc_irq, err);
1041                         goto out_release_mem_region;
1042                 } else {
1043                         info->gpmc_irq       = pdata->gpmc_irq;
1044                         info->nand.read_buf  = omap_read_buf_irq_pref;
1045                         info->nand.write_buf = omap_write_buf_irq_pref;
1046                 }
1047                 break;
1048
1049         default:
1050                 dev_err(&pdev->dev,
1051                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1052                 err = -EINVAL;
1053                 goto out_release_mem_region;
1054         }
1055
1056         info->nand.verify_buf = omap_verify_buf;
1057
1058         /* selsect the ecc type */
1059         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1060                 info->nand.ecc.mode = NAND_ECC_SOFT;
1061         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1062                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1063                 info->nand.ecc.bytes            = 3;
1064                 info->nand.ecc.size             = 512;
1065                 info->nand.ecc.calculate        = omap_calculate_ecc;
1066                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1067                 info->nand.ecc.correct          = omap_correct_data;
1068                 info->nand.ecc.mode             = NAND_ECC_HW;
1069         }
1070
1071         /* DIP switches on some boards change between 8 and 16 bit
1072          * bus widths for flash.  Try the other width if the first try fails.
1073          */
1074         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075                 info->nand.options ^= NAND_BUSWIDTH_16;
1076                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1077                         err = -ENXIO;
1078                         goto out_release_mem_region;
1079                 }
1080         }
1081
1082         /* rom code layout */
1083         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1084
1085                 if (info->nand.options & NAND_BUSWIDTH_16)
1086                         offset = 2;
1087                 else {
1088                         offset = 1;
1089                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1090                 }
1091                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1092                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1093                         omap_oobinfo.eccpos[i] = i+offset;
1094
1095                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1096                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1097                                         (offset + omap_oobinfo.eccbytes);
1098
1099                 info->nand.ecc.layout = &omap_oobinfo;
1100         }
1101
1102         /* second phase scan */
1103         if (nand_scan_tail(&info->mtd)) {
1104                 err = -ENXIO;
1105                 goto out_release_mem_region;
1106         }
1107
1108 #ifdef CONFIG_MTD_PARTITIONS
1109         err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1110         if (err > 0)
1111                 add_mtd_partitions(&info->mtd, info->parts, err);
1112         else if (pdata->parts)
1113                 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
1114         else
1115 #endif
1116                 add_mtd_device(&info->mtd);
1117
1118         platform_set_drvdata(pdev, &info->mtd);
1119
1120         return 0;
1121
1122 out_release_mem_region:
1123         release_mem_region(info->phys_base, NAND_IO_SIZE);
1124 out_free_info:
1125         kfree(info);
1126
1127         return err;
1128 }
1129
1130 static int omap_nand_remove(struct platform_device *pdev)
1131 {
1132         struct mtd_info *mtd = platform_get_drvdata(pdev);
1133         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1134                                                         mtd);
1135
1136         platform_set_drvdata(pdev, NULL);
1137         if (info->dma_ch != -1)
1138                 omap_free_dma(info->dma_ch);
1139
1140         if (info->gpmc_irq)
1141                 free_irq(info->gpmc_irq, info);
1142
1143         /* Release NAND device, its internal structures and partitions */
1144         nand_release(&info->mtd);
1145         iounmap(info->nand.IO_ADDR_R);
1146         kfree(&info->mtd);
1147         return 0;
1148 }
1149
1150 static struct platform_driver omap_nand_driver = {
1151         .probe          = omap_nand_probe,
1152         .remove         = omap_nand_remove,
1153         .driver         = {
1154                 .name   = DRIVER_NAME,
1155                 .owner  = THIS_MODULE,
1156         },
1157 };
1158
1159 static int __init omap_nand_init(void)
1160 {
1161         pr_info("%s driver initializing\n", DRIVER_NAME);
1162
1163         return platform_driver_register(&omap_nand_driver);
1164 }
1165
1166 static void __exit omap_nand_exit(void)
1167 {
1168         platform_driver_unregister(&omap_nand_driver);
1169 }
1170
1171 module_init(omap_nand_init);
1172 module_exit(omap_nand_exit);
1173
1174 MODULE_ALIAS("platform:" DRIVER_NAME);
1175 MODULE_LICENSE("GPL");
1176 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");