]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/omap2.c
Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/floppy...
[karo-tx-linux.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23
24 #ifdef CONFIG_MTD_NAND_OMAP_BCH
25 #include <linux/bch.h>
26 #endif
27
28 #include <plat/dma.h>
29 #include <plat/gpmc.h>
30 #include <plat/nand.h>
31
32 #define DRIVER_NAME     "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS    5000
34
35 #define NAND_Ecc_P1e            (1 << 0)
36 #define NAND_Ecc_P2e            (1 << 1)
37 #define NAND_Ecc_P4e            (1 << 2)
38 #define NAND_Ecc_P8e            (1 << 3)
39 #define NAND_Ecc_P16e           (1 << 4)
40 #define NAND_Ecc_P32e           (1 << 5)
41 #define NAND_Ecc_P64e           (1 << 6)
42 #define NAND_Ecc_P128e          (1 << 7)
43 #define NAND_Ecc_P256e          (1 << 8)
44 #define NAND_Ecc_P512e          (1 << 9)
45 #define NAND_Ecc_P1024e         (1 << 10)
46 #define NAND_Ecc_P2048e         (1 << 11)
47
48 #define NAND_Ecc_P1o            (1 << 16)
49 #define NAND_Ecc_P2o            (1 << 17)
50 #define NAND_Ecc_P4o            (1 << 18)
51 #define NAND_Ecc_P8o            (1 << 19)
52 #define NAND_Ecc_P16o           (1 << 20)
53 #define NAND_Ecc_P32o           (1 << 21)
54 #define NAND_Ecc_P64o           (1 << 22)
55 #define NAND_Ecc_P128o          (1 << 23)
56 #define NAND_Ecc_P256o          (1 << 24)
57 #define NAND_Ecc_P512o          (1 << 25)
58 #define NAND_Ecc_P1024o         (1 << 26)
59 #define NAND_Ecc_P2048o         (1 << 27)
60
61 #define TF(value)       (value ? 1 : 0)
62
63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
71
72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
80
81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
89
90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
98
99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
101
102 /* oob info generated runtime depending on ecc algorithm and layout selected */
103 static struct nand_ecclayout omap_oobinfo;
104 /* Define some generic bad / good block scan pattern which are used
105  * while scanning a device for factory marked good / bad blocks
106  */
107 static uint8_t scan_ff_pattern[] = { 0xff };
108 static struct nand_bbt_descr bb_descrip_flashbased = {
109         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
110         .offs = 0,
111         .len = 1,
112         .pattern = scan_ff_pattern,
113 };
114
115
116 struct omap_nand_info {
117         struct nand_hw_control          controller;
118         struct omap_nand_platform_data  *pdata;
119         struct mtd_info                 mtd;
120         struct nand_chip                nand;
121         struct platform_device          *pdev;
122
123         int                             gpmc_cs;
124         unsigned long                   phys_base;
125         struct completion               comp;
126         int                             dma_ch;
127         int                             gpmc_irq;
128         enum {
129                 OMAP_NAND_IO_READ = 0,  /* read */
130                 OMAP_NAND_IO_WRITE,     /* write */
131         } iomode;
132         u_char                          *buf;
133         int                                     buf_len;
134
135 #ifdef CONFIG_MTD_NAND_OMAP_BCH
136         struct bch_control             *bch;
137         struct nand_ecclayout           ecclayout;
138 #endif
139 };
140
141 /**
142  * omap_hwcontrol - hardware specific access to control-lines
143  * @mtd: MTD device structure
144  * @cmd: command to device
145  * @ctrl:
146  * NAND_NCE: bit 0 -> don't care
147  * NAND_CLE: bit 1 -> Command Latch
148  * NAND_ALE: bit 2 -> Address Latch
149  *
150  * NOTE: boards may use different bits for these!!
151  */
152 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
153 {
154         struct omap_nand_info *info = container_of(mtd,
155                                         struct omap_nand_info, mtd);
156
157         if (cmd != NAND_CMD_NONE) {
158                 if (ctrl & NAND_CLE)
159                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
160
161                 else if (ctrl & NAND_ALE)
162                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
163
164                 else /* NAND_NCE */
165                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
166         }
167 }
168
169 /**
170  * omap_read_buf8 - read data from NAND controller into buffer
171  * @mtd: MTD device structure
172  * @buf: buffer to store date
173  * @len: number of bytes to read
174  */
175 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
176 {
177         struct nand_chip *nand = mtd->priv;
178
179         ioread8_rep(nand->IO_ADDR_R, buf, len);
180 }
181
182 /**
183  * omap_write_buf8 - write buffer to NAND controller
184  * @mtd: MTD device structure
185  * @buf: data buffer
186  * @len: number of bytes to write
187  */
188 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
189 {
190         struct omap_nand_info *info = container_of(mtd,
191                                                 struct omap_nand_info, mtd);
192         u_char *p = (u_char *)buf;
193         u32     status = 0;
194
195         while (len--) {
196                 iowrite8(*p++, info->nand.IO_ADDR_W);
197                 /* wait until buffer is available for write */
198                 do {
199                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
200                 } while (!status);
201         }
202 }
203
204 /**
205  * omap_read_buf16 - read data from NAND controller into buffer
206  * @mtd: MTD device structure
207  * @buf: buffer to store date
208  * @len: number of bytes to read
209  */
210 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
211 {
212         struct nand_chip *nand = mtd->priv;
213
214         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
215 }
216
217 /**
218  * omap_write_buf16 - write buffer to NAND controller
219  * @mtd: MTD device structure
220  * @buf: data buffer
221  * @len: number of bytes to write
222  */
223 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
224 {
225         struct omap_nand_info *info = container_of(mtd,
226                                                 struct omap_nand_info, mtd);
227         u16 *p = (u16 *) buf;
228         u32     status = 0;
229         /* FIXME try bursts of writesw() or DMA ... */
230         len >>= 1;
231
232         while (len--) {
233                 iowrite16(*p++, info->nand.IO_ADDR_W);
234                 /* wait until buffer is available for write */
235                 do {
236                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
237                 } while (!status);
238         }
239 }
240
241 /**
242  * omap_read_buf_pref - read data from NAND controller into buffer
243  * @mtd: MTD device structure
244  * @buf: buffer to store date
245  * @len: number of bytes to read
246  */
247 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
248 {
249         struct omap_nand_info *info = container_of(mtd,
250                                                 struct omap_nand_info, mtd);
251         uint32_t r_count = 0;
252         int ret = 0;
253         u32 *p = (u32 *)buf;
254
255         /* take care of subpage reads */
256         if (len % 4) {
257                 if (info->nand.options & NAND_BUSWIDTH_16)
258                         omap_read_buf16(mtd, buf, len % 4);
259                 else
260                         omap_read_buf8(mtd, buf, len % 4);
261                 p = (u32 *) (buf + len % 4);
262                 len -= len % 4;
263         }
264
265         /* configure and start prefetch transfer */
266         ret = gpmc_prefetch_enable(info->gpmc_cs,
267                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
268         if (ret) {
269                 /* PFPW engine is busy, use cpu copy method */
270                 if (info->nand.options & NAND_BUSWIDTH_16)
271                         omap_read_buf16(mtd, (u_char *)p, len);
272                 else
273                         omap_read_buf8(mtd, (u_char *)p, len);
274         } else {
275                 do {
276                         r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
277                         r_count = r_count >> 2;
278                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
279                         p += r_count;
280                         len -= r_count << 2;
281                 } while (len);
282                 /* disable and stop the PFPW engine */
283                 gpmc_prefetch_reset(info->gpmc_cs);
284         }
285 }
286
287 /**
288  * omap_write_buf_pref - write buffer to NAND controller
289  * @mtd: MTD device structure
290  * @buf: data buffer
291  * @len: number of bytes to write
292  */
293 static void omap_write_buf_pref(struct mtd_info *mtd,
294                                         const u_char *buf, int len)
295 {
296         struct omap_nand_info *info = container_of(mtd,
297                                                 struct omap_nand_info, mtd);
298         uint32_t w_count = 0;
299         int i = 0, ret = 0;
300         u16 *p = (u16 *)buf;
301         unsigned long tim, limit;
302
303         /* take care of subpage writes */
304         if (len % 2 != 0) {
305                 writeb(*buf, info->nand.IO_ADDR_W);
306                 p = (u16 *)(buf + 1);
307                 len--;
308         }
309
310         /*  configure and start prefetch transfer */
311         ret = gpmc_prefetch_enable(info->gpmc_cs,
312                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
313         if (ret) {
314                 /* PFPW engine is busy, use cpu copy method */
315                 if (info->nand.options & NAND_BUSWIDTH_16)
316                         omap_write_buf16(mtd, (u_char *)p, len);
317                 else
318                         omap_write_buf8(mtd, (u_char *)p, len);
319         } else {
320                 while (len) {
321                         w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
322                         w_count = w_count >> 1;
323                         for (i = 0; (i < w_count) && len; i++, len -= 2)
324                                 iowrite16(*p++, info->nand.IO_ADDR_W);
325                 }
326                 /* wait for data to flushed-out before reset the prefetch */
327                 tim = 0;
328                 limit = (loops_per_jiffy *
329                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
330                 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
331                         cpu_relax();
332
333                 /* disable and stop the PFPW engine */
334                 gpmc_prefetch_reset(info->gpmc_cs);
335         }
336 }
337
338 /*
339  * omap_nand_dma_cb: callback on the completion of dma transfer
340  * @lch: logical channel
341  * @ch_satuts: channel status
342  * @data: pointer to completion data structure
343  */
344 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
345 {
346         complete((struct completion *) data);
347 }
348
349 /*
350  * omap_nand_dma_transfer: configer and start dma transfer
351  * @mtd: MTD device structure
352  * @addr: virtual address in RAM of source/destination
353  * @len: number of data bytes to be transferred
354  * @is_write: flag for read/write operation
355  */
356 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
357                                         unsigned int len, int is_write)
358 {
359         struct omap_nand_info *info = container_of(mtd,
360                                         struct omap_nand_info, mtd);
361         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
362                                                         DMA_FROM_DEVICE;
363         dma_addr_t dma_addr;
364         int ret;
365         unsigned long tim, limit;
366
367         /* The fifo depth is 64 bytes max.
368          * But configure the FIFO-threahold to 32 to get a sync at each frame
369          * and frame length is 32 bytes.
370          */
371         int buf_len = len >> 6;
372
373         if (addr >= high_memory) {
374                 struct page *p1;
375
376                 if (((size_t)addr & PAGE_MASK) !=
377                         ((size_t)(addr + len - 1) & PAGE_MASK))
378                         goto out_copy;
379                 p1 = vmalloc_to_page(addr);
380                 if (!p1)
381                         goto out_copy;
382                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
383         }
384
385         dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
386         if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
387                 dev_err(&info->pdev->dev,
388                         "Couldn't DMA map a %d byte buffer\n", len);
389                 goto out_copy;
390         }
391
392         if (is_write) {
393             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
394                                                 info->phys_base, 0, 0);
395             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
396                                                         dma_addr, 0, 0);
397             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
398                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
399                                         OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
400         } else {
401             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
402                                                 info->phys_base, 0, 0);
403             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
404                                                         dma_addr, 0, 0);
405             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
406                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
407                                         OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
408         }
409         /*  configure and start prefetch transfer */
410         ret = gpmc_prefetch_enable(info->gpmc_cs,
411                         PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
412         if (ret)
413                 /* PFPW engine is busy, use cpu copy method */
414                 goto out_copy_unmap;
415
416         init_completion(&info->comp);
417
418         omap_start_dma(info->dma_ch);
419
420         /* setup and start DMA using dma_addr */
421         wait_for_completion(&info->comp);
422         tim = 0;
423         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
424         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
425                 cpu_relax();
426
427         /* disable and stop the PFPW engine */
428         gpmc_prefetch_reset(info->gpmc_cs);
429
430         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
431         return 0;
432
433 out_copy_unmap:
434         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
435 out_copy:
436         if (info->nand.options & NAND_BUSWIDTH_16)
437                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
438                         : omap_write_buf16(mtd, (u_char *) addr, len);
439         else
440                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
441                         : omap_write_buf8(mtd, (u_char *) addr, len);
442         return 0;
443 }
444
445 /**
446  * omap_read_buf_dma_pref - read data from NAND controller into buffer
447  * @mtd: MTD device structure
448  * @buf: buffer to store date
449  * @len: number of bytes to read
450  */
451 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
452 {
453         if (len <= mtd->oobsize)
454                 omap_read_buf_pref(mtd, buf, len);
455         else
456                 /* start transfer in DMA mode */
457                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
458 }
459
460 /**
461  * omap_write_buf_dma_pref - write buffer to NAND controller
462  * @mtd: MTD device structure
463  * @buf: data buffer
464  * @len: number of bytes to write
465  */
466 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
467                                         const u_char *buf, int len)
468 {
469         if (len <= mtd->oobsize)
470                 omap_write_buf_pref(mtd, buf, len);
471         else
472                 /* start transfer in DMA mode */
473                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
474 }
475
476 /*
477  * omap_nand_irq - GMPC irq handler
478  * @this_irq: gpmc irq number
479  * @dev: omap_nand_info structure pointer is passed here
480  */
481 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
482 {
483         struct omap_nand_info *info = (struct omap_nand_info *) dev;
484         u32 bytes;
485         u32 irq_stat;
486
487         irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
488         bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
489         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
490         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
491                 if (irq_stat & 0x2)
492                         goto done;
493
494                 if (info->buf_len && (info->buf_len < bytes))
495                         bytes = info->buf_len;
496                 else if (!info->buf_len)
497                         bytes = 0;
498                 iowrite32_rep(info->nand.IO_ADDR_W,
499                                                 (u32 *)info->buf, bytes >> 2);
500                 info->buf = info->buf + bytes;
501                 info->buf_len -= bytes;
502
503         } else {
504                 ioread32_rep(info->nand.IO_ADDR_R,
505                                                 (u32 *)info->buf, bytes >> 2);
506                 info->buf = info->buf + bytes;
507
508                 if (irq_stat & 0x2)
509                         goto done;
510         }
511         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
512
513         return IRQ_HANDLED;
514
515 done:
516         complete(&info->comp);
517         /* disable irq */
518         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
519
520         /* clear status */
521         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
522
523         return IRQ_HANDLED;
524 }
525
526 /*
527  * omap_read_buf_irq_pref - read data from NAND controller into buffer
528  * @mtd: MTD device structure
529  * @buf: buffer to store date
530  * @len: number of bytes to read
531  */
532 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
533 {
534         struct omap_nand_info *info = container_of(mtd,
535                                                 struct omap_nand_info, mtd);
536         int ret = 0;
537
538         if (len <= mtd->oobsize) {
539                 omap_read_buf_pref(mtd, buf, len);
540                 return;
541         }
542
543         info->iomode = OMAP_NAND_IO_READ;
544         info->buf = buf;
545         init_completion(&info->comp);
546
547         /*  configure and start prefetch transfer */
548         ret = gpmc_prefetch_enable(info->gpmc_cs,
549                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
550         if (ret)
551                 /* PFPW engine is busy, use cpu copy method */
552                 goto out_copy;
553
554         info->buf_len = len;
555         /* enable irq */
556         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
557                 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
558
559         /* waiting for read to complete */
560         wait_for_completion(&info->comp);
561
562         /* disable and stop the PFPW engine */
563         gpmc_prefetch_reset(info->gpmc_cs);
564         return;
565
566 out_copy:
567         if (info->nand.options & NAND_BUSWIDTH_16)
568                 omap_read_buf16(mtd, buf, len);
569         else
570                 omap_read_buf8(mtd, buf, len);
571 }
572
573 /*
574  * omap_write_buf_irq_pref - write buffer to NAND controller
575  * @mtd: MTD device structure
576  * @buf: data buffer
577  * @len: number of bytes to write
578  */
579 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
580                                         const u_char *buf, int len)
581 {
582         struct omap_nand_info *info = container_of(mtd,
583                                                 struct omap_nand_info, mtd);
584         int ret = 0;
585         unsigned long tim, limit;
586
587         if (len <= mtd->oobsize) {
588                 omap_write_buf_pref(mtd, buf, len);
589                 return;
590         }
591
592         info->iomode = OMAP_NAND_IO_WRITE;
593         info->buf = (u_char *) buf;
594         init_completion(&info->comp);
595
596         /* configure and start prefetch transfer : size=24 */
597         ret = gpmc_prefetch_enable(info->gpmc_cs,
598                         (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
599         if (ret)
600                 /* PFPW engine is busy, use cpu copy method */
601                 goto out_copy;
602
603         info->buf_len = len;
604         /* enable irq */
605         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
606                         (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
607
608         /* waiting for write to complete */
609         wait_for_completion(&info->comp);
610         /* wait for data to flushed-out before reset the prefetch */
611         tim = 0;
612         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
613         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
614                 cpu_relax();
615
616         /* disable and stop the PFPW engine */
617         gpmc_prefetch_reset(info->gpmc_cs);
618         return;
619
620 out_copy:
621         if (info->nand.options & NAND_BUSWIDTH_16)
622                 omap_write_buf16(mtd, buf, len);
623         else
624                 omap_write_buf8(mtd, buf, len);
625 }
626
627 /**
628  * omap_verify_buf - Verify chip data against buffer
629  * @mtd: MTD device structure
630  * @buf: buffer containing the data to compare
631  * @len: number of bytes to compare
632  */
633 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
634 {
635         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
636                                                         mtd);
637         u16 *p = (u16 *) buf;
638
639         len >>= 1;
640         while (len--) {
641                 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
642                         return -EFAULT;
643         }
644
645         return 0;
646 }
647
648 /**
649  * gen_true_ecc - This function will generate true ECC value
650  * @ecc_buf: buffer to store ecc code
651  *
652  * This generated true ECC value can be used when correcting
653  * data read from NAND flash memory core
654  */
655 static void gen_true_ecc(u8 *ecc_buf)
656 {
657         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
658                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
659
660         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
661                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
662         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
663                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
664         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
665                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
666 }
667
668 /**
669  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
670  * @ecc_data1:  ecc code from nand spare area
671  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
672  * @page_data:  page data
673  *
674  * This function compares two ECC's and indicates if there is an error.
675  * If the error can be corrected it will be corrected to the buffer.
676  * If there is no error, %0 is returned. If there is an error but it
677  * was corrected, %1 is returned. Otherwise, %-1 is returned.
678  */
679 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
680                             u8 *ecc_data2,      /* read from register */
681                             u8 *page_data)
682 {
683         uint    i;
684         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
685         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
686         u8      ecc_bit[24];
687         u8      ecc_sum = 0;
688         u8      find_bit = 0;
689         uint    find_byte = 0;
690         int     isEccFF;
691
692         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
693
694         gen_true_ecc(ecc_data1);
695         gen_true_ecc(ecc_data2);
696
697         for (i = 0; i <= 2; i++) {
698                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
699                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
700         }
701
702         for (i = 0; i < 8; i++) {
703                 tmp0_bit[i]     = *ecc_data1 % 2;
704                 *ecc_data1      = *ecc_data1 / 2;
705         }
706
707         for (i = 0; i < 8; i++) {
708                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
709                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
710         }
711
712         for (i = 0; i < 8; i++) {
713                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
714                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
715         }
716
717         for (i = 0; i < 8; i++) {
718                 comp0_bit[i]     = *ecc_data2 % 2;
719                 *ecc_data2       = *ecc_data2 / 2;
720         }
721
722         for (i = 0; i < 8; i++) {
723                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
724                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
725         }
726
727         for (i = 0; i < 8; i++) {
728                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
729                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
730         }
731
732         for (i = 0; i < 6; i++)
733                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
734
735         for (i = 0; i < 8; i++)
736                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
737
738         for (i = 0; i < 8; i++)
739                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
740
741         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
742         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
743
744         for (i = 0; i < 24; i++)
745                 ecc_sum += ecc_bit[i];
746
747         switch (ecc_sum) {
748         case 0:
749                 /* Not reached because this function is not called if
750                  *  ECC values are equal
751                  */
752                 return 0;
753
754         case 1:
755                 /* Uncorrectable error */
756                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
757                 return -1;
758
759         case 11:
760                 /* UN-Correctable error */
761                 pr_debug("ECC UNCORRECTED_ERROR B\n");
762                 return -1;
763
764         case 12:
765                 /* Correctable error */
766                 find_byte = (ecc_bit[23] << 8) +
767                             (ecc_bit[21] << 7) +
768                             (ecc_bit[19] << 6) +
769                             (ecc_bit[17] << 5) +
770                             (ecc_bit[15] << 4) +
771                             (ecc_bit[13] << 3) +
772                             (ecc_bit[11] << 2) +
773                             (ecc_bit[9]  << 1) +
774                             ecc_bit[7];
775
776                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
777
778                 pr_debug("Correcting single bit ECC error at offset: "
779                                 "%d, bit: %d\n", find_byte, find_bit);
780
781                 page_data[find_byte] ^= (1 << find_bit);
782
783                 return 1;
784         default:
785                 if (isEccFF) {
786                         if (ecc_data2[0] == 0 &&
787                             ecc_data2[1] == 0 &&
788                             ecc_data2[2] == 0)
789                                 return 0;
790                 }
791                 pr_debug("UNCORRECTED_ERROR default\n");
792                 return -1;
793         }
794 }
795
796 /**
797  * omap_correct_data - Compares the ECC read with HW generated ECC
798  * @mtd: MTD device structure
799  * @dat: page data
800  * @read_ecc: ecc read from nand flash
801  * @calc_ecc: ecc read from HW ECC registers
802  *
803  * Compares the ecc read from nand spare area with ECC registers values
804  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
805  * detection and correction. If there are no errors, %0 is returned. If
806  * there were errors and all of the errors were corrected, the number of
807  * corrected errors is returned. If uncorrectable errors exist, %-1 is
808  * returned.
809  */
810 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
811                                 u_char *read_ecc, u_char *calc_ecc)
812 {
813         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
814                                                         mtd);
815         int blockCnt = 0, i = 0, ret = 0;
816         int stat = 0;
817
818         /* Ex NAND_ECC_HW12_2048 */
819         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
820                         (info->nand.ecc.size  == 2048))
821                 blockCnt = 4;
822         else
823                 blockCnt = 1;
824
825         for (i = 0; i < blockCnt; i++) {
826                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
827                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
828                         if (ret < 0)
829                                 return ret;
830                         /* keep track of the number of corrected errors */
831                         stat += ret;
832                 }
833                 read_ecc += 3;
834                 calc_ecc += 3;
835                 dat      += 512;
836         }
837         return stat;
838 }
839
840 /**
841  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
842  * @mtd: MTD device structure
843  * @dat: The pointer to data on which ecc is computed
844  * @ecc_code: The ecc_code buffer
845  *
846  * Using noninverted ECC can be considered ugly since writing a blank
847  * page ie. padding will clear the ECC bytes. This is no problem as long
848  * nobody is trying to write data on the seemingly unused page. Reading
849  * an erased page will produce an ECC mismatch between generated and read
850  * ECC bytes that has to be dealt with separately.
851  */
852 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
853                                 u_char *ecc_code)
854 {
855         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
856                                                         mtd);
857         return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
858 }
859
860 /**
861  * omap_enable_hwecc - This function enables the hardware ecc functionality
862  * @mtd: MTD device structure
863  * @mode: Read/Write mode
864  */
865 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
866 {
867         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
868                                                         mtd);
869         struct nand_chip *chip = mtd->priv;
870         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
871
872         gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
873 }
874
875 /**
876  * omap_wait - wait until the command is done
877  * @mtd: MTD device structure
878  * @chip: NAND Chip structure
879  *
880  * Wait function is called during Program and erase operations and
881  * the way it is called from MTD layer, we should wait till the NAND
882  * chip is ready after the programming/erase operation has completed.
883  *
884  * Erase can take up to 400ms and program up to 20ms according to
885  * general NAND and SmartMedia specs
886  */
887 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
888 {
889         struct nand_chip *this = mtd->priv;
890         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
891                                                         mtd);
892         unsigned long timeo = jiffies;
893         int status, state = this->state;
894
895         if (state == FL_ERASING)
896                 timeo += (HZ * 400) / 1000;
897         else
898                 timeo += (HZ * 20) / 1000;
899
900         gpmc_nand_write(info->gpmc_cs,
901                         GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
902         while (time_before(jiffies, timeo)) {
903                 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
904                 if (status & NAND_STATUS_READY)
905                         break;
906                 cond_resched();
907         }
908
909         status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
910         return status;
911 }
912
913 /**
914  * omap_dev_ready - calls the platform specific dev_ready function
915  * @mtd: MTD device structure
916  */
917 static int omap_dev_ready(struct mtd_info *mtd)
918 {
919         unsigned int val = 0;
920         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
921                                                         mtd);
922
923         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924         if ((val & 0x100) == 0x100) {
925                 /* Clear IRQ Interrupt */
926                 val |= 0x100;
927                 val &= ~(0x0);
928                 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
929         } else {
930                 unsigned int cnt = 0;
931                 while (cnt++ < 0x1FF) {
932                         if  ((val & 0x100) == 0x100)
933                                 return 0;
934                         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
935                 }
936         }
937
938         return 1;
939 }
940
941 #ifdef CONFIG_MTD_NAND_OMAP_BCH
942
943 /**
944  * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
945  * @mtd: MTD device structure
946  * @mode: Read/Write mode
947  */
948 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
949 {
950         int nerrors;
951         unsigned int dev_width;
952         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
953                                                    mtd);
954         struct nand_chip *chip = mtd->priv;
955
956         nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
957         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
958         /*
959          * Program GPMC to perform correction on one 512-byte sector at a time.
960          * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
961          * gives a slight (5%) performance gain (but requires additional code).
962          */
963         (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
964 }
965
966 /**
967  * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
968  * @mtd: MTD device structure
969  * @dat: The pointer to data on which ecc is computed
970  * @ecc_code: The ecc_code buffer
971  */
972 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
973                                     u_char *ecc_code)
974 {
975         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
976                                                    mtd);
977         return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
978 }
979
980 /**
981  * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
982  * @mtd: MTD device structure
983  * @dat: The pointer to data on which ecc is computed
984  * @ecc_code: The ecc_code buffer
985  */
986 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
987                                     u_char *ecc_code)
988 {
989         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
990                                                    mtd);
991         return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
992 }
993
994 /**
995  * omap3_correct_data_bch - Decode received data and correct errors
996  * @mtd: MTD device structure
997  * @data: page data
998  * @read_ecc: ecc read from nand flash
999  * @calc_ecc: ecc read from HW ECC registers
1000  */
1001 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1002                                   u_char *read_ecc, u_char *calc_ecc)
1003 {
1004         int i, count;
1005         /* cannot correct more than 8 errors */
1006         unsigned int errloc[8];
1007         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1008                                                    mtd);
1009
1010         count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1011                            errloc);
1012         if (count > 0) {
1013                 /* correct errors */
1014                 for (i = 0; i < count; i++) {
1015                         /* correct data only, not ecc bytes */
1016                         if (errloc[i] < 8*512)
1017                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1018                         pr_debug("corrected bitflip %u\n", errloc[i]);
1019                 }
1020         } else if (count < 0) {
1021                 pr_err("ecc unrecoverable error\n");
1022         }
1023         return count;
1024 }
1025
1026 /**
1027  * omap3_free_bch - Release BCH ecc resources
1028  * @mtd: MTD device structure
1029  */
1030 static void omap3_free_bch(struct mtd_info *mtd)
1031 {
1032         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1033                                                    mtd);
1034         if (info->bch) {
1035                 free_bch(info->bch);
1036                 info->bch = NULL;
1037         }
1038 }
1039
1040 /**
1041  * omap3_init_bch - Initialize BCH ECC
1042  * @mtd: MTD device structure
1043  * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1044  */
1045 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1046 {
1047         int ret, max_errors;
1048         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1049                                                    mtd);
1050 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1051         const int hw_errors = 8;
1052 #else
1053         const int hw_errors = 4;
1054 #endif
1055         info->bch = NULL;
1056
1057         max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1058         if (max_errors != hw_errors) {
1059                 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1060                        max_errors, hw_errors);
1061                 goto fail;
1062         }
1063
1064         /* initialize GPMC BCH engine */
1065         ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
1066         if (ret)
1067                 goto fail;
1068
1069         /* software bch library is only used to detect and locate errors */
1070         info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1071         if (!info->bch)
1072                 goto fail;
1073
1074         info->nand.ecc.size    = 512;
1075         info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
1076         info->nand.ecc.correct = omap3_correct_data_bch;
1077         info->nand.ecc.mode    = NAND_ECC_HW;
1078
1079         /*
1080          * The number of corrected errors in an ecc block that will trigger
1081          * block scrubbing defaults to the ecc strength (4 or 8).
1082          * Set mtd->bitflip_threshold here to define a custom threshold.
1083          */
1084
1085         if (max_errors == 8) {
1086                 info->nand.ecc.strength  = 8;
1087                 info->nand.ecc.bytes     = 13;
1088                 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1089         } else {
1090                 info->nand.ecc.strength  = 4;
1091                 info->nand.ecc.bytes     = 7;
1092                 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1093         }
1094
1095         pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1096         return 0;
1097 fail:
1098         omap3_free_bch(mtd);
1099         return -1;
1100 }
1101
1102 /**
1103  * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1104  * @mtd: MTD device structure
1105  */
1106 static int omap3_init_bch_tail(struct mtd_info *mtd)
1107 {
1108         int i, steps;
1109         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1110                                                    mtd);
1111         struct nand_ecclayout *layout = &info->ecclayout;
1112
1113         /* build oob layout */
1114         steps = mtd->writesize/info->nand.ecc.size;
1115         layout->eccbytes = steps*info->nand.ecc.bytes;
1116
1117         /* do not bother creating special oob layouts for small page devices */
1118         if (mtd->oobsize < 64) {
1119                 pr_err("BCH ecc is not supported on small page devices\n");
1120                 goto fail;
1121         }
1122
1123         /* reserve 2 bytes for bad block marker */
1124         if (layout->eccbytes+2 > mtd->oobsize) {
1125                 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1126                        mtd->oobsize, layout->eccbytes);
1127                 goto fail;
1128         }
1129
1130         /* put ecc bytes at oob tail */
1131         for (i = 0; i < layout->eccbytes; i++)
1132                 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1133
1134         layout->oobfree[0].offset = 2;
1135         layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1136         info->nand.ecc.layout = layout;
1137
1138         if (!(info->nand.options & NAND_BUSWIDTH_16))
1139                 info->nand.badblock_pattern = &bb_descrip_flashbased;
1140         return 0;
1141 fail:
1142         omap3_free_bch(mtd);
1143         return -1;
1144 }
1145
1146 #else
1147 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1148 {
1149         pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1150         return -1;
1151 }
1152 static int omap3_init_bch_tail(struct mtd_info *mtd)
1153 {
1154         return -1;
1155 }
1156 static void omap3_free_bch(struct mtd_info *mtd)
1157 {
1158 }
1159 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1160
1161 static int __devinit omap_nand_probe(struct platform_device *pdev)
1162 {
1163         struct omap_nand_info           *info;
1164         struct omap_nand_platform_data  *pdata;
1165         int                             err;
1166         int                             i, offset;
1167
1168         pdata = pdev->dev.platform_data;
1169         if (pdata == NULL) {
1170                 dev_err(&pdev->dev, "platform data missing\n");
1171                 return -ENODEV;
1172         }
1173
1174         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1175         if (!info)
1176                 return -ENOMEM;
1177
1178         platform_set_drvdata(pdev, info);
1179
1180         spin_lock_init(&info->controller.lock);
1181         init_waitqueue_head(&info->controller.wq);
1182
1183         info->pdev = pdev;
1184
1185         info->gpmc_cs           = pdata->cs;
1186         info->phys_base         = pdata->phys_base;
1187
1188         info->mtd.priv          = &info->nand;
1189         info->mtd.name          = dev_name(&pdev->dev);
1190         info->mtd.owner         = THIS_MODULE;
1191
1192         info->nand.options      = pdata->devsize;
1193         info->nand.options      |= NAND_SKIP_BBTSCAN;
1194
1195         /* NAND write protect off */
1196         gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
1197
1198         if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
1199                                 pdev->dev.driver->name)) {
1200                 err = -EBUSY;
1201                 goto out_free_info;
1202         }
1203
1204         info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
1205         if (!info->nand.IO_ADDR_R) {
1206                 err = -ENOMEM;
1207                 goto out_release_mem_region;
1208         }
1209
1210         info->nand.controller = &info->controller;
1211
1212         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1213         info->nand.cmd_ctrl  = omap_hwcontrol;
1214
1215         /*
1216          * If RDY/BSY line is connected to OMAP then use the omap ready
1217          * funcrtion and the generic nand_wait function which reads the status
1218          * register after monitoring the RDY/BSY line.Otherwise use a standard
1219          * chip delay which is slightly more than tR (AC Timing) of the NAND
1220          * device and read status register until you get a failure or success
1221          */
1222         if (pdata->dev_ready) {
1223                 info->nand.dev_ready = omap_dev_ready;
1224                 info->nand.chip_delay = 0;
1225         } else {
1226                 info->nand.waitfunc = omap_wait;
1227                 info->nand.chip_delay = 50;
1228         }
1229
1230         switch (pdata->xfer_type) {
1231         case NAND_OMAP_PREFETCH_POLLED:
1232                 info->nand.read_buf   = omap_read_buf_pref;
1233                 info->nand.write_buf  = omap_write_buf_pref;
1234                 break;
1235
1236         case NAND_OMAP_POLLED:
1237                 if (info->nand.options & NAND_BUSWIDTH_16) {
1238                         info->nand.read_buf   = omap_read_buf16;
1239                         info->nand.write_buf  = omap_write_buf16;
1240                 } else {
1241                         info->nand.read_buf   = omap_read_buf8;
1242                         info->nand.write_buf  = omap_write_buf8;
1243                 }
1244                 break;
1245
1246         case NAND_OMAP_PREFETCH_DMA:
1247                 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1248                                 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1249                 if (err < 0) {
1250                         info->dma_ch = -1;
1251                         dev_err(&pdev->dev, "DMA request failed!\n");
1252                         goto out_release_mem_region;
1253                 } else {
1254                         omap_set_dma_dest_burst_mode(info->dma_ch,
1255                                         OMAP_DMA_DATA_BURST_16);
1256                         omap_set_dma_src_burst_mode(info->dma_ch,
1257                                         OMAP_DMA_DATA_BURST_16);
1258
1259                         info->nand.read_buf   = omap_read_buf_dma_pref;
1260                         info->nand.write_buf  = omap_write_buf_dma_pref;
1261                 }
1262                 break;
1263
1264         case NAND_OMAP_PREFETCH_IRQ:
1265                 err = request_irq(pdata->gpmc_irq,
1266                                 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1267                 if (err) {
1268                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1269                                                         pdata->gpmc_irq, err);
1270                         goto out_release_mem_region;
1271                 } else {
1272                         info->gpmc_irq       = pdata->gpmc_irq;
1273                         info->nand.read_buf  = omap_read_buf_irq_pref;
1274                         info->nand.write_buf = omap_write_buf_irq_pref;
1275                 }
1276                 break;
1277
1278         default:
1279                 dev_err(&pdev->dev,
1280                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1281                 err = -EINVAL;
1282                 goto out_release_mem_region;
1283         }
1284
1285         info->nand.verify_buf = omap_verify_buf;
1286
1287         /* selsect the ecc type */
1288         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1289                 info->nand.ecc.mode = NAND_ECC_SOFT;
1290         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1291                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1292                 info->nand.ecc.bytes            = 3;
1293                 info->nand.ecc.size             = 512;
1294                 info->nand.ecc.strength         = 1;
1295                 info->nand.ecc.calculate        = omap_calculate_ecc;
1296                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1297                 info->nand.ecc.correct          = omap_correct_data;
1298                 info->nand.ecc.mode             = NAND_ECC_HW;
1299         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1300                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1301                 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1302                 if (err) {
1303                         err = -EINVAL;
1304                         goto out_release_mem_region;
1305                 }
1306         }
1307
1308         /* DIP switches on some boards change between 8 and 16 bit
1309          * bus widths for flash.  Try the other width if the first try fails.
1310          */
1311         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1312                 info->nand.options ^= NAND_BUSWIDTH_16;
1313                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1314                         err = -ENXIO;
1315                         goto out_release_mem_region;
1316                 }
1317         }
1318
1319         /* rom code layout */
1320         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1321
1322                 if (info->nand.options & NAND_BUSWIDTH_16)
1323                         offset = 2;
1324                 else {
1325                         offset = 1;
1326                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1327                 }
1328                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1329                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1330                         omap_oobinfo.eccpos[i] = i+offset;
1331
1332                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1333                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1334                                         (offset + omap_oobinfo.eccbytes);
1335
1336                 info->nand.ecc.layout = &omap_oobinfo;
1337         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1338                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1339                 /* build OOB layout for BCH ECC correction */
1340                 err = omap3_init_bch_tail(&info->mtd);
1341                 if (err) {
1342                         err = -EINVAL;
1343                         goto out_release_mem_region;
1344                 }
1345         }
1346
1347         /* second phase scan */
1348         if (nand_scan_tail(&info->mtd)) {
1349                 err = -ENXIO;
1350                 goto out_release_mem_region;
1351         }
1352
1353         mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1354                                   pdata->nr_parts);
1355
1356         platform_set_drvdata(pdev, &info->mtd);
1357
1358         return 0;
1359
1360 out_release_mem_region:
1361         release_mem_region(info->phys_base, NAND_IO_SIZE);
1362 out_free_info:
1363         kfree(info);
1364
1365         return err;
1366 }
1367
1368 static int omap_nand_remove(struct platform_device *pdev)
1369 {
1370         struct mtd_info *mtd = platform_get_drvdata(pdev);
1371         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1372                                                         mtd);
1373         omap3_free_bch(&info->mtd);
1374
1375         platform_set_drvdata(pdev, NULL);
1376         if (info->dma_ch != -1)
1377                 omap_free_dma(info->dma_ch);
1378
1379         if (info->gpmc_irq)
1380                 free_irq(info->gpmc_irq, info);
1381
1382         /* Release NAND device, its internal structures and partitions */
1383         nand_release(&info->mtd);
1384         iounmap(info->nand.IO_ADDR_R);
1385         kfree(&info->mtd);
1386         return 0;
1387 }
1388
1389 static struct platform_driver omap_nand_driver = {
1390         .probe          = omap_nand_probe,
1391         .remove         = omap_nand_remove,
1392         .driver         = {
1393                 .name   = DRIVER_NAME,
1394                 .owner  = THIS_MODULE,
1395         },
1396 };
1397
1398 module_platform_driver(omap_nand_driver);
1399
1400 MODULE_ALIAS("platform:" DRIVER_NAME);
1401 MODULE_LICENSE("GPL");
1402 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");