]> git.karo-electronics.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/omap_gpmc.c
Merge http://git.denx.de/u-boot-sunxi
[karo-tx-uboot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 /*
34  * Driver configurations
35  */
36 struct omap_nand_info {
37         struct bch_control *control;
38         enum omap_ecc ecc_scheme;
39         int cs;
40 };
41
42 /* We are wasting a bit of memory but al least we are safe */
43 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
44
45 /*
46  * omap_nand_hwcontrol - Set the address pointers corretly for the
47  *                      following address/data/command operation
48  */
49 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
50                                 uint32_t ctrl)
51 {
52         register struct nand_chip *this = mtd->priv;
53         struct omap_nand_info *info = this->priv;
54         int cs = info->cs;
55
56         /*
57          * Point the IO_ADDR to DATA and ADDRESS registers instead
58          * of chip address
59          */
60         switch (ctrl) {
61         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
62                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
63                 break;
64         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
65                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
66                 break;
67         case NAND_CTRL_CHANGE | NAND_NCE:
68                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
69                 break;
70         }
71
72         if (cmd != NAND_CMD_NONE)
73                 writeb(cmd, this->IO_ADDR_W);
74 }
75
76 #ifdef CONFIG_SPL_BUILD
77 /* Check wait pin as dev ready indicator */
78 static int omap_spl_dev_ready(struct mtd_info *mtd)
79 {
80         return gpmc_cfg->status & (1 << 8);
81 }
82 #endif
83
84
85 /*
86  * gen_true_ecc - This function will generate true ECC value, which
87  * can be used when correcting data read from NAND flash memory core
88  *
89  * @ecc_buf:    buffer to store ecc code
90  *
91  * @return:     re-formatted ECC value
92  */
93 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
94 {
95         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
96                 ((ecc_buf[2] & 0x0F) << 8);
97 }
98
99 /*
100  * omap_correct_data - Compares the ecc read from nand spare area with ECC
101  * registers values and corrects one bit error if it has occured
102  * Further details can be had from OMAP TRM and the following selected links:
103  * http://en.wikipedia.org/wiki/Hamming_code
104  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
105  *
106  * @mtd:                 MTD device structure
107  * @dat:                 page data
108  * @read_ecc:            ecc read from nand flash
109  * @calc_ecc:            ecc read from ECC registers
110  *
111  * @return 0 if data is OK or corrected, else returns -1
112  */
113 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
114                                 uint8_t *read_ecc, uint8_t *calc_ecc)
115 {
116         uint32_t orig_ecc, new_ecc, res, hm;
117         uint16_t parity_bits, byte;
118         uint8_t bit;
119
120         /* Regenerate the orginal ECC */
121         orig_ecc = gen_true_ecc(read_ecc);
122         new_ecc = gen_true_ecc(calc_ecc);
123         /* Get the XOR of real ecc */
124         res = orig_ecc ^ new_ecc;
125         if (res) {
126                 /* Get the hamming width */
127                 hm = hweight32(res);
128                 /* Single bit errors can be corrected! */
129                 if (hm == 12) {
130                         /* Correctable data! */
131                         parity_bits = res >> 16;
132                         bit = (parity_bits & 0x7);
133                         byte = (parity_bits >> 3) & 0x1FF;
134                         /* Flip the bit to correct */
135                         dat[byte] ^= (0x1 << bit);
136                 } else if (hm == 1) {
137                         printf("Error: Ecc is wrong\n");
138                         /* ECC itself is corrupted */
139                         return 2;
140                 } else {
141                         /*
142                          * hm distance != parity pairs OR one, could mean 2 bit
143                          * error OR potentially be on a blank page..
144                          * orig_ecc: contains spare area data from nand flash.
145                          * new_ecc: generated ecc while reading data area.
146                          * Note: if the ecc = 0, all data bits from which it was
147                          * generated are 0xFF.
148                          * The 3 byte(24 bits) ecc is generated per 512byte
149                          * chunk of a page. If orig_ecc(from spare area)
150                          * is 0xFF && new_ecc(computed now from data area)=0x0,
151                          * this means that data area is 0xFF and spare area is
152                          * 0xFF. A sure sign of a erased page!
153                          */
154                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
155                                 return 0;
156                         printf("Error: Bad compare! failed\n");
157                         /* detected 2 bit error */
158                         return -1;
159                 }
160         }
161         return 0;
162 }
163
164 /*
165  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
166  * @mtd:        MTD device structure
167  * @mode:       Read/Write mode
168  */
169 __maybe_unused
170 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
171 {
172         struct nand_chip        *nand   = mtd->priv;
173         struct omap_nand_info   *info   = nand->priv;
174         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
175         unsigned int ecc_algo = 0;
176         unsigned int bch_type = 0;
177         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
178         u32 ecc_size_config_val = 0;
179         u32 ecc_config_val = 0;
180         int cs = info->cs;
181
182         /* configure GPMC for specific ecc-scheme */
183         switch (info->ecc_scheme) {
184         case OMAP_ECC_HAM1_CODE_SW:
185                 return;
186         case OMAP_ECC_HAM1_CODE_HW:
187                 ecc_algo = 0x0;
188                 bch_type = 0x0;
189                 bch_wrapmode = 0x00;
190                 eccsize0 = 0xFF;
191                 eccsize1 = 0xFF;
192                 break;
193         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
194         case OMAP_ECC_BCH8_CODE_HW:
195                 ecc_algo = 0x1;
196                 bch_type = 0x1;
197                 if (mode == NAND_ECC_WRITE) {
198                         bch_wrapmode = 0x01;
199                         eccsize0 = 0;  /* extra bits in nibbles per sector */
200                         eccsize1 = 28; /* OOB bits in nibbles per sector */
201                 } else {
202                         bch_wrapmode = 0x01;
203                         eccsize0 = 26; /* ECC bits in nibbles per sector */
204                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
205                 }
206                 break;
207         case OMAP_ECC_BCH16_CODE_HW:
208                 ecc_algo = 0x1;
209                 bch_type = 0x2;
210                 if (mode == NAND_ECC_WRITE) {
211                         bch_wrapmode = 0x01;
212                         eccsize0 = 0;  /* extra bits in nibbles per sector */
213                         eccsize1 = 52; /* OOB bits in nibbles per sector */
214                 } else {
215                         bch_wrapmode = 0x01;
216                         eccsize0 = 52; /* ECC bits in nibbles per sector */
217                         eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
218                 }
219                 break;
220         default:
221                 return;
222         }
223         /* Clear ecc and enable bits */
224         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
225         /* Configure ecc size for BCH */
226         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
227         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
228
229         /* Configure device details for BCH engine */
230         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
231                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
232                         (bch_wrapmode << 8)     | /* wrap mode */
233                         (dev_width << 7)        | /* bus width */
234                         (0x0 << 4)              | /* number of sectors */
235                         (cs <<  1)              | /* ECC CS */
236                         (0x1));                   /* enable ECC */
237         writel(ecc_config_val, &gpmc_cfg->ecc_config);
238 }
239
240 /*
241  *  omap_calculate_ecc - Read ECC result
242  *  @mtd:       MTD structure
243  *  @dat:       unused
244  *  @ecc_code:  ecc_code buffer
245  *  Using noninverted ECC can be considered ugly since writing a blank
246  *  page ie. padding will clear the ECC bytes. This is no problem as
247  *  long nobody is trying to write data on the seemingly unused page.
248  *  Reading an erased page will produce an ECC mismatch between
249  *  generated and read ECC bytes that has to be dealt with separately.
250  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
251  *  is used, the result of read will be 0x0 while the ECC offsets of the
252  *  spare area will be 0xFF which will result in an ECC mismatch.
253  */
254 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
255                                 uint8_t *ecc_code)
256 {
257         struct nand_chip *chip = mtd->priv;
258         struct omap_nand_info *info = chip->priv;
259         uint32_t *ptr, val = 0;
260         int8_t i = 0, j;
261
262         switch (info->ecc_scheme) {
263         case OMAP_ECC_HAM1_CODE_HW:
264                 val = readl(&gpmc_cfg->ecc1_result);
265                 ecc_code[0] = val & 0xFF;
266                 ecc_code[1] = (val >> 16) & 0xFF;
267                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
268                 break;
269 #ifdef CONFIG_BCH
270         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
271 #endif
272         case OMAP_ECC_BCH8_CODE_HW:
273                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
274                 val = readl(ptr);
275                 ecc_code[i++] = (val >>  0) & 0xFF;
276                 ptr--;
277                 for (j = 0; j < 3; j++) {
278                         val = readl(ptr);
279                         ecc_code[i++] = (val >> 24) & 0xFF;
280                         ecc_code[i++] = (val >> 16) & 0xFF;
281                         ecc_code[i++] = (val >>  8) & 0xFF;
282                         ecc_code[i++] = (val >>  0) & 0xFF;
283                         ptr--;
284                 }
285                 break;
286         case OMAP_ECC_BCH16_CODE_HW:
287                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
288                 ecc_code[i++] = (val >>  8) & 0xFF;
289                 ecc_code[i++] = (val >>  0) & 0xFF;
290                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
291                 ecc_code[i++] = (val >> 24) & 0xFF;
292                 ecc_code[i++] = (val >> 16) & 0xFF;
293                 ecc_code[i++] = (val >>  8) & 0xFF;
294                 ecc_code[i++] = (val >>  0) & 0xFF;
295                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
296                 ecc_code[i++] = (val >> 24) & 0xFF;
297                 ecc_code[i++] = (val >> 16) & 0xFF;
298                 ecc_code[i++] = (val >>  8) & 0xFF;
299                 ecc_code[i++] = (val >>  0) & 0xFF;
300                 for (j = 3; j >= 0; j--) {
301                         val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
302                                                                         );
303                         ecc_code[i++] = (val >> 24) & 0xFF;
304                         ecc_code[i++] = (val >> 16) & 0xFF;
305                         ecc_code[i++] = (val >>  8) & 0xFF;
306                         ecc_code[i++] = (val >>  0) & 0xFF;
307                 }
308                 break;
309         default:
310                 return -EINVAL;
311         }
312         /* ECC scheme specific syndrome customizations */
313         switch (info->ecc_scheme) {
314         case OMAP_ECC_HAM1_CODE_HW:
315                 break;
316 #ifdef CONFIG_BCH
317         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
318
319                 for (i = 0; i < chip->ecc.bytes; i++)
320                         *(ecc_code + i) = *(ecc_code + i) ^
321                                                 bch8_polynomial[i];
322                 break;
323 #endif
324         case OMAP_ECC_BCH8_CODE_HW:
325                 ecc_code[chip->ecc.bytes - 1] = 0x00;
326                 break;
327         case OMAP_ECC_BCH16_CODE_HW:
328                 break;
329         default:
330                 return -EINVAL;
331         }
332         return 0;
333 }
334
335 #ifdef CONFIG_NAND_OMAP_ELM
336 /*
337  * omap_reverse_list - re-orders list elements in reverse order [internal]
338  * @list:       pointer to start of list
339  * @length:     length of list
340 */
341 static void omap_reverse_list(u8 *list, unsigned int length)
342 {
343         unsigned int i, j;
344         unsigned int half_length = length / 2;
345         u8 tmp;
346         for (i = 0, j = length - 1; i < half_length; i++, j--) {
347                 tmp = list[i];
348                 list[i] = list[j];
349                 list[j] = tmp;
350         }
351 }
352
353 /*
354  * omap_correct_data_bch - Compares the ecc read from nand spare area
355  * with ECC registers values and corrects one bit error if it has occured
356  *
357  * @mtd:        MTD device structure
358  * @dat:        page data
359  * @read_ecc:   ecc read from nand flash (ignored)
360  * @calc_ecc:   ecc read from ECC registers
361  *
362  * @return 0 if data is OK or corrected, else returns -1
363  */
364 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
365                                 uint8_t *read_ecc, uint8_t *calc_ecc)
366 {
367         struct nand_chip *chip = mtd->priv;
368         struct omap_nand_info *info = chip->priv;
369         struct nand_ecc_ctrl *ecc = &chip->ecc;
370         uint32_t error_count = 0, error_max;
371         uint32_t error_loc[ELM_MAX_ERROR_COUNT];
372         enum bch_level bch_type;
373         uint32_t i, ecc_flag = 0;
374         uint8_t count, err = 0;
375         uint32_t byte_pos, bit_pos;
376
377         /* check calculated ecc */
378         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
379                 if (calc_ecc[i] != 0x00)
380                         ecc_flag = 1;
381         }
382         if (!ecc_flag)
383                 return 0;
384
385         /* check for whether its a erased-page */
386         ecc_flag = 0;
387         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
388                 if (read_ecc[i] != 0xff)
389                         ecc_flag = 1;
390         }
391         if (!ecc_flag)
392                 return 0;
393
394         /*
395          * while reading ECC result we read it in big endian.
396          * Hence while loading to ELM we have rotate to get the right endian.
397          */
398         switch (info->ecc_scheme) {
399         case OMAP_ECC_BCH8_CODE_HW:
400                 bch_type = BCH_8_BIT;
401                 omap_reverse_list(calc_ecc, ecc->bytes - 1);
402                 break;
403         case OMAP_ECC_BCH16_CODE_HW:
404                 bch_type = BCH_16_BIT;
405                 omap_reverse_list(calc_ecc, ecc->bytes);
406                 break;
407         default:
408                 return -EINVAL;
409         }
410         /* use elm module to check for errors */
411         elm_config(bch_type);
412         err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
413         if (err)
414                 return err;
415
416         /* correct bch error */
417         for (count = 0; count < error_count; count++) {
418                 switch (info->ecc_scheme) {
419                 case OMAP_ECC_BCH8_CODE_HW:
420                         /* 14th byte in ECC is reserved to match ROM layout */
421                         error_max = SECTOR_BYTES + (ecc->bytes - 1);
422                         break;
423                 case OMAP_ECC_BCH16_CODE_HW:
424                         error_max = SECTOR_BYTES + ecc->bytes;
425                         break;
426                 default:
427                         return -EINVAL;
428                 }
429                 byte_pos = error_max - (error_loc[count] / 8) - 1;
430                 bit_pos  = error_loc[count] % 8;
431                 if (byte_pos < SECTOR_BYTES) {
432                         dat[byte_pos] ^= 1 << bit_pos;
433                         printf("nand: bit-flip corrected @data=%d\n", byte_pos);
434                 } else if (byte_pos < error_max) {
435                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
436                         printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
437                                                                 SECTOR_BYTES);
438                 } else {
439                         err = -EBADMSG;
440                         printf("nand: error: invalid bit-flip location\n");
441                 }
442         }
443         return (err) ? err : error_count;
444 }
445
446 /**
447  * omap_read_page_bch - hardware ecc based page read function
448  * @mtd:        mtd info structure
449  * @chip:       nand chip info structure
450  * @buf:        buffer to store read data
451  * @oob_required: caller expects OOB data read to chip->oob_poi
452  * @page:       page number to read
453  *
454  */
455 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
456                                 uint8_t *buf, int oob_required, int page)
457 {
458         int i, eccsize = chip->ecc.size;
459         int eccbytes = chip->ecc.bytes;
460         int eccsteps = chip->ecc.steps;
461         uint8_t *p = buf;
462         uint8_t *ecc_calc = chip->buffers->ecccalc;
463         uint8_t *ecc_code = chip->buffers->ecccode;
464         uint32_t *eccpos = chip->ecc.layout->eccpos;
465         uint8_t *oob = chip->oob_poi;
466         uint32_t data_pos;
467         uint32_t oob_pos;
468
469         data_pos = 0;
470         /* oob area start */
471         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
472         oob += chip->ecc.layout->eccpos[0];
473
474         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
475                                 oob += eccbytes) {
476                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
477                 /* read data */
478                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
479                 chip->read_buf(mtd, p, eccsize);
480
481                 /* read respective ecc from oob area */
482                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
483                 chip->read_buf(mtd, oob, eccbytes);
484                 /* read syndrome */
485                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
486
487                 data_pos += eccsize;
488                 oob_pos += eccbytes;
489         }
490
491         for (i = 0; i < chip->ecc.total; i++)
492                 ecc_code[i] = chip->oob_poi[eccpos[i]];
493
494         eccsteps = chip->ecc.steps;
495         p = buf;
496
497         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
498                 int stat;
499
500                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
501                 if (stat < 0)
502                         mtd->ecc_stats.failed++;
503                 else
504                         mtd->ecc_stats.corrected += stat;
505         }
506         return 0;
507 }
508 #endif /* CONFIG_NAND_OMAP_ELM */
509
510 /*
511  * OMAP3 BCH8 support (with BCH library)
512  */
513 #ifdef CONFIG_BCH
514 /**
515  * omap_correct_data_bch_sw - Decode received data and correct errors
516  * @mtd: MTD device structure
517  * @data: page data
518  * @read_ecc: ecc read from nand flash
519  * @calc_ecc: ecc read from HW ECC registers
520  */
521 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
522                                  u_char *read_ecc, u_char *calc_ecc)
523 {
524         int i, count;
525         /* cannot correct more than 8 errors */
526         unsigned int errloc[8];
527         struct nand_chip *chip = mtd->priv;
528         struct omap_nand_info *info = chip->priv;
529
530         count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
531                                                         NULL, errloc);
532         if (count > 0) {
533                 /* correct errors */
534                 for (i = 0; i < count; i++) {
535                         /* correct data only, not ecc bytes */
536                         if (errloc[i] < 8*512)
537                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
538                         printf("corrected bitflip %u\n", errloc[i]);
539 #ifdef DEBUG
540                         puts("read_ecc: ");
541                         /*
542                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
543                          * here!
544                          */
545                         for (i = 0; i < 13; i++)
546                                 printf("%02x ", read_ecc[i]);
547                         puts("\n");
548                         puts("calc_ecc: ");
549                         for (i = 0; i < 13; i++)
550                                 printf("%02x ", calc_ecc[i]);
551                         puts("\n");
552 #endif
553                 }
554         } else if (count < 0) {
555                 puts("ecc unrecoverable error\n");
556         }
557         return count;
558 }
559
560 /**
561  * omap_free_bch - Release BCH ecc resources
562  * @mtd: MTD device structure
563  */
564 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
565 {
566         struct nand_chip *chip = mtd->priv;
567         struct omap_nand_info *info = chip->priv;
568
569         if (info->control) {
570                 free_bch(info->control);
571                 info->control = NULL;
572         }
573 }
574 #endif /* CONFIG_BCH */
575
576 /**
577  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
578  * @nand: NAND chip device structure
579  * @ecc_scheme: ecc scheme to configure
580  * @pagesize: number of main-area bytes per page of NAND device
581  * @oobsize: number of OOB/spare bytes per page of NAND device
582  */
583 static int omap_select_ecc_scheme(struct nand_chip *nand,
584         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
585         struct omap_nand_info   *info           = nand->priv;
586         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
587         int eccsteps = pagesize / SECTOR_BYTES;
588         int i;
589
590         switch (ecc_scheme) {
591         case OMAP_ECC_HAM1_CODE_SW:
592                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
593                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
594                  * initialized in nand_scan_tail(), so just set ecc.mode */
595                 info->control           = NULL;
596                 nand->ecc.mode          = NAND_ECC_SOFT;
597                 nand->ecc.layout        = NULL;
598                 nand->ecc.size          = 0;
599                 break;
600
601         case OMAP_ECC_HAM1_CODE_HW:
602                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
603                 /* check ecc-scheme requirements before updating ecc info */
604                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
605                         printf("nand: error: insufficient OOB: require=%d\n", (
606                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
607                         return -EINVAL;
608                 }
609                 info->control           = NULL;
610                 /* populate ecc specific fields */
611                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
612                 nand->ecc.mode          = NAND_ECC_HW;
613                 nand->ecc.strength      = 1;
614                 nand->ecc.size          = SECTOR_BYTES;
615                 nand->ecc.bytes         = 3;
616                 nand->ecc.hwctl         = omap_enable_hwecc;
617                 nand->ecc.correct       = omap_correct_data;
618                 nand->ecc.calculate     = omap_calculate_ecc;
619                 /* define ecc-layout */
620                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
621                 for (i = 0; i < ecclayout->eccbytes; i++) {
622                         if (nand->options & NAND_BUSWIDTH_16)
623                                 ecclayout->eccpos[i] = i + 2;
624                         else
625                                 ecclayout->eccpos[i] = i + 1;
626                 }
627                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
628                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
629                                                 BADBLOCK_MARKER_LENGTH;
630                 break;
631
632         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
633 #ifdef CONFIG_BCH
634                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
635                 /* check ecc-scheme requirements before updating ecc info */
636                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
637                         printf("nand: error: insufficient OOB: require=%d\n", (
638                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
639                         return -EINVAL;
640                 }
641                 /* check if BCH S/W library can be used for error detection */
642                 info->control = init_bch(13, 8, 0x201b);
643                 if (!info->control) {
644                         printf("nand: error: could not init_bch()\n");
645                         return -ENODEV;
646                 }
647                 /* populate ecc specific fields */
648                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
649                 nand->ecc.mode          = NAND_ECC_HW;
650                 nand->ecc.strength      = 8;
651                 nand->ecc.size          = SECTOR_BYTES;
652                 nand->ecc.bytes         = 13;
653                 nand->ecc.hwctl         = omap_enable_hwecc;
654                 nand->ecc.correct       = omap_correct_data_bch_sw;
655                 nand->ecc.calculate     = omap_calculate_ecc;
656                 /* define ecc-layout */
657                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
658                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
659                 for (i = 1; i < ecclayout->eccbytes; i++) {
660                         if (i % nand->ecc.bytes)
661                                 ecclayout->eccpos[i] =
662                                                 ecclayout->eccpos[i - 1] + 1;
663                         else
664                                 ecclayout->eccpos[i] =
665                                                 ecclayout->eccpos[i - 1] + 2;
666                 }
667                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
668                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
669                                                 BADBLOCK_MARKER_LENGTH;
670                 break;
671 #else
672                 printf("nand: error: CONFIG_BCH required for ECC\n");
673                 return -EINVAL;
674 #endif
675
676         case OMAP_ECC_BCH8_CODE_HW:
677 #ifdef CONFIG_NAND_OMAP_ELM
678                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
679                 /* check ecc-scheme requirements before updating ecc info */
680                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
681                         printf("nand: error: insufficient OOB: require=%d\n", (
682                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
683                         return -EINVAL;
684                 }
685                 /* intialize ELM for ECC error detection */
686                 elm_init();
687                 info->control           = NULL;
688                 /* populate ecc specific fields */
689                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
690                 nand->ecc.mode          = NAND_ECC_HW;
691                 nand->ecc.strength      = 8;
692                 nand->ecc.size          = SECTOR_BYTES;
693                 nand->ecc.bytes         = 14;
694                 nand->ecc.hwctl         = omap_enable_hwecc;
695                 nand->ecc.correct       = omap_correct_data_bch;
696                 nand->ecc.calculate     = omap_calculate_ecc;
697                 nand->ecc.read_page     = omap_read_page_bch;
698                 /* define ecc-layout */
699                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
700                 for (i = 0; i < ecclayout->eccbytes; i++)
701                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
702                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
703                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
704                                                 BADBLOCK_MARKER_LENGTH;
705                 break;
706 #else
707                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
708                 return -EINVAL;
709 #endif
710
711         case OMAP_ECC_BCH16_CODE_HW:
712 #ifdef CONFIG_NAND_OMAP_ELM
713                 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
714                 /* check ecc-scheme requirements before updating ecc info */
715                 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
716                         printf("nand: error: insufficient OOB: require=%d\n", (
717                                 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
718                         return -EINVAL;
719                 }
720                 /* intialize ELM for ECC error detection */
721                 elm_init();
722                 /* populate ecc specific fields */
723                 nand->ecc.mode          = NAND_ECC_HW;
724                 nand->ecc.size          = SECTOR_BYTES;
725                 nand->ecc.bytes         = 26;
726                 nand->ecc.strength      = 16;
727                 nand->ecc.hwctl         = omap_enable_hwecc;
728                 nand->ecc.correct       = omap_correct_data_bch;
729                 nand->ecc.calculate     = omap_calculate_ecc;
730                 nand->ecc.read_page     = omap_read_page_bch;
731                 /* define ecc-layout */
732                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
733                 for (i = 0; i < ecclayout->eccbytes; i++)
734                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
735                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
736                 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
737                                                 BADBLOCK_MARKER_LENGTH;
738                 break;
739 #else
740                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
741                 return -EINVAL;
742 #endif
743         default:
744                 debug("nand: error: ecc scheme not enabled or supported\n");
745                 return -EINVAL;
746         }
747
748         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
749         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
750                 nand->ecc.layout = ecclayout;
751
752         info->ecc_scheme = ecc_scheme;
753         return 0;
754 }
755
756 #ifndef CONFIG_SPL_BUILD
757 /*
758  * omap_nand_switch_ecc - switch the ECC operation between different engines
759  * (h/w and s/w) and different algorithms (hamming and BCHx)
760  *
761  * @hardware            - true if one of the HW engines should be used
762  * @eccstrength         - the number of bits that could be corrected
763  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
764  */
765 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
766 {
767         struct nand_chip *nand;
768         struct mtd_info *mtd;
769         int err = 0;
770
771         if (nand_curr_device < 0 ||
772             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
773             !nand_info[nand_curr_device].name) {
774                 printf("nand: error: no NAND devices found\n");
775                 return -ENODEV;
776         }
777
778         mtd = &nand_info[nand_curr_device];
779         nand = mtd->priv;
780         nand->options |= NAND_OWN_BUFFERS;
781         nand->options &= ~NAND_SUBPAGE_READ;
782         /* Setup the ecc configurations again */
783         if (hardware) {
784                 if (eccstrength == 1) {
785                         err = omap_select_ecc_scheme(nand,
786                                         OMAP_ECC_HAM1_CODE_HW,
787                                         mtd->writesize, mtd->oobsize);
788                 } else if (eccstrength == 8) {
789                         err = omap_select_ecc_scheme(nand,
790                                         OMAP_ECC_BCH8_CODE_HW,
791                                         mtd->writesize, mtd->oobsize);
792                 } else {
793                         printf("nand: error: unsupported ECC scheme\n");
794                         return -EINVAL;
795                 }
796         } else {
797                 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
798                                         mtd->writesize, mtd->oobsize);
799         }
800
801         /* Update NAND handling after ECC mode switch */
802         if (!err)
803                 err = nand_scan_tail(mtd);
804         return err;
805 }
806 #endif /* CONFIG_SPL_BUILD */
807
808 /*
809  * Board-specific NAND initialization. The following members of the
810  * argument are board-specific:
811  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
812  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
813  * - cmd_ctrl: hardwarespecific function for accesing control-lines
814  * - waitfunc: hardwarespecific function for accesing device ready/busy line
815  * - ecc.hwctl: function to enable (reset) hardware ecc generator
816  * - ecc.mode: mode of ecc, see defines
817  * - chip_delay: chip dependent delay for transfering data from array to
818  *   read regs (tR)
819  * - options: various chip options. They can partly be set to inform
820  *   nand_scan about special functionality. See the defines for further
821  *   explanation
822  */
823 int board_nand_init(struct nand_chip *nand)
824 {
825         int32_t gpmc_config = 0;
826         int cs = cs_next++;
827         int err = 0;
828         /*
829          * xloader/Uboot's gpmc configuration would have configured GPMC for
830          * nand type of memory. The following logic scans and latches on to the
831          * first CS with NAND type memory.
832          * TBD: need to make this logic generic to handle multiple CS NAND
833          * devices.
834          */
835         while (cs < GPMC_MAX_CS) {
836                 /* Check if NAND type is set */
837                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
838                         /* Found it!! */
839                         break;
840                 }
841                 cs++;
842         }
843         if (cs >= GPMC_MAX_CS) {
844                 printf("nand: error: Unable to find NAND settings in "
845                         "GPMC Configuration - quitting\n");
846                 return -ENODEV;
847         }
848
849         gpmc_config = readl(&gpmc_cfg->config);
850         /* Disable Write protect */
851         gpmc_config |= 0x10;
852         writel(gpmc_config, &gpmc_cfg->config);
853
854         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
855         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
856         omap_nand_info[cs].control = NULL;
857         omap_nand_info[cs].cs = cs;
858         nand->priv      = &omap_nand_info[cs];
859         nand->cmd_ctrl  = omap_nand_hwcontrol;
860         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
861         nand->chip_delay = 100;
862         nand->ecc.layout = &omap_ecclayout;
863
864         /* configure driver and controller based on NAND device bus-width */
865         gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
866 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
867         nand->options |= NAND_BUSWIDTH_16;
868         writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
869 #else
870         nand->options &= ~NAND_BUSWIDTH_16;
871         writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
872 #endif
873         /* select ECC scheme */
874 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
875         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
876                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
877 #else
878         /* pagesize and oobsize are not required to configure sw ecc-scheme */
879         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
880                         0, 0);
881 #endif
882         if (err)
883                 return err;
884
885 #ifdef CONFIG_SPL_BUILD
886         if (nand->options & NAND_BUSWIDTH_16)
887                 nand->read_buf = nand_read_buf16;
888         else
889                 nand->read_buf = nand_read_buf;
890         nand->dev_ready = omap_spl_dev_ready;
891 #endif
892         return 0;
893 }