]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/s3c2410.c
ccacc40e64ee38d7b32250b88e24e78a85750461
[mv-sheeva.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright (c) 2004,2005 Simtec Electronics
4  *      http://www.simtec.co.uk/products/SWLINUX/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C240 NAND driver
8  *
9  * Changelog:
10  *      21-Sep-2004  BJD  Initial version
11  *      23-Sep-2004  BJD  Multiple device support
12  *      28-Sep-2004  BJD  Fixed ECC placement for Hardware mode
13  *      12-Oct-2004  BJD  Fixed errors in use of platform data
14  *      18-Feb-2005  BJD  Fix sparse errors
15  *      14-Mar-2005  BJD  Applied tglx's code reduction patch
16  *      02-May-2005  BJD  Fixed s3c2440 support
17  *      02-May-2005  BJD  Reduced hwcontrol decode
18  *      20-Jun-2005  BJD  Updated s3c2440 support, fixed timing bug
19  *      08-Jul-2005  BJD  Fix OOPS when no platform data supplied
20  *      20-Oct-2005  BJD  Fix timing calculation bug
21  *      14-Jan-2006  BJD  Allow clock to be stopped when idle
22  *
23  * $Id: s3c2410.c,v 1.23 2006/04/01 18:06:29 bjd Exp $
24  *
25  * This program is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * This program is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38 */
39
40 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
41 #define DEBUG
42 #endif
43
44 #include <linux/module.h>
45 #include <linux/types.h>
46 #include <linux/init.h>
47 #include <linux/kernel.h>
48 #include <linux/string.h>
49 #include <linux/ioport.h>
50 #include <linux/platform_device.h>
51 #include <linux/delay.h>
52 #include <linux/err.h>
53 #include <linux/slab.h>
54 #include <linux/clk.h>
55
56 #include <linux/mtd/mtd.h>
57 #include <linux/mtd/nand.h>
58 #include <linux/mtd/nand_ecc.h>
59 #include <linux/mtd/partitions.h>
60
61 #include <asm/io.h>
62
63 #include <asm/plat-s3c/regs-nand.h>
64 #include <asm/plat-s3c/nand.h>
65
66 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
67 static int hardware_ecc = 1;
68 #else
69 static int hardware_ecc = 0;
70 #endif
71
72 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
73 static int clock_stop = 1;
74 #else
75 static const int clock_stop = 0;
76 #endif
77
78
79 /* new oob placement block for use with hardware ecc generation
80  */
81
82 static struct nand_ecclayout nand_hw_eccoob = {
83         .eccbytes = 3,
84         .eccpos = {0, 1, 2},
85         .oobfree = {{8, 8}}
86 };
87
88 /* controller and mtd information */
89
90 struct s3c2410_nand_info;
91
92 struct s3c2410_nand_mtd {
93         struct mtd_info                 mtd;
94         struct nand_chip                chip;
95         struct s3c2410_nand_set         *set;
96         struct s3c2410_nand_info        *info;
97         int                             scan_res;
98 };
99
100 enum s3c_cpu_type {
101         TYPE_S3C2410,
102         TYPE_S3C2412,
103         TYPE_S3C2440,
104 };
105
106 /* overview of the s3c2410 nand state */
107
108 struct s3c2410_nand_info {
109         /* mtd info */
110         struct nand_hw_control          controller;
111         struct s3c2410_nand_mtd         *mtds;
112         struct s3c2410_platform_nand    *platform;
113
114         /* device info */
115         struct device                   *device;
116         struct resource                 *area;
117         struct clk                      *clk;
118         void __iomem                    *regs;
119         void __iomem                    *sel_reg;
120         int                             sel_bit;
121         int                             mtd_count;
122         unsigned long                   save_sel;
123
124         enum s3c_cpu_type               cpu_type;
125 };
126
127 /* conversion functions */
128
129 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
130 {
131         return container_of(mtd, struct s3c2410_nand_mtd, mtd);
132 }
133
134 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
135 {
136         return s3c2410_nand_mtd_toours(mtd)->info;
137 }
138
139 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
140 {
141         return platform_get_drvdata(dev);
142 }
143
144 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
145 {
146         return dev->dev.platform_data;
147 }
148
149 static inline int allow_clk_stop(struct s3c2410_nand_info *info)
150 {
151         return clock_stop;
152 }
153
154 /* timing calculations */
155
156 #define NS_IN_KHZ 1000000
157
158 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
159 {
160         int result;
161
162         result = (wanted * clk) / NS_IN_KHZ;
163         result++;
164
165         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
166
167         if (result > max) {
168                 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
169                 return -1;
170         }
171
172         if (result < 1)
173                 result = 1;
174
175         return result;
176 }
177
178 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
179
180 /* controller setup */
181
182 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
183                                struct platform_device *pdev)
184 {
185         struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
186         unsigned long clkrate = clk_get_rate(info->clk);
187         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
188         int tacls, twrph0, twrph1;
189         unsigned long cfg = 0;
190
191         /* calculate the timing information for the controller */
192
193         clkrate /= 1000;        /* turn clock into kHz for ease of use */
194
195         if (plat != NULL) {
196                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
197                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
198                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
199         } else {
200                 /* default timings */
201                 tacls = tacls_max;
202                 twrph0 = 8;
203                 twrph1 = 8;
204         }
205
206         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
207                 dev_err(info->device, "cannot get suitable timings\n");
208                 return -EINVAL;
209         }
210
211         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
212                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
213
214         switch (info->cpu_type) {
215         case TYPE_S3C2410:
216                 cfg = S3C2410_NFCONF_EN;
217                 cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
218                 cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
219                 cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
220                 break;
221
222         case TYPE_S3C2440:
223         case TYPE_S3C2412:
224                 cfg = S3C2440_NFCONF_TACLS(tacls - 1);
225                 cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
226                 cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
227
228                 /* enable the controller and de-assert nFCE */
229
230                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
231         }
232
233         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
234
235         writel(cfg, info->regs + S3C2410_NFCONF);
236         return 0;
237 }
238
239 /* select chip */
240
241 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
242 {
243         struct s3c2410_nand_info *info;
244         struct s3c2410_nand_mtd *nmtd;
245         struct nand_chip *this = mtd->priv;
246         unsigned long cur;
247
248         nmtd = this->priv;
249         info = nmtd->info;
250
251         if (chip != -1 && allow_clk_stop(info))
252                 clk_enable(info->clk);
253
254         cur = readl(info->sel_reg);
255
256         if (chip == -1) {
257                 cur |= info->sel_bit;
258         } else {
259                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
260                         dev_err(info->device, "invalid chip %d\n", chip);
261                         return;
262                 }
263
264                 if (info->platform != NULL) {
265                         if (info->platform->select_chip != NULL)
266                                 (info->platform->select_chip) (nmtd->set, chip);
267                 }
268
269                 cur &= ~info->sel_bit;
270         }
271
272         writel(cur, info->sel_reg);
273
274         if (chip == -1 && allow_clk_stop(info))
275                 clk_disable(info->clk);
276 }
277
278 /* s3c2410_nand_hwcontrol
279  *
280  * Issue command and address cycles to the chip
281 */
282
283 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
284                                    unsigned int ctrl)
285 {
286         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
287
288         if (cmd == NAND_CMD_NONE)
289                 return;
290
291         if (ctrl & NAND_CLE)
292                 writeb(cmd, info->regs + S3C2410_NFCMD);
293         else
294                 writeb(cmd, info->regs + S3C2410_NFADDR);
295 }
296
297 /* command and control functions */
298
299 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
300                                    unsigned int ctrl)
301 {
302         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
303
304         if (cmd == NAND_CMD_NONE)
305                 return;
306
307         if (ctrl & NAND_CLE)
308                 writeb(cmd, info->regs + S3C2440_NFCMD);
309         else
310                 writeb(cmd, info->regs + S3C2440_NFADDR);
311 }
312
313 /* s3c2410_nand_devready()
314  *
315  * returns 0 if the nand is busy, 1 if it is ready
316 */
317
318 static int s3c2410_nand_devready(struct mtd_info *mtd)
319 {
320         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
321         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
322 }
323
324 static int s3c2440_nand_devready(struct mtd_info *mtd)
325 {
326         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
327         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
328 }
329
330 static int s3c2412_nand_devready(struct mtd_info *mtd)
331 {
332         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
333         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
334 }
335
336 /* ECC handling functions */
337
338 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
339                                      u_char *read_ecc, u_char *calc_ecc)
340 {
341         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
342         unsigned int diff0, diff1, diff2;
343         unsigned int bit, byte;
344
345         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
346
347         diff0 = read_ecc[0] ^ calc_ecc[0];
348         diff1 = read_ecc[1] ^ calc_ecc[1];
349         diff2 = read_ecc[2] ^ calc_ecc[2];
350
351         pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
352                  __func__,
353                  read_ecc[0], read_ecc[1], read_ecc[2],
354                  calc_ecc[0], calc_ecc[1], calc_ecc[2],
355                  diff0, diff1, diff2);
356
357         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
358                 return 0;               /* ECC is ok */
359
360         /* sometimes people do not think about using the ECC, so check
361          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
362          * the error, on the assumption that this is an un-eccd page.
363          */
364         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
365             && info->platform->ignore_unset_ecc)
366                 return 0;
367
368         /* Can we correct this ECC (ie, one row and column change).
369          * Note, this is similar to the 256 error code on smartmedia */
370
371         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
372             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
373             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
374                 /* calculate the bit position of the error */
375
376                 bit  = ((diff2 >> 3) & 1) |
377                        ((diff2 >> 4) & 2) |
378                        ((diff2 >> 5) & 4);
379
380                 /* calculate the byte position of the error */
381
382                 byte = ((diff2 << 7) & 0x100) |
383                        ((diff1 << 0) & 0x80)  |
384                        ((diff1 << 1) & 0x40)  |
385                        ((diff1 << 2) & 0x20)  |
386                        ((diff1 << 3) & 0x10)  |
387                        ((diff0 >> 4) & 0x08)  |
388                        ((diff0 >> 3) & 0x04)  |
389                        ((diff0 >> 2) & 0x02)  |
390                        ((diff0 >> 1) & 0x01);
391
392                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
393                         bit, byte);
394
395                 dat[byte] ^= (1 << bit);
396                 return 1;
397         }
398
399         /* if there is only one bit difference in the ECC, then
400          * one of only a row or column parity has changed, which
401          * means the error is most probably in the ECC itself */
402
403         diff0 |= (diff1 << 8);
404         diff0 |= (diff2 << 16);
405
406         if ((diff0 & ~(1<<fls(diff0))) == 0)
407                 return 1;
408
409         return -1;
410 }
411
412 /* ECC functions
413  *
414  * These allow the s3c2410 and s3c2440 to use the controller's ECC
415  * generator block to ECC the data as it passes through]
416 */
417
418 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
419 {
420         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
421         unsigned long ctrl;
422
423         ctrl = readl(info->regs + S3C2410_NFCONF);
424         ctrl |= S3C2410_NFCONF_INITECC;
425         writel(ctrl, info->regs + S3C2410_NFCONF);
426 }
427
428 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
429 {
430         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
431         unsigned long ctrl;
432
433         ctrl = readl(info->regs + S3C2440_NFCONT);
434         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
435 }
436
437 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
438 {
439         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440         unsigned long ctrl;
441
442         ctrl = readl(info->regs + S3C2440_NFCONT);
443         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
444 }
445
446 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
447 {
448         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
449
450         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
451         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
452         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
453
454         pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
455                  ecc_code[0], ecc_code[1], ecc_code[2]);
456
457         return 0;
458 }
459
460 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
461 {
462         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
463         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
464
465         ecc_code[0] = ecc;
466         ecc_code[1] = ecc >> 8;
467         ecc_code[2] = ecc >> 16;
468
469         pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
470
471         return 0;
472 }
473
474 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
475 {
476         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
477         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
478
479         ecc_code[0] = ecc;
480         ecc_code[1] = ecc >> 8;
481         ecc_code[2] = ecc >> 16;
482
483         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
484
485         return 0;
486 }
487
488 /* over-ride the standard functions for a little more speed. We can
489  * use read/write block to move the data buffers to/from the controller
490 */
491
492 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
493 {
494         struct nand_chip *this = mtd->priv;
495         readsb(this->IO_ADDR_R, buf, len);
496 }
497
498 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
499 {
500         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501         readsl(info->regs + S3C2440_NFDATA, buf, len / 4);
502 }
503
504 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
505 {
506         struct nand_chip *this = mtd->priv;
507         writesb(this->IO_ADDR_W, buf, len);
508 }
509
510 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
511 {
512         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
513         writesl(info->regs + S3C2440_NFDATA, buf, len / 4);
514 }
515
516 /* device management functions */
517
518 static int s3c2410_nand_remove(struct platform_device *pdev)
519 {
520         struct s3c2410_nand_info *info = to_nand_info(pdev);
521
522         platform_set_drvdata(pdev, NULL);
523
524         if (info == NULL)
525                 return 0;
526
527         /* first thing we need to do is release all our mtds
528          * and their partitions, then go through freeing the
529          * resources used
530          */
531
532         if (info->mtds != NULL) {
533                 struct s3c2410_nand_mtd *ptr = info->mtds;
534                 int mtdno;
535
536                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
537                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
538                         nand_release(&ptr->mtd);
539                 }
540
541                 kfree(info->mtds);
542         }
543
544         /* free the common resources */
545
546         if (info->clk != NULL && !IS_ERR(info->clk)) {
547                 if (!allow_clk_stop(info))
548                         clk_disable(info->clk);
549                 clk_put(info->clk);
550         }
551
552         if (info->regs != NULL) {
553                 iounmap(info->regs);
554                 info->regs = NULL;
555         }
556
557         if (info->area != NULL) {
558                 release_resource(info->area);
559                 kfree(info->area);
560                 info->area = NULL;
561         }
562
563         kfree(info);
564
565         return 0;
566 }
567
568 #ifdef CONFIG_MTD_PARTITIONS
569 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
570                                       struct s3c2410_nand_mtd *mtd,
571                                       struct s3c2410_nand_set *set)
572 {
573         if (set == NULL)
574                 return add_mtd_device(&mtd->mtd);
575
576         if (set->nr_partitions > 0 && set->partitions != NULL) {
577                 return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
578         }
579
580         return add_mtd_device(&mtd->mtd);
581 }
582 #else
583 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
584                                       struct s3c2410_nand_mtd *mtd,
585                                       struct s3c2410_nand_set *set)
586 {
587         return add_mtd_device(&mtd->mtd);
588 }
589 #endif
590
591 /* s3c2410_nand_init_chip
592  *
593  * init a single instance of an chip
594 */
595
596 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
597                                    struct s3c2410_nand_mtd *nmtd,
598                                    struct s3c2410_nand_set *set)
599 {
600         struct nand_chip *chip = &nmtd->chip;
601         void __iomem *regs = info->regs;
602
603         chip->write_buf    = s3c2410_nand_write_buf;
604         chip->read_buf     = s3c2410_nand_read_buf;
605         chip->select_chip  = s3c2410_nand_select_chip;
606         chip->chip_delay   = 50;
607         chip->priv         = nmtd;
608         chip->options      = 0;
609         chip->controller   = &info->controller;
610
611         switch (info->cpu_type) {
612         case TYPE_S3C2410:
613                 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
614                 info->sel_reg   = regs + S3C2410_NFCONF;
615                 info->sel_bit   = S3C2410_NFCONF_nFCE;
616                 chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
617                 chip->dev_ready = s3c2410_nand_devready;
618                 break;
619
620         case TYPE_S3C2440:
621                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
622                 info->sel_reg   = regs + S3C2440_NFCONT;
623                 info->sel_bit   = S3C2440_NFCONT_nFCE;
624                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
625                 chip->dev_ready = s3c2440_nand_devready;
626                 chip->read_buf  = s3c2440_nand_read_buf;
627                 chip->write_buf = s3c2440_nand_write_buf;
628                 break;
629
630         case TYPE_S3C2412:
631                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
632                 info->sel_reg   = regs + S3C2440_NFCONT;
633                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
634                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
635                 chip->dev_ready = s3c2412_nand_devready;
636
637                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
638                         dev_info(info->device, "System booted from NAND\n");
639
640                 break;
641         }
642
643         chip->IO_ADDR_R = chip->IO_ADDR_W;
644
645         nmtd->info         = info;
646         nmtd->mtd.priv     = chip;
647         nmtd->mtd.owner    = THIS_MODULE;
648         nmtd->set          = set;
649
650         if (hardware_ecc) {
651                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
652                 chip->ecc.correct   = s3c2410_nand_correct_data;
653                 chip->ecc.mode      = NAND_ECC_HW;
654
655                 switch (info->cpu_type) {
656                 case TYPE_S3C2410:
657                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
658                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
659                         break;
660
661                 case TYPE_S3C2412:
662                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
663                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
664                         break;
665
666                 case TYPE_S3C2440:
667                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
668                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
669                         break;
670
671                 }
672         } else {
673                 chip->ecc.mode      = NAND_ECC_SOFT;
674         }
675
676         if (set->ecc_layout != NULL)
677                 chip->ecc.layout = set->ecc_layout;
678 }
679
680 /* s3c2410_nand_update_chip
681  *
682  * post-probe chip update, to change any items, such as the
683  * layout for large page nand
684  */
685
686 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
687                                      struct s3c2410_nand_mtd *nmtd)
688 {
689         struct nand_chip *chip = &nmtd->chip;
690
691         printk("%s: chip %p: %d\n", __func__, chip, chip->page_shift);
692
693         if (hardware_ecc) {
694                 /* change the behaviour depending on wether we are using
695                  * the large or small page nand device */
696
697                 if (chip->page_shift > 10) {
698                         chip->ecc.size      = 256;
699                         chip->ecc.bytes     = 3;
700                 } else {
701                         chip->ecc.size      = 512;
702                         chip->ecc.bytes     = 3;
703                         chip->ecc.layout    = &nand_hw_eccoob;
704                 }
705         }
706 }
707
708 /* s3c2410_nand_probe
709  *
710  * called by device layer when it finds a device matching
711  * one our driver can handled. This code checks to see if
712  * it can allocate all necessary resources then calls the
713  * nand layer to look for devices
714 */
715
716 static int s3c24xx_nand_probe(struct platform_device *pdev,
717                               enum s3c_cpu_type cpu_type)
718 {
719         struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
720         struct s3c2410_nand_info *info;
721         struct s3c2410_nand_mtd *nmtd;
722         struct s3c2410_nand_set *sets;
723         struct resource *res;
724         int err = 0;
725         int size;
726         int nr_sets;
727         int setno;
728
729         pr_debug("s3c2410_nand_probe(%p)\n", pdev);
730
731         info = kmalloc(sizeof(*info), GFP_KERNEL);
732         if (info == NULL) {
733                 dev_err(&pdev->dev, "no memory for flash info\n");
734                 err = -ENOMEM;
735                 goto exit_error;
736         }
737
738         memzero(info, sizeof(*info));
739         platform_set_drvdata(pdev, info);
740
741         spin_lock_init(&info->controller.lock);
742         init_waitqueue_head(&info->controller.wq);
743
744         /* get the clock source and enable it */
745
746         info->clk = clk_get(&pdev->dev, "nand");
747         if (IS_ERR(info->clk)) {
748                 dev_err(&pdev->dev, "failed to get clock\n");
749                 err = -ENOENT;
750                 goto exit_error;
751         }
752
753         clk_enable(info->clk);
754
755         /* allocate and map the resource */
756
757         /* currently we assume we have the one resource */
758         res  = pdev->resource;
759         size = res->end - res->start + 1;
760
761         info->area = request_mem_region(res->start, size, pdev->name);
762
763         if (info->area == NULL) {
764                 dev_err(&pdev->dev, "cannot reserve register region\n");
765                 err = -ENOENT;
766                 goto exit_error;
767         }
768
769         info->device     = &pdev->dev;
770         info->platform   = plat;
771         info->regs       = ioremap(res->start, size);
772         info->cpu_type   = cpu_type;
773
774         if (info->regs == NULL) {
775                 dev_err(&pdev->dev, "cannot reserve register region\n");
776                 err = -EIO;
777                 goto exit_error;
778         }
779
780         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
781
782         /* initialise the hardware */
783
784         err = s3c2410_nand_inithw(info, pdev);
785         if (err != 0)
786                 goto exit_error;
787
788         sets = (plat != NULL) ? plat->sets : NULL;
789         nr_sets = (plat != NULL) ? plat->nr_sets : 1;
790
791         info->mtd_count = nr_sets;
792
793         /* allocate our information */
794
795         size = nr_sets * sizeof(*info->mtds);
796         info->mtds = kmalloc(size, GFP_KERNEL);
797         if (info->mtds == NULL) {
798                 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
799                 err = -ENOMEM;
800                 goto exit_error;
801         }
802
803         memzero(info->mtds, size);
804
805         /* initialise all possible chips */
806
807         nmtd = info->mtds;
808
809         for (setno = 0; setno < nr_sets; setno++, nmtd++) {
810                 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
811
812                 s3c2410_nand_init_chip(info, nmtd, sets);
813
814                 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
815                                                  (sets) ? sets->nr_chips : 1);
816
817                 if (nmtd->scan_res == 0) {
818                         s3c2410_nand_update_chip(info, nmtd);
819                         nand_scan_tail(&nmtd->mtd);
820                         s3c2410_nand_add_partition(info, nmtd, sets);
821                 }
822
823                 if (sets != NULL)
824                         sets++;
825         }
826
827         if (allow_clk_stop(info)) {
828                 dev_info(&pdev->dev, "clock idle support enabled\n");
829                 clk_disable(info->clk);
830         }
831
832         pr_debug("initialised ok\n");
833         return 0;
834
835  exit_error:
836         s3c2410_nand_remove(pdev);
837
838         if (err == 0)
839                 err = -EINVAL;
840         return err;
841 }
842
843 /* PM Support */
844 #ifdef CONFIG_PM
845
846 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
847 {
848         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
849
850         if (info) {
851                 info->save_sel = readl(info->sel_reg);
852
853                 /* For the moment, we must ensure nFCE is high during
854                  * the time we are suspended. This really should be
855                  * handled by suspending the MTDs we are using, but
856                  * that is currently not the case. */
857
858                 writel(info->save_sel | info->sel_bit, info->sel_reg);
859
860                 if (!allow_clk_stop(info))
861                         clk_disable(info->clk);
862         }
863
864         return 0;
865 }
866
867 static int s3c24xx_nand_resume(struct platform_device *dev)
868 {
869         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
870         unsigned long sel;
871
872         if (info) {
873                 clk_enable(info->clk);
874                 s3c2410_nand_inithw(info, dev);
875
876                 /* Restore the state of the nFCE line. */
877
878                 sel = readl(info->sel_reg);
879                 sel &= ~info->sel_bit;
880                 sel |= info->save_sel & info->sel_bit;
881                 writel(sel, info->sel_reg);
882
883                 if (allow_clk_stop(info))
884                         clk_disable(info->clk);
885         }
886
887         return 0;
888 }
889
890 #else
891 #define s3c24xx_nand_suspend NULL
892 #define s3c24xx_nand_resume NULL
893 #endif
894
895 /* driver device registration */
896
897 static int s3c2410_nand_probe(struct platform_device *dev)
898 {
899         return s3c24xx_nand_probe(dev, TYPE_S3C2410);
900 }
901
902 static int s3c2440_nand_probe(struct platform_device *dev)
903 {
904         return s3c24xx_nand_probe(dev, TYPE_S3C2440);
905 }
906
907 static int s3c2412_nand_probe(struct platform_device *dev)
908 {
909         return s3c24xx_nand_probe(dev, TYPE_S3C2412);
910 }
911
912 static struct platform_driver s3c2410_nand_driver = {
913         .probe          = s3c2410_nand_probe,
914         .remove         = s3c2410_nand_remove,
915         .suspend        = s3c24xx_nand_suspend,
916         .resume         = s3c24xx_nand_resume,
917         .driver         = {
918                 .name   = "s3c2410-nand",
919                 .owner  = THIS_MODULE,
920         },
921 };
922
923 static struct platform_driver s3c2440_nand_driver = {
924         .probe          = s3c2440_nand_probe,
925         .remove         = s3c2410_nand_remove,
926         .suspend        = s3c24xx_nand_suspend,
927         .resume         = s3c24xx_nand_resume,
928         .driver         = {
929                 .name   = "s3c2440-nand",
930                 .owner  = THIS_MODULE,
931         },
932 };
933
934 static struct platform_driver s3c2412_nand_driver = {
935         .probe          = s3c2412_nand_probe,
936         .remove         = s3c2410_nand_remove,
937         .suspend        = s3c24xx_nand_suspend,
938         .resume         = s3c24xx_nand_resume,
939         .driver         = {
940                 .name   = "s3c2412-nand",
941                 .owner  = THIS_MODULE,
942         },
943 };
944
945 static int __init s3c2410_nand_init(void)
946 {
947         printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
948
949         platform_driver_register(&s3c2412_nand_driver);
950         platform_driver_register(&s3c2440_nand_driver);
951         return platform_driver_register(&s3c2410_nand_driver);
952 }
953
954 static void __exit s3c2410_nand_exit(void)
955 {
956         platform_driver_unregister(&s3c2412_nand_driver);
957         platform_driver_unregister(&s3c2440_nand_driver);
958         platform_driver_unregister(&s3c2410_nand_driver);
959 }
960
961 module_init(s3c2410_nand_init);
962 module_exit(s3c2410_nand_exit);
963
964 MODULE_LICENSE("GPL");
965 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
966 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
967 MODULE_ALIAS("platform:s3c2410-nand");
968 MODULE_ALIAS("platform:s3c2412-nand");
969 MODULE_ALIAS("platform:s3c2440-nand");