]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/sunxi_nand.c
usb: chipidea: udc: remove unused value assignment
[karo-tx-linux.git] / drivers / mtd / nand / sunxi_nand.c
1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *      https://github.com/yuq/sunxi-nfc-mtd
6  *      Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *      https://github.com/hno/Allwinner-Info
9  *      Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *      Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *      Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43
44 #define NFC_REG_CTL             0x0000
45 #define NFC_REG_ST              0x0004
46 #define NFC_REG_INT             0x0008
47 #define NFC_REG_TIMING_CTL      0x000C
48 #define NFC_REG_TIMING_CFG      0x0010
49 #define NFC_REG_ADDR_LOW        0x0014
50 #define NFC_REG_ADDR_HIGH       0x0018
51 #define NFC_REG_SECTOR_NUM      0x001C
52 #define NFC_REG_CNT             0x0020
53 #define NFC_REG_CMD             0x0024
54 #define NFC_REG_RCMD_SET        0x0028
55 #define NFC_REG_WCMD_SET        0x002C
56 #define NFC_REG_IO_DATA         0x0030
57 #define NFC_REG_ECC_CTL         0x0034
58 #define NFC_REG_ECC_ST          0x0038
59 #define NFC_REG_DEBUG           0x003C
60 #define NFC_REG_ECC_ERR_CNT(x)  ((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x)    (0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA      0x00A0
63 #define NFC_RAM0_BASE           0x0400
64 #define NFC_RAM1_BASE           0x0800
65
66 /* define bit use in NFC_CTL */
67 #define NFC_EN                  BIT(0)
68 #define NFC_RESET               BIT(1)
69 #define NFC_BUS_WIDTH_MSK       BIT(2)
70 #define NFC_BUS_WIDTH_8         (0 << 2)
71 #define NFC_BUS_WIDTH_16        (1 << 2)
72 #define NFC_RB_SEL_MSK          BIT(3)
73 #define NFC_RB_SEL(x)           ((x) << 3)
74 #define NFC_CE_SEL_MSK          GENMASK(26, 24)
75 #define NFC_CE_SEL(x)           ((x) << 24)
76 #define NFC_CE_CTL              BIT(6)
77 #define NFC_PAGE_SHIFT_MSK      GENMASK(11, 8)
78 #define NFC_PAGE_SHIFT(x)       (((x) < 10 ? 0 : (x) - 10) << 8)
79 #define NFC_SAM                 BIT(12)
80 #define NFC_RAM_METHOD          BIT(14)
81 #define NFC_DEBUG_CTL           BIT(31)
82
83 /* define bit use in NFC_ST */
84 #define NFC_RB_B2R              BIT(0)
85 #define NFC_CMD_INT_FLAG        BIT(1)
86 #define NFC_DMA_INT_FLAG        BIT(2)
87 #define NFC_CMD_FIFO_STATUS     BIT(3)
88 #define NFC_STA                 BIT(4)
89 #define NFC_NATCH_INT_FLAG      BIT(5)
90 #define NFC_RB_STATE(x)         BIT(x + 8)
91
92 /* define bit use in NFC_INT */
93 #define NFC_B2R_INT_ENABLE      BIT(0)
94 #define NFC_CMD_INT_ENABLE      BIT(1)
95 #define NFC_DMA_INT_ENABLE      BIT(2)
96 #define NFC_INT_MASK            (NFC_B2R_INT_ENABLE | \
97                                  NFC_CMD_INT_ENABLE | \
98                                  NFC_DMA_INT_ENABLE)
99
100 /* define bit use in NFC_TIMING_CTL */
101 #define NFC_TIMING_CTL_EDO      BIT(8)
102
103 /* define NFC_TIMING_CFG register layout */
104 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)             \
105         (((tWB) & 0x3) | (((tADL) & 0x3) << 2) |                \
106         (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |         \
107         (((tCAD) & 0x7) << 8))
108
109 /* define bit use in NFC_CMD */
110 #define NFC_CMD_LOW_BYTE_MSK    GENMASK(7, 0)
111 #define NFC_CMD_HIGH_BYTE_MSK   GENMASK(15, 8)
112 #define NFC_CMD(x)              (x)
113 #define NFC_ADR_NUM_MSK         GENMASK(18, 16)
114 #define NFC_ADR_NUM(x)          (((x) - 1) << 16)
115 #define NFC_SEND_ADR            BIT(19)
116 #define NFC_ACCESS_DIR          BIT(20)
117 #define NFC_DATA_TRANS          BIT(21)
118 #define NFC_SEND_CMD1           BIT(22)
119 #define NFC_WAIT_FLAG           BIT(23)
120 #define NFC_SEND_CMD2           BIT(24)
121 #define NFC_SEQ                 BIT(25)
122 #define NFC_DATA_SWAP_METHOD    BIT(26)
123 #define NFC_ROW_AUTO_INC        BIT(27)
124 #define NFC_SEND_CMD3           BIT(28)
125 #define NFC_SEND_CMD4           BIT(29)
126 #define NFC_CMD_TYPE_MSK        GENMASK(31, 30)
127 #define NFC_NORMAL_OP           (0 << 30)
128 #define NFC_ECC_OP              (1 << 30)
129 #define NFC_PAGE_OP             (2 << 30)
130
131 /* define bit use in NFC_RCMD_SET */
132 #define NFC_READ_CMD_MSK        GENMASK(7, 0)
133 #define NFC_RND_READ_CMD0_MSK   GENMASK(15, 8)
134 #define NFC_RND_READ_CMD1_MSK   GENMASK(23, 16)
135
136 /* define bit use in NFC_WCMD_SET */
137 #define NFC_PROGRAM_CMD_MSK     GENMASK(7, 0)
138 #define NFC_RND_WRITE_CMD_MSK   GENMASK(15, 8)
139 #define NFC_READ_CMD0_MSK       GENMASK(23, 16)
140 #define NFC_READ_CMD1_MSK       GENMASK(31, 24)
141
142 /* define bit use in NFC_ECC_CTL */
143 #define NFC_ECC_EN              BIT(0)
144 #define NFC_ECC_PIPELINE        BIT(3)
145 #define NFC_ECC_EXCEPTION       BIT(4)
146 #define NFC_ECC_BLOCK_SIZE_MSK  BIT(5)
147 #define NFC_RANDOM_EN           BIT(9)
148 #define NFC_RANDOM_DIRECTION    BIT(10)
149 #define NFC_ECC_MODE_MSK        GENMASK(15, 12)
150 #define NFC_ECC_MODE(x)         ((x) << 12)
151 #define NFC_RANDOM_SEED_MSK     GENMASK(30, 16)
152 #define NFC_RANDOM_SEED(x)      ((x) << 16)
153
154 /* define bit use in NFC_ECC_ST */
155 #define NFC_ECC_ERR(x)          BIT(x)
156 #define NFC_ECC_PAT_FOUND(x)    BIT(x + 16)
157 #define NFC_ECC_ERR_CNT(b, x)   (((x) >> ((b) * 8)) & 0xff)
158
159 #define NFC_DEFAULT_TIMEOUT_MS  1000
160
161 #define NFC_SRAM_SIZE           1024
162
163 #define NFC_MAX_CS              7
164
165 /*
166  * Ready/Busy detection type: describes the Ready/Busy detection modes
167  *
168  * @RB_NONE:    no external detection available, rely on STATUS command
169  *              and software timeouts
170  * @RB_NATIVE:  use sunxi NAND controller Ready/Busy support. The Ready/Busy
171  *              pin of the NAND flash chip must be connected to one of the
172  *              native NAND R/B pins (those which can be muxed to the NAND
173  *              Controller)
174  * @RB_GPIO:    use a simple GPIO to handle Ready/Busy status. The Ready/Busy
175  *              pin of the NAND flash chip must be connected to a GPIO capable
176  *              pin.
177  */
178 enum sunxi_nand_rb_type {
179         RB_NONE,
180         RB_NATIVE,
181         RB_GPIO,
182 };
183
184 /*
185  * Ready/Busy structure: stores information related to Ready/Busy detection
186  *
187  * @type:       the Ready/Busy detection mode
188  * @info:       information related to the R/B detection mode. Either a gpio
189  *              id or a native R/B id (those supported by the NAND controller).
190  */
191 struct sunxi_nand_rb {
192         enum sunxi_nand_rb_type type;
193         union {
194                 int gpio;
195                 int nativeid;
196         } info;
197 };
198
199 /*
200  * Chip Select structure: stores information related to NAND Chip Select
201  *
202  * @cs:         the NAND CS id used to communicate with a NAND Chip
203  * @rb:         the Ready/Busy description
204  */
205 struct sunxi_nand_chip_sel {
206         u8 cs;
207         struct sunxi_nand_rb rb;
208 };
209
210 /*
211  * sunxi HW ECC infos: stores information related to HW ECC support
212  *
213  * @mode:       the sunxi ECC mode field deduced from ECC requirements
214  * @layout:     the OOB layout depending on the ECC requirements and the
215  *              selected ECC mode
216  */
217 struct sunxi_nand_hw_ecc {
218         int mode;
219         struct nand_ecclayout layout;
220 };
221
222 /*
223  * NAND chip structure: stores NAND chip device related information
224  *
225  * @node:               used to store NAND chips into a list
226  * @nand:               base NAND chip structure
227  * @mtd:                base MTD structure
228  * @clk_rate:           clk_rate required for this NAND chip
229  * @timing_cfg          TIMING_CFG register value for this NAND chip
230  * @selected:           current active CS
231  * @nsels:              number of CS lines required by the NAND chip
232  * @sels:               array of CS lines descriptions
233  */
234 struct sunxi_nand_chip {
235         struct list_head node;
236         struct nand_chip nand;
237         unsigned long clk_rate;
238         u32 timing_cfg;
239         u32 timing_ctl;
240         int selected;
241         int nsels;
242         struct sunxi_nand_chip_sel sels[0];
243 };
244
245 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
246 {
247         return container_of(nand, struct sunxi_nand_chip, nand);
248 }
249
250 /*
251  * NAND Controller structure: stores sunxi NAND controller information
252  *
253  * @controller:         base controller structure
254  * @dev:                parent device (used to print error messages)
255  * @regs:               NAND controller registers
256  * @ahb_clk:            NAND Controller AHB clock
257  * @mod_clk:            NAND Controller mod clock
258  * @assigned_cs:        bitmask describing already assigned CS lines
259  * @clk_rate:           NAND controller current clock rate
260  * @chips:              a list containing all the NAND chips attached to
261  *                      this NAND controller
262  * @complete:           a completion object used to wait for NAND
263  *                      controller events
264  */
265 struct sunxi_nfc {
266         struct nand_hw_control controller;
267         struct device *dev;
268         void __iomem *regs;
269         struct clk *ahb_clk;
270         struct clk *mod_clk;
271         unsigned long assigned_cs;
272         unsigned long clk_rate;
273         struct list_head chips;
274         struct completion complete;
275 };
276
277 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
278 {
279         return container_of(ctrl, struct sunxi_nfc, controller);
280 }
281
282 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
283 {
284         struct sunxi_nfc *nfc = dev_id;
285         u32 st = readl(nfc->regs + NFC_REG_ST);
286         u32 ien = readl(nfc->regs + NFC_REG_INT);
287
288         if (!(ien & st))
289                 return IRQ_NONE;
290
291         if ((ien & st) == ien)
292                 complete(&nfc->complete);
293
294         writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
295         writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
296
297         return IRQ_HANDLED;
298 }
299
300 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
301                               unsigned int timeout_ms)
302 {
303         init_completion(&nfc->complete);
304
305         writel(flags, nfc->regs + NFC_REG_INT);
306
307         if (!timeout_ms)
308                 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
309
310         if (!wait_for_completion_timeout(&nfc->complete,
311                                          msecs_to_jiffies(timeout_ms))) {
312                 dev_err(nfc->dev, "wait interrupt timedout\n");
313                 return -ETIMEDOUT;
314         }
315
316         return 0;
317 }
318
319 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
320 {
321         unsigned long timeout = jiffies +
322                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
323
324         do {
325                 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
326                         return 0;
327         } while (time_before(jiffies, timeout));
328
329         dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
330         return -ETIMEDOUT;
331 }
332
333 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
334 {
335         unsigned long timeout = jiffies +
336                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
337
338         writel(0, nfc->regs + NFC_REG_ECC_CTL);
339         writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
340
341         do {
342                 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
343                         return 0;
344         } while (time_before(jiffies, timeout));
345
346         dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
347         return -ETIMEDOUT;
348 }
349
350 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
351 {
352         struct nand_chip *nand = mtd_to_nand(mtd);
353         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
354         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
355         struct sunxi_nand_rb *rb;
356         unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
357         int ret;
358
359         if (sunxi_nand->selected < 0)
360                 return 0;
361
362         rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
363
364         switch (rb->type) {
365         case RB_NATIVE:
366                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
367                          NFC_RB_STATE(rb->info.nativeid));
368                 if (ret)
369                         break;
370
371                 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
372                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
373                          NFC_RB_STATE(rb->info.nativeid));
374                 break;
375         case RB_GPIO:
376                 ret = gpio_get_value(rb->info.gpio);
377                 break;
378         case RB_NONE:
379         default:
380                 ret = 0;
381                 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
382                 break;
383         }
384
385         return ret;
386 }
387
388 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
389 {
390         struct nand_chip *nand = mtd_to_nand(mtd);
391         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
392         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
393         struct sunxi_nand_chip_sel *sel;
394         u32 ctl;
395
396         if (chip > 0 && chip >= sunxi_nand->nsels)
397                 return;
398
399         if (chip == sunxi_nand->selected)
400                 return;
401
402         ctl = readl(nfc->regs + NFC_REG_CTL) &
403               ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
404
405         if (chip >= 0) {
406                 sel = &sunxi_nand->sels[chip];
407
408                 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
409                        NFC_PAGE_SHIFT(nand->page_shift - 10);
410                 if (sel->rb.type == RB_NONE) {
411                         nand->dev_ready = NULL;
412                 } else {
413                         nand->dev_ready = sunxi_nfc_dev_ready;
414                         if (sel->rb.type == RB_NATIVE)
415                                 ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
416                 }
417
418                 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
419
420                 if (nfc->clk_rate != sunxi_nand->clk_rate) {
421                         clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
422                         nfc->clk_rate = sunxi_nand->clk_rate;
423                 }
424         }
425
426         writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
427         writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
428         writel(ctl, nfc->regs + NFC_REG_CTL);
429
430         sunxi_nand->selected = chip;
431 }
432
433 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
434 {
435         struct nand_chip *nand = mtd_to_nand(mtd);
436         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
437         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
438         int ret;
439         int cnt;
440         int offs = 0;
441         u32 tmp;
442
443         while (len > offs) {
444                 cnt = min(len - offs, NFC_SRAM_SIZE);
445
446                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
447                 if (ret)
448                         break;
449
450                 writel(cnt, nfc->regs + NFC_REG_CNT);
451                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
452                 writel(tmp, nfc->regs + NFC_REG_CMD);
453
454                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
455                 if (ret)
456                         break;
457
458                 if (buf)
459                         memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
460                                       cnt);
461                 offs += cnt;
462         }
463 }
464
465 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
466                                 int len)
467 {
468         struct nand_chip *nand = mtd_to_nand(mtd);
469         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
470         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
471         int ret;
472         int cnt;
473         int offs = 0;
474         u32 tmp;
475
476         while (len > offs) {
477                 cnt = min(len - offs, NFC_SRAM_SIZE);
478
479                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
480                 if (ret)
481                         break;
482
483                 writel(cnt, nfc->regs + NFC_REG_CNT);
484                 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
485                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
486                       NFC_ACCESS_DIR;
487                 writel(tmp, nfc->regs + NFC_REG_CMD);
488
489                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
490                 if (ret)
491                         break;
492
493                 offs += cnt;
494         }
495 }
496
497 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
498 {
499         uint8_t ret;
500
501         sunxi_nfc_read_buf(mtd, &ret, 1);
502
503         return ret;
504 }
505
506 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
507                                unsigned int ctrl)
508 {
509         struct nand_chip *nand = mtd_to_nand(mtd);
510         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
511         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
512         int ret;
513         u32 tmp;
514
515         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
516         if (ret)
517                 return;
518
519         if (ctrl & NAND_CTRL_CHANGE) {
520                 tmp = readl(nfc->regs + NFC_REG_CTL);
521                 if (ctrl & NAND_NCE)
522                         tmp |= NFC_CE_CTL;
523                 else
524                         tmp &= ~NFC_CE_CTL;
525                 writel(tmp, nfc->regs + NFC_REG_CTL);
526         }
527
528         if (dat == NAND_CMD_NONE)
529                 return;
530
531         if (ctrl & NAND_CLE) {
532                 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
533         } else {
534                 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
535                 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
536         }
537
538         sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
539 }
540
541 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
542 {
543         struct nand_chip *nand = mtd_to_nand(mtd);
544         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
545         struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
546         u32 ecc_ctl;
547
548         ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
549         ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
550                      NFC_ECC_BLOCK_SIZE_MSK);
551         ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
552
553         writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
554 }
555
556 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
557 {
558         struct nand_chip *nand = mtd_to_nand(mtd);
559         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
560
561         writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
562                nfc->regs + NFC_REG_ECC_CTL);
563 }
564
565 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
566 {
567         buf[0] = user_data;
568         buf[1] = user_data >> 8;
569         buf[2] = user_data >> 16;
570         buf[3] = user_data >> 24;
571 }
572
573 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
574                                        u8 *data, int data_off,
575                                        u8 *oob, int oob_off,
576                                        int *cur_off,
577                                        unsigned int *max_bitflips)
578 {
579         struct nand_chip *nand = mtd_to_nand(mtd);
580         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
581         struct nand_ecc_ctrl *ecc = &nand->ecc;
582         u32 status;
583         int ret;
584
585         if (*cur_off != data_off)
586                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
587
588         sunxi_nfc_read_buf(mtd, NULL, ecc->size);
589
590         if (data_off + ecc->size != oob_off)
591                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
592
593         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
594         if (ret)
595                 return ret;
596
597         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
598                nfc->regs + NFC_REG_CMD);
599
600         ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
601         if (ret)
602                 return ret;
603
604         status = readl(nfc->regs + NFC_REG_ECC_ST);
605         ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
606
607         memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
608
609         nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
610         sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);
611
612         if (status & NFC_ECC_ERR(0)) {
613                 ret = nand_check_erased_ecc_chunk(data, ecc->size,
614                                                   oob, ecc->bytes + 4,
615                                                   NULL, 0, ecc->strength);
616         } else {
617                 /*
618                  * The engine protects 4 bytes of OOB data per chunk.
619                  * Retrieve the corrected OOB bytes.
620                  */
621                 sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
622                                            oob);
623         }
624
625         if (ret < 0) {
626                 mtd->ecc_stats.failed++;
627         } else {
628                 mtd->ecc_stats.corrected += ret;
629                 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
630         }
631
632         *cur_off = oob_off + ecc->bytes + 4;
633
634         return 0;
635 }
636
637 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
638                                             u8 *oob, int *cur_off)
639 {
640         struct nand_chip *nand = mtd_to_nand(mtd);
641         struct nand_ecc_ctrl *ecc = &nand->ecc;
642         int offset = ((ecc->bytes + 4) * ecc->steps);
643         int len = mtd->oobsize - offset;
644
645         if (len <= 0)
646                 return;
647
648         if (*cur_off != offset)
649                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
650                               offset + mtd->writesize, -1);
651
652         sunxi_nfc_read_buf(mtd, oob + offset, len);
653
654         *cur_off = mtd->oobsize + mtd->writesize;
655 }
656
657 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
658 {
659         return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
660 }
661
662 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
663                                         const u8 *data, int data_off,
664                                         const u8 *oob, int oob_off,
665                                         int *cur_off)
666 {
667         struct nand_chip *nand = mtd_to_nand(mtd);
668         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
669         struct nand_ecc_ctrl *ecc = &nand->ecc;
670         int ret;
671
672         if (data_off != *cur_off)
673                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
674
675         sunxi_nfc_write_buf(mtd, data, ecc->size);
676
677         /* Fill OOB data in */
678         writel(sunxi_nfc_buf_to_user_data(oob),
679                nfc->regs + NFC_REG_USER_DATA(0));
680
681         if (data_off + ecc->size != oob_off)
682                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
683
684         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
685         if (ret)
686                 return ret;
687
688         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
689                NFC_ACCESS_DIR | NFC_ECC_OP,
690                nfc->regs + NFC_REG_CMD);
691
692         ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
693         if (ret)
694                 return ret;
695
696         *cur_off = oob_off + ecc->bytes + 4;
697
698         return 0;
699 }
700
701 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
702                                              u8 *oob, int *cur_off)
703 {
704         struct nand_chip *nand = mtd_to_nand(mtd);
705         struct nand_ecc_ctrl *ecc = &nand->ecc;
706         int offset = ((ecc->bytes + 4) * ecc->steps);
707         int len = mtd->oobsize - offset;
708
709         if (len <= 0)
710                 return;
711
712         if (*cur_off != offset)
713                 nand->cmdfunc(mtd, NAND_CMD_RNDIN,
714                               offset + mtd->writesize, -1);
715
716         sunxi_nfc_write_buf(mtd, oob + offset, len);
717
718         *cur_off = mtd->oobsize + mtd->writesize;
719 }
720
721 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
722                                       struct nand_chip *chip, uint8_t *buf,
723                                       int oob_required, int page)
724 {
725         struct nand_ecc_ctrl *ecc = &chip->ecc;
726         unsigned int max_bitflips = 0;
727         int ret, i, cur_off = 0;
728
729         sunxi_nfc_hw_ecc_enable(mtd);
730
731         for (i = 0; i < ecc->steps; i++) {
732                 int data_off = i * ecc->size;
733                 int oob_off = i * (ecc->bytes + 4);
734                 u8 *data = buf + data_off;
735                 u8 *oob = chip->oob_poi + oob_off;
736
737                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
738                                                   oob_off + mtd->writesize,
739                                                   &cur_off, &max_bitflips);
740                 if (ret)
741                         return ret;
742         }
743
744         if (oob_required)
745                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
746
747         sunxi_nfc_hw_ecc_disable(mtd);
748
749         return max_bitflips;
750 }
751
752 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
753                                        struct nand_chip *chip,
754                                        const uint8_t *buf, int oob_required,
755                                        int page)
756 {
757         struct nand_ecc_ctrl *ecc = &chip->ecc;
758         int ret, i, cur_off = 0;
759
760         sunxi_nfc_hw_ecc_enable(mtd);
761
762         for (i = 0; i < ecc->steps; i++) {
763                 int data_off = i * ecc->size;
764                 int oob_off = i * (ecc->bytes + 4);
765                 const u8 *data = buf + data_off;
766                 const u8 *oob = chip->oob_poi + oob_off;
767
768                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
769                                                    oob_off + mtd->writesize,
770                                                    &cur_off);
771                 if (ret)
772                         return ret;
773         }
774
775         if (oob_required)
776                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
777
778         sunxi_nfc_hw_ecc_disable(mtd);
779
780         return 0;
781 }
782
783 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
784                                                struct nand_chip *chip,
785                                                uint8_t *buf, int oob_required,
786                                                int page)
787 {
788         struct nand_ecc_ctrl *ecc = &chip->ecc;
789         unsigned int max_bitflips = 0;
790         int ret, i, cur_off = 0;
791
792         sunxi_nfc_hw_ecc_enable(mtd);
793
794         for (i = 0; i < ecc->steps; i++) {
795                 int data_off = i * (ecc->size + ecc->bytes + 4);
796                 int oob_off = data_off + ecc->size;
797                 u8 *data = buf + (i * ecc->size);
798                 u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
799
800                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
801                                                   oob_off, &cur_off,
802                                                   &max_bitflips);
803                 if (ret)
804                         return ret;
805         }
806
807         if (oob_required)
808                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
809
810         sunxi_nfc_hw_ecc_disable(mtd);
811
812         return max_bitflips;
813 }
814
815 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
816                                                 struct nand_chip *chip,
817                                                 const uint8_t *buf,
818                                                 int oob_required, int page)
819 {
820         struct nand_ecc_ctrl *ecc = &chip->ecc;
821         int ret, i, cur_off = 0;
822
823         sunxi_nfc_hw_ecc_enable(mtd);
824
825         for (i = 0; i < ecc->steps; i++) {
826                 int data_off = i * (ecc->size + ecc->bytes + 4);
827                 int oob_off = data_off + ecc->size;
828                 const u8 *data = buf + (i * ecc->size);
829                 const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
830
831                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
832                                                    oob, oob_off, &cur_off);
833                 if (ret)
834                         return ret;
835         }
836
837         if (oob_required)
838                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
839
840         sunxi_nfc_hw_ecc_disable(mtd);
841
842         return 0;
843 }
844
845 static const s32 tWB_lut[] = {6, 12, 16, 20};
846 static const s32 tRHW_lut[] = {4, 8, 12, 20};
847
848 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
849                 u32 clk_period)
850 {
851         u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
852         int i;
853
854         for (i = 0; i < lut_size; i++) {
855                 if (clk_cycles <= lut[i])
856                         return i;
857         }
858
859         /* Doesn't fit */
860         return -EINVAL;
861 }
862
863 #define sunxi_nand_lookup_timing(l, p, c) \
864                         _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
865
866 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
867                                        const struct nand_sdr_timings *timings)
868 {
869         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
870         u32 min_clk_period = 0;
871         s32 tWB, tADL, tWHR, tRHW, tCAD;
872
873         /* T1 <=> tCLS */
874         if (timings->tCLS_min > min_clk_period)
875                 min_clk_period = timings->tCLS_min;
876
877         /* T2 <=> tCLH */
878         if (timings->tCLH_min > min_clk_period)
879                 min_clk_period = timings->tCLH_min;
880
881         /* T3 <=> tCS */
882         if (timings->tCS_min > min_clk_period)
883                 min_clk_period = timings->tCS_min;
884
885         /* T4 <=> tCH */
886         if (timings->tCH_min > min_clk_period)
887                 min_clk_period = timings->tCH_min;
888
889         /* T5 <=> tWP */
890         if (timings->tWP_min > min_clk_period)
891                 min_clk_period = timings->tWP_min;
892
893         /* T6 <=> tWH */
894         if (timings->tWH_min > min_clk_period)
895                 min_clk_period = timings->tWH_min;
896
897         /* T7 <=> tALS */
898         if (timings->tALS_min > min_clk_period)
899                 min_clk_period = timings->tALS_min;
900
901         /* T8 <=> tDS */
902         if (timings->tDS_min > min_clk_period)
903                 min_clk_period = timings->tDS_min;
904
905         /* T9 <=> tDH */
906         if (timings->tDH_min > min_clk_period)
907                 min_clk_period = timings->tDH_min;
908
909         /* T10 <=> tRR */
910         if (timings->tRR_min > (min_clk_period * 3))
911                 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
912
913         /* T11 <=> tALH */
914         if (timings->tALH_min > min_clk_period)
915                 min_clk_period = timings->tALH_min;
916
917         /* T12 <=> tRP */
918         if (timings->tRP_min > min_clk_period)
919                 min_clk_period = timings->tRP_min;
920
921         /* T13 <=> tREH */
922         if (timings->tREH_min > min_clk_period)
923                 min_clk_period = timings->tREH_min;
924
925         /* T14 <=> tRC */
926         if (timings->tRC_min > (min_clk_period * 2))
927                 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
928
929         /* T15 <=> tWC */
930         if (timings->tWC_min > (min_clk_period * 2))
931                 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
932
933         /* T16 - T19 + tCAD */
934         tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
935                                         min_clk_period);
936         if (tWB < 0) {
937                 dev_err(nfc->dev, "unsupported tWB\n");
938                 return tWB;
939         }
940
941         tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
942         if (tADL > 3) {
943                 dev_err(nfc->dev, "unsupported tADL\n");
944                 return -EINVAL;
945         }
946
947         tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
948         if (tWHR > 3) {
949                 dev_err(nfc->dev, "unsupported tWHR\n");
950                 return -EINVAL;
951         }
952
953         tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
954                                         min_clk_period);
955         if (tRHW < 0) {
956                 dev_err(nfc->dev, "unsupported tRHW\n");
957                 return tRHW;
958         }
959
960         /*
961          * TODO: according to ONFI specs this value only applies for DDR NAND,
962          * but Allwinner seems to set this to 0x7. Mimic them for now.
963          */
964         tCAD = 0x7;
965
966         /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
967         chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
968
969         /*
970          * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
971          * output cycle timings shall be used if the host drives tRC less than
972          * 30 ns.
973          */
974         chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
975
976         /* Convert min_clk_period from picoseconds to nanoseconds */
977         min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
978
979         /*
980          * Convert min_clk_period into a clk frequency, then get the
981          * appropriate rate for the NAND controller IP given this formula
982          * (specified in the datasheet):
983          * nand clk_rate = 2 * min_clk_rate
984          */
985         chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
986
987         return 0;
988 }
989
990 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
991                                         struct device_node *np)
992 {
993         struct mtd_info *mtd = nand_to_mtd(&chip->nand);
994         const struct nand_sdr_timings *timings;
995         int ret;
996         int mode;
997
998         mode = onfi_get_async_timing_mode(&chip->nand);
999         if (mode == ONFI_TIMING_MODE_UNKNOWN) {
1000                 mode = chip->nand.onfi_timing_mode_default;
1001         } else {
1002                 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003                 int i;
1004
1005                 mode = fls(mode) - 1;
1006                 if (mode < 0)
1007                         mode = 0;
1008
1009                 feature[0] = mode;
1010                 for (i = 0; i < chip->nsels; i++) {
1011                         chip->nand.select_chip(mtd, i);
1012                         ret = chip->nand.onfi_set_features(mtd, &chip->nand,
1013                                                 ONFI_FEATURE_ADDR_TIMING_MODE,
1014                                                 feature);
1015                         chip->nand.select_chip(mtd, -1);
1016                         if (ret)
1017                                 return ret;
1018                 }
1019         }
1020
1021         timings = onfi_async_timing_mode_to_sdr_timings(mode);
1022         if (IS_ERR(timings))
1023                 return PTR_ERR(timings);
1024
1025         return sunxi_nand_chip_set_timings(chip, timings);
1026 }
1027
1028 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1029                                               struct nand_ecc_ctrl *ecc,
1030                                               struct device_node *np)
1031 {
1032         static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1033         struct nand_chip *nand = mtd_to_nand(mtd);
1034         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1035         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1036         struct sunxi_nand_hw_ecc *data;
1037         struct nand_ecclayout *layout;
1038         int nsectors;
1039         int ret;
1040         int i;
1041
1042         data = kzalloc(sizeof(*data), GFP_KERNEL);
1043         if (!data)
1044                 return -ENOMEM;
1045
1046         /* Add ECC info retrieval from DT */
1047         for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1048                 if (ecc->strength <= strengths[i])
1049                         break;
1050         }
1051
1052         if (i >= ARRAY_SIZE(strengths)) {
1053                 dev_err(nfc->dev, "unsupported strength\n");
1054                 ret = -ENOTSUPP;
1055                 goto err;
1056         }
1057
1058         data->mode = i;
1059
1060         /* HW ECC always request ECC bytes for 1024 bytes blocks */
1061         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1062
1063         /* HW ECC always work with even numbers of ECC bytes */
1064         ecc->bytes = ALIGN(ecc->bytes, 2);
1065
1066         layout = &data->layout;
1067         nsectors = mtd->writesize / ecc->size;
1068
1069         if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1070                 ret = -EINVAL;
1071                 goto err;
1072         }
1073
1074         layout->eccbytes = (ecc->bytes * nsectors);
1075
1076         ecc->layout = layout;
1077         ecc->priv = data;
1078
1079         return 0;
1080
1081 err:
1082         kfree(data);
1083
1084         return ret;
1085 }
1086
1087 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1088 {
1089         kfree(ecc->priv);
1090 }
1091
1092 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1093                                        struct nand_ecc_ctrl *ecc,
1094                                        struct device_node *np)
1095 {
1096         struct nand_ecclayout *layout;
1097         int nsectors;
1098         int i, j;
1099         int ret;
1100
1101         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1102         if (ret)
1103                 return ret;
1104
1105         ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1106         ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1107         layout = ecc->layout;
1108         nsectors = mtd->writesize / ecc->size;
1109
1110         for (i = 0; i < nsectors; i++) {
1111                 if (i) {
1112                         layout->oobfree[i].offset =
1113                                 layout->oobfree[i - 1].offset +
1114                                 layout->oobfree[i - 1].length +
1115                                 ecc->bytes;
1116                         layout->oobfree[i].length = 4;
1117                 } else {
1118                         /*
1119                          * The first 2 bytes are used for BB markers, hence we
1120                          * only have 2 bytes available in the first user data
1121                          * section.
1122                          */
1123                         layout->oobfree[i].length = 2;
1124                         layout->oobfree[i].offset = 2;
1125                 }
1126
1127                 for (j = 0; j < ecc->bytes; j++)
1128                         layout->eccpos[(ecc->bytes * i) + j] =
1129                                         layout->oobfree[i].offset +
1130                                         layout->oobfree[i].length + j;
1131         }
1132
1133         if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1134                 layout->oobfree[nsectors].offset =
1135                                 layout->oobfree[nsectors - 1].offset +
1136                                 layout->oobfree[nsectors - 1].length +
1137                                 ecc->bytes;
1138                 layout->oobfree[nsectors].length = mtd->oobsize -
1139                                 ((ecc->bytes + 4) * nsectors);
1140         }
1141
1142         return 0;
1143 }
1144
1145 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1146                                                 struct nand_ecc_ctrl *ecc,
1147                                                 struct device_node *np)
1148 {
1149         struct nand_ecclayout *layout;
1150         int nsectors;
1151         int i;
1152         int ret;
1153
1154         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1155         if (ret)
1156                 return ret;
1157
1158         ecc->prepad = 4;
1159         ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1160         ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1161
1162         layout = ecc->layout;
1163         nsectors = mtd->writesize / ecc->size;
1164
1165         for (i = 0; i < (ecc->bytes * nsectors); i++)
1166                 layout->eccpos[i] = i;
1167
1168         layout->oobfree[0].length = mtd->oobsize - i;
1169         layout->oobfree[0].offset = i;
1170
1171         return 0;
1172 }
1173
1174 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1175 {
1176         switch (ecc->mode) {
1177         case NAND_ECC_HW:
1178         case NAND_ECC_HW_SYNDROME:
1179                 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1180                 break;
1181         case NAND_ECC_NONE:
1182                 kfree(ecc->layout);
1183         default:
1184                 break;
1185         }
1186 }
1187
1188 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1189                                struct device_node *np)
1190 {
1191         struct nand_chip *nand = mtd_to_nand(mtd);
1192         int ret;
1193
1194         if (!ecc->size) {
1195                 ecc->size = nand->ecc_step_ds;
1196                 ecc->strength = nand->ecc_strength_ds;
1197         }
1198
1199         if (!ecc->size || !ecc->strength)
1200                 return -EINVAL;
1201
1202         switch (ecc->mode) {
1203         case NAND_ECC_SOFT_BCH:
1204                 break;
1205         case NAND_ECC_HW:
1206                 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1207                 if (ret)
1208                         return ret;
1209                 break;
1210         case NAND_ECC_HW_SYNDROME:
1211                 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1212                 if (ret)
1213                         return ret;
1214                 break;
1215         case NAND_ECC_NONE:
1216                 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1217                 if (!ecc->layout)
1218                         return -ENOMEM;
1219                 ecc->layout->oobfree[0].length = mtd->oobsize;
1220         case NAND_ECC_SOFT:
1221                 break;
1222         default:
1223                 return -EINVAL;
1224         }
1225
1226         return 0;
1227 }
1228
1229 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1230                                 struct device_node *np)
1231 {
1232         const struct nand_sdr_timings *timings;
1233         struct sunxi_nand_chip *chip;
1234         struct mtd_info *mtd;
1235         struct nand_chip *nand;
1236         int nsels;
1237         int ret;
1238         int i;
1239         u32 tmp;
1240
1241         if (!of_get_property(np, "reg", &nsels))
1242                 return -EINVAL;
1243
1244         nsels /= sizeof(u32);
1245         if (!nsels) {
1246                 dev_err(dev, "invalid reg property size\n");
1247                 return -EINVAL;
1248         }
1249
1250         chip = devm_kzalloc(dev,
1251                             sizeof(*chip) +
1252                             (nsels * sizeof(struct sunxi_nand_chip_sel)),
1253                             GFP_KERNEL);
1254         if (!chip) {
1255                 dev_err(dev, "could not allocate chip\n");
1256                 return -ENOMEM;
1257         }
1258
1259         chip->nsels = nsels;
1260         chip->selected = -1;
1261
1262         for (i = 0; i < nsels; i++) {
1263                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1264                 if (ret) {
1265                         dev_err(dev, "could not retrieve reg property: %d\n",
1266                                 ret);
1267                         return ret;
1268                 }
1269
1270                 if (tmp > NFC_MAX_CS) {
1271                         dev_err(dev,
1272                                 "invalid reg value: %u (max CS = 7)\n",
1273                                 tmp);
1274                         return -EINVAL;
1275                 }
1276
1277                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1278                         dev_err(dev, "CS %d already assigned\n", tmp);
1279                         return -EINVAL;
1280                 }
1281
1282                 chip->sels[i].cs = tmp;
1283
1284                 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1285                     tmp < 2) {
1286                         chip->sels[i].rb.type = RB_NATIVE;
1287                         chip->sels[i].rb.info.nativeid = tmp;
1288                 } else {
1289                         ret = of_get_named_gpio(np, "rb-gpios", i);
1290                         if (ret >= 0) {
1291                                 tmp = ret;
1292                                 chip->sels[i].rb.type = RB_GPIO;
1293                                 chip->sels[i].rb.info.gpio = tmp;
1294                                 ret = devm_gpio_request(dev, tmp, "nand-rb");
1295                                 if (ret)
1296                                         return ret;
1297
1298                                 ret = gpio_direction_input(tmp);
1299                                 if (ret)
1300                                         return ret;
1301                         } else {
1302                                 chip->sels[i].rb.type = RB_NONE;
1303                         }
1304                 }
1305         }
1306
1307         timings = onfi_async_timing_mode_to_sdr_timings(0);
1308         if (IS_ERR(timings)) {
1309                 ret = PTR_ERR(timings);
1310                 dev_err(dev,
1311                         "could not retrieve timings for ONFI mode 0: %d\n",
1312                         ret);
1313                 return ret;
1314         }
1315
1316         ret = sunxi_nand_chip_set_timings(chip, timings);
1317         if (ret) {
1318                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1319                 return ret;
1320         }
1321
1322         nand = &chip->nand;
1323         /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1324         nand->chip_delay = 200;
1325         nand->controller = &nfc->controller;
1326         /*
1327          * Set the ECC mode to the default value in case nothing is specified
1328          * in the DT.
1329          */
1330         nand->ecc.mode = NAND_ECC_HW;
1331         nand_set_flash_node(nand, np);
1332         nand->select_chip = sunxi_nfc_select_chip;
1333         nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1334         nand->read_buf = sunxi_nfc_read_buf;
1335         nand->write_buf = sunxi_nfc_write_buf;
1336         nand->read_byte = sunxi_nfc_read_byte;
1337
1338         mtd = nand_to_mtd(nand);
1339         mtd->dev.parent = dev;
1340
1341         ret = nand_scan_ident(mtd, nsels, NULL);
1342         if (ret)
1343                 return ret;
1344
1345         if (nand->bbt_options & NAND_BBT_USE_FLASH)
1346                 nand->bbt_options |= NAND_BBT_NO_OOB;
1347
1348         ret = sunxi_nand_chip_init_timings(chip, np);
1349         if (ret) {
1350                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1351                 return ret;
1352         }
1353
1354         ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1355         if (ret) {
1356                 dev_err(dev, "ECC init failed: %d\n", ret);
1357                 return ret;
1358         }
1359
1360         ret = nand_scan_tail(mtd);
1361         if (ret) {
1362                 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1363                 return ret;
1364         }
1365
1366         ret = mtd_device_register(mtd, NULL, 0);
1367         if (ret) {
1368                 dev_err(dev, "failed to register mtd device: %d\n", ret);
1369                 nand_release(mtd);
1370                 return ret;
1371         }
1372
1373         list_add_tail(&chip->node, &nfc->chips);
1374
1375         return 0;
1376 }
1377
1378 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1379 {
1380         struct device_node *np = dev->of_node;
1381         struct device_node *nand_np;
1382         int nchips = of_get_child_count(np);
1383         int ret;
1384
1385         if (nchips > 8) {
1386                 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1387                 return -EINVAL;
1388         }
1389
1390         for_each_child_of_node(np, nand_np) {
1391                 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1392                 if (ret) {
1393                         of_node_put(nand_np);
1394                         return ret;
1395                 }
1396         }
1397
1398         return 0;
1399 }
1400
1401 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1402 {
1403         struct sunxi_nand_chip *chip;
1404
1405         while (!list_empty(&nfc->chips)) {
1406                 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1407                                         node);
1408                 nand_release(nand_to_mtd(&chip->nand));
1409                 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1410                 list_del(&chip->node);
1411         }
1412 }
1413
1414 static int sunxi_nfc_probe(struct platform_device *pdev)
1415 {
1416         struct device *dev = &pdev->dev;
1417         struct resource *r;
1418         struct sunxi_nfc *nfc;
1419         int irq;
1420         int ret;
1421
1422         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1423         if (!nfc)
1424                 return -ENOMEM;
1425
1426         nfc->dev = dev;
1427         spin_lock_init(&nfc->controller.lock);
1428         init_waitqueue_head(&nfc->controller.wq);
1429         INIT_LIST_HEAD(&nfc->chips);
1430
1431         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1432         nfc->regs = devm_ioremap_resource(dev, r);
1433         if (IS_ERR(nfc->regs))
1434                 return PTR_ERR(nfc->regs);
1435
1436         irq = platform_get_irq(pdev, 0);
1437         if (irq < 0) {
1438                 dev_err(dev, "failed to retrieve irq\n");
1439                 return irq;
1440         }
1441
1442         nfc->ahb_clk = devm_clk_get(dev, "ahb");
1443         if (IS_ERR(nfc->ahb_clk)) {
1444                 dev_err(dev, "failed to retrieve ahb clk\n");
1445                 return PTR_ERR(nfc->ahb_clk);
1446         }
1447
1448         ret = clk_prepare_enable(nfc->ahb_clk);
1449         if (ret)
1450                 return ret;
1451
1452         nfc->mod_clk = devm_clk_get(dev, "mod");
1453         if (IS_ERR(nfc->mod_clk)) {
1454                 dev_err(dev, "failed to retrieve mod clk\n");
1455                 ret = PTR_ERR(nfc->mod_clk);
1456                 goto out_ahb_clk_unprepare;
1457         }
1458
1459         ret = clk_prepare_enable(nfc->mod_clk);
1460         if (ret)
1461                 goto out_ahb_clk_unprepare;
1462
1463         ret = sunxi_nfc_rst(nfc);
1464         if (ret)
1465                 goto out_mod_clk_unprepare;
1466
1467         writel(0, nfc->regs + NFC_REG_INT);
1468         ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1469                                0, "sunxi-nand", nfc);
1470         if (ret)
1471                 goto out_mod_clk_unprepare;
1472
1473         platform_set_drvdata(pdev, nfc);
1474
1475         ret = sunxi_nand_chips_init(dev, nfc);
1476         if (ret) {
1477                 dev_err(dev, "failed to init nand chips\n");
1478                 goto out_mod_clk_unprepare;
1479         }
1480
1481         return 0;
1482
1483 out_mod_clk_unprepare:
1484         clk_disable_unprepare(nfc->mod_clk);
1485 out_ahb_clk_unprepare:
1486         clk_disable_unprepare(nfc->ahb_clk);
1487
1488         return ret;
1489 }
1490
1491 static int sunxi_nfc_remove(struct platform_device *pdev)
1492 {
1493         struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1494
1495         sunxi_nand_chips_cleanup(nfc);
1496
1497         return 0;
1498 }
1499
1500 static const struct of_device_id sunxi_nfc_ids[] = {
1501         { .compatible = "allwinner,sun4i-a10-nand" },
1502         { /* sentinel */ }
1503 };
1504 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1505
1506 static struct platform_driver sunxi_nfc_driver = {
1507         .driver = {
1508                 .name = "sunxi_nand",
1509                 .of_match_table = sunxi_nfc_ids,
1510         },
1511         .probe = sunxi_nfc_probe,
1512         .remove = sunxi_nfc_remove,
1513 };
1514 module_platform_driver(sunxi_nfc_driver);
1515
1516 MODULE_LICENSE("GPL v2");
1517 MODULE_AUTHOR("Boris BREZILLON");
1518 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1519 MODULE_ALIAS("platform:sunxi_nand");