]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/ubi/scan.c
594184bbd56a816526129d432a9522306ac92e70
[mv-sheeva.git] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning sub-system.
23  *
24  * This sub-system is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include <linux/math64.h>
46 #include "ubi.h"
47
48 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
49 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
50 #else
51 #define paranoid_check_si(ubi, si) 0
52 #endif
53
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr *ech;
56 static struct ubi_vid_hdr *vidh;
57
58 /**
59  * add_to_list - add physical eraseblock to a list.
60  * @si: scanning information
61  * @pnum: physical eraseblock number to add
62  * @ec: erase counter of the physical eraseblock
63  * @list: the list to add to
64  *
65  * This function adds physical eraseblock @pnum to free, erase, corrupted or
66  * alien lists. Returns zero in case of success and a negative error code in
67  * case of failure.
68  */
69 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70                        struct list_head *list)
71 {
72         struct ubi_scan_leb *seb;
73
74         if (list == &si->free)
75                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76         else if (list == &si->erase)
77                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78         else if (list == &si->corr) {
79                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80                 si->corr_count += 1;
81         } else if (list == &si->alien)
82                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
83         else
84                 BUG();
85
86         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
87         if (!seb)
88                 return -ENOMEM;
89
90         seb->pnum = pnum;
91         seb->ec = ec;
92         list_add_tail(&seb->u.list, list);
93         return 0;
94 }
95
96 /**
97  * validate_vid_hdr - check volume identifier header.
98  * @vid_hdr: the volume identifier header to check
99  * @sv: information about the volume this logical eraseblock belongs to
100  * @pnum: physical eraseblock number the VID header came from
101  *
102  * This function checks that data stored in @vid_hdr is consistent. Returns
103  * non-zero if an inconsistency was found and zero if not.
104  *
105  * Note, UBI does sanity check of everything it reads from the flash media.
106  * Most of the checks are done in the I/O sub-system. Here we check that the
107  * information in the VID header is consistent to the information in other VID
108  * headers of the same volume.
109  */
110 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
111                             const struct ubi_scan_volume *sv, int pnum)
112 {
113         int vol_type = vid_hdr->vol_type;
114         int vol_id = be32_to_cpu(vid_hdr->vol_id);
115         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
116         int data_pad = be32_to_cpu(vid_hdr->data_pad);
117
118         if (sv->leb_count != 0) {
119                 int sv_vol_type;
120
121                 /*
122                  * This is not the first logical eraseblock belonging to this
123                  * volume. Ensure that the data in its VID header is consistent
124                  * to the data in previous logical eraseblock headers.
125                  */
126
127                 if (vol_id != sv->vol_id) {
128                         dbg_err("inconsistent vol_id");
129                         goto bad;
130                 }
131
132                 if (sv->vol_type == UBI_STATIC_VOLUME)
133                         sv_vol_type = UBI_VID_STATIC;
134                 else
135                         sv_vol_type = UBI_VID_DYNAMIC;
136
137                 if (vol_type != sv_vol_type) {
138                         dbg_err("inconsistent vol_type");
139                         goto bad;
140                 }
141
142                 if (used_ebs != sv->used_ebs) {
143                         dbg_err("inconsistent used_ebs");
144                         goto bad;
145                 }
146
147                 if (data_pad != sv->data_pad) {
148                         dbg_err("inconsistent data_pad");
149                         goto bad;
150                 }
151         }
152
153         return 0;
154
155 bad:
156         ubi_err("inconsistent VID header at PEB %d", pnum);
157         ubi_dbg_dump_vid_hdr(vid_hdr);
158         ubi_dbg_dump_sv(sv);
159         return -EINVAL;
160 }
161
162 /**
163  * add_volume - add volume to the scanning information.
164  * @si: scanning information
165  * @vol_id: ID of the volume to add
166  * @pnum: physical eraseblock number
167  * @vid_hdr: volume identifier header
168  *
169  * If the volume corresponding to the @vid_hdr logical eraseblock is already
170  * present in the scanning information, this function does nothing. Otherwise
171  * it adds corresponding volume to the scanning information. Returns a pointer
172  * to the scanning volume object in case of success and a negative error code
173  * in case of failure.
174  */
175 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
176                                           int pnum,
177                                           const struct ubi_vid_hdr *vid_hdr)
178 {
179         struct ubi_scan_volume *sv;
180         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
181
182         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
183
184         /* Walk the volume RB-tree to look if this volume is already present */
185         while (*p) {
186                 parent = *p;
187                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
188
189                 if (vol_id == sv->vol_id)
190                         return sv;
191
192                 if (vol_id > sv->vol_id)
193                         p = &(*p)->rb_left;
194                 else
195                         p = &(*p)->rb_right;
196         }
197
198         /* The volume is absent - add it */
199         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
200         if (!sv)
201                 return ERR_PTR(-ENOMEM);
202
203         sv->highest_lnum = sv->leb_count = 0;
204         sv->vol_id = vol_id;
205         sv->root = RB_ROOT;
206         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
207         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
208         sv->compat = vid_hdr->compat;
209         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
210                                                             : UBI_STATIC_VOLUME;
211         if (vol_id > si->highest_vol_id)
212                 si->highest_vol_id = vol_id;
213
214         rb_link_node(&sv->rb, parent, p);
215         rb_insert_color(&sv->rb, &si->volumes);
216         si->vols_found += 1;
217         dbg_bld("added volume %d", vol_id);
218         return sv;
219 }
220
221 /**
222  * compare_lebs - find out which logical eraseblock is newer.
223  * @ubi: UBI device description object
224  * @seb: first logical eraseblock to compare
225  * @pnum: physical eraseblock number of the second logical eraseblock to
226  * compare
227  * @vid_hdr: volume identifier header of the second logical eraseblock
228  *
229  * This function compares 2 copies of a LEB and informs which one is newer. In
230  * case of success this function returns a positive value, in case of failure, a
231  * negative error code is returned. The success return codes use the following
232  * bits:
233  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
234  *       second PEB (described by @pnum and @vid_hdr);
235  *     o bit 0 is set: the second PEB is newer;
236  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
237  *     o bit 1 is set: bit-flips were detected in the newer LEB;
238  *     o bit 2 is cleared: the older LEB is not corrupted;
239  *     o bit 2 is set: the older LEB is corrupted.
240  */
241 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
242                         int pnum, const struct ubi_vid_hdr *vid_hdr)
243 {
244         void *buf;
245         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
246         uint32_t data_crc, crc;
247         struct ubi_vid_hdr *vh = NULL;
248         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
249
250         if (sqnum2 == seb->sqnum) {
251                 /*
252                  * This must be a really ancient UBI image which has been
253                  * created before sequence numbers support has been added. At
254                  * that times we used 32-bit LEB versions stored in logical
255                  * eraseblocks. That was before UBI got into mainline. We do not
256                  * support these images anymore. Well, those images will work
257                  * still work, but only if no unclean reboots happened.
258                  */
259                 ubi_err("unsupported on-flash UBI format\n");
260                 return -EINVAL;
261         }
262
263         /* Obviously the LEB with lower sequence counter is older */
264         second_is_newer = !!(sqnum2 > seb->sqnum);
265
266         /*
267          * Now we know which copy is newer. If the copy flag of the PEB with
268          * newer version is not set, then we just return, otherwise we have to
269          * check data CRC. For the second PEB we already have the VID header,
270          * for the first one - we'll need to re-read it from flash.
271          *
272          * Note: this may be optimized so that we wouldn't read twice.
273          */
274
275         if (second_is_newer) {
276                 if (!vid_hdr->copy_flag) {
277                         /* It is not a copy, so it is newer */
278                         dbg_bld("second PEB %d is newer, copy_flag is unset",
279                                 pnum);
280                         return 1;
281                 }
282         } else {
283                 pnum = seb->pnum;
284
285                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
286                 if (!vh)
287                         return -ENOMEM;
288
289                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
290                 if (err) {
291                         if (err == UBI_IO_BITFLIPS)
292                                 bitflips = 1;
293                         else {
294                                 dbg_err("VID of PEB %d header is bad, but it "
295                                         "was OK earlier", pnum);
296                                 if (err > 0)
297                                         err = -EIO;
298
299                                 goto out_free_vidh;
300                         }
301                 }
302
303                 if (!vh->copy_flag) {
304                         /* It is not a copy, so it is newer */
305                         dbg_bld("first PEB %d is newer, copy_flag is unset",
306                                 pnum);
307                         err = bitflips << 1;
308                         goto out_free_vidh;
309                 }
310
311                 vid_hdr = vh;
312         }
313
314         /* Read the data of the copy and check the CRC */
315
316         len = be32_to_cpu(vid_hdr->data_size);
317         buf = vmalloc(len);
318         if (!buf) {
319                 err = -ENOMEM;
320                 goto out_free_vidh;
321         }
322
323         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
324         if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
325                 goto out_free_buf;
326
327         data_crc = be32_to_cpu(vid_hdr->data_crc);
328         crc = crc32(UBI_CRC32_INIT, buf, len);
329         if (crc != data_crc) {
330                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
331                         pnum, crc, data_crc);
332                 corrupted = 1;
333                 bitflips = 0;
334                 second_is_newer = !second_is_newer;
335         } else {
336                 dbg_bld("PEB %d CRC is OK", pnum);
337                 bitflips = !!err;
338         }
339
340         vfree(buf);
341         ubi_free_vid_hdr(ubi, vh);
342
343         if (second_is_newer)
344                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
345         else
346                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
347
348         return second_is_newer | (bitflips << 1) | (corrupted << 2);
349
350 out_free_buf:
351         vfree(buf);
352 out_free_vidh:
353         ubi_free_vid_hdr(ubi, vh);
354         return err;
355 }
356
357 /**
358  * ubi_scan_add_used - add physical eraseblock to the scanning information.
359  * @ubi: UBI device description object
360  * @si: scanning information
361  * @pnum: the physical eraseblock number
362  * @ec: erase counter
363  * @vid_hdr: the volume identifier header
364  * @bitflips: if bit-flips were detected when this physical eraseblock was read
365  *
366  * This function adds information about a used physical eraseblock to the
367  * 'used' tree of the corresponding volume. The function is rather complex
368  * because it has to handle cases when this is not the first physical
369  * eraseblock belonging to the same logical eraseblock, and the newer one has
370  * to be picked, while the older one has to be dropped. This function returns
371  * zero in case of success and a negative error code in case of failure.
372  */
373 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
374                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
375                       int bitflips)
376 {
377         int err, vol_id, lnum;
378         unsigned long long sqnum;
379         struct ubi_scan_volume *sv;
380         struct ubi_scan_leb *seb;
381         struct rb_node **p, *parent = NULL;
382
383         vol_id = be32_to_cpu(vid_hdr->vol_id);
384         lnum = be32_to_cpu(vid_hdr->lnum);
385         sqnum = be64_to_cpu(vid_hdr->sqnum);
386
387         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
388                 pnum, vol_id, lnum, ec, sqnum, bitflips);
389
390         sv = add_volume(si, vol_id, pnum, vid_hdr);
391         if (IS_ERR(sv))
392                 return PTR_ERR(sv);
393
394         if (si->max_sqnum < sqnum)
395                 si->max_sqnum = sqnum;
396
397         /*
398          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
399          * if this is the first instance of this logical eraseblock or not.
400          */
401         p = &sv->root.rb_node;
402         while (*p) {
403                 int cmp_res;
404
405                 parent = *p;
406                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
407                 if (lnum != seb->lnum) {
408                         if (lnum < seb->lnum)
409                                 p = &(*p)->rb_left;
410                         else
411                                 p = &(*p)->rb_right;
412                         continue;
413                 }
414
415                 /*
416                  * There is already a physical eraseblock describing the same
417                  * logical eraseblock present.
418                  */
419
420                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
421                         "EC %d", seb->pnum, seb->sqnum, seb->ec);
422
423                 /*
424                  * Make sure that the logical eraseblocks have different
425                  * sequence numbers. Otherwise the image is bad.
426                  *
427                  * However, if the sequence number is zero, we assume it must
428                  * be an ancient UBI image from the era when UBI did not have
429                  * sequence numbers. We still can attach these images, unless
430                  * there is a need to distinguish between old and new
431                  * eraseblocks, in which case we'll refuse the image in
432                  * 'compare_lebs()'. In other words, we attach old clean
433                  * images, but refuse attaching old images with duplicated
434                  * logical eraseblocks because there was an unclean reboot.
435                  */
436                 if (seb->sqnum == sqnum && sqnum != 0) {
437                         ubi_err("two LEBs with same sequence number %llu",
438                                 sqnum);
439                         ubi_dbg_dump_seb(seb, 0);
440                         ubi_dbg_dump_vid_hdr(vid_hdr);
441                         return -EINVAL;
442                 }
443
444                 /*
445                  * Now we have to drop the older one and preserve the newer
446                  * one.
447                  */
448                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
449                 if (cmp_res < 0)
450                         return cmp_res;
451
452                 if (cmp_res & 1) {
453                         /*
454                          * This logical eraseblock is newer then the one
455                          * found earlier.
456                          */
457                         err = validate_vid_hdr(vid_hdr, sv, pnum);
458                         if (err)
459                                 return err;
460
461                         if (cmp_res & 4)
462                                 err = add_to_list(si, seb->pnum, seb->ec,
463                                                   &si->corr);
464                         else
465                                 err = add_to_list(si, seb->pnum, seb->ec,
466                                                   &si->erase);
467                         if (err)
468                                 return err;
469
470                         seb->ec = ec;
471                         seb->pnum = pnum;
472                         seb->scrub = ((cmp_res & 2) || bitflips);
473                         seb->sqnum = sqnum;
474
475                         if (sv->highest_lnum == lnum)
476                                 sv->last_data_size =
477                                         be32_to_cpu(vid_hdr->data_size);
478
479                         return 0;
480                 } else {
481                         /*
482                          * This logical eraseblock is older than the one found
483                          * previously.
484                          */
485                         if (cmp_res & 4)
486                                 return add_to_list(si, pnum, ec, &si->corr);
487                         else
488                                 return add_to_list(si, pnum, ec, &si->erase);
489                 }
490         }
491
492         /*
493          * We've met this logical eraseblock for the first time, add it to the
494          * scanning information.
495          */
496
497         err = validate_vid_hdr(vid_hdr, sv, pnum);
498         if (err)
499                 return err;
500
501         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
502         if (!seb)
503                 return -ENOMEM;
504
505         seb->ec = ec;
506         seb->pnum = pnum;
507         seb->lnum = lnum;
508         seb->sqnum = sqnum;
509         seb->scrub = bitflips;
510
511         if (sv->highest_lnum <= lnum) {
512                 sv->highest_lnum = lnum;
513                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
514         }
515
516         sv->leb_count += 1;
517         rb_link_node(&seb->u.rb, parent, p);
518         rb_insert_color(&seb->u.rb, &sv->root);
519         return 0;
520 }
521
522 /**
523  * ubi_scan_find_sv - find volume in the scanning information.
524  * @si: scanning information
525  * @vol_id: the requested volume ID
526  *
527  * This function returns a pointer to the volume description or %NULL if there
528  * are no data about this volume in the scanning information.
529  */
530 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
531                                          int vol_id)
532 {
533         struct ubi_scan_volume *sv;
534         struct rb_node *p = si->volumes.rb_node;
535
536         while (p) {
537                 sv = rb_entry(p, struct ubi_scan_volume, rb);
538
539                 if (vol_id == sv->vol_id)
540                         return sv;
541
542                 if (vol_id > sv->vol_id)
543                         p = p->rb_left;
544                 else
545                         p = p->rb_right;
546         }
547
548         return NULL;
549 }
550
551 /**
552  * ubi_scan_find_seb - find LEB in the volume scanning information.
553  * @sv: a pointer to the volume scanning information
554  * @lnum: the requested logical eraseblock
555  *
556  * This function returns a pointer to the scanning logical eraseblock or %NULL
557  * if there are no data about it in the scanning volume information.
558  */
559 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
560                                        int lnum)
561 {
562         struct ubi_scan_leb *seb;
563         struct rb_node *p = sv->root.rb_node;
564
565         while (p) {
566                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
567
568                 if (lnum == seb->lnum)
569                         return seb;
570
571                 if (lnum > seb->lnum)
572                         p = p->rb_left;
573                 else
574                         p = p->rb_right;
575         }
576
577         return NULL;
578 }
579
580 /**
581  * ubi_scan_rm_volume - delete scanning information about a volume.
582  * @si: scanning information
583  * @sv: the volume scanning information to delete
584  */
585 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
586 {
587         struct rb_node *rb;
588         struct ubi_scan_leb *seb;
589
590         dbg_bld("remove scanning information about volume %d", sv->vol_id);
591
592         while ((rb = rb_first(&sv->root))) {
593                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
594                 rb_erase(&seb->u.rb, &sv->root);
595                 list_add_tail(&seb->u.list, &si->erase);
596         }
597
598         rb_erase(&sv->rb, &si->volumes);
599         kfree(sv);
600         si->vols_found -= 1;
601 }
602
603 /**
604  * ubi_scan_erase_peb - erase a physical eraseblock.
605  * @ubi: UBI device description object
606  * @si: scanning information
607  * @pnum: physical eraseblock number to erase;
608  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
609  *
610  * This function erases physical eraseblock 'pnum', and writes the erase
611  * counter header to it. This function should only be used on UBI device
612  * initialization stages, when the EBA sub-system had not been yet initialized.
613  * This function returns zero in case of success and a negative error code in
614  * case of failure.
615  */
616 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
617                        int pnum, int ec)
618 {
619         int err;
620         struct ubi_ec_hdr *ec_hdr;
621
622         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
623                 /*
624                  * Erase counter overflow. Upgrade UBI and use 64-bit
625                  * erase counters internally.
626                  */
627                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
628                 return -EINVAL;
629         }
630
631         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
632         if (!ec_hdr)
633                 return -ENOMEM;
634
635         ec_hdr->ec = cpu_to_be64(ec);
636
637         err = ubi_io_sync_erase(ubi, pnum, 0);
638         if (err < 0)
639                 goto out_free;
640
641         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
642
643 out_free:
644         kfree(ec_hdr);
645         return err;
646 }
647
648 /**
649  * ubi_scan_get_free_peb - get a free physical eraseblock.
650  * @ubi: UBI device description object
651  * @si: scanning information
652  *
653  * This function returns a free physical eraseblock. It is supposed to be
654  * called on the UBI initialization stages when the wear-leveling sub-system is
655  * not initialized yet. This function picks a physical eraseblocks from one of
656  * the lists, writes the EC header if it is needed, and removes it from the
657  * list.
658  *
659  * This function returns scanning physical eraseblock information in case of
660  * success and an error code in case of failure.
661  */
662 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
663                                            struct ubi_scan_info *si)
664 {
665         int err = 0, i;
666         struct ubi_scan_leb *seb;
667
668         if (!list_empty(&si->free)) {
669                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
670                 list_del(&seb->u.list);
671                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
672                 return seb;
673         }
674
675         for (i = 0; i < 2; i++) {
676                 struct list_head *head;
677                 struct ubi_scan_leb *tmp_seb;
678
679                 if (i == 0)
680                         head = &si->erase;
681                 else
682                         head = &si->corr;
683
684                 /*
685                  * We try to erase the first physical eraseblock from the @head
686                  * list and pick it if we succeed, or try to erase the
687                  * next one if not. And so forth. We don't want to take care
688                  * about bad eraseblocks here - they'll be handled later.
689                  */
690                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
691                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
692                                 seb->ec = si->mean_ec;
693
694                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
695                         if (err)
696                                 continue;
697
698                         seb->ec += 1;
699                         list_del(&seb->u.list);
700                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
701                         return seb;
702                 }
703         }
704
705         ubi_err("no eraseblocks found");
706         return ERR_PTR(-ENOSPC);
707 }
708
709 /**
710  * process_eb - read, check UBI headers, and add them to scanning information.
711  * @ubi: UBI device description object
712  * @si: scanning information
713  * @pnum: the physical eraseblock number
714  *
715  * This function returns a zero if the physical eraseblock was successfully
716  * handled and a negative error code in case of failure.
717  */
718 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
719                       int pnum)
720 {
721         long long uninitialized_var(ec);
722         int err, bitflips = 0, vol_id, ec_corr = 0;
723
724         dbg_bld("scan PEB %d", pnum);
725
726         /* Skip bad physical eraseblocks */
727         err = ubi_io_is_bad(ubi, pnum);
728         if (err < 0)
729                 return err;
730         else if (err) {
731                 /*
732                  * FIXME: this is actually duty of the I/O sub-system to
733                  * initialize this, but MTD does not provide enough
734                  * information.
735                  */
736                 si->bad_peb_count += 1;
737                 return 0;
738         }
739
740         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
741         if (err < 0)
742                 return err;
743         else if (err == UBI_IO_BITFLIPS)
744                 bitflips = 1;
745         else if (err == UBI_IO_PEB_EMPTY)
746                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
747         else if (err == UBI_IO_BAD_EC_HDR) {
748                 /*
749                  * We have to also look at the VID header, possibly it is not
750                  * corrupted. Set %bitflips flag in order to make this PEB be
751                  * moved and EC be re-created.
752                  */
753                 ec_corr = 1;
754                 ec = UBI_SCAN_UNKNOWN_EC;
755                 bitflips = 1;
756         }
757
758         si->is_empty = 0;
759
760         if (!ec_corr) {
761                 int image_seq;
762
763                 /* Make sure UBI version is OK */
764                 if (ech->version != UBI_VERSION) {
765                         ubi_err("this UBI version is %d, image version is %d",
766                                 UBI_VERSION, (int)ech->version);
767                         return -EINVAL;
768                 }
769
770                 ec = be64_to_cpu(ech->ec);
771                 if (ec > UBI_MAX_ERASECOUNTER) {
772                         /*
773                          * Erase counter overflow. The EC headers have 64 bits
774                          * reserved, but we anyway make use of only 31 bit
775                          * values, as this seems to be enough for any existing
776                          * flash. Upgrade UBI and use 64-bit erase counters
777                          * internally.
778                          */
779                         ubi_err("erase counter overflow, max is %d",
780                                 UBI_MAX_ERASECOUNTER);
781                         ubi_dbg_dump_ec_hdr(ech);
782                         return -EINVAL;
783                 }
784
785                 /*
786                  * Make sure that all PEBs have the same image sequence number.
787                  * This allows us to detect situations when users flash UBI
788                  * images incorrectly, so that the flash has the new UBI image
789                  * and leftovers from the old one. This feature was added
790                  * relatively recently, and the sequence number was always
791                  * zero, because old UBI implementations always set it to zero.
792                  * For this reasons, we do not panic if some PEBs have zero
793                  * sequence number, while other PEBs have non-zero sequence
794                  * number.
795                  */
796                 image_seq = be32_to_cpu(ech->image_seq);
797                 if (!ubi->image_seq && image_seq)
798                         ubi->image_seq = image_seq;
799                 if (ubi->image_seq && image_seq &&
800                     ubi->image_seq != image_seq) {
801                         ubi_err("bad image sequence number %d in PEB %d, "
802                                 "expected %d", image_seq, pnum, ubi->image_seq);
803                         ubi_dbg_dump_ec_hdr(ech);
804                         return -EINVAL;
805                 }
806         }
807
808         /* OK, we've done with the EC header, let's look at the VID header */
809
810         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
811         if (err < 0)
812                 return err;
813         else if (err == UBI_IO_BITFLIPS)
814                 bitflips = 1;
815         else if (err == UBI_IO_BAD_VID_HDR ||
816                  (err == UBI_IO_PEB_FREE && ec_corr)) {
817                 /* VID header is corrupted */
818                 err = add_to_list(si, pnum, ec, &si->corr);
819                 if (err)
820                         return err;
821                 goto adjust_mean_ec;
822         } else if (err == UBI_IO_PEB_FREE) {
823                 /* No VID header - the physical eraseblock is free */
824                 err = add_to_list(si, pnum, ec, &si->free);
825                 if (err)
826                         return err;
827                 goto adjust_mean_ec;
828         }
829
830         vol_id = be32_to_cpu(vidh->vol_id);
831         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
832                 int lnum = be32_to_cpu(vidh->lnum);
833
834                 /* Unsupported internal volume */
835                 switch (vidh->compat) {
836                 case UBI_COMPAT_DELETE:
837                         ubi_msg("\"delete\" compatible internal volume %d:%d"
838                                 " found, remove it", vol_id, lnum);
839                         err = add_to_list(si, pnum, ec, &si->corr);
840                         if (err)
841                                 return err;
842                         break;
843
844                 case UBI_COMPAT_RO:
845                         ubi_msg("read-only compatible internal volume %d:%d"
846                                 " found, switch to read-only mode",
847                                 vol_id, lnum);
848                         ubi->ro_mode = 1;
849                         break;
850
851                 case UBI_COMPAT_PRESERVE:
852                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
853                                 " found", vol_id, lnum);
854                         err = add_to_list(si, pnum, ec, &si->alien);
855                         if (err)
856                                 return err;
857                         si->alien_peb_count += 1;
858                         return 0;
859
860                 case UBI_COMPAT_REJECT:
861                         ubi_err("incompatible internal volume %d:%d found",
862                                 vol_id, lnum);
863                         return -EINVAL;
864                 }
865         }
866
867         if (ec_corr)
868                 ubi_warn("valid VID header but corrupted EC header at PEB %d",
869                          pnum);
870         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
871         if (err)
872                 return err;
873
874 adjust_mean_ec:
875         if (!ec_corr) {
876                 si->ec_sum += ec;
877                 si->ec_count += 1;
878                 if (ec > si->max_ec)
879                         si->max_ec = ec;
880                 if (ec < si->min_ec)
881                         si->min_ec = ec;
882         }
883
884         return 0;
885 }
886
887 /**
888  * ubi_scan - scan an MTD device.
889  * @ubi: UBI device description object
890  *
891  * This function does full scanning of an MTD device and returns complete
892  * information about it. In case of failure, an error code is returned.
893  */
894 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
895 {
896         int err, pnum;
897         struct rb_node *rb1, *rb2;
898         struct ubi_scan_volume *sv;
899         struct ubi_scan_leb *seb;
900         struct ubi_scan_info *si;
901
902         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
903         if (!si)
904                 return ERR_PTR(-ENOMEM);
905
906         INIT_LIST_HEAD(&si->corr);
907         INIT_LIST_HEAD(&si->free);
908         INIT_LIST_HEAD(&si->erase);
909         INIT_LIST_HEAD(&si->alien);
910         si->volumes = RB_ROOT;
911         si->is_empty = 1;
912
913         err = -ENOMEM;
914         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
915         if (!ech)
916                 goto out_si;
917
918         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
919         if (!vidh)
920                 goto out_ech;
921
922         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
923                 cond_resched();
924
925                 dbg_gen("process PEB %d", pnum);
926                 err = process_eb(ubi, si, pnum);
927                 if (err < 0)
928                         goto out_vidh;
929         }
930
931         dbg_msg("scanning is finished");
932
933         /* Calculate mean erase counter */
934         if (si->ec_count)
935                 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
936
937         if (si->is_empty)
938                 ubi_msg("empty MTD device detected");
939
940         /*
941          * Few corrupted PEBs are not a problem and may be just a result of
942          * unclean reboots. However, many of them may indicate some problems
943          * with the flash HW or driver. Print a warning in this case.
944          */
945         if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) {
946                 ubi_warn("%d PEBs are corrupted", si->corr_count);
947                 printk(KERN_WARNING "corrupted PEBs are:");
948                 list_for_each_entry(seb, &si->corr, u.list)
949                         printk(KERN_CONT " %d", seb->pnum);
950                 printk(KERN_CONT "\n");
951         }
952
953         /*
954          * In case of unknown erase counter we use the mean erase counter
955          * value.
956          */
957         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
958                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
959                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
960                                 seb->ec = si->mean_ec;
961         }
962
963         list_for_each_entry(seb, &si->free, u.list) {
964                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
965                         seb->ec = si->mean_ec;
966         }
967
968         list_for_each_entry(seb, &si->corr, u.list)
969                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
970                         seb->ec = si->mean_ec;
971
972         list_for_each_entry(seb, &si->erase, u.list)
973                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
974                         seb->ec = si->mean_ec;
975
976         err = paranoid_check_si(ubi, si);
977         if (err)
978                 goto out_vidh;
979
980         ubi_free_vid_hdr(ubi, vidh);
981         kfree(ech);
982
983         return si;
984
985 out_vidh:
986         ubi_free_vid_hdr(ubi, vidh);
987 out_ech:
988         kfree(ech);
989 out_si:
990         ubi_scan_destroy_si(si);
991         return ERR_PTR(err);
992 }
993
994 /**
995  * destroy_sv - free the scanning volume information
996  * @sv: scanning volume information
997  *
998  * This function destroys the volume RB-tree (@sv->root) and the scanning
999  * volume information.
1000  */
1001 static void destroy_sv(struct ubi_scan_volume *sv)
1002 {
1003         struct ubi_scan_leb *seb;
1004         struct rb_node *this = sv->root.rb_node;
1005
1006         while (this) {
1007                 if (this->rb_left)
1008                         this = this->rb_left;
1009                 else if (this->rb_right)
1010                         this = this->rb_right;
1011                 else {
1012                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1013                         this = rb_parent(this);
1014                         if (this) {
1015                                 if (this->rb_left == &seb->u.rb)
1016                                         this->rb_left = NULL;
1017                                 else
1018                                         this->rb_right = NULL;
1019                         }
1020
1021                         kfree(seb);
1022                 }
1023         }
1024         kfree(sv);
1025 }
1026
1027 /**
1028  * ubi_scan_destroy_si - destroy scanning information.
1029  * @si: scanning information
1030  */
1031 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1032 {
1033         struct ubi_scan_leb *seb, *seb_tmp;
1034         struct ubi_scan_volume *sv;
1035         struct rb_node *rb;
1036
1037         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1038                 list_del(&seb->u.list);
1039                 kfree(seb);
1040         }
1041         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1042                 list_del(&seb->u.list);
1043                 kfree(seb);
1044         }
1045         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1046                 list_del(&seb->u.list);
1047                 kfree(seb);
1048         }
1049         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1050                 list_del(&seb->u.list);
1051                 kfree(seb);
1052         }
1053
1054         /* Destroy the volume RB-tree */
1055         rb = si->volumes.rb_node;
1056         while (rb) {
1057                 if (rb->rb_left)
1058                         rb = rb->rb_left;
1059                 else if (rb->rb_right)
1060                         rb = rb->rb_right;
1061                 else {
1062                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1063
1064                         rb = rb_parent(rb);
1065                         if (rb) {
1066                                 if (rb->rb_left == &sv->rb)
1067                                         rb->rb_left = NULL;
1068                                 else
1069                                         rb->rb_right = NULL;
1070                         }
1071
1072                         destroy_sv(sv);
1073                 }
1074         }
1075
1076         kfree(si);
1077 }
1078
1079 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1080
1081 /**
1082  * paranoid_check_si - check the scanning information.
1083  * @ubi: UBI device description object
1084  * @si: scanning information
1085  *
1086  * This function returns zero if the scanning information is all right, and a
1087  * negative error code if not or if an error occurred.
1088  */
1089 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1090 {
1091         int pnum, err, vols_found = 0;
1092         struct rb_node *rb1, *rb2;
1093         struct ubi_scan_volume *sv;
1094         struct ubi_scan_leb *seb, *last_seb;
1095         uint8_t *buf;
1096
1097         /*
1098          * At first, check that scanning information is OK.
1099          */
1100         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1101                 int leb_count = 0;
1102
1103                 cond_resched();
1104
1105                 vols_found += 1;
1106
1107                 if (si->is_empty) {
1108                         ubi_err("bad is_empty flag");
1109                         goto bad_sv;
1110                 }
1111
1112                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1113                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1114                     sv->data_pad < 0 || sv->last_data_size < 0) {
1115                         ubi_err("negative values");
1116                         goto bad_sv;
1117                 }
1118
1119                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1120                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1121                         ubi_err("bad vol_id");
1122                         goto bad_sv;
1123                 }
1124
1125                 if (sv->vol_id > si->highest_vol_id) {
1126                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1127                                 si->highest_vol_id, sv->vol_id);
1128                         goto out;
1129                 }
1130
1131                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1132                     sv->vol_type != UBI_STATIC_VOLUME) {
1133                         ubi_err("bad vol_type");
1134                         goto bad_sv;
1135                 }
1136
1137                 if (sv->data_pad > ubi->leb_size / 2) {
1138                         ubi_err("bad data_pad");
1139                         goto bad_sv;
1140                 }
1141
1142                 last_seb = NULL;
1143                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1144                         cond_resched();
1145
1146                         last_seb = seb;
1147                         leb_count += 1;
1148
1149                         if (seb->pnum < 0 || seb->ec < 0) {
1150                                 ubi_err("negative values");
1151                                 goto bad_seb;
1152                         }
1153
1154                         if (seb->ec < si->min_ec) {
1155                                 ubi_err("bad si->min_ec (%d), %d found",
1156                                         si->min_ec, seb->ec);
1157                                 goto bad_seb;
1158                         }
1159
1160                         if (seb->ec > si->max_ec) {
1161                                 ubi_err("bad si->max_ec (%d), %d found",
1162                                         si->max_ec, seb->ec);
1163                                 goto bad_seb;
1164                         }
1165
1166                         if (seb->pnum >= ubi->peb_count) {
1167                                 ubi_err("too high PEB number %d, total PEBs %d",
1168                                         seb->pnum, ubi->peb_count);
1169                                 goto bad_seb;
1170                         }
1171
1172                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1173                                 if (seb->lnum >= sv->used_ebs) {
1174                                         ubi_err("bad lnum or used_ebs");
1175                                         goto bad_seb;
1176                                 }
1177                         } else {
1178                                 if (sv->used_ebs != 0) {
1179                                         ubi_err("non-zero used_ebs");
1180                                         goto bad_seb;
1181                                 }
1182                         }
1183
1184                         if (seb->lnum > sv->highest_lnum) {
1185                                 ubi_err("incorrect highest_lnum or lnum");
1186                                 goto bad_seb;
1187                         }
1188                 }
1189
1190                 if (sv->leb_count != leb_count) {
1191                         ubi_err("bad leb_count, %d objects in the tree",
1192                                 leb_count);
1193                         goto bad_sv;
1194                 }
1195
1196                 if (!last_seb)
1197                         continue;
1198
1199                 seb = last_seb;
1200
1201                 if (seb->lnum != sv->highest_lnum) {
1202                         ubi_err("bad highest_lnum");
1203                         goto bad_seb;
1204                 }
1205         }
1206
1207         if (vols_found != si->vols_found) {
1208                 ubi_err("bad si->vols_found %d, should be %d",
1209                         si->vols_found, vols_found);
1210                 goto out;
1211         }
1212
1213         /* Check that scanning information is correct */
1214         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1215                 last_seb = NULL;
1216                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1217                         int vol_type;
1218
1219                         cond_resched();
1220
1221                         last_seb = seb;
1222
1223                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1224                         if (err && err != UBI_IO_BITFLIPS) {
1225                                 ubi_err("VID header is not OK (%d)", err);
1226                                 if (err > 0)
1227                                         err = -EIO;
1228                                 return err;
1229                         }
1230
1231                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1232                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1233                         if (sv->vol_type != vol_type) {
1234                                 ubi_err("bad vol_type");
1235                                 goto bad_vid_hdr;
1236                         }
1237
1238                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1239                                 ubi_err("bad sqnum %llu", seb->sqnum);
1240                                 goto bad_vid_hdr;
1241                         }
1242
1243                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1244                                 ubi_err("bad vol_id %d", sv->vol_id);
1245                                 goto bad_vid_hdr;
1246                         }
1247
1248                         if (sv->compat != vidh->compat) {
1249                                 ubi_err("bad compat %d", vidh->compat);
1250                                 goto bad_vid_hdr;
1251                         }
1252
1253                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1254                                 ubi_err("bad lnum %d", seb->lnum);
1255                                 goto bad_vid_hdr;
1256                         }
1257
1258                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1259                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1260                                 goto bad_vid_hdr;
1261                         }
1262
1263                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1264                                 ubi_err("bad data_pad %d", sv->data_pad);
1265                                 goto bad_vid_hdr;
1266                         }
1267                 }
1268
1269                 if (!last_seb)
1270                         continue;
1271
1272                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1273                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1274                         goto bad_vid_hdr;
1275                 }
1276
1277                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1278                         ubi_err("bad last_data_size %d", sv->last_data_size);
1279                         goto bad_vid_hdr;
1280                 }
1281         }
1282
1283         /*
1284          * Make sure that all the physical eraseblocks are in one of the lists
1285          * or trees.
1286          */
1287         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1288         if (!buf)
1289                 return -ENOMEM;
1290
1291         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1292                 err = ubi_io_is_bad(ubi, pnum);
1293                 if (err < 0) {
1294                         kfree(buf);
1295                         return err;
1296                 } else if (err)
1297                         buf[pnum] = 1;
1298         }
1299
1300         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1301                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1302                         buf[seb->pnum] = 1;
1303
1304         list_for_each_entry(seb, &si->free, u.list)
1305                 buf[seb->pnum] = 1;
1306
1307         list_for_each_entry(seb, &si->corr, u.list)
1308                 buf[seb->pnum] = 1;
1309
1310         list_for_each_entry(seb, &si->erase, u.list)
1311                 buf[seb->pnum] = 1;
1312
1313         list_for_each_entry(seb, &si->alien, u.list)
1314                 buf[seb->pnum] = 1;
1315
1316         err = 0;
1317         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1318                 if (!buf[pnum]) {
1319                         ubi_err("PEB %d is not referred", pnum);
1320                         err = 1;
1321                 }
1322
1323         kfree(buf);
1324         if (err)
1325                 goto out;
1326         return 0;
1327
1328 bad_seb:
1329         ubi_err("bad scanning information about LEB %d", seb->lnum);
1330         ubi_dbg_dump_seb(seb, 0);
1331         ubi_dbg_dump_sv(sv);
1332         goto out;
1333
1334 bad_sv:
1335         ubi_err("bad scanning information about volume %d", sv->vol_id);
1336         ubi_dbg_dump_sv(sv);
1337         goto out;
1338
1339 bad_vid_hdr:
1340         ubi_err("bad scanning information about volume %d", sv->vol_id);
1341         ubi_dbg_dump_sv(sv);
1342         ubi_dbg_dump_vid_hdr(vidh);
1343
1344 out:
1345         ubi_dbg_dump_stack();
1346         return -EINVAL;
1347 }
1348
1349 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */