]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/ubi/wl.c
Merge tag 'mac80211-for-davem-2015-01-15' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152 }
153
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161         int i;
162
163         if (!ubi->fm)
164                 return 0;
165
166         for (i = 0; i < ubi->fm->used_blocks; i++)
167                 if (ubi->fm->e[i]->pnum == pnum)
168                         return 1;
169
170         return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175         return 0;
176 }
177 #endif
178
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189         struct rb_node **p, *parent = NULL;
190
191         p = &root->rb_node;
192         while (*p) {
193                 struct ubi_wl_entry *e1;
194
195                 parent = *p;
196                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197
198                 if (e->ec < e1->ec)
199                         p = &(*p)->rb_left;
200                 else if (e->ec > e1->ec)
201                         p = &(*p)->rb_right;
202                 else {
203                         ubi_assert(e->pnum != e1->pnum);
204                         if (e->pnum < e1->pnum)
205                                 p = &(*p)->rb_left;
206                         else
207                                 p = &(*p)->rb_right;
208                 }
209         }
210
211         rb_link_node(&e->u.rb, parent, p);
212         rb_insert_color(&e->u.rb, root);
213 }
214
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224         int err;
225         struct ubi_work *wrk;
226
227         cond_resched();
228
229         /*
230          * @ubi->work_sem is used to synchronize with the workers. Workers take
231          * it in read mode, so many of them may be doing works at a time. But
232          * the queue flush code has to be sure the whole queue of works is
233          * done, and it takes the mutex in write mode.
234          */
235         down_read(&ubi->work_sem);
236         spin_lock(&ubi->wl_lock);
237         if (list_empty(&ubi->works)) {
238                 spin_unlock(&ubi->wl_lock);
239                 up_read(&ubi->work_sem);
240                 return 0;
241         }
242
243         wrk = list_entry(ubi->works.next, struct ubi_work, list);
244         list_del(&wrk->list);
245         ubi->works_count -= 1;
246         ubi_assert(ubi->works_count >= 0);
247         spin_unlock(&ubi->wl_lock);
248
249         /*
250          * Call the worker function. Do not touch the work structure
251          * after this call as it will have been freed or reused by that
252          * time by the worker function.
253          */
254         err = wrk->func(ubi, wrk, 0);
255         if (err)
256                 ubi_err(ubi, "work failed with error code %d", err);
257         up_read(&ubi->work_sem);
258
259         return err;
260 }
261
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273         int err;
274
275         while (!ubi->free.rb_node && ubi->works_count) {
276                 spin_unlock(&ubi->wl_lock);
277
278                 dbg_wl("do one work synchronously");
279                 err = do_work(ubi);
280
281                 spin_lock(&ubi->wl_lock);
282                 if (err)
283                         return err;
284         }
285
286         return 0;
287 }
288
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299         struct rb_node *p;
300
301         p = root->rb_node;
302         while (p) {
303                 struct ubi_wl_entry *e1;
304
305                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306
307                 if (e->pnum == e1->pnum) {
308                         ubi_assert(e == e1);
309                         return 1;
310                 }
311
312                 if (e->ec < e1->ec)
313                         p = p->rb_left;
314                 else if (e->ec > e1->ec)
315                         p = p->rb_right;
316                 else {
317                         ubi_assert(e->pnum != e1->pnum);
318                         if (e->pnum < e1->pnum)
319                                 p = p->rb_left;
320                         else
321                                 p = p->rb_right;
322                 }
323         }
324
325         return 0;
326 }
327
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340         int pq_tail = ubi->pq_head - 1;
341
342         if (pq_tail < 0)
343                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
344         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359                                           struct rb_root *root, int diff)
360 {
361         struct rb_node *p;
362         struct ubi_wl_entry *e, *prev_e = NULL;
363         int max;
364
365         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366         max = e->ec + diff;
367
368         p = root->rb_node;
369         while (p) {
370                 struct ubi_wl_entry *e1;
371
372                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373                 if (e1->ec >= max)
374                         p = p->rb_left;
375                 else {
376                         p = p->rb_right;
377                         prev_e = e;
378                         e = e1;
379                 }
380         }
381
382         /* If no fastmap has been written and this WL entry can be used
383          * as anchor PEB, hold it back and return the second best WL entry
384          * such that fastmap can use the anchor PEB later. */
385         if (prev_e && !ubi->fm_disabled &&
386             !ubi->fm && e->pnum < UBI_FM_MAX_START)
387                 return prev_e;
388
389         return e;
390 }
391
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402                                                struct rb_root *root)
403 {
404         struct ubi_wl_entry *e, *first, *last;
405
406         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408
409         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413                 /* If no fastmap has been written and this WL entry can be used
414                  * as anchor PEB, hold it back and return the second best
415                  * WL entry such that fastmap can use the anchor PEB later. */
416                 if (e && !ubi->fm_disabled && !ubi->fm &&
417                     e->pnum < UBI_FM_MAX_START)
418                         e = rb_entry(rb_next(root->rb_node),
419                                      struct ubi_wl_entry, u.rb);
420 #endif
421         } else
422                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423
424         return e;
425 }
426
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434         struct rb_node *p;
435         struct ubi_wl_entry *e, *victim = NULL;
436         int max_ec = UBI_MAX_ERASECOUNTER;
437
438         ubi_rb_for_each_entry(p, e, root, u.rb) {
439                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440                         victim = e;
441                         max_ec = e->ec;
442                 }
443         }
444
445         return victim;
446 }
447
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450         struct rb_node *p;
451         struct ubi_wl_entry *e;
452
453         ubi_rb_for_each_entry(p, e, root, u.rb)
454                 if (e->pnum < UBI_FM_MAX_START)
455                         return 1;
456
457         return 0;
458 }
459
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471         struct ubi_wl_entry *e = NULL;
472
473         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) {
474                 ubi_warn(ubi, "Can't get peb for fastmap:anchor=%d, free_cnt=%d, reserved=%d",
475                          anchor, ubi->free_count, ubi->beb_rsvd_pebs);
476                 goto out;
477         }
478
479         if (anchor)
480                 e = find_anchor_wl_entry(&ubi->free);
481         else
482                 e = find_mean_wl_entry(ubi, &ubi->free);
483
484         if (!e)
485                 goto out;
486
487         self_check_in_wl_tree(ubi, e, &ubi->free);
488
489         /* remove it from the free list,
490          * the wl subsystem does no longer know this erase block */
491         rb_erase(&e->u.rb, &ubi->free);
492         ubi->free_count--;
493 out:
494         return e;
495 }
496 #endif
497
498 /**
499  * __wl_get_peb - get a physical eraseblock.
500  * @ubi: UBI device description object
501  *
502  * This function returns a physical eraseblock in case of success and a
503  * negative error code in case of failure.
504  */
505 static int __wl_get_peb(struct ubi_device *ubi)
506 {
507         int err;
508         struct ubi_wl_entry *e;
509
510 retry:
511         if (!ubi->free.rb_node) {
512                 if (ubi->works_count == 0) {
513                         ubi_err(ubi, "no free eraseblocks");
514                         ubi_assert(list_empty(&ubi->works));
515                         return -ENOSPC;
516                 }
517
518                 err = produce_free_peb(ubi);
519                 if (err < 0)
520                         return err;
521                 goto retry;
522         }
523
524         e = find_mean_wl_entry(ubi, &ubi->free);
525         if (!e) {
526                 ubi_err(ubi, "no free eraseblocks");
527                 return -ENOSPC;
528         }
529
530         self_check_in_wl_tree(ubi, e, &ubi->free);
531
532         /*
533          * Move the physical eraseblock to the protection queue where it will
534          * be protected from being moved for some time.
535          */
536         rb_erase(&e->u.rb, &ubi->free);
537         ubi->free_count--;
538         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
539 #ifndef CONFIG_MTD_UBI_FASTMAP
540         /* We have to enqueue e only if fastmap is disabled,
541          * is fastmap enabled prot_queue_add() will be called by
542          * ubi_wl_get_peb() after removing e from the pool. */
543         prot_queue_add(ubi, e);
544 #endif
545         return e->pnum;
546 }
547
548 #ifdef CONFIG_MTD_UBI_FASTMAP
549 /**
550  * return_unused_pool_pebs - returns unused PEB to the free tree.
551  * @ubi: UBI device description object
552  * @pool: fastmap pool description object
553  */
554 static void return_unused_pool_pebs(struct ubi_device *ubi,
555                                     struct ubi_fm_pool *pool)
556 {
557         int i;
558         struct ubi_wl_entry *e;
559
560         for (i = pool->used; i < pool->size; i++) {
561                 e = ubi->lookuptbl[pool->pebs[i]];
562                 wl_tree_add(e, &ubi->free);
563                 ubi->free_count++;
564         }
565 }
566
567 /**
568  * refill_wl_pool - refills all the fastmap pool used by the
569  * WL sub-system.
570  * @ubi: UBI device description object
571  */
572 static void refill_wl_pool(struct ubi_device *ubi)
573 {
574         struct ubi_wl_entry *e;
575         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
576
577         return_unused_pool_pebs(ubi, pool);
578
579         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
580                 if (!ubi->free.rb_node ||
581                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
582                         break;
583
584                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
585                 self_check_in_wl_tree(ubi, e, &ubi->free);
586                 rb_erase(&e->u.rb, &ubi->free);
587                 ubi->free_count--;
588
589                 pool->pebs[pool->size] = e->pnum;
590         }
591         pool->used = 0;
592 }
593
594 /**
595  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
596  * @ubi: UBI device description object
597  */
598 static void refill_wl_user_pool(struct ubi_device *ubi)
599 {
600         struct ubi_fm_pool *pool = &ubi->fm_pool;
601
602         return_unused_pool_pebs(ubi, pool);
603
604         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
605                 pool->pebs[pool->size] = __wl_get_peb(ubi);
606                 if (pool->pebs[pool->size] < 0)
607                         break;
608         }
609         pool->used = 0;
610 }
611
612 /**
613  * ubi_refill_pools - refills all fastmap PEB pools.
614  * @ubi: UBI device description object
615  */
616 void ubi_refill_pools(struct ubi_device *ubi)
617 {
618         spin_lock(&ubi->wl_lock);
619         refill_wl_pool(ubi);
620         refill_wl_user_pool(ubi);
621         spin_unlock(&ubi->wl_lock);
622 }
623
624 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
625  * the fastmap pool.
626  */
627 int ubi_wl_get_peb(struct ubi_device *ubi)
628 {
629         int ret;
630         struct ubi_fm_pool *pool = &ubi->fm_pool;
631         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
632
633         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
634             wl_pool->used == wl_pool->size)
635                 ubi_update_fastmap(ubi);
636
637         /* we got not a single free PEB */
638         if (!pool->size)
639                 ret = -ENOSPC;
640         else {
641                 spin_lock(&ubi->wl_lock);
642                 ret = pool->pebs[pool->used++];
643                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
644                 spin_unlock(&ubi->wl_lock);
645         }
646
647         return ret;
648 }
649
650 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
651  *
652  * @ubi: UBI device description object
653  */
654 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
655 {
656         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
657         int pnum;
658
659         if (pool->used == pool->size || !pool->size) {
660                 /* We cannot update the fastmap here because this
661                  * function is called in atomic context.
662                  * Let's fail here and refill/update it as soon as possible. */
663                 schedule_work(&ubi->fm_work);
664                 return NULL;
665         } else {
666                 pnum = pool->pebs[pool->used++];
667                 return ubi->lookuptbl[pnum];
668         }
669 }
670 #else
671 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
672 {
673         struct ubi_wl_entry *e;
674
675         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
676         self_check_in_wl_tree(ubi, e, &ubi->free);
677         ubi->free_count--;
678         ubi_assert(ubi->free_count >= 0);
679         rb_erase(&e->u.rb, &ubi->free);
680
681         return e;
682 }
683
684 int ubi_wl_get_peb(struct ubi_device *ubi)
685 {
686         int peb, err;
687
688         spin_lock(&ubi->wl_lock);
689         peb = __wl_get_peb(ubi);
690         spin_unlock(&ubi->wl_lock);
691
692         if (peb < 0)
693                 return peb;
694
695         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
696                                     ubi->peb_size - ubi->vid_hdr_aloffset);
697         if (err) {
698                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
699                         peb);
700                 return err;
701         }
702
703         return peb;
704 }
705 #endif
706
707 /**
708  * prot_queue_del - remove a physical eraseblock from the protection queue.
709  * @ubi: UBI device description object
710  * @pnum: the physical eraseblock to remove
711  *
712  * This function deletes PEB @pnum from the protection queue and returns zero
713  * in case of success and %-ENODEV if the PEB was not found.
714  */
715 static int prot_queue_del(struct ubi_device *ubi, int pnum)
716 {
717         struct ubi_wl_entry *e;
718
719         e = ubi->lookuptbl[pnum];
720         if (!e)
721                 return -ENODEV;
722
723         if (self_check_in_pq(ubi, e))
724                 return -ENODEV;
725
726         list_del(&e->u.list);
727         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
728         return 0;
729 }
730
731 /**
732  * sync_erase - synchronously erase a physical eraseblock.
733  * @ubi: UBI device description object
734  * @e: the the physical eraseblock to erase
735  * @torture: if the physical eraseblock has to be tortured
736  *
737  * This function returns zero in case of success and a negative error code in
738  * case of failure.
739  */
740 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
741                       int torture)
742 {
743         int err;
744         struct ubi_ec_hdr *ec_hdr;
745         unsigned long long ec = e->ec;
746
747         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
748
749         err = self_check_ec(ubi, e->pnum, e->ec);
750         if (err)
751                 return -EINVAL;
752
753         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
754         if (!ec_hdr)
755                 return -ENOMEM;
756
757         err = ubi_io_sync_erase(ubi, e->pnum, torture);
758         if (err < 0)
759                 goto out_free;
760
761         ec += err;
762         if (ec > UBI_MAX_ERASECOUNTER) {
763                 /*
764                  * Erase counter overflow. Upgrade UBI and use 64-bit
765                  * erase counters internally.
766                  */
767                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
768                         e->pnum, ec);
769                 err = -EINVAL;
770                 goto out_free;
771         }
772
773         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
774
775         ec_hdr->ec = cpu_to_be64(ec);
776
777         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
778         if (err)
779                 goto out_free;
780
781         e->ec = ec;
782         spin_lock(&ubi->wl_lock);
783         if (e->ec > ubi->max_ec)
784                 ubi->max_ec = e->ec;
785         spin_unlock(&ubi->wl_lock);
786
787 out_free:
788         kfree(ec_hdr);
789         return err;
790 }
791
792 /**
793  * serve_prot_queue - check if it is time to stop protecting PEBs.
794  * @ubi: UBI device description object
795  *
796  * This function is called after each erase operation and removes PEBs from the
797  * tail of the protection queue. These PEBs have been protected for long enough
798  * and should be moved to the used tree.
799  */
800 static void serve_prot_queue(struct ubi_device *ubi)
801 {
802         struct ubi_wl_entry *e, *tmp;
803         int count;
804
805         /*
806          * There may be several protected physical eraseblock to remove,
807          * process them all.
808          */
809 repeat:
810         count = 0;
811         spin_lock(&ubi->wl_lock);
812         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
813                 dbg_wl("PEB %d EC %d protection over, move to used tree",
814                         e->pnum, e->ec);
815
816                 list_del(&e->u.list);
817                 wl_tree_add(e, &ubi->used);
818                 if (count++ > 32) {
819                         /*
820                          * Let's be nice and avoid holding the spinlock for
821                          * too long.
822                          */
823                         spin_unlock(&ubi->wl_lock);
824                         cond_resched();
825                         goto repeat;
826                 }
827         }
828
829         ubi->pq_head += 1;
830         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
831                 ubi->pq_head = 0;
832         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
833         spin_unlock(&ubi->wl_lock);
834 }
835
836 /**
837  * __schedule_ubi_work - schedule a work.
838  * @ubi: UBI device description object
839  * @wrk: the work to schedule
840  *
841  * This function adds a work defined by @wrk to the tail of the pending works
842  * list. Can only be used if ubi->work_sem is already held in read mode!
843  */
844 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
845 {
846         spin_lock(&ubi->wl_lock);
847         list_add_tail(&wrk->list, &ubi->works);
848         ubi_assert(ubi->works_count >= 0);
849         ubi->works_count += 1;
850         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
851                 wake_up_process(ubi->bgt_thread);
852         spin_unlock(&ubi->wl_lock);
853 }
854
855 /**
856  * schedule_ubi_work - schedule a work.
857  * @ubi: UBI device description object
858  * @wrk: the work to schedule
859  *
860  * This function adds a work defined by @wrk to the tail of the pending works
861  * list.
862  */
863 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
864 {
865         down_read(&ubi->work_sem);
866         __schedule_ubi_work(ubi, wrk);
867         up_read(&ubi->work_sem);
868 }
869
870 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
871                         int shutdown);
872
873 #ifdef CONFIG_MTD_UBI_FASTMAP
874 /**
875  * ubi_is_erase_work - checks whether a work is erase work.
876  * @wrk: The work object to be checked
877  */
878 int ubi_is_erase_work(struct ubi_work *wrk)
879 {
880         return wrk->func == erase_worker;
881 }
882 #endif
883
884 /**
885  * schedule_erase - schedule an erase work.
886  * @ubi: UBI device description object
887  * @e: the WL entry of the physical eraseblock to erase
888  * @vol_id: the volume ID that last used this PEB
889  * @lnum: the last used logical eraseblock number for the PEB
890  * @torture: if the physical eraseblock has to be tortured
891  *
892  * This function returns zero in case of success and a %-ENOMEM in case of
893  * failure.
894  */
895 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
896                           int vol_id, int lnum, int torture)
897 {
898         struct ubi_work *wl_wrk;
899
900         ubi_assert(e);
901         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
902
903         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
904                e->pnum, e->ec, torture);
905
906         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
907         if (!wl_wrk)
908                 return -ENOMEM;
909
910         wl_wrk->func = &erase_worker;
911         wl_wrk->e = e;
912         wl_wrk->vol_id = vol_id;
913         wl_wrk->lnum = lnum;
914         wl_wrk->torture = torture;
915
916         schedule_ubi_work(ubi, wl_wrk);
917         return 0;
918 }
919
920 /**
921  * do_sync_erase - run the erase worker synchronously.
922  * @ubi: UBI device description object
923  * @e: the WL entry of the physical eraseblock to erase
924  * @vol_id: the volume ID that last used this PEB
925  * @lnum: the last used logical eraseblock number for the PEB
926  * @torture: if the physical eraseblock has to be tortured
927  *
928  */
929 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
930                          int vol_id, int lnum, int torture)
931 {
932         struct ubi_work *wl_wrk;
933
934         dbg_wl("sync erase of PEB %i", e->pnum);
935
936         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
937         if (!wl_wrk)
938                 return -ENOMEM;
939
940         wl_wrk->e = e;
941         wl_wrk->vol_id = vol_id;
942         wl_wrk->lnum = lnum;
943         wl_wrk->torture = torture;
944
945         return erase_worker(ubi, wl_wrk, 0);
946 }
947
948 #ifdef CONFIG_MTD_UBI_FASTMAP
949 /**
950  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
951  * sub-system.
952  * see: ubi_wl_put_peb()
953  *
954  * @ubi: UBI device description object
955  * @fm_e: physical eraseblock to return
956  * @lnum: the last used logical eraseblock number for the PEB
957  * @torture: if this physical eraseblock has to be tortured
958  */
959 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
960                       int lnum, int torture)
961 {
962         struct ubi_wl_entry *e;
963         int vol_id, pnum = fm_e->pnum;
964
965         dbg_wl("PEB %d", pnum);
966
967         ubi_assert(pnum >= 0);
968         ubi_assert(pnum < ubi->peb_count);
969
970         spin_lock(&ubi->wl_lock);
971         e = ubi->lookuptbl[pnum];
972
973         /* This can happen if we recovered from a fastmap the very
974          * first time and writing now a new one. In this case the wl system
975          * has never seen any PEB used by the original fastmap.
976          */
977         if (!e) {
978                 e = fm_e;
979                 ubi_assert(e->ec >= 0);
980                 ubi->lookuptbl[pnum] = e;
981         } else {
982                 e->ec = fm_e->ec;
983                 kfree(fm_e);
984         }
985
986         spin_unlock(&ubi->wl_lock);
987
988         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
989         return schedule_erase(ubi, e, vol_id, lnum, torture);
990 }
991 #endif
992
993 /**
994  * wear_leveling_worker - wear-leveling worker function.
995  * @ubi: UBI device description object
996  * @wrk: the work object
997  * @shutdown: non-zero if the worker has to free memory and exit
998  * because the WL-subsystem is shutting down
999  *
1000  * This function copies a more worn out physical eraseblock to a less worn out
1001  * one. Returns zero in case of success and a negative error code in case of
1002  * failure.
1003  */
1004 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1005                                 int shutdown)
1006 {
1007         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1008         int vol_id = -1, uninitialized_var(lnum);
1009 #ifdef CONFIG_MTD_UBI_FASTMAP
1010         int anchor = wrk->anchor;
1011 #endif
1012         struct ubi_wl_entry *e1, *e2;
1013         struct ubi_vid_hdr *vid_hdr;
1014
1015         kfree(wrk);
1016         if (shutdown)
1017                 return 0;
1018
1019         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1020         if (!vid_hdr)
1021                 return -ENOMEM;
1022
1023         mutex_lock(&ubi->move_mutex);
1024         spin_lock(&ubi->wl_lock);
1025         ubi_assert(!ubi->move_from && !ubi->move_to);
1026         ubi_assert(!ubi->move_to_put);
1027
1028         if (!ubi->free.rb_node ||
1029             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1030                 /*
1031                  * No free physical eraseblocks? Well, they must be waiting in
1032                  * the queue to be erased. Cancel movement - it will be
1033                  * triggered again when a free physical eraseblock appears.
1034                  *
1035                  * No used physical eraseblocks? They must be temporarily
1036                  * protected from being moved. They will be moved to the
1037                  * @ubi->used tree later and the wear-leveling will be
1038                  * triggered again.
1039                  */
1040                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1041                        !ubi->free.rb_node, !ubi->used.rb_node);
1042                 goto out_cancel;
1043         }
1044
1045 #ifdef CONFIG_MTD_UBI_FASTMAP
1046         /* Check whether we need to produce an anchor PEB */
1047         if (!anchor)
1048                 anchor = !anchor_pebs_avalible(&ubi->free);
1049
1050         if (anchor) {
1051                 e1 = find_anchor_wl_entry(&ubi->used);
1052                 if (!e1)
1053                         goto out_cancel;
1054                 e2 = get_peb_for_wl(ubi);
1055                 if (!e2)
1056                         goto out_cancel;
1057
1058                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1059                 rb_erase(&e1->u.rb, &ubi->used);
1060                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1061         } else if (!ubi->scrub.rb_node) {
1062 #else
1063         if (!ubi->scrub.rb_node) {
1064 #endif
1065                 /*
1066                  * Now pick the least worn-out used physical eraseblock and a
1067                  * highly worn-out free physical eraseblock. If the erase
1068                  * counters differ much enough, start wear-leveling.
1069                  */
1070                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1071                 e2 = get_peb_for_wl(ubi);
1072                 if (!e2)
1073                         goto out_cancel;
1074
1075                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1076                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1077                                e1->ec, e2->ec);
1078
1079                         /* Give the unused PEB back */
1080                         wl_tree_add(e2, &ubi->free);
1081                         ubi->free_count++;
1082                         goto out_cancel;
1083                 }
1084                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1085                 rb_erase(&e1->u.rb, &ubi->used);
1086                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1087                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1088         } else {
1089                 /* Perform scrubbing */
1090                 scrubbing = 1;
1091                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1092                 e2 = get_peb_for_wl(ubi);
1093                 if (!e2)
1094                         goto out_cancel;
1095
1096                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1097                 rb_erase(&e1->u.rb, &ubi->scrub);
1098                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1099         }
1100
1101         ubi->move_from = e1;
1102         ubi->move_to = e2;
1103         spin_unlock(&ubi->wl_lock);
1104
1105         /*
1106          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1107          * We so far do not know which logical eraseblock our physical
1108          * eraseblock (@e1) belongs to. We have to read the volume identifier
1109          * header first.
1110          *
1111          * Note, we are protected from this PEB being unmapped and erased. The
1112          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1113          * which is being moved was unmapped.
1114          */
1115
1116         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1117         if (err && err != UBI_IO_BITFLIPS) {
1118                 if (err == UBI_IO_FF) {
1119                         /*
1120                          * We are trying to move PEB without a VID header. UBI
1121                          * always write VID headers shortly after the PEB was
1122                          * given, so we have a situation when it has not yet
1123                          * had a chance to write it, because it was preempted.
1124                          * So add this PEB to the protection queue so far,
1125                          * because presumably more data will be written there
1126                          * (including the missing VID header), and then we'll
1127                          * move it.
1128                          */
1129                         dbg_wl("PEB %d has no VID header", e1->pnum);
1130                         protect = 1;
1131                         goto out_not_moved;
1132                 } else if (err == UBI_IO_FF_BITFLIPS) {
1133                         /*
1134                          * The same situation as %UBI_IO_FF, but bit-flips were
1135                          * detected. It is better to schedule this PEB for
1136                          * scrubbing.
1137                          */
1138                         dbg_wl("PEB %d has no VID header but has bit-flips",
1139                                e1->pnum);
1140                         scrubbing = 1;
1141                         goto out_not_moved;
1142                 }
1143
1144                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1145                         err, e1->pnum);
1146                 goto out_error;
1147         }
1148
1149         vol_id = be32_to_cpu(vid_hdr->vol_id);
1150         lnum = be32_to_cpu(vid_hdr->lnum);
1151
1152         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1153         if (err) {
1154                 if (err == MOVE_CANCEL_RACE) {
1155                         /*
1156                          * The LEB has not been moved because the volume is
1157                          * being deleted or the PEB has been put meanwhile. We
1158                          * should prevent this PEB from being selected for
1159                          * wear-leveling movement again, so put it to the
1160                          * protection queue.
1161                          */
1162                         protect = 1;
1163                         goto out_not_moved;
1164                 }
1165                 if (err == MOVE_RETRY) {
1166                         scrubbing = 1;
1167                         goto out_not_moved;
1168                 }
1169                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1170                     err == MOVE_TARGET_RD_ERR) {
1171                         /*
1172                          * Target PEB had bit-flips or write error - torture it.
1173                          */
1174                         torture = 1;
1175                         goto out_not_moved;
1176                 }
1177
1178                 if (err == MOVE_SOURCE_RD_ERR) {
1179                         /*
1180                          * An error happened while reading the source PEB. Do
1181                          * not switch to R/O mode in this case, and give the
1182                          * upper layers a possibility to recover from this,
1183                          * e.g. by unmapping corresponding LEB. Instead, just
1184                          * put this PEB to the @ubi->erroneous list to prevent
1185                          * UBI from trying to move it over and over again.
1186                          */
1187                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1188                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1189                                         ubi->erroneous_peb_count);
1190                                 goto out_error;
1191                         }
1192                         erroneous = 1;
1193                         goto out_not_moved;
1194                 }
1195
1196                 if (err < 0)
1197                         goto out_error;
1198
1199                 ubi_assert(0);
1200         }
1201
1202         /* The PEB has been successfully moved */
1203         if (scrubbing)
1204                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1205                         e1->pnum, vol_id, lnum, e2->pnum);
1206         ubi_free_vid_hdr(ubi, vid_hdr);
1207
1208         spin_lock(&ubi->wl_lock);
1209         if (!ubi->move_to_put) {
1210                 wl_tree_add(e2, &ubi->used);
1211                 e2 = NULL;
1212         }
1213         ubi->move_from = ubi->move_to = NULL;
1214         ubi->move_to_put = ubi->wl_scheduled = 0;
1215         spin_unlock(&ubi->wl_lock);
1216
1217         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1218         if (err) {
1219                 if (e2)
1220                         kmem_cache_free(ubi_wl_entry_slab, e2);
1221                 goto out_ro;
1222         }
1223
1224         if (e2) {
1225                 /*
1226                  * Well, the target PEB was put meanwhile, schedule it for
1227                  * erasure.
1228                  */
1229                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1230                        e2->pnum, vol_id, lnum);
1231                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1232                 if (err)
1233                         goto out_ro;
1234         }
1235
1236         dbg_wl("done");
1237         mutex_unlock(&ubi->move_mutex);
1238         return 0;
1239
1240         /*
1241          * For some reasons the LEB was not moved, might be an error, might be
1242          * something else. @e1 was not changed, so return it back. @e2 might
1243          * have been changed, schedule it for erasure.
1244          */
1245 out_not_moved:
1246         if (vol_id != -1)
1247                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1248                        e1->pnum, vol_id, lnum, e2->pnum, err);
1249         else
1250                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1251                        e1->pnum, e2->pnum, err);
1252         spin_lock(&ubi->wl_lock);
1253         if (protect)
1254                 prot_queue_add(ubi, e1);
1255         else if (erroneous) {
1256                 wl_tree_add(e1, &ubi->erroneous);
1257                 ubi->erroneous_peb_count += 1;
1258         } else if (scrubbing)
1259                 wl_tree_add(e1, &ubi->scrub);
1260         else
1261                 wl_tree_add(e1, &ubi->used);
1262         ubi_assert(!ubi->move_to_put);
1263         ubi->move_from = ubi->move_to = NULL;
1264         ubi->wl_scheduled = 0;
1265         spin_unlock(&ubi->wl_lock);
1266
1267         ubi_free_vid_hdr(ubi, vid_hdr);
1268         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1269         if (err)
1270                 goto out_ro;
1271
1272         mutex_unlock(&ubi->move_mutex);
1273         return 0;
1274
1275 out_error:
1276         if (vol_id != -1)
1277                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1278                         err, e1->pnum, e2->pnum);
1279         else
1280                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1281                         err, e1->pnum, vol_id, lnum, e2->pnum);
1282         spin_lock(&ubi->wl_lock);
1283         ubi->move_from = ubi->move_to = NULL;
1284         ubi->move_to_put = ubi->wl_scheduled = 0;
1285         spin_unlock(&ubi->wl_lock);
1286
1287         ubi_free_vid_hdr(ubi, vid_hdr);
1288         kmem_cache_free(ubi_wl_entry_slab, e1);
1289         kmem_cache_free(ubi_wl_entry_slab, e2);
1290
1291 out_ro:
1292         ubi_ro_mode(ubi);
1293         mutex_unlock(&ubi->move_mutex);
1294         ubi_assert(err != 0);
1295         return err < 0 ? err : -EIO;
1296
1297 out_cancel:
1298         ubi->wl_scheduled = 0;
1299         spin_unlock(&ubi->wl_lock);
1300         mutex_unlock(&ubi->move_mutex);
1301         ubi_free_vid_hdr(ubi, vid_hdr);
1302         return 0;
1303 }
1304
1305 /**
1306  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1307  * @ubi: UBI device description object
1308  * @nested: set to non-zero if this function is called from UBI worker
1309  *
1310  * This function checks if it is time to start wear-leveling and schedules it
1311  * if yes. This function returns zero in case of success and a negative error
1312  * code in case of failure.
1313  */
1314 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1315 {
1316         int err = 0;
1317         struct ubi_wl_entry *e1;
1318         struct ubi_wl_entry *e2;
1319         struct ubi_work *wrk;
1320
1321         spin_lock(&ubi->wl_lock);
1322         if (ubi->wl_scheduled)
1323                 /* Wear-leveling is already in the work queue */
1324                 goto out_unlock;
1325
1326         /*
1327          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1328          * the WL worker has to be scheduled anyway.
1329          */
1330         if (!ubi->scrub.rb_node) {
1331                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1332                         /* No physical eraseblocks - no deal */
1333                         goto out_unlock;
1334
1335                 /*
1336                  * We schedule wear-leveling only if the difference between the
1337                  * lowest erase counter of used physical eraseblocks and a high
1338                  * erase counter of free physical eraseblocks is greater than
1339                  * %UBI_WL_THRESHOLD.
1340                  */
1341                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1342                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1343
1344                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1345                         goto out_unlock;
1346                 dbg_wl("schedule wear-leveling");
1347         } else
1348                 dbg_wl("schedule scrubbing");
1349
1350         ubi->wl_scheduled = 1;
1351         spin_unlock(&ubi->wl_lock);
1352
1353         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1354         if (!wrk) {
1355                 err = -ENOMEM;
1356                 goto out_cancel;
1357         }
1358
1359         wrk->anchor = 0;
1360         wrk->func = &wear_leveling_worker;
1361         if (nested)
1362                 __schedule_ubi_work(ubi, wrk);
1363         else
1364                 schedule_ubi_work(ubi, wrk);
1365         return err;
1366
1367 out_cancel:
1368         spin_lock(&ubi->wl_lock);
1369         ubi->wl_scheduled = 0;
1370 out_unlock:
1371         spin_unlock(&ubi->wl_lock);
1372         return err;
1373 }
1374
1375 #ifdef CONFIG_MTD_UBI_FASTMAP
1376 /**
1377  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1378  * @ubi: UBI device description object
1379  */
1380 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1381 {
1382         struct ubi_work *wrk;
1383
1384         spin_lock(&ubi->wl_lock);
1385         if (ubi->wl_scheduled) {
1386                 spin_unlock(&ubi->wl_lock);
1387                 return 0;
1388         }
1389         ubi->wl_scheduled = 1;
1390         spin_unlock(&ubi->wl_lock);
1391
1392         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1393         if (!wrk) {
1394                 spin_lock(&ubi->wl_lock);
1395                 ubi->wl_scheduled = 0;
1396                 spin_unlock(&ubi->wl_lock);
1397                 return -ENOMEM;
1398         }
1399
1400         wrk->anchor = 1;
1401         wrk->func = &wear_leveling_worker;
1402         schedule_ubi_work(ubi, wrk);
1403         return 0;
1404 }
1405 #endif
1406
1407 /**
1408  * erase_worker - physical eraseblock erase worker function.
1409  * @ubi: UBI device description object
1410  * @wl_wrk: the work object
1411  * @shutdown: non-zero if the worker has to free memory and exit
1412  * because the WL sub-system is shutting down
1413  *
1414  * This function erases a physical eraseblock and perform torture testing if
1415  * needed. It also takes care about marking the physical eraseblock bad if
1416  * needed. Returns zero in case of success and a negative error code in case of
1417  * failure.
1418  */
1419 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1420                         int shutdown)
1421 {
1422         struct ubi_wl_entry *e = wl_wrk->e;
1423         int pnum = e->pnum;
1424         int vol_id = wl_wrk->vol_id;
1425         int lnum = wl_wrk->lnum;
1426         int err, available_consumed = 0;
1427
1428         if (shutdown) {
1429                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1430                 kfree(wl_wrk);
1431                 kmem_cache_free(ubi_wl_entry_slab, e);
1432                 return 0;
1433         }
1434
1435         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1436                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1437
1438         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1439
1440         err = sync_erase(ubi, e, wl_wrk->torture);
1441         if (!err) {
1442                 /* Fine, we've erased it successfully */
1443                 kfree(wl_wrk);
1444
1445                 spin_lock(&ubi->wl_lock);
1446                 wl_tree_add(e, &ubi->free);
1447                 ubi->free_count++;
1448                 spin_unlock(&ubi->wl_lock);
1449
1450                 /*
1451                  * One more erase operation has happened, take care about
1452                  * protected physical eraseblocks.
1453                  */
1454                 serve_prot_queue(ubi);
1455
1456                 /* And take care about wear-leveling */
1457                 err = ensure_wear_leveling(ubi, 1);
1458                 return err;
1459         }
1460
1461         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1462         kfree(wl_wrk);
1463
1464         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1465             err == -EBUSY) {
1466                 int err1;
1467
1468                 /* Re-schedule the LEB for erasure */
1469                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1470                 if (err1) {
1471                         err = err1;
1472                         goto out_ro;
1473                 }
1474                 return err;
1475         }
1476
1477         kmem_cache_free(ubi_wl_entry_slab, e);
1478         if (err != -EIO)
1479                 /*
1480                  * If this is not %-EIO, we have no idea what to do. Scheduling
1481                  * this physical eraseblock for erasure again would cause
1482                  * errors again and again. Well, lets switch to R/O mode.
1483                  */
1484                 goto out_ro;
1485
1486         /* It is %-EIO, the PEB went bad */
1487
1488         if (!ubi->bad_allowed) {
1489                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1490                 goto out_ro;
1491         }
1492
1493         spin_lock(&ubi->volumes_lock);
1494         if (ubi->beb_rsvd_pebs == 0) {
1495                 if (ubi->avail_pebs == 0) {
1496                         spin_unlock(&ubi->volumes_lock);
1497                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1498                         goto out_ro;
1499                 }
1500                 ubi->avail_pebs -= 1;
1501                 available_consumed = 1;
1502         }
1503         spin_unlock(&ubi->volumes_lock);
1504
1505         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1506         err = ubi_io_mark_bad(ubi, pnum);
1507         if (err)
1508                 goto out_ro;
1509
1510         spin_lock(&ubi->volumes_lock);
1511         if (ubi->beb_rsvd_pebs > 0) {
1512                 if (available_consumed) {
1513                         /*
1514                          * The amount of reserved PEBs increased since we last
1515                          * checked.
1516                          */
1517                         ubi->avail_pebs += 1;
1518                         available_consumed = 0;
1519                 }
1520                 ubi->beb_rsvd_pebs -= 1;
1521         }
1522         ubi->bad_peb_count += 1;
1523         ubi->good_peb_count -= 1;
1524         ubi_calculate_reserved(ubi);
1525         if (available_consumed)
1526                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1527         else if (ubi->beb_rsvd_pebs)
1528                 ubi_msg(ubi, "%d PEBs left in the reserve",
1529                         ubi->beb_rsvd_pebs);
1530         else
1531                 ubi_warn(ubi, "last PEB from the reserve was used");
1532         spin_unlock(&ubi->volumes_lock);
1533
1534         return err;
1535
1536 out_ro:
1537         if (available_consumed) {
1538                 spin_lock(&ubi->volumes_lock);
1539                 ubi->avail_pebs += 1;
1540                 spin_unlock(&ubi->volumes_lock);
1541         }
1542         ubi_ro_mode(ubi);
1543         return err;
1544 }
1545
1546 /**
1547  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1548  * @ubi: UBI device description object
1549  * @vol_id: the volume ID that last used this PEB
1550  * @lnum: the last used logical eraseblock number for the PEB
1551  * @pnum: physical eraseblock to return
1552  * @torture: if this physical eraseblock has to be tortured
1553  *
1554  * This function is called to return physical eraseblock @pnum to the pool of
1555  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1556  * occurred to this @pnum and it has to be tested. This function returns zero
1557  * in case of success, and a negative error code in case of failure.
1558  */
1559 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1560                    int pnum, int torture)
1561 {
1562         int err;
1563         struct ubi_wl_entry *e;
1564
1565         dbg_wl("PEB %d", pnum);
1566         ubi_assert(pnum >= 0);
1567         ubi_assert(pnum < ubi->peb_count);
1568
1569 retry:
1570         spin_lock(&ubi->wl_lock);
1571         e = ubi->lookuptbl[pnum];
1572         if (e == ubi->move_from) {
1573                 /*
1574                  * User is putting the physical eraseblock which was selected to
1575                  * be moved. It will be scheduled for erasure in the
1576                  * wear-leveling worker.
1577                  */
1578                 dbg_wl("PEB %d is being moved, wait", pnum);
1579                 spin_unlock(&ubi->wl_lock);
1580
1581                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1582                 mutex_lock(&ubi->move_mutex);
1583                 mutex_unlock(&ubi->move_mutex);
1584                 goto retry;
1585         } else if (e == ubi->move_to) {
1586                 /*
1587                  * User is putting the physical eraseblock which was selected
1588                  * as the target the data is moved to. It may happen if the EBA
1589                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1590                  * but the WL sub-system has not put the PEB to the "used" tree
1591                  * yet, but it is about to do this. So we just set a flag which
1592                  * will tell the WL worker that the PEB is not needed anymore
1593                  * and should be scheduled for erasure.
1594                  */
1595                 dbg_wl("PEB %d is the target of data moving", pnum);
1596                 ubi_assert(!ubi->move_to_put);
1597                 ubi->move_to_put = 1;
1598                 spin_unlock(&ubi->wl_lock);
1599                 return 0;
1600         } else {
1601                 if (in_wl_tree(e, &ubi->used)) {
1602                         self_check_in_wl_tree(ubi, e, &ubi->used);
1603                         rb_erase(&e->u.rb, &ubi->used);
1604                 } else if (in_wl_tree(e, &ubi->scrub)) {
1605                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1606                         rb_erase(&e->u.rb, &ubi->scrub);
1607                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1608                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1609                         rb_erase(&e->u.rb, &ubi->erroneous);
1610                         ubi->erroneous_peb_count -= 1;
1611                         ubi_assert(ubi->erroneous_peb_count >= 0);
1612                         /* Erroneous PEBs should be tortured */
1613                         torture = 1;
1614                 } else {
1615                         err = prot_queue_del(ubi, e->pnum);
1616                         if (err) {
1617                                 ubi_err(ubi, "PEB %d not found", pnum);
1618                                 ubi_ro_mode(ubi);
1619                                 spin_unlock(&ubi->wl_lock);
1620                                 return err;
1621                         }
1622                 }
1623         }
1624         spin_unlock(&ubi->wl_lock);
1625
1626         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1627         if (err) {
1628                 spin_lock(&ubi->wl_lock);
1629                 wl_tree_add(e, &ubi->used);
1630                 spin_unlock(&ubi->wl_lock);
1631         }
1632
1633         return err;
1634 }
1635
1636 /**
1637  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1638  * @ubi: UBI device description object
1639  * @pnum: the physical eraseblock to schedule
1640  *
1641  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1642  * needs scrubbing. This function schedules a physical eraseblock for
1643  * scrubbing which is done in background. This function returns zero in case of
1644  * success and a negative error code in case of failure.
1645  */
1646 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1647 {
1648         struct ubi_wl_entry *e;
1649
1650         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1651
1652 retry:
1653         spin_lock(&ubi->wl_lock);
1654         e = ubi->lookuptbl[pnum];
1655         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1656                                    in_wl_tree(e, &ubi->erroneous)) {
1657                 spin_unlock(&ubi->wl_lock);
1658                 return 0;
1659         }
1660
1661         if (e == ubi->move_to) {
1662                 /*
1663                  * This physical eraseblock was used to move data to. The data
1664                  * was moved but the PEB was not yet inserted to the proper
1665                  * tree. We should just wait a little and let the WL worker
1666                  * proceed.
1667                  */
1668                 spin_unlock(&ubi->wl_lock);
1669                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1670                 yield();
1671                 goto retry;
1672         }
1673
1674         if (in_wl_tree(e, &ubi->used)) {
1675                 self_check_in_wl_tree(ubi, e, &ubi->used);
1676                 rb_erase(&e->u.rb, &ubi->used);
1677         } else {
1678                 int err;
1679
1680                 err = prot_queue_del(ubi, e->pnum);
1681                 if (err) {
1682                         ubi_err(ubi, "PEB %d not found", pnum);
1683                         ubi_ro_mode(ubi);
1684                         spin_unlock(&ubi->wl_lock);
1685                         return err;
1686                 }
1687         }
1688
1689         wl_tree_add(e, &ubi->scrub);
1690         spin_unlock(&ubi->wl_lock);
1691
1692         /*
1693          * Technically scrubbing is the same as wear-leveling, so it is done
1694          * by the WL worker.
1695          */
1696         return ensure_wear_leveling(ubi, 0);
1697 }
1698
1699 /**
1700  * ubi_wl_flush - flush all pending works.
1701  * @ubi: UBI device description object
1702  * @vol_id: the volume id to flush for
1703  * @lnum: the logical eraseblock number to flush for
1704  *
1705  * This function executes all pending works for a particular volume id /
1706  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1707  * acts as a wildcard for all of the corresponding volume numbers or logical
1708  * eraseblock numbers. It returns zero in case of success and a negative error
1709  * code in case of failure.
1710  */
1711 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1712 {
1713         int err = 0;
1714         int found = 1;
1715
1716         /*
1717          * Erase while the pending works queue is not empty, but not more than
1718          * the number of currently pending works.
1719          */
1720         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1721                vol_id, lnum, ubi->works_count);
1722
1723         while (found) {
1724                 struct ubi_work *wrk, *tmp;
1725                 found = 0;
1726
1727                 down_read(&ubi->work_sem);
1728                 spin_lock(&ubi->wl_lock);
1729                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1730                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1731                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1732                                 list_del(&wrk->list);
1733                                 ubi->works_count -= 1;
1734                                 ubi_assert(ubi->works_count >= 0);
1735                                 spin_unlock(&ubi->wl_lock);
1736
1737                                 err = wrk->func(ubi, wrk, 0);
1738                                 if (err) {
1739                                         up_read(&ubi->work_sem);
1740                                         return err;
1741                                 }
1742
1743                                 spin_lock(&ubi->wl_lock);
1744                                 found = 1;
1745                                 break;
1746                         }
1747                 }
1748                 spin_unlock(&ubi->wl_lock);
1749                 up_read(&ubi->work_sem);
1750         }
1751
1752         /*
1753          * Make sure all the works which have been done in parallel are
1754          * finished.
1755          */
1756         down_write(&ubi->work_sem);
1757         up_write(&ubi->work_sem);
1758
1759         return err;
1760 }
1761
1762 /**
1763  * tree_destroy - destroy an RB-tree.
1764  * @root: the root of the tree to destroy
1765  */
1766 static void tree_destroy(struct rb_root *root)
1767 {
1768         struct rb_node *rb;
1769         struct ubi_wl_entry *e;
1770
1771         rb = root->rb_node;
1772         while (rb) {
1773                 if (rb->rb_left)
1774                         rb = rb->rb_left;
1775                 else if (rb->rb_right)
1776                         rb = rb->rb_right;
1777                 else {
1778                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1779
1780                         rb = rb_parent(rb);
1781                         if (rb) {
1782                                 if (rb->rb_left == &e->u.rb)
1783                                         rb->rb_left = NULL;
1784                                 else
1785                                         rb->rb_right = NULL;
1786                         }
1787
1788                         kmem_cache_free(ubi_wl_entry_slab, e);
1789                 }
1790         }
1791 }
1792
1793 /**
1794  * ubi_thread - UBI background thread.
1795  * @u: the UBI device description object pointer
1796  */
1797 int ubi_thread(void *u)
1798 {
1799         int failures = 0;
1800         struct ubi_device *ubi = u;
1801
1802         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1803                 ubi->bgt_name, task_pid_nr(current));
1804
1805         set_freezable();
1806         for (;;) {
1807                 int err;
1808
1809                 if (kthread_should_stop()) {
1810                         ubi_msg(ubi, "background thread \"%s\" should stop, PID %d",
1811                                 ubi->bgt_name, task_pid_nr(current));
1812                         break;
1813                 }
1814
1815                 if (try_to_freeze())
1816                         continue;
1817
1818                 spin_lock(&ubi->wl_lock);
1819                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1820                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1821                         set_current_state(TASK_INTERRUPTIBLE);
1822                         spin_unlock(&ubi->wl_lock);
1823                         schedule();
1824                         continue;
1825                 }
1826                 spin_unlock(&ubi->wl_lock);
1827
1828                 err = do_work(ubi);
1829                 if (err) {
1830                         ubi_err(ubi, "%s: work failed with error code %d",
1831                                 ubi->bgt_name, err);
1832                         if (failures++ > WL_MAX_FAILURES) {
1833                                 /*
1834                                  * Too many failures, disable the thread and
1835                                  * switch to read-only mode.
1836                                  */
1837                                 ubi_msg(ubi, "%s: %d consecutive failures",
1838                                         ubi->bgt_name, WL_MAX_FAILURES);
1839                                 ubi_ro_mode(ubi);
1840                                 ubi->thread_enabled = 0;
1841                                 continue;
1842                         }
1843                 } else
1844                         failures = 0;
1845
1846                 cond_resched();
1847         }
1848
1849         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1850         return 0;
1851 }
1852
1853 /**
1854  * shutdown_work - shutdown all pending works.
1855  * @ubi: UBI device description object
1856  */
1857 static void shutdown_work(struct ubi_device *ubi)
1858 {
1859         while (!list_empty(&ubi->works)) {
1860                 struct ubi_work *wrk;
1861
1862                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1863                 list_del(&wrk->list);
1864                 wrk->func(ubi, wrk, 1);
1865                 ubi->works_count -= 1;
1866                 ubi_assert(ubi->works_count >= 0);
1867         }
1868 }
1869
1870 /**
1871  * ubi_wl_init - initialize the WL sub-system using attaching information.
1872  * @ubi: UBI device description object
1873  * @ai: attaching information
1874  *
1875  * This function returns zero in case of success, and a negative error code in
1876  * case of failure.
1877  */
1878 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1879 {
1880         int err, i, reserved_pebs, found_pebs = 0;
1881         struct rb_node *rb1, *rb2;
1882         struct ubi_ainf_volume *av;
1883         struct ubi_ainf_peb *aeb, *tmp;
1884         struct ubi_wl_entry *e;
1885
1886         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1887         spin_lock_init(&ubi->wl_lock);
1888         mutex_init(&ubi->move_mutex);
1889         init_rwsem(&ubi->work_sem);
1890         ubi->max_ec = ai->max_ec;
1891         INIT_LIST_HEAD(&ubi->works);
1892 #ifdef CONFIG_MTD_UBI_FASTMAP
1893         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1894 #endif
1895
1896         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1897
1898         err = -ENOMEM;
1899         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1900         if (!ubi->lookuptbl)
1901                 return err;
1902
1903         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1904                 INIT_LIST_HEAD(&ubi->pq[i]);
1905         ubi->pq_head = 0;
1906
1907         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1908                 cond_resched();
1909
1910                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1911                 if (!e)
1912                         goto out_free;
1913
1914                 e->pnum = aeb->pnum;
1915                 e->ec = aeb->ec;
1916                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1917                 ubi->lookuptbl[e->pnum] = e;
1918                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1919                         kmem_cache_free(ubi_wl_entry_slab, e);
1920                         goto out_free;
1921                 }
1922
1923                 found_pebs++;
1924         }
1925
1926         ubi->free_count = 0;
1927         list_for_each_entry(aeb, &ai->free, u.list) {
1928                 cond_resched();
1929
1930                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1931                 if (!e)
1932                         goto out_free;
1933
1934                 e->pnum = aeb->pnum;
1935                 e->ec = aeb->ec;
1936                 ubi_assert(e->ec >= 0);
1937                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1938
1939                 wl_tree_add(e, &ubi->free);
1940                 ubi->free_count++;
1941
1942                 ubi->lookuptbl[e->pnum] = e;
1943
1944                 found_pebs++;
1945         }
1946
1947         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1948                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1949                         cond_resched();
1950
1951                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1952                         if (!e)
1953                                 goto out_free;
1954
1955                         e->pnum = aeb->pnum;
1956                         e->ec = aeb->ec;
1957                         ubi->lookuptbl[e->pnum] = e;
1958
1959                         if (!aeb->scrub) {
1960                                 dbg_wl("add PEB %d EC %d to the used tree",
1961                                        e->pnum, e->ec);
1962                                 wl_tree_add(e, &ubi->used);
1963                         } else {
1964                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1965                                        e->pnum, e->ec);
1966                                 wl_tree_add(e, &ubi->scrub);
1967                         }
1968
1969                         found_pebs++;
1970                 }
1971         }
1972
1973         dbg_wl("found %i PEBs", found_pebs);
1974
1975         if (ubi->fm)
1976                 ubi_assert(ubi->good_peb_count == \
1977                            found_pebs + ubi->fm->used_blocks);
1978         else
1979                 ubi_assert(ubi->good_peb_count == found_pebs);
1980
1981         reserved_pebs = WL_RESERVED_PEBS;
1982 #ifdef CONFIG_MTD_UBI_FASTMAP
1983         /* Reserve enough LEBs to store two fastmaps. */
1984         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1985 #endif
1986
1987         if (ubi->avail_pebs < reserved_pebs) {
1988                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1989                         ubi->avail_pebs, reserved_pebs);
1990                 if (ubi->corr_peb_count)
1991                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1992                                 ubi->corr_peb_count);
1993                 goto out_free;
1994         }
1995         ubi->avail_pebs -= reserved_pebs;
1996         ubi->rsvd_pebs += reserved_pebs;
1997
1998         /* Schedule wear-leveling if needed */
1999         err = ensure_wear_leveling(ubi, 0);
2000         if (err)
2001                 goto out_free;
2002
2003         return 0;
2004
2005 out_free:
2006         shutdown_work(ubi);
2007         tree_destroy(&ubi->used);
2008         tree_destroy(&ubi->free);
2009         tree_destroy(&ubi->scrub);
2010         kfree(ubi->lookuptbl);
2011         return err;
2012 }
2013
2014 /**
2015  * protection_queue_destroy - destroy the protection queue.
2016  * @ubi: UBI device description object
2017  */
2018 static void protection_queue_destroy(struct ubi_device *ubi)
2019 {
2020         int i;
2021         struct ubi_wl_entry *e, *tmp;
2022
2023         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2024                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2025                         list_del(&e->u.list);
2026                         kmem_cache_free(ubi_wl_entry_slab, e);
2027                 }
2028         }
2029 }
2030
2031 /**
2032  * ubi_wl_close - close the wear-leveling sub-system.
2033  * @ubi: UBI device description object
2034  */
2035 void ubi_wl_close(struct ubi_device *ubi)
2036 {
2037         dbg_wl("close the WL sub-system");
2038         shutdown_work(ubi);
2039         protection_queue_destroy(ubi);
2040         tree_destroy(&ubi->used);
2041         tree_destroy(&ubi->erroneous);
2042         tree_destroy(&ubi->free);
2043         tree_destroy(&ubi->scrub);
2044         kfree(ubi->lookuptbl);
2045 }
2046
2047 /**
2048  * self_check_ec - make sure that the erase counter of a PEB is correct.
2049  * @ubi: UBI device description object
2050  * @pnum: the physical eraseblock number to check
2051  * @ec: the erase counter to check
2052  *
2053  * This function returns zero if the erase counter of physical eraseblock @pnum
2054  * is equivalent to @ec, and a negative error code if not or if an error
2055  * occurred.
2056  */
2057 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2058 {
2059         int err;
2060         long long read_ec;
2061         struct ubi_ec_hdr *ec_hdr;
2062
2063         if (!ubi_dbg_chk_gen(ubi))
2064                 return 0;
2065
2066         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2067         if (!ec_hdr)
2068                 return -ENOMEM;
2069
2070         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2071         if (err && err != UBI_IO_BITFLIPS) {
2072                 /* The header does not have to exist */
2073                 err = 0;
2074                 goto out_free;
2075         }
2076
2077         read_ec = be64_to_cpu(ec_hdr->ec);
2078         if (ec != read_ec && read_ec - ec > 1) {
2079                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2080                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2081                 dump_stack();
2082                 err = 1;
2083         } else
2084                 err = 0;
2085
2086 out_free:
2087         kfree(ec_hdr);
2088         return err;
2089 }
2090
2091 /**
2092  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2093  * @ubi: UBI device description object
2094  * @e: the wear-leveling entry to check
2095  * @root: the root of the tree
2096  *
2097  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2098  * is not.
2099  */
2100 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2101                                  struct ubi_wl_entry *e, struct rb_root *root)
2102 {
2103         if (!ubi_dbg_chk_gen(ubi))
2104                 return 0;
2105
2106         if (in_wl_tree(e, root))
2107                 return 0;
2108
2109         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2110                 e->pnum, e->ec, root);
2111         dump_stack();
2112         return -EINVAL;
2113 }
2114
2115 /**
2116  * self_check_in_pq - check if wear-leveling entry is in the protection
2117  *                        queue.
2118  * @ubi: UBI device description object
2119  * @e: the wear-leveling entry to check
2120  *
2121  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2122  */
2123 static int self_check_in_pq(const struct ubi_device *ubi,
2124                             struct ubi_wl_entry *e)
2125 {
2126         struct ubi_wl_entry *p;
2127         int i;
2128
2129         if (!ubi_dbg_chk_gen(ubi))
2130                 return 0;
2131
2132         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2133                 list_for_each_entry(p, &ubi->pq[i], u.list)
2134                         if (p == e)
2135                                 return 0;
2136
2137         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2138                 e->pnum, e->ec);
2139         dump_stack();
2140         return -EINVAL;
2141 }