]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/bna/bnad.c
7e839b9cec221758c69afe3871d7cd884207bb80
[mv-sheeva.git] / drivers / net / bna / bnad.c
1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/netdevice.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/in.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/if_ether.h>
25 #include <linux/ip.h>
26
27 #include "bnad.h"
28 #include "bna.h"
29 #include "cna.h"
30
31 static DEFINE_MUTEX(bnad_fwimg_mutex);
32
33 /*
34  * Module params
35  */
36 static uint bnad_msix_disable;
37 module_param(bnad_msix_disable, uint, 0444);
38 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
39
40 static uint bnad_ioc_auto_recover = 1;
41 module_param(bnad_ioc_auto_recover, uint, 0444);
42 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
43
44 /*
45  * Global variables
46  */
47 u32 bnad_rxqs_per_cq = 2;
48
49 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
50
51 /*
52  * Local MACROS
53  */
54 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
55
56 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
57
58 #define BNAD_GET_MBOX_IRQ(_bnad)                                \
59         (((_bnad)->cfg_flags & BNAD_CF_MSIX) ?                  \
60          ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) :  \
61          ((_bnad)->pcidev->irq))
62
63 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth)       \
64 do {                                                            \
65         (_res_info)->res_type = BNA_RES_T_MEM;                  \
66         (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;   \
67         (_res_info)->res_u.mem_info.num = (_num);               \
68         (_res_info)->res_u.mem_info.len =                       \
69         sizeof(struct bnad_unmap_q) +                           \
70         (sizeof(struct bnad_skb_unmap) * ((_depth) - 1));       \
71 } while (0)
72
73 /*
74  * Reinitialize completions in CQ, once Rx is taken down
75  */
76 static void
77 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
78 {
79         struct bna_cq_entry *cmpl, *next_cmpl;
80         unsigned int wi_range, wis = 0, ccb_prod = 0;
81         int i;
82
83         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
84                             wi_range);
85
86         for (i = 0; i < ccb->q_depth; i++) {
87                 wis++;
88                 if (likely(--wi_range))
89                         next_cmpl = cmpl + 1;
90                 else {
91                         BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
92                         wis = 0;
93                         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
94                                                 next_cmpl, wi_range);
95                 }
96                 cmpl->valid = 0;
97                 cmpl = next_cmpl;
98         }
99 }
100
101 /*
102  * Frees all pending Tx Bufs
103  * At this point no activity is expected on the Q,
104  * so DMA unmap & freeing is fine.
105  */
106 static void
107 bnad_free_all_txbufs(struct bnad *bnad,
108                  struct bna_tcb *tcb)
109 {
110         u16             unmap_cons;
111         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
112         struct bnad_skb_unmap *unmap_array;
113         struct sk_buff          *skb = NULL;
114         int                     i;
115
116         unmap_array = unmap_q->unmap_array;
117
118         unmap_cons = 0;
119         while (unmap_cons < unmap_q->q_depth) {
120                 skb = unmap_array[unmap_cons].skb;
121                 if (!skb) {
122                         unmap_cons++;
123                         continue;
124                 }
125                 unmap_array[unmap_cons].skb = NULL;
126
127                 pci_unmap_single(bnad->pcidev,
128                                  pci_unmap_addr(&unmap_array[unmap_cons],
129                                                 dma_addr), skb_headlen(skb),
130                                                 PCI_DMA_TODEVICE);
131
132                 pci_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
133                 unmap_cons++;
134                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
135                         pci_unmap_page(bnad->pcidev,
136                                        pci_unmap_addr(&unmap_array[unmap_cons],
137                                                       dma_addr),
138                                        skb_shinfo(skb)->frags[i].size,
139                                        PCI_DMA_TODEVICE);
140                         pci_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
141                                            0);
142                         unmap_cons++;
143                 }
144                 dev_kfree_skb_any(skb);
145         }
146 }
147
148 /* Data Path Handlers */
149
150 /*
151  * bnad_free_txbufs : Frees the Tx bufs on Tx completion
152  * Can be called in a) Interrupt context
153  *                  b) Sending context
154  *                  c) Tasklet context
155  */
156 static u32
157 bnad_free_txbufs(struct bnad *bnad,
158                  struct bna_tcb *tcb)
159 {
160         u32             sent_packets = 0, sent_bytes = 0;
161         u16             wis, unmap_cons, updated_hw_cons;
162         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
163         struct bnad_skb_unmap *unmap_array;
164         struct sk_buff          *skb;
165         int i;
166
167         /*
168          * Just return if TX is stopped. This check is useful
169          * when bnad_free_txbufs() runs out of a tasklet scheduled
170          * before bnad_cb_tx_cleanup() cleared BNAD_RF_TX_STARTED bit
171          * but this routine runs actually after the cleanup has been
172          * executed.
173          */
174         if (!test_bit(BNAD_RF_TX_STARTED, &bnad->run_flags))
175                 return 0;
176
177         updated_hw_cons = *(tcb->hw_consumer_index);
178
179         wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
180                                   updated_hw_cons, tcb->q_depth);
181
182         BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
183
184         unmap_array = unmap_q->unmap_array;
185         unmap_cons = unmap_q->consumer_index;
186
187         prefetch(&unmap_array[unmap_cons + 1]);
188         while (wis) {
189                 skb = unmap_array[unmap_cons].skb;
190
191                 unmap_array[unmap_cons].skb = NULL;
192
193                 sent_packets++;
194                 sent_bytes += skb->len;
195                 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
196
197                 pci_unmap_single(bnad->pcidev,
198                                  pci_unmap_addr(&unmap_array[unmap_cons],
199                                                 dma_addr), skb_headlen(skb),
200                                  PCI_DMA_TODEVICE);
201                 pci_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
202                 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
203
204                 prefetch(&unmap_array[unmap_cons + 1]);
205                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
206                         prefetch(&unmap_array[unmap_cons + 1]);
207
208                         pci_unmap_page(bnad->pcidev,
209                                        pci_unmap_addr(&unmap_array[unmap_cons],
210                                                       dma_addr),
211                                        skb_shinfo(skb)->frags[i].size,
212                                        PCI_DMA_TODEVICE);
213                         pci_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
214                                            0);
215                         BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
216                 }
217                 dev_kfree_skb_any(skb);
218         }
219
220         /* Update consumer pointers. */
221         tcb->consumer_index = updated_hw_cons;
222         unmap_q->consumer_index = unmap_cons;
223
224         tcb->txq->tx_packets += sent_packets;
225         tcb->txq->tx_bytes += sent_bytes;
226
227         return sent_packets;
228 }
229
230 /* Tx Free Tasklet function */
231 /* Frees for all the tcb's in all the Tx's */
232 /*
233  * Scheduled from sending context, so that
234  * the fat Tx lock is not held for too long
235  * in the sending context.
236  */
237 static void
238 bnad_tx_free_tasklet(unsigned long bnad_ptr)
239 {
240         struct bnad *bnad = (struct bnad *)bnad_ptr;
241         struct bna_tcb *tcb;
242         u32             acked;
243         int                     i, j;
244
245         for (i = 0; i < bnad->num_tx; i++) {
246                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
247                         tcb = bnad->tx_info[i].tcb[j];
248                         if (!tcb)
249                                 continue;
250                         if (((u16) (*tcb->hw_consumer_index) !=
251                                 tcb->consumer_index) &&
252                                 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
253                                                   &tcb->flags))) {
254                                 acked = bnad_free_txbufs(bnad, tcb);
255                                 bna_ib_ack(tcb->i_dbell, acked);
256                                 smp_mb__before_clear_bit();
257                                 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
258                         }
259                 }
260         }
261 }
262
263 static u32
264 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
265 {
266         struct net_device *netdev = bnad->netdev;
267         u32 sent;
268
269         if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
270                 return 0;
271
272         sent = bnad_free_txbufs(bnad, tcb);
273         if (sent) {
274                 if (netif_queue_stopped(netdev) &&
275                     netif_carrier_ok(netdev) &&
276                     BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
277                                     BNAD_NETIF_WAKE_THRESHOLD) {
278                         netif_wake_queue(netdev);
279                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
280                 }
281                 bna_ib_ack(tcb->i_dbell, sent);
282         } else
283                 bna_ib_ack(tcb->i_dbell, 0);
284
285         smp_mb__before_clear_bit();
286         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
287
288         return sent;
289 }
290
291 /* MSIX Tx Completion Handler */
292 static irqreturn_t
293 bnad_msix_tx(int irq, void *data)
294 {
295         struct bna_tcb *tcb = (struct bna_tcb *)data;
296         struct bnad *bnad = tcb->bnad;
297
298         bnad_tx(bnad, tcb);
299
300         return IRQ_HANDLED;
301 }
302
303 static void
304 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
305 {
306         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
307
308         rcb->producer_index = 0;
309         rcb->consumer_index = 0;
310
311         unmap_q->producer_index = 0;
312         unmap_q->consumer_index = 0;
313 }
314
315 static void
316 bnad_free_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
317 {
318         struct bnad_unmap_q *unmap_q;
319         struct sk_buff *skb;
320
321         unmap_q = rcb->unmap_q;
322         while (BNA_QE_IN_USE_CNT(unmap_q, unmap_q->q_depth)) {
323                 skb = unmap_q->unmap_array[unmap_q->consumer_index].skb;
324                 BUG_ON(!(skb));
325                 unmap_q->unmap_array[unmap_q->consumer_index].skb = NULL;
326                 pci_unmap_single(bnad->pcidev, pci_unmap_addr(&unmap_q->
327                                         unmap_array[unmap_q->consumer_index],
328                                         dma_addr), rcb->rxq->buffer_size +
329                                         NET_IP_ALIGN, PCI_DMA_FROMDEVICE);
330                 dev_kfree_skb(skb);
331                 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
332                 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
333         }
334
335         bnad_reset_rcb(bnad, rcb);
336 }
337
338 static void
339 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
340 {
341         u16 to_alloc, alloced, unmap_prod, wi_range;
342         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
343         struct bnad_skb_unmap *unmap_array;
344         struct bna_rxq_entry *rxent;
345         struct sk_buff *skb;
346         dma_addr_t dma_addr;
347
348         alloced = 0;
349         to_alloc =
350                 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
351
352         unmap_array = unmap_q->unmap_array;
353         unmap_prod = unmap_q->producer_index;
354
355         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
356
357         while (to_alloc--) {
358                 if (!wi_range) {
359                         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
360                                              wi_range);
361                 }
362                 skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
363                                      GFP_ATOMIC);
364                 if (unlikely(!skb)) {
365                         BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
366                         goto finishing;
367                 }
368                 skb->dev = bnad->netdev;
369                 skb_reserve(skb, NET_IP_ALIGN);
370                 unmap_array[unmap_prod].skb = skb;
371                 dma_addr = pci_map_single(bnad->pcidev, skb->data,
372                         rcb->rxq->buffer_size, PCI_DMA_FROMDEVICE);
373                 pci_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
374                                    dma_addr);
375                 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
376                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
377
378                 rxent++;
379                 wi_range--;
380                 alloced++;
381         }
382
383 finishing:
384         if (likely(alloced)) {
385                 unmap_q->producer_index = unmap_prod;
386                 rcb->producer_index = unmap_prod;
387                 smp_mb();
388                 bna_rxq_prod_indx_doorbell(rcb);
389         }
390 }
391
392 /*
393  * Locking is required in the enable path
394  * because it is called from a napi poll
395  * context, where the bna_lock is not held
396  * unlike the IRQ context.
397  */
398 static void
399 bnad_enable_txrx_irqs(struct bnad *bnad)
400 {
401         struct bna_tcb *tcb;
402         struct bna_ccb *ccb;
403         int i, j;
404         unsigned long flags;
405
406         spin_lock_irqsave(&bnad->bna_lock, flags);
407         for (i = 0; i < bnad->num_tx; i++) {
408                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
409                         tcb = bnad->tx_info[i].tcb[j];
410                         bna_ib_coalescing_timer_set(tcb->i_dbell,
411                                 tcb->txq->ib->ib_config.coalescing_timeo);
412                         bna_ib_ack(tcb->i_dbell, 0);
413                 }
414         }
415
416         for (i = 0; i < bnad->num_rx; i++) {
417                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
418                         ccb = bnad->rx_info[i].rx_ctrl[j].ccb;
419                         bnad_enable_rx_irq_unsafe(ccb);
420                 }
421         }
422         spin_unlock_irqrestore(&bnad->bna_lock, flags);
423 }
424
425 static inline void
426 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
427 {
428         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
429
430         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
431                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
432                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
433                         bnad_alloc_n_post_rxbufs(bnad, rcb);
434                 smp_mb__before_clear_bit();
435                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
436         }
437 }
438
439 static u32
440 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
441 {
442         struct bna_cq_entry *cmpl, *next_cmpl;
443         struct bna_rcb *rcb = NULL;
444         unsigned int wi_range, packets = 0, wis = 0;
445         struct bnad_unmap_q *unmap_q;
446         struct sk_buff *skb;
447         u32 flags;
448         u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
449         struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
450
451         prefetch(bnad->netdev);
452         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
453                             wi_range);
454         BUG_ON(!(wi_range <= ccb->q_depth));
455         while (cmpl->valid && packets < budget) {
456                 packets++;
457                 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
458
459                 if (qid0 == cmpl->rxq_id)
460                         rcb = ccb->rcb[0];
461                 else
462                         rcb = ccb->rcb[1];
463
464                 unmap_q = rcb->unmap_q;
465
466                 skb = unmap_q->unmap_array[unmap_q->consumer_index].skb;
467                 BUG_ON(!(skb));
468                 unmap_q->unmap_array[unmap_q->consumer_index].skb = NULL;
469                 pci_unmap_single(bnad->pcidev,
470                                  pci_unmap_addr(&unmap_q->
471                                                 unmap_array[unmap_q->
472                                                             consumer_index],
473                                                 dma_addr),
474                                                 rcb->rxq->buffer_size,
475                                                 PCI_DMA_FROMDEVICE);
476                 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
477
478                 /* Should be more efficient ? Performance ? */
479                 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
480
481                 wis++;
482                 if (likely(--wi_range))
483                         next_cmpl = cmpl + 1;
484                 else {
485                         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
486                         wis = 0;
487                         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
488                                                 next_cmpl, wi_range);
489                         BUG_ON(!(wi_range <= ccb->q_depth));
490                 }
491                 prefetch(next_cmpl);
492
493                 flags = ntohl(cmpl->flags);
494                 if (unlikely
495                     (flags &
496                      (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
497                       BNA_CQ_EF_TOO_LONG))) {
498                         dev_kfree_skb_any(skb);
499                         rcb->rxq->rx_packets_with_error++;
500                         goto next;
501                 }
502
503                 skb_put(skb, ntohs(cmpl->length));
504                 if (likely
505                     (bnad->rx_csum &&
506                      (((flags & BNA_CQ_EF_IPV4) &&
507                       (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
508                       (flags & BNA_CQ_EF_IPV6)) &&
509                       (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
510                       (flags & BNA_CQ_EF_L4_CKSUM_OK)))
511                         skb->ip_summed = CHECKSUM_UNNECESSARY;
512                 else
513                         skb_checksum_none_assert(skb);
514
515                 rcb->rxq->rx_packets++;
516                 rcb->rxq->rx_bytes += skb->len;
517                 skb->protocol = eth_type_trans(skb, bnad->netdev);
518
519                 if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
520                         struct bnad_rx_ctrl *rx_ctrl =
521                                 (struct bnad_rx_ctrl *)ccb->ctrl;
522                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
523                                 vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
524                                                 ntohs(cmpl->vlan_tag), skb);
525                         else
526                                 vlan_hwaccel_receive_skb(skb,
527                                                          bnad->vlan_grp,
528                                                          ntohs(cmpl->vlan_tag));
529
530                 } else { /* Not VLAN tagged/stripped */
531                         struct bnad_rx_ctrl *rx_ctrl =
532                                 (struct bnad_rx_ctrl *)ccb->ctrl;
533                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
534                                 napi_gro_receive(&rx_ctrl->napi, skb);
535                         else
536                                 netif_receive_skb(skb);
537                 }
538
539 next:
540                 cmpl->valid = 0;
541                 cmpl = next_cmpl;
542         }
543
544         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
545
546         if (likely(ccb)) {
547                 bna_ib_ack(ccb->i_dbell, packets);
548                 bnad_refill_rxq(bnad, ccb->rcb[0]);
549                 if (ccb->rcb[1])
550                         bnad_refill_rxq(bnad, ccb->rcb[1]);
551         } else
552                 bna_ib_ack(ccb->i_dbell, 0);
553
554         return packets;
555 }
556
557 static void
558 bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
559 {
560         bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
561         bna_ib_ack(ccb->i_dbell, 0);
562 }
563
564 static void
565 bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
566 {
567         unsigned long flags;
568
569         spin_lock_irqsave(&bnad->bna_lock, flags); /* Because of polling context */
570         bnad_enable_rx_irq_unsafe(ccb);
571         spin_unlock_irqrestore(&bnad->bna_lock, flags);
572 }
573
574 static void
575 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
576 {
577         struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
578         if (likely(napi_schedule_prep((&rx_ctrl->napi)))) {
579                 bnad_disable_rx_irq(bnad, ccb);
580                 __napi_schedule((&rx_ctrl->napi));
581         }
582         BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
583 }
584
585 /* MSIX Rx Path Handler */
586 static irqreturn_t
587 bnad_msix_rx(int irq, void *data)
588 {
589         struct bna_ccb *ccb = (struct bna_ccb *)data;
590         struct bnad *bnad = ccb->bnad;
591
592         bnad_netif_rx_schedule_poll(bnad, ccb);
593
594         return IRQ_HANDLED;
595 }
596
597 /* Interrupt handlers */
598
599 /* Mbox Interrupt Handlers */
600 static irqreturn_t
601 bnad_msix_mbox_handler(int irq, void *data)
602 {
603         u32 intr_status;
604         unsigned long flags;
605         struct net_device *netdev = data;
606         struct bnad *bnad;
607
608         bnad = netdev_priv(netdev);
609
610         /* BNA_ISR_GET(bnad); Inc Ref count */
611         spin_lock_irqsave(&bnad->bna_lock, flags);
612
613         bna_intr_status_get(&bnad->bna, intr_status);
614
615         if (BNA_IS_MBOX_ERR_INTR(intr_status))
616                 bna_mbox_handler(&bnad->bna, intr_status);
617
618         spin_unlock_irqrestore(&bnad->bna_lock, flags);
619
620         /* BNAD_ISR_PUT(bnad); Dec Ref count */
621         return IRQ_HANDLED;
622 }
623
624 static irqreturn_t
625 bnad_isr(int irq, void *data)
626 {
627         int i, j;
628         u32 intr_status;
629         unsigned long flags;
630         struct net_device *netdev = data;
631         struct bnad *bnad = netdev_priv(netdev);
632         struct bnad_rx_info *rx_info;
633         struct bnad_rx_ctrl *rx_ctrl;
634
635         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
636                 return IRQ_NONE;
637
638         bna_intr_status_get(&bnad->bna, intr_status);
639
640         if (unlikely(!intr_status))
641                 return IRQ_NONE;
642
643         spin_lock_irqsave(&bnad->bna_lock, flags);
644
645         if (BNA_IS_MBOX_ERR_INTR(intr_status)) {
646                 bna_mbox_handler(&bnad->bna, intr_status);
647                 if (!BNA_IS_INTX_DATA_INTR(intr_status)) {
648                         spin_unlock_irqrestore(&bnad->bna_lock, flags);
649                         goto done;
650                 }
651         }
652         spin_unlock_irqrestore(&bnad->bna_lock, flags);
653
654         /* Process data interrupts */
655         for (i = 0; i < bnad->num_rx; i++) {
656                 rx_info = &bnad->rx_info[i];
657                 if (!rx_info->rx)
658                         continue;
659                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
660                         rx_ctrl = &rx_info->rx_ctrl[j];
661                         if (rx_ctrl->ccb)
662                                 bnad_netif_rx_schedule_poll(bnad,
663                                                             rx_ctrl->ccb);
664                 }
665         }
666 done:
667         return IRQ_HANDLED;
668 }
669
670 /*
671  * Called in interrupt / callback context
672  * with bna_lock held, so cfg_flags access is OK
673  */
674 static void
675 bnad_enable_mbox_irq(struct bnad *bnad)
676 {
677         int irq = BNAD_GET_MBOX_IRQ(bnad);
678
679         if (test_and_clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))
680                 if (bnad->cfg_flags & BNAD_CF_MSIX)
681                         enable_irq(irq);
682
683         BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
684 }
685
686 /*
687  * Called with bnad->bna_lock held b'cos of
688  * bnad->cfg_flags access.
689  */
690 static void
691 bnad_disable_mbox_irq(struct bnad *bnad)
692 {
693         int irq = BNAD_GET_MBOX_IRQ(bnad);
694
695
696         if (!test_and_set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))
697                 if (bnad->cfg_flags & BNAD_CF_MSIX)
698                         disable_irq_nosync(irq);
699
700         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
701 }
702
703 /* Control Path Handlers */
704
705 /* Callbacks */
706 void
707 bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
708 {
709         bnad_enable_mbox_irq(bnad);
710 }
711
712 void
713 bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
714 {
715         bnad_disable_mbox_irq(bnad);
716 }
717
718 void
719 bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
720 {
721         complete(&bnad->bnad_completions.ioc_comp);
722         bnad->bnad_completions.ioc_comp_status = status;
723 }
724
725 void
726 bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
727 {
728         complete(&bnad->bnad_completions.ioc_comp);
729         bnad->bnad_completions.ioc_comp_status = status;
730 }
731
732 static void
733 bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
734 {
735         struct bnad *bnad = (struct bnad *)arg;
736
737         complete(&bnad->bnad_completions.port_comp);
738
739         netif_carrier_off(bnad->netdev);
740 }
741
742 void
743 bnad_cb_port_link_status(struct bnad *bnad,
744                         enum bna_link_status link_status)
745 {
746         bool link_up = 0;
747
748         link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
749
750         if (link_status == BNA_CEE_UP) {
751                 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
752                 BNAD_UPDATE_CTR(bnad, cee_up);
753         } else
754                 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
755
756         if (link_up) {
757                 if (!netif_carrier_ok(bnad->netdev)) {
758                         pr_warn("bna: %s link up\n",
759                                 bnad->netdev->name);
760                         netif_carrier_on(bnad->netdev);
761                         BNAD_UPDATE_CTR(bnad, link_toggle);
762                         if (test_bit(BNAD_RF_TX_STARTED, &bnad->run_flags)) {
763                                 /* Force an immediate Transmit Schedule */
764                                 pr_info("bna: %s TX_STARTED\n",
765                                         bnad->netdev->name);
766                                 netif_wake_queue(bnad->netdev);
767                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
768                         } else {
769                                 netif_stop_queue(bnad->netdev);
770                                 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
771                         }
772                 }
773         } else {
774                 if (netif_carrier_ok(bnad->netdev)) {
775                         pr_warn("bna: %s link down\n",
776                                 bnad->netdev->name);
777                         netif_carrier_off(bnad->netdev);
778                         BNAD_UPDATE_CTR(bnad, link_toggle);
779                 }
780         }
781 }
782
783 static void
784 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
785                         enum bna_cb_status status)
786 {
787         struct bnad *bnad = (struct bnad *)arg;
788
789         complete(&bnad->bnad_completions.tx_comp);
790 }
791
792 static void
793 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
794 {
795         struct bnad_tx_info *tx_info =
796                         (struct bnad_tx_info *)tcb->txq->tx->priv;
797         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
798
799         tx_info->tcb[tcb->id] = tcb;
800         unmap_q->producer_index = 0;
801         unmap_q->consumer_index = 0;
802         unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
803 }
804
805 static void
806 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
807 {
808         struct bnad_tx_info *tx_info =
809                         (struct bnad_tx_info *)tcb->txq->tx->priv;
810
811         tx_info->tcb[tcb->id] = NULL;
812 }
813
814 static void
815 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
816 {
817         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
818
819         unmap_q->producer_index = 0;
820         unmap_q->consumer_index = 0;
821         unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
822 }
823
824 static void
825 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
826 {
827         struct bnad_rx_info *rx_info =
828                         (struct bnad_rx_info *)ccb->cq->rx->priv;
829
830         rx_info->rx_ctrl[ccb->id].ccb = ccb;
831         ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
832 }
833
834 static void
835 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
836 {
837         struct bnad_rx_info *rx_info =
838                         (struct bnad_rx_info *)ccb->cq->rx->priv;
839
840         rx_info->rx_ctrl[ccb->id].ccb = NULL;
841 }
842
843 static void
844 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
845 {
846         struct bnad_tx_info *tx_info =
847                         (struct bnad_tx_info *)tcb->txq->tx->priv;
848
849         if (tx_info != &bnad->tx_info[0])
850                 return;
851
852         clear_bit(BNAD_RF_TX_STARTED, &bnad->run_flags);
853         netif_stop_queue(bnad->netdev);
854         pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
855 }
856
857 static void
858 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
859 {
860         if (test_and_set_bit(BNAD_RF_TX_STARTED, &bnad->run_flags))
861                 return;
862
863         if (netif_carrier_ok(bnad->netdev)) {
864                 pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
865                 netif_wake_queue(bnad->netdev);
866                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
867         }
868 }
869
870 static void
871 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
872 {
873         struct bnad_unmap_q *unmap_q;
874
875         if (!tcb || (!tcb->unmap_q))
876                 return;
877
878         unmap_q = tcb->unmap_q;
879         if (!unmap_q->unmap_array)
880                 return;
881
882         if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
883                 return;
884
885         bnad_free_all_txbufs(bnad, tcb);
886
887         unmap_q->producer_index = 0;
888         unmap_q->consumer_index = 0;
889
890         smp_mb__before_clear_bit();
891         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
892 }
893
894 static void
895 bnad_cb_rx_cleanup(struct bnad *bnad,
896                         struct bna_ccb *ccb)
897 {
898         bnad_cq_cmpl_init(bnad, ccb);
899
900         bnad_free_rxbufs(bnad, ccb->rcb[0]);
901         clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
902
903         if (ccb->rcb[1]) {
904                 bnad_free_rxbufs(bnad, ccb->rcb[1]);
905                 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
906         }
907 }
908
909 static void
910 bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
911 {
912         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
913
914         set_bit(BNAD_RXQ_STARTED, &rcb->flags);
915
916         /* Now allocate & post buffers for this RCB */
917         /* !!Allocation in callback context */
918         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
919                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
920                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
921                         bnad_alloc_n_post_rxbufs(bnad, rcb);
922                 smp_mb__before_clear_bit();
923                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
924         }
925 }
926
927 static void
928 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
929                         enum bna_cb_status status)
930 {
931         struct bnad *bnad = (struct bnad *)arg;
932
933         complete(&bnad->bnad_completions.rx_comp);
934 }
935
936 static void
937 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
938                                 enum bna_cb_status status)
939 {
940         bnad->bnad_completions.mcast_comp_status = status;
941         complete(&bnad->bnad_completions.mcast_comp);
942 }
943
944 void
945 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
946                        struct bna_stats *stats)
947 {
948         if (status == BNA_CB_SUCCESS)
949                 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
950
951         if (!netif_running(bnad->netdev) ||
952                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
953                 return;
954
955         mod_timer(&bnad->stats_timer,
956                   jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
957 }
958
959 /* Resource allocation, free functions */
960
961 static void
962 bnad_mem_free(struct bnad *bnad,
963               struct bna_mem_info *mem_info)
964 {
965         int i;
966         dma_addr_t dma_pa;
967
968         if (mem_info->mdl == NULL)
969                 return;
970
971         for (i = 0; i < mem_info->num; i++) {
972                 if (mem_info->mdl[i].kva != NULL) {
973                         if (mem_info->mem_type == BNA_MEM_T_DMA) {
974                                 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
975                                                 dma_pa);
976                                 pci_free_consistent(bnad->pcidev,
977                                                 mem_info->mdl[i].len,
978                                                 mem_info->mdl[i].kva, dma_pa);
979                         } else
980                                 kfree(mem_info->mdl[i].kva);
981                 }
982         }
983         kfree(mem_info->mdl);
984         mem_info->mdl = NULL;
985 }
986
987 static int
988 bnad_mem_alloc(struct bnad *bnad,
989                struct bna_mem_info *mem_info)
990 {
991         int i;
992         dma_addr_t dma_pa;
993
994         if ((mem_info->num == 0) || (mem_info->len == 0)) {
995                 mem_info->mdl = NULL;
996                 return 0;
997         }
998
999         mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1000                                 GFP_KERNEL);
1001         if (mem_info->mdl == NULL)
1002                 return -ENOMEM;
1003
1004         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1005                 for (i = 0; i < mem_info->num; i++) {
1006                         mem_info->mdl[i].len = mem_info->len;
1007                         mem_info->mdl[i].kva =
1008                                 pci_alloc_consistent(bnad->pcidev,
1009                                                 mem_info->len, &dma_pa);
1010
1011                         if (mem_info->mdl[i].kva == NULL)
1012                                 goto err_return;
1013
1014                         BNA_SET_DMA_ADDR(dma_pa,
1015                                          &(mem_info->mdl[i].dma));
1016                 }
1017         } else {
1018                 for (i = 0; i < mem_info->num; i++) {
1019                         mem_info->mdl[i].len = mem_info->len;
1020                         mem_info->mdl[i].kva = kzalloc(mem_info->len,
1021                                                         GFP_KERNEL);
1022                         if (mem_info->mdl[i].kva == NULL)
1023                                 goto err_return;
1024                 }
1025         }
1026
1027         return 0;
1028
1029 err_return:
1030         bnad_mem_free(bnad, mem_info);
1031         return -ENOMEM;
1032 }
1033
1034 /* Free IRQ for Mailbox */
1035 static void
1036 bnad_mbox_irq_free(struct bnad *bnad,
1037                    struct bna_intr_info *intr_info)
1038 {
1039         int irq;
1040         unsigned long flags;
1041
1042         if (intr_info->idl == NULL)
1043                 return;
1044
1045         spin_lock_irqsave(&bnad->bna_lock, flags);
1046         bnad_disable_mbox_irq(bnad);
1047         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1048
1049         irq = BNAD_GET_MBOX_IRQ(bnad);
1050         free_irq(irq, bnad->netdev);
1051
1052         kfree(intr_info->idl);
1053 }
1054
1055 /*
1056  * Allocates IRQ for Mailbox, but keep it disabled
1057  * This will be enabled once we get the mbox enable callback
1058  * from bna
1059  */
1060 static int
1061 bnad_mbox_irq_alloc(struct bnad *bnad,
1062                     struct bna_intr_info *intr_info)
1063 {
1064         int             err;
1065         unsigned long   flags;
1066         u32     irq;
1067         irq_handler_t   irq_handler;
1068
1069         /* Mbox should use only 1 vector */
1070
1071         intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1072         if (!intr_info->idl)
1073                 return -ENOMEM;
1074
1075         spin_lock_irqsave(&bnad->bna_lock, flags);
1076         if (bnad->cfg_flags & BNAD_CF_MSIX) {
1077                 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1078                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
1079                 flags = 0;
1080                 intr_info->intr_type = BNA_INTR_T_MSIX;
1081                 intr_info->idl[0].vector = bnad->msix_num - 1;
1082         } else {
1083                 irq_handler = (irq_handler_t)bnad_isr;
1084                 irq = bnad->pcidev->irq;
1085                 flags = IRQF_SHARED;
1086                 intr_info->intr_type = BNA_INTR_T_INTX;
1087                 /* intr_info->idl.vector = 0 ? */
1088         }
1089         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1090
1091         sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1092
1093         /*
1094          * Set the Mbox IRQ disable flag, so that the IRQ handler
1095          * called from request_irq() for SHARED IRQs do not execute
1096          */
1097         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1098
1099         err = request_irq(irq, irq_handler, flags,
1100                           bnad->mbox_irq_name, bnad->netdev);
1101
1102         if (err) {
1103                 kfree(intr_info->idl);
1104                 intr_info->idl = NULL;
1105                 return err;
1106         }
1107
1108         spin_lock_irqsave(&bnad->bna_lock, flags);
1109
1110         if (bnad->cfg_flags & BNAD_CF_MSIX)
1111                 disable_irq_nosync(irq);
1112
1113         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1114         return 0;
1115 }
1116
1117 static void
1118 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1119 {
1120         kfree(intr_info->idl);
1121         intr_info->idl = NULL;
1122 }
1123
1124 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1125 static int
1126 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1127                     uint txrx_id, struct bna_intr_info *intr_info)
1128 {
1129         int i, vector_start = 0;
1130         u32 cfg_flags;
1131         unsigned long flags;
1132
1133         spin_lock_irqsave(&bnad->bna_lock, flags);
1134         cfg_flags = bnad->cfg_flags;
1135         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1136
1137         if (cfg_flags & BNAD_CF_MSIX) {
1138                 intr_info->intr_type = BNA_INTR_T_MSIX;
1139                 intr_info->idl = kcalloc(intr_info->num,
1140                                         sizeof(struct bna_intr_descr),
1141                                         GFP_KERNEL);
1142                 if (!intr_info->idl)
1143                         return -ENOMEM;
1144
1145                 switch (src) {
1146                 case BNAD_INTR_TX:
1147                         vector_start = txrx_id;
1148                         break;
1149
1150                 case BNAD_INTR_RX:
1151                         vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1152                                         txrx_id;
1153                         break;
1154
1155                 default:
1156                         BUG();
1157                 }
1158
1159                 for (i = 0; i < intr_info->num; i++)
1160                         intr_info->idl[i].vector = vector_start + i;
1161         } else {
1162                 intr_info->intr_type = BNA_INTR_T_INTX;
1163                 intr_info->num = 1;
1164                 intr_info->idl = kcalloc(intr_info->num,
1165                                         sizeof(struct bna_intr_descr),
1166                                         GFP_KERNEL);
1167                 if (!intr_info->idl)
1168                         return -ENOMEM;
1169
1170                 switch (src) {
1171                 case BNAD_INTR_TX:
1172                         intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1173                         break;
1174
1175                 case BNAD_INTR_RX:
1176                         intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1177                         break;
1178                 }
1179         }
1180         return 0;
1181 }
1182
1183 /**
1184  * NOTE: Should be called for MSIX only
1185  * Unregisters Tx MSIX vector(s) from the kernel
1186  */
1187 static void
1188 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1189                         int num_txqs)
1190 {
1191         int i;
1192         int vector_num;
1193
1194         for (i = 0; i < num_txqs; i++) {
1195                 if (tx_info->tcb[i] == NULL)
1196                         continue;
1197
1198                 vector_num = tx_info->tcb[i]->intr_vector;
1199                 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1200         }
1201 }
1202
1203 /**
1204  * NOTE: Should be called for MSIX only
1205  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1206  */
1207 static int
1208 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1209                         uint tx_id, int num_txqs)
1210 {
1211         int i;
1212         int err;
1213         int vector_num;
1214
1215         for (i = 0; i < num_txqs; i++) {
1216                 vector_num = tx_info->tcb[i]->intr_vector;
1217                 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1218                                 tx_id + tx_info->tcb[i]->id);
1219                 err = request_irq(bnad->msix_table[vector_num].vector,
1220                                   (irq_handler_t)bnad_msix_tx, 0,
1221                                   tx_info->tcb[i]->name,
1222                                   tx_info->tcb[i]);
1223                 if (err)
1224                         goto err_return;
1225         }
1226
1227         return 0;
1228
1229 err_return:
1230         if (i > 0)
1231                 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1232         return -1;
1233 }
1234
1235 /**
1236  * NOTE: Should be called for MSIX only
1237  * Unregisters Rx MSIX vector(s) from the kernel
1238  */
1239 static void
1240 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1241                         int num_rxps)
1242 {
1243         int i;
1244         int vector_num;
1245
1246         for (i = 0; i < num_rxps; i++) {
1247                 if (rx_info->rx_ctrl[i].ccb == NULL)
1248                         continue;
1249
1250                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1251                 free_irq(bnad->msix_table[vector_num].vector,
1252                          rx_info->rx_ctrl[i].ccb);
1253         }
1254 }
1255
1256 /**
1257  * NOTE: Should be called for MSIX only
1258  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1259  */
1260 static int
1261 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1262                         uint rx_id, int num_rxps)
1263 {
1264         int i;
1265         int err;
1266         int vector_num;
1267
1268         for (i = 0; i < num_rxps; i++) {
1269                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1270                 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1271                         bnad->netdev->name,
1272                         rx_id + rx_info->rx_ctrl[i].ccb->id);
1273                 err = request_irq(bnad->msix_table[vector_num].vector,
1274                                   (irq_handler_t)bnad_msix_rx, 0,
1275                                   rx_info->rx_ctrl[i].ccb->name,
1276                                   rx_info->rx_ctrl[i].ccb);
1277                 if (err)
1278                         goto err_return;
1279         }
1280
1281         return 0;
1282
1283 err_return:
1284         if (i > 0)
1285                 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1286         return -1;
1287 }
1288
1289 /* Free Tx object Resources */
1290 static void
1291 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1292 {
1293         int i;
1294
1295         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1296                 if (res_info[i].res_type == BNA_RES_T_MEM)
1297                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1298                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1299                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1300         }
1301 }
1302
1303 /* Allocates memory and interrupt resources for Tx object */
1304 static int
1305 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1306                   uint tx_id)
1307 {
1308         int i, err = 0;
1309
1310         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1311                 if (res_info[i].res_type == BNA_RES_T_MEM)
1312                         err = bnad_mem_alloc(bnad,
1313                                         &res_info[i].res_u.mem_info);
1314                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1315                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1316                                         &res_info[i].res_u.intr_info);
1317                 if (err)
1318                         goto err_return;
1319         }
1320         return 0;
1321
1322 err_return:
1323         bnad_tx_res_free(bnad, res_info);
1324         return err;
1325 }
1326
1327 /* Free Rx object Resources */
1328 static void
1329 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1330 {
1331         int i;
1332
1333         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1334                 if (res_info[i].res_type == BNA_RES_T_MEM)
1335                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1336                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1337                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1338         }
1339 }
1340
1341 /* Allocates memory and interrupt resources for Rx object */
1342 static int
1343 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1344                   uint rx_id)
1345 {
1346         int i, err = 0;
1347
1348         /* All memory needs to be allocated before setup_ccbs */
1349         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1350                 if (res_info[i].res_type == BNA_RES_T_MEM)
1351                         err = bnad_mem_alloc(bnad,
1352                                         &res_info[i].res_u.mem_info);
1353                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1354                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1355                                         &res_info[i].res_u.intr_info);
1356                 if (err)
1357                         goto err_return;
1358         }
1359         return 0;
1360
1361 err_return:
1362         bnad_rx_res_free(bnad, res_info);
1363         return err;
1364 }
1365
1366 /* Timer callbacks */
1367 /* a) IOC timer */
1368 static void
1369 bnad_ioc_timeout(unsigned long data)
1370 {
1371         struct bnad *bnad = (struct bnad *)data;
1372         unsigned long flags;
1373
1374         spin_lock_irqsave(&bnad->bna_lock, flags);
1375         bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1376         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1377 }
1378
1379 static void
1380 bnad_ioc_hb_check(unsigned long data)
1381 {
1382         struct bnad *bnad = (struct bnad *)data;
1383         unsigned long flags;
1384
1385         spin_lock_irqsave(&bnad->bna_lock, flags);
1386         bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1387         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1388 }
1389
1390 static void
1391 bnad_ioc_sem_timeout(unsigned long data)
1392 {
1393         struct bnad *bnad = (struct bnad *)data;
1394         unsigned long flags;
1395
1396         spin_lock_irqsave(&bnad->bna_lock, flags);
1397         bfa_nw_ioc_sem_timeout((void *) &bnad->bna.device.ioc);
1398         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1399 }
1400
1401 /*
1402  * All timer routines use bnad->bna_lock to protect against
1403  * the following race, which may occur in case of no locking:
1404  *      Time    CPU m           CPU n
1405  *      0       1 = test_bit
1406  *      1                       clear_bit
1407  *      2                       del_timer_sync
1408  *      3       mod_timer
1409  */
1410
1411 /* b) Dynamic Interrupt Moderation Timer */
1412 static void
1413 bnad_dim_timeout(unsigned long data)
1414 {
1415         struct bnad *bnad = (struct bnad *)data;
1416         struct bnad_rx_info *rx_info;
1417         struct bnad_rx_ctrl *rx_ctrl;
1418         int i, j;
1419         unsigned long flags;
1420
1421         if (!netif_carrier_ok(bnad->netdev))
1422                 return;
1423
1424         spin_lock_irqsave(&bnad->bna_lock, flags);
1425         for (i = 0; i < bnad->num_rx; i++) {
1426                 rx_info = &bnad->rx_info[i];
1427                 if (!rx_info->rx)
1428                         continue;
1429                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1430                         rx_ctrl = &rx_info->rx_ctrl[j];
1431                         if (!rx_ctrl->ccb)
1432                                 continue;
1433                         bna_rx_dim_update(rx_ctrl->ccb);
1434                 }
1435         }
1436
1437         /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1438         if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1439                 mod_timer(&bnad->dim_timer,
1440                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1441         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442 }
1443
1444 /* c)  Statistics Timer */
1445 static void
1446 bnad_stats_timeout(unsigned long data)
1447 {
1448         struct bnad *bnad = (struct bnad *)data;
1449         unsigned long flags;
1450
1451         if (!netif_running(bnad->netdev) ||
1452                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1453                 return;
1454
1455         spin_lock_irqsave(&bnad->bna_lock, flags);
1456         bna_stats_get(&bnad->bna);
1457         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1458 }
1459
1460 /*
1461  * Set up timer for DIM
1462  * Called with bnad->bna_lock held
1463  */
1464 void
1465 bnad_dim_timer_start(struct bnad *bnad)
1466 {
1467         if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1468             !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1469                 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1470                             (unsigned long)bnad);
1471                 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1472                 mod_timer(&bnad->dim_timer,
1473                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1474         }
1475 }
1476
1477 /*
1478  * Set up timer for statistics
1479  * Called with mutex_lock(&bnad->conf_mutex) held
1480  */
1481 static void
1482 bnad_stats_timer_start(struct bnad *bnad)
1483 {
1484         unsigned long flags;
1485
1486         spin_lock_irqsave(&bnad->bna_lock, flags);
1487         if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1488                 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1489                             (unsigned long)bnad);
1490                 mod_timer(&bnad->stats_timer,
1491                           jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1492         }
1493         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1494 }
1495
1496 /*
1497  * Stops the stats timer
1498  * Called with mutex_lock(&bnad->conf_mutex) held
1499  */
1500 static void
1501 bnad_stats_timer_stop(struct bnad *bnad)
1502 {
1503         int to_del = 0;
1504         unsigned long flags;
1505
1506         spin_lock_irqsave(&bnad->bna_lock, flags);
1507         if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1508                 to_del = 1;
1509         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1510         if (to_del)
1511                 del_timer_sync(&bnad->stats_timer);
1512 }
1513
1514 /* Utilities */
1515
1516 static void
1517 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1518 {
1519         int i = 1; /* Index 0 has broadcast address */
1520         struct netdev_hw_addr *mc_addr;
1521
1522         netdev_for_each_mc_addr(mc_addr, netdev) {
1523                 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1524                                                         ETH_ALEN);
1525                 i++;
1526         }
1527 }
1528
1529 static int
1530 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1531 {
1532         struct bnad_rx_ctrl *rx_ctrl =
1533                 container_of(napi, struct bnad_rx_ctrl, napi);
1534         struct bna_ccb *ccb;
1535         struct bnad *bnad;
1536         int rcvd = 0;
1537
1538         ccb = rx_ctrl->ccb;
1539
1540         bnad = ccb->bnad;
1541
1542         if (!netif_carrier_ok(bnad->netdev))
1543                 goto poll_exit;
1544
1545         rcvd = bnad_poll_cq(bnad, ccb, budget);
1546         if (rcvd == budget)
1547                 return rcvd;
1548
1549 poll_exit:
1550         napi_complete((napi));
1551
1552         BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1553
1554         bnad_enable_rx_irq(bnad, ccb);
1555         return rcvd;
1556 }
1557
1558 static int
1559 bnad_napi_poll_txrx(struct napi_struct *napi, int budget)
1560 {
1561         struct bnad_rx_ctrl *rx_ctrl =
1562                 container_of(napi, struct bnad_rx_ctrl, napi);
1563         struct bna_ccb *ccb;
1564         struct bnad *bnad;
1565         int                     rcvd = 0;
1566         int                     i, j;
1567
1568         ccb = rx_ctrl->ccb;
1569
1570         bnad = ccb->bnad;
1571
1572         if (!netif_carrier_ok(bnad->netdev))
1573                 goto poll_exit;
1574
1575         /* Handle Tx Completions, if any */
1576         for (i = 0; i < bnad->num_tx; i++) {
1577                 for (j = 0; j < bnad->num_txq_per_tx; j++)
1578                         bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
1579         }
1580
1581         /* Handle Rx Completions */
1582         rcvd = bnad_poll_cq(bnad, ccb, budget);
1583         if (rcvd == budget)
1584                 return rcvd;
1585 poll_exit:
1586         napi_complete((napi));
1587
1588         BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1589
1590         bnad_enable_txrx_irqs(bnad);
1591         return rcvd;
1592 }
1593
1594 static void
1595 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1596 {
1597         int (*napi_poll) (struct napi_struct *, int);
1598         struct bnad_rx_ctrl *rx_ctrl;
1599         int i;
1600         unsigned long flags;
1601
1602         spin_lock_irqsave(&bnad->bna_lock, flags);
1603         if (bnad->cfg_flags & BNAD_CF_MSIX)
1604                 napi_poll = bnad_napi_poll_rx;
1605         else
1606                 napi_poll = bnad_napi_poll_txrx;
1607         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1608
1609         /* Initialize & enable NAPI */
1610         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1611                 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1612                 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1613                                napi_poll, 64);
1614                 napi_enable(&rx_ctrl->napi);
1615         }
1616 }
1617
1618 static void
1619 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1620 {
1621         int i;
1622
1623         /* First disable and then clean up */
1624         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1625                 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1626                 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1627         }
1628 }
1629
1630 /* Should be held with conf_lock held */
1631 void
1632 bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1633 {
1634         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1635         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1636         unsigned long flags;
1637
1638         if (!tx_info->tx)
1639                 return;
1640
1641         init_completion(&bnad->bnad_completions.tx_comp);
1642         spin_lock_irqsave(&bnad->bna_lock, flags);
1643         bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1644         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1645         wait_for_completion(&bnad->bnad_completions.tx_comp);
1646
1647         if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1648                 bnad_tx_msix_unregister(bnad, tx_info,
1649                         bnad->num_txq_per_tx);
1650
1651         spin_lock_irqsave(&bnad->bna_lock, flags);
1652         bna_tx_destroy(tx_info->tx);
1653         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1654
1655         tx_info->tx = NULL;
1656
1657         if (0 == tx_id)
1658                 tasklet_kill(&bnad->tx_free_tasklet);
1659
1660         bnad_tx_res_free(bnad, res_info);
1661 }
1662
1663 /* Should be held with conf_lock held */
1664 int
1665 bnad_setup_tx(struct bnad *bnad, uint tx_id)
1666 {
1667         int err;
1668         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1669         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1670         struct bna_intr_info *intr_info =
1671                         &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1672         struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1673         struct bna_tx_event_cbfn tx_cbfn;
1674         struct bna_tx *tx;
1675         unsigned long flags;
1676
1677         /* Initialize the Tx object configuration */
1678         tx_config->num_txq = bnad->num_txq_per_tx;
1679         tx_config->txq_depth = bnad->txq_depth;
1680         tx_config->tx_type = BNA_TX_T_REGULAR;
1681
1682         /* Initialize the tx event handlers */
1683         tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1684         tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1685         tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1686         tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1687         tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1688
1689         /* Get BNA's resource requirement for one tx object */
1690         spin_lock_irqsave(&bnad->bna_lock, flags);
1691         bna_tx_res_req(bnad->num_txq_per_tx,
1692                 bnad->txq_depth, res_info);
1693         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1694
1695         /* Fill Unmap Q memory requirements */
1696         BNAD_FILL_UNMAPQ_MEM_REQ(
1697                         &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1698                         bnad->num_txq_per_tx,
1699                         BNAD_TX_UNMAPQ_DEPTH);
1700
1701         /* Allocate resources */
1702         err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1703         if (err)
1704                 return err;
1705
1706         /* Ask BNA to create one Tx object, supplying required resources */
1707         spin_lock_irqsave(&bnad->bna_lock, flags);
1708         tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1709                         tx_info);
1710         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1711         if (!tx)
1712                 goto err_return;
1713         tx_info->tx = tx;
1714
1715         /* Register ISR for the Tx object */
1716         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1717                 err = bnad_tx_msix_register(bnad, tx_info,
1718                         tx_id, bnad->num_txq_per_tx);
1719                 if (err)
1720                         goto err_return;
1721         }
1722
1723         spin_lock_irqsave(&bnad->bna_lock, flags);
1724         bna_tx_enable(tx);
1725         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1726
1727         return 0;
1728
1729 err_return:
1730         bnad_tx_res_free(bnad, res_info);
1731         return err;
1732 }
1733
1734 /* Setup the rx config for bna_rx_create */
1735 /* bnad decides the configuration */
1736 static void
1737 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1738 {
1739         rx_config->rx_type = BNA_RX_T_REGULAR;
1740         rx_config->num_paths = bnad->num_rxp_per_rx;
1741
1742         if (bnad->num_rxp_per_rx > 1) {
1743                 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1744                 rx_config->rss_config.hash_type =
1745                                 (BFI_RSS_T_V4_TCP |
1746                                  BFI_RSS_T_V6_TCP |
1747                                  BFI_RSS_T_V4_IP  |
1748                                  BFI_RSS_T_V6_IP);
1749                 rx_config->rss_config.hash_mask =
1750                                 bnad->num_rxp_per_rx - 1;
1751                 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1752                         sizeof(rx_config->rss_config.toeplitz_hash_key));
1753         } else {
1754                 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1755                 memset(&rx_config->rss_config, 0,
1756                        sizeof(rx_config->rss_config));
1757         }
1758         rx_config->rxp_type = BNA_RXP_SLR;
1759         rx_config->q_depth = bnad->rxq_depth;
1760
1761         rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1762
1763         rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1764 }
1765
1766 /* Called with mutex_lock(&bnad->conf_mutex) held */
1767 void
1768 bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1769 {
1770         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1771         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1772         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1773         unsigned long flags;
1774         int dim_timer_del = 0;
1775
1776         if (!rx_info->rx)
1777                 return;
1778
1779         if (0 == rx_id) {
1780                 spin_lock_irqsave(&bnad->bna_lock, flags);
1781                 dim_timer_del = bnad_dim_timer_running(bnad);
1782                 if (dim_timer_del)
1783                         clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1784                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1785                 if (dim_timer_del)
1786                         del_timer_sync(&bnad->dim_timer);
1787         }
1788
1789         bnad_napi_disable(bnad, rx_id);
1790
1791         init_completion(&bnad->bnad_completions.rx_comp);
1792         spin_lock_irqsave(&bnad->bna_lock, flags);
1793         bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1794         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1795         wait_for_completion(&bnad->bnad_completions.rx_comp);
1796
1797         if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1798                 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1799
1800         spin_lock_irqsave(&bnad->bna_lock, flags);
1801         bna_rx_destroy(rx_info->rx);
1802         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1803
1804         rx_info->rx = NULL;
1805
1806         bnad_rx_res_free(bnad, res_info);
1807 }
1808
1809 /* Called with mutex_lock(&bnad->conf_mutex) held */
1810 int
1811 bnad_setup_rx(struct bnad *bnad, uint rx_id)
1812 {
1813         int err;
1814         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1815         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1816         struct bna_intr_info *intr_info =
1817                         &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1818         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1819         struct bna_rx_event_cbfn rx_cbfn;
1820         struct bna_rx *rx;
1821         unsigned long flags;
1822
1823         /* Initialize the Rx object configuration */
1824         bnad_init_rx_config(bnad, rx_config);
1825
1826         /* Initialize the Rx event handlers */
1827         rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1828         rx_cbfn.rcb_destroy_cbfn = NULL;
1829         rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1830         rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1831         rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1832         rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1833
1834         /* Get BNA's resource requirement for one Rx object */
1835         spin_lock_irqsave(&bnad->bna_lock, flags);
1836         bna_rx_res_req(rx_config, res_info);
1837         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1838
1839         /* Fill Unmap Q memory requirements */
1840         BNAD_FILL_UNMAPQ_MEM_REQ(
1841                         &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1842                         rx_config->num_paths +
1843                         ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1844                                 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1845
1846         /* Allocate resource */
1847         err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1848         if (err)
1849                 return err;
1850
1851         /* Ask BNA to create one Rx object, supplying required resources */
1852         spin_lock_irqsave(&bnad->bna_lock, flags);
1853         rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1854                         rx_info);
1855         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1856         if (!rx)
1857                 goto err_return;
1858         rx_info->rx = rx;
1859
1860         /* Register ISR for the Rx object */
1861         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1862                 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1863                                                 rx_config->num_paths);
1864                 if (err)
1865                         goto err_return;
1866         }
1867
1868         /* Enable NAPI */
1869         bnad_napi_enable(bnad, rx_id);
1870
1871         spin_lock_irqsave(&bnad->bna_lock, flags);
1872         if (0 == rx_id) {
1873                 /* Set up Dynamic Interrupt Moderation Vector */
1874                 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1875                         bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1876
1877                 /* Enable VLAN filtering only on the default Rx */
1878                 bna_rx_vlanfilter_enable(rx);
1879
1880                 /* Start the DIM timer */
1881                 bnad_dim_timer_start(bnad);
1882         }
1883
1884         bna_rx_enable(rx);
1885         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1886
1887         return 0;
1888
1889 err_return:
1890         bnad_cleanup_rx(bnad, rx_id);
1891         return err;
1892 }
1893
1894 /* Called with conf_lock & bnad->bna_lock held */
1895 void
1896 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1897 {
1898         struct bnad_tx_info *tx_info;
1899
1900         tx_info = &bnad->tx_info[0];
1901         if (!tx_info->tx)
1902                 return;
1903
1904         bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1905 }
1906
1907 /* Called with conf_lock & bnad->bna_lock held */
1908 void
1909 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1910 {
1911         struct bnad_rx_info *rx_info;
1912         int     i;
1913
1914         for (i = 0; i < bnad->num_rx; i++) {
1915                 rx_info = &bnad->rx_info[i];
1916                 if (!rx_info->rx)
1917                         continue;
1918                 bna_rx_coalescing_timeo_set(rx_info->rx,
1919                                 bnad->rx_coalescing_timeo);
1920         }
1921 }
1922
1923 /*
1924  * Called with bnad->bna_lock held
1925  */
1926 static int
1927 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1928 {
1929         int ret;
1930
1931         if (!is_valid_ether_addr(mac_addr))
1932                 return -EADDRNOTAVAIL;
1933
1934         /* If datapath is down, pretend everything went through */
1935         if (!bnad->rx_info[0].rx)
1936                 return 0;
1937
1938         ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1939         if (ret != BNA_CB_SUCCESS)
1940                 return -EADDRNOTAVAIL;
1941
1942         return 0;
1943 }
1944
1945 /* Should be called with conf_lock held */
1946 static int
1947 bnad_enable_default_bcast(struct bnad *bnad)
1948 {
1949         struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1950         int ret;
1951         unsigned long flags;
1952
1953         init_completion(&bnad->bnad_completions.mcast_comp);
1954
1955         spin_lock_irqsave(&bnad->bna_lock, flags);
1956         ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1957                                 bnad_cb_rx_mcast_add);
1958         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1959
1960         if (ret == BNA_CB_SUCCESS)
1961                 wait_for_completion(&bnad->bnad_completions.mcast_comp);
1962         else
1963                 return -ENODEV;
1964
1965         if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1966                 return -ENODEV;
1967
1968         return 0;
1969 }
1970
1971 /* Statistics utilities */
1972 void
1973 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
1974 {
1975         int i, j;
1976
1977         for (i = 0; i < bnad->num_rx; i++) {
1978                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1979                         if (bnad->rx_info[i].rx_ctrl[j].ccb) {
1980                                 stats->rx_packets += bnad->rx_info[i].
1981                                 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
1982                                 stats->rx_bytes += bnad->rx_info[i].
1983                                         rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
1984                                 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
1985                                         bnad->rx_info[i].rx_ctrl[j].ccb->
1986                                         rcb[1]->rxq) {
1987                                         stats->rx_packets +=
1988                                                 bnad->rx_info[i].rx_ctrl[j].
1989                                                 ccb->rcb[1]->rxq->rx_packets;
1990                                         stats->rx_bytes +=
1991                                                 bnad->rx_info[i].rx_ctrl[j].
1992                                                 ccb->rcb[1]->rxq->rx_bytes;
1993                                 }
1994                         }
1995                 }
1996         }
1997         for (i = 0; i < bnad->num_tx; i++) {
1998                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
1999                         if (bnad->tx_info[i].tcb[j]) {
2000                                 stats->tx_packets +=
2001                                 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2002                                 stats->tx_bytes +=
2003                                         bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2004                         }
2005                 }
2006         }
2007 }
2008
2009 /*
2010  * Must be called with the bna_lock held.
2011  */
2012 void
2013 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2014 {
2015         struct bfi_ll_stats_mac *mac_stats;
2016         u64 bmap;
2017         int i;
2018
2019         mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2020         stats->rx_errors =
2021                 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2022                 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2023                 mac_stats->rx_undersize;
2024         stats->tx_errors = mac_stats->tx_fcs_error +
2025                                         mac_stats->tx_undersize;
2026         stats->rx_dropped = mac_stats->rx_drop;
2027         stats->tx_dropped = mac_stats->tx_drop;
2028         stats->multicast = mac_stats->rx_multicast;
2029         stats->collisions = mac_stats->tx_total_collision;
2030
2031         stats->rx_length_errors = mac_stats->rx_frame_length_error;
2032
2033         /* receive ring buffer overflow  ?? */
2034
2035         stats->rx_crc_errors = mac_stats->rx_fcs_error;
2036         stats->rx_frame_errors = mac_stats->rx_alignment_error;
2037         /* recv'r fifo overrun */
2038         bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2039                 ((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2040         for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2041                 if (bmap & 1) {
2042                         stats->rx_fifo_errors +=
2043                                 bnad->stats.bna_stats->
2044                                         hw_stats->rxf_stats[i].frame_drops;
2045                         break;
2046                 }
2047                 bmap >>= 1;
2048         }
2049 }
2050
2051 static void
2052 bnad_mbox_irq_sync(struct bnad *bnad)
2053 {
2054         u32 irq;
2055         unsigned long flags;
2056
2057         spin_lock_irqsave(&bnad->bna_lock, flags);
2058         if (bnad->cfg_flags & BNAD_CF_MSIX)
2059                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
2060         else
2061                 irq = bnad->pcidev->irq;
2062         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2063
2064         synchronize_irq(irq);
2065 }
2066
2067 /* Utility used by bnad_start_xmit, for doing TSO */
2068 static int
2069 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2070 {
2071         int err;
2072
2073         /* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2074         BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2075                    skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2076         if (skb_header_cloned(skb)) {
2077                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2078                 if (err) {
2079                         BNAD_UPDATE_CTR(bnad, tso_err);
2080                         return err;
2081                 }
2082         }
2083
2084         /*
2085          * For TSO, the TCP checksum field is seeded with pseudo-header sum
2086          * excluding the length field.
2087          */
2088         if (skb->protocol == htons(ETH_P_IP)) {
2089                 struct iphdr *iph = ip_hdr(skb);
2090
2091                 /* Do we really need these? */
2092                 iph->tot_len = 0;
2093                 iph->check = 0;
2094
2095                 tcp_hdr(skb)->check =
2096                         ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2097                                            IPPROTO_TCP, 0);
2098                 BNAD_UPDATE_CTR(bnad, tso4);
2099         } else {
2100                 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2101
2102                 BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2103                 ipv6h->payload_len = 0;
2104                 tcp_hdr(skb)->check =
2105                         ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2106                                          IPPROTO_TCP, 0);
2107                 BNAD_UPDATE_CTR(bnad, tso6);
2108         }
2109
2110         return 0;
2111 }
2112
2113 /*
2114  * Initialize Q numbers depending on Rx Paths
2115  * Called with bnad->bna_lock held, because of cfg_flags
2116  * access.
2117  */
2118 static void
2119 bnad_q_num_init(struct bnad *bnad)
2120 {
2121         int rxps;
2122
2123         rxps = min((uint)num_online_cpus(),
2124                         (uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2125
2126         if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2127                 rxps = 1;       /* INTx */
2128
2129         bnad->num_rx = 1;
2130         bnad->num_tx = 1;
2131         bnad->num_rxp_per_rx = rxps;
2132         bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2133 }
2134
2135 /*
2136  * Adjusts the Q numbers, given a number of msix vectors
2137  * Give preference to RSS as opposed to Tx priority Queues,
2138  * in such a case, just use 1 Tx Q
2139  * Called with bnad->bna_lock held b'cos of cfg_flags access
2140  */
2141 static void
2142 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2143 {
2144         bnad->num_txq_per_tx = 1;
2145         if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2146              bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2147             (bnad->cfg_flags & BNAD_CF_MSIX)) {
2148                 bnad->num_rxp_per_rx = msix_vectors -
2149                         (bnad->num_tx * bnad->num_txq_per_tx) -
2150                         BNAD_MAILBOX_MSIX_VECTORS;
2151         } else
2152                 bnad->num_rxp_per_rx = 1;
2153 }
2154
2155 static void
2156 bnad_set_netdev_perm_addr(struct bnad *bnad)
2157 {
2158         struct net_device *netdev = bnad->netdev;
2159
2160         memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
2161         if (is_zero_ether_addr(netdev->dev_addr))
2162                 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
2163 }
2164
2165 /* Enable / disable device */
2166 static void
2167 bnad_device_disable(struct bnad *bnad)
2168 {
2169         unsigned long flags;
2170
2171         init_completion(&bnad->bnad_completions.ioc_comp);
2172
2173         spin_lock_irqsave(&bnad->bna_lock, flags);
2174         bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2175         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2176
2177         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2178 }
2179
2180 static int
2181 bnad_device_enable(struct bnad *bnad)
2182 {
2183         int err = 0;
2184         unsigned long flags;
2185
2186         init_completion(&bnad->bnad_completions.ioc_comp);
2187
2188         spin_lock_irqsave(&bnad->bna_lock, flags);
2189         bna_device_enable(&bnad->bna.device);
2190         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2191
2192         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2193
2194         if (bnad->bnad_completions.ioc_comp_status)
2195                 err = bnad->bnad_completions.ioc_comp_status;
2196
2197         return err;
2198 }
2199
2200 /* Free BNA resources */
2201 static void
2202 bnad_res_free(struct bnad *bnad)
2203 {
2204         int i;
2205         struct bna_res_info *res_info = &bnad->res_info[0];
2206
2207         for (i = 0; i < BNA_RES_T_MAX; i++) {
2208                 if (res_info[i].res_type == BNA_RES_T_MEM)
2209                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2210                 else
2211                         bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2212         }
2213 }
2214
2215 /* Allocates memory and interrupt resources for BNA */
2216 static int
2217 bnad_res_alloc(struct bnad *bnad)
2218 {
2219         int i, err;
2220         struct bna_res_info *res_info = &bnad->res_info[0];
2221
2222         for (i = 0; i < BNA_RES_T_MAX; i++) {
2223                 if (res_info[i].res_type == BNA_RES_T_MEM)
2224                         err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2225                 else
2226                         err = bnad_mbox_irq_alloc(bnad,
2227                                                   &res_info[i].res_u.intr_info);
2228                 if (err)
2229                         goto err_return;
2230         }
2231         return 0;
2232
2233 err_return:
2234         bnad_res_free(bnad);
2235         return err;
2236 }
2237
2238 /* Interrupt enable / disable */
2239 static void
2240 bnad_enable_msix(struct bnad *bnad)
2241 {
2242         int i, ret;
2243         unsigned long flags;
2244
2245         spin_lock_irqsave(&bnad->bna_lock, flags);
2246         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2247                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2248                 return;
2249         }
2250         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2251
2252         if (bnad->msix_table)
2253                 return;
2254
2255         bnad->msix_table =
2256                 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2257
2258         if (!bnad->msix_table)
2259                 goto intx_mode;
2260
2261         for (i = 0; i < bnad->msix_num; i++)
2262                 bnad->msix_table[i].entry = i;
2263
2264         ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2265         if (ret > 0) {
2266                 /* Not enough MSI-X vectors. */
2267
2268                 spin_lock_irqsave(&bnad->bna_lock, flags);
2269                 /* ret = #of vectors that we got */
2270                 bnad_q_num_adjust(bnad, ret);
2271                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2272
2273                 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2274                         + (bnad->num_rx
2275                         * bnad->num_rxp_per_rx) +
2276                          BNAD_MAILBOX_MSIX_VECTORS;
2277
2278                 /* Try once more with adjusted numbers */
2279                 /* If this fails, fall back to INTx */
2280                 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2281                                       bnad->msix_num);
2282                 if (ret)
2283                         goto intx_mode;
2284
2285         } else if (ret < 0)
2286                 goto intx_mode;
2287         return;
2288
2289 intx_mode:
2290
2291         kfree(bnad->msix_table);
2292         bnad->msix_table = NULL;
2293         bnad->msix_num = 0;
2294         spin_lock_irqsave(&bnad->bna_lock, flags);
2295         bnad->cfg_flags &= ~BNAD_CF_MSIX;
2296         bnad_q_num_init(bnad);
2297         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2298 }
2299
2300 static void
2301 bnad_disable_msix(struct bnad *bnad)
2302 {
2303         u32 cfg_flags;
2304         unsigned long flags;
2305
2306         spin_lock_irqsave(&bnad->bna_lock, flags);
2307         cfg_flags = bnad->cfg_flags;
2308         if (bnad->cfg_flags & BNAD_CF_MSIX)
2309                 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2310         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2311
2312         if (cfg_flags & BNAD_CF_MSIX) {
2313                 pci_disable_msix(bnad->pcidev);
2314                 kfree(bnad->msix_table);
2315                 bnad->msix_table = NULL;
2316         }
2317 }
2318
2319 /* Netdev entry points */
2320 static int
2321 bnad_open(struct net_device *netdev)
2322 {
2323         int err;
2324         struct bnad *bnad = netdev_priv(netdev);
2325         struct bna_pause_config pause_config;
2326         int mtu;
2327         unsigned long flags;
2328
2329         mutex_lock(&bnad->conf_mutex);
2330
2331         /* Tx */
2332         err = bnad_setup_tx(bnad, 0);
2333         if (err)
2334                 goto err_return;
2335
2336         /* Rx */
2337         err = bnad_setup_rx(bnad, 0);
2338         if (err)
2339                 goto cleanup_tx;
2340
2341         /* Port */
2342         pause_config.tx_pause = 0;
2343         pause_config.rx_pause = 0;
2344
2345         mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2346
2347         spin_lock_irqsave(&bnad->bna_lock, flags);
2348         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2349         bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2350         bna_port_enable(&bnad->bna.port);
2351         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2352
2353         /* Enable broadcast */
2354         bnad_enable_default_bcast(bnad);
2355
2356         /* Set the UCAST address */
2357         spin_lock_irqsave(&bnad->bna_lock, flags);
2358         bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2359         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2360
2361         /* Start the stats timer */
2362         bnad_stats_timer_start(bnad);
2363
2364         mutex_unlock(&bnad->conf_mutex);
2365
2366         return 0;
2367
2368 cleanup_tx:
2369         bnad_cleanup_tx(bnad, 0);
2370
2371 err_return:
2372         mutex_unlock(&bnad->conf_mutex);
2373         return err;
2374 }
2375
2376 static int
2377 bnad_stop(struct net_device *netdev)
2378 {
2379         struct bnad *bnad = netdev_priv(netdev);
2380         unsigned long flags;
2381
2382         mutex_lock(&bnad->conf_mutex);
2383
2384         /* Stop the stats timer */
2385         bnad_stats_timer_stop(bnad);
2386
2387         init_completion(&bnad->bnad_completions.port_comp);
2388
2389         spin_lock_irqsave(&bnad->bna_lock, flags);
2390         bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2391                         bnad_cb_port_disabled);
2392         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2393
2394         wait_for_completion(&bnad->bnad_completions.port_comp);
2395
2396         bnad_cleanup_tx(bnad, 0);
2397         bnad_cleanup_rx(bnad, 0);
2398
2399         /* Synchronize mailbox IRQ */
2400         bnad_mbox_irq_sync(bnad);
2401
2402         mutex_unlock(&bnad->conf_mutex);
2403
2404         return 0;
2405 }
2406
2407 /* TX */
2408 /*
2409  * bnad_start_xmit : Netdev entry point for Transmit
2410  *                   Called under lock held by net_device
2411  */
2412 static netdev_tx_t
2413 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2414 {
2415         struct bnad *bnad = netdev_priv(netdev);
2416
2417         u16             txq_prod, vlan_tag = 0;
2418         u32             unmap_prod, wis, wis_used, wi_range;
2419         u32             vectors, vect_id, i, acked;
2420         u32             tx_id;
2421         int                     err;
2422
2423         struct bnad_tx_info *tx_info;
2424         struct bna_tcb *tcb;
2425         struct bnad_unmap_q *unmap_q;
2426         dma_addr_t              dma_addr;
2427         struct bna_txq_entry *txqent;
2428         bna_txq_wi_ctrl_flag_t  flags;
2429
2430         if (unlikely
2431             (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2432                 dev_kfree_skb(skb);
2433                 return NETDEV_TX_OK;
2434         }
2435
2436         /*
2437          * Takes care of the Tx that is scheduled between clearing the flag
2438          * and the netif_stop_queue() call.
2439          */
2440         if (unlikely(!test_bit(BNAD_RF_TX_STARTED, &bnad->run_flags))) {
2441                 dev_kfree_skb(skb);
2442                 return NETDEV_TX_OK;
2443         }
2444
2445         tx_id = 0;
2446
2447         tx_info = &bnad->tx_info[tx_id];
2448         tcb = tx_info->tcb[tx_id];
2449         unmap_q = tcb->unmap_q;
2450
2451         vectors = 1 + skb_shinfo(skb)->nr_frags;
2452         if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2453                 dev_kfree_skb(skb);
2454                 return NETDEV_TX_OK;
2455         }
2456         wis = BNA_TXQ_WI_NEEDED(vectors);       /* 4 vectors per work item */
2457         acked = 0;
2458         if (unlikely
2459             (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2460              vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2461                 if ((u16) (*tcb->hw_consumer_index) !=
2462                     tcb->consumer_index &&
2463                     !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2464                         acked = bnad_free_txbufs(bnad, tcb);
2465                         bna_ib_ack(tcb->i_dbell, acked);
2466                         smp_mb__before_clear_bit();
2467                         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2468                 } else {
2469                         netif_stop_queue(netdev);
2470                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2471                 }
2472
2473                 smp_mb();
2474                 /*
2475                  * Check again to deal with race condition between
2476                  * netif_stop_queue here, and netif_wake_queue in
2477                  * interrupt handler which is not inside netif tx lock.
2478                  */
2479                 if (likely
2480                     (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2481                      vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2482                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2483                         return NETDEV_TX_BUSY;
2484                 } else {
2485                         netif_wake_queue(netdev);
2486                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2487                 }
2488         }
2489
2490         unmap_prod = unmap_q->producer_index;
2491         wis_used = 1;
2492         vect_id = 0;
2493         flags = 0;
2494
2495         txq_prod = tcb->producer_index;
2496         BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2497         BUG_ON(!(wi_range <= tcb->q_depth));
2498         txqent->hdr.wi.reserved = 0;
2499         txqent->hdr.wi.num_vectors = vectors;
2500         txqent->hdr.wi.opcode =
2501                 htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2502                        BNA_TXQ_WI_SEND));
2503
2504         if (vlan_tx_tag_present(skb)) {
2505                 vlan_tag = (u16) vlan_tx_tag_get(skb);
2506                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2507         }
2508         if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2509                 vlan_tag =
2510                         (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2511                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2512         }
2513
2514         txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2515
2516         if (skb_is_gso(skb)) {
2517                 err = bnad_tso_prepare(bnad, skb);
2518                 if (err) {
2519                         dev_kfree_skb(skb);
2520                         return NETDEV_TX_OK;
2521                 }
2522                 txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2523                 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2524                 txqent->hdr.wi.l4_hdr_size_n_offset =
2525                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2526                               (tcp_hdrlen(skb) >> 2,
2527                                skb_transport_offset(skb)));
2528         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2529                 u8 proto = 0;
2530
2531                 txqent->hdr.wi.lso_mss = 0;
2532
2533                 if (skb->protocol == htons(ETH_P_IP))
2534                         proto = ip_hdr(skb)->protocol;
2535                 else if (skb->protocol == htons(ETH_P_IPV6)) {
2536                         /* nexthdr may not be TCP immediately. */
2537                         proto = ipv6_hdr(skb)->nexthdr;
2538                 }
2539                 if (proto == IPPROTO_TCP) {
2540                         flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2541                         txqent->hdr.wi.l4_hdr_size_n_offset =
2542                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2543                                       (0, skb_transport_offset(skb)));
2544
2545                         BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2546
2547                         BUG_ON(!(skb_headlen(skb) >=
2548                                 skb_transport_offset(skb) + tcp_hdrlen(skb)));
2549
2550                 } else if (proto == IPPROTO_UDP) {
2551                         flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2552                         txqent->hdr.wi.l4_hdr_size_n_offset =
2553                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2554                                       (0, skb_transport_offset(skb)));
2555
2556                         BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2557
2558                         BUG_ON(!(skb_headlen(skb) >=
2559                                    skb_transport_offset(skb) +
2560                                    sizeof(struct udphdr)));
2561                 } else {
2562                         err = skb_checksum_help(skb);
2563                         BNAD_UPDATE_CTR(bnad, csum_help);
2564                         if (err) {
2565                                 dev_kfree_skb(skb);
2566                                 BNAD_UPDATE_CTR(bnad, csum_help_err);
2567                                 return NETDEV_TX_OK;
2568                         }
2569                 }
2570         } else {
2571                 txqent->hdr.wi.lso_mss = 0;
2572                 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2573         }
2574
2575         txqent->hdr.wi.flags = htons(flags);
2576
2577         txqent->hdr.wi.frame_length = htonl(skb->len);
2578
2579         unmap_q->unmap_array[unmap_prod].skb = skb;
2580         BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2581         txqent->vector[vect_id].length = htons(skb_headlen(skb));
2582         dma_addr = pci_map_single(bnad->pcidev, skb->data, skb_headlen(skb),
2583                 PCI_DMA_TODEVICE);
2584         pci_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2585                            dma_addr);
2586
2587         BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2588         BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2589
2590         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2591                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2592                 u32             size = frag->size;
2593
2594                 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2595                         vect_id = 0;
2596                         if (--wi_range)
2597                                 txqent++;
2598                         else {
2599                                 BNA_QE_INDX_ADD(txq_prod, wis_used,
2600                                                 tcb->q_depth);
2601                                 wis_used = 0;
2602                                 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2603                                                      txqent, wi_range);
2604                                 BUG_ON(!(wi_range <= tcb->q_depth));
2605                         }
2606                         wis_used++;
2607                         txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2608                 }
2609
2610                 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2611                 txqent->vector[vect_id].length = htons(size);
2612                 dma_addr =
2613                         pci_map_page(bnad->pcidev, frag->page,
2614                                      frag->page_offset, size,
2615                                      PCI_DMA_TODEVICE);
2616                 pci_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2617                                    dma_addr);
2618                 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2619                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2620         }
2621
2622         unmap_q->producer_index = unmap_prod;
2623         BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2624         tcb->producer_index = txq_prod;
2625
2626         smp_mb();
2627         bna_txq_prod_indx_doorbell(tcb);
2628
2629         if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2630                 tasklet_schedule(&bnad->tx_free_tasklet);
2631
2632         return NETDEV_TX_OK;
2633 }
2634
2635 /*
2636  * Used spin_lock to synchronize reading of stats structures, which
2637  * is written by BNA under the same lock.
2638  */
2639 static struct rtnl_link_stats64 *
2640 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2641 {
2642         struct bnad *bnad = netdev_priv(netdev);
2643         unsigned long flags;
2644
2645         spin_lock_irqsave(&bnad->bna_lock, flags);
2646
2647         bnad_netdev_qstats_fill(bnad, stats);
2648         bnad_netdev_hwstats_fill(bnad, stats);
2649
2650         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2651
2652         return stats;
2653 }
2654
2655 static void
2656 bnad_set_rx_mode(struct net_device *netdev)
2657 {
2658         struct bnad *bnad = netdev_priv(netdev);
2659         u32     new_mask, valid_mask;
2660         unsigned long flags;
2661
2662         spin_lock_irqsave(&bnad->bna_lock, flags);
2663
2664         new_mask = valid_mask = 0;
2665
2666         if (netdev->flags & IFF_PROMISC) {
2667                 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2668                         new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2669                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2670                         bnad->cfg_flags |= BNAD_CF_PROMISC;
2671                 }
2672         } else {
2673                 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2674                         new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2675                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2676                         bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2677                 }
2678         }
2679
2680         if (netdev->flags & IFF_ALLMULTI) {
2681                 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2682                         new_mask |= BNA_RXMODE_ALLMULTI;
2683                         valid_mask |= BNA_RXMODE_ALLMULTI;
2684                         bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2685                 }
2686         } else {
2687                 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2688                         new_mask &= ~BNA_RXMODE_ALLMULTI;
2689                         valid_mask |= BNA_RXMODE_ALLMULTI;
2690                         bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2691                 }
2692         }
2693
2694         bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2695
2696         if (!netdev_mc_empty(netdev)) {
2697                 u8 *mcaddr_list;
2698                 int mc_count = netdev_mc_count(netdev);
2699
2700                 /* Index 0 holds the broadcast address */
2701                 mcaddr_list =
2702                         kzalloc((mc_count + 1) * ETH_ALEN,
2703                                 GFP_ATOMIC);
2704                 if (!mcaddr_list)
2705                         goto unlock;
2706
2707                 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2708
2709                 /* Copy rest of the MC addresses */
2710                 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2711
2712                 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2713                                         mcaddr_list, NULL);
2714
2715                 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2716                 kfree(mcaddr_list);
2717         }
2718 unlock:
2719         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2720 }
2721
2722 /*
2723  * bna_lock is used to sync writes to netdev->addr
2724  * conf_lock cannot be used since this call may be made
2725  * in a non-blocking context.
2726  */
2727 static int
2728 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2729 {
2730         int err;
2731         struct bnad *bnad = netdev_priv(netdev);
2732         struct sockaddr *sa = (struct sockaddr *)mac_addr;
2733         unsigned long flags;
2734
2735         spin_lock_irqsave(&bnad->bna_lock, flags);
2736
2737         err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2738
2739         if (!err)
2740                 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2741
2742         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2743
2744         return err;
2745 }
2746
2747 static int
2748 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2749 {
2750         int mtu, err = 0;
2751         unsigned long flags;
2752
2753         struct bnad *bnad = netdev_priv(netdev);
2754
2755         if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2756                 return -EINVAL;
2757
2758         mutex_lock(&bnad->conf_mutex);
2759
2760         netdev->mtu = new_mtu;
2761
2762         mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2763
2764         spin_lock_irqsave(&bnad->bna_lock, flags);
2765         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2766         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2767
2768         mutex_unlock(&bnad->conf_mutex);
2769         return err;
2770 }
2771
2772 static void
2773 bnad_vlan_rx_register(struct net_device *netdev,
2774                                   struct vlan_group *vlan_grp)
2775 {
2776         struct bnad *bnad = netdev_priv(netdev);
2777
2778         mutex_lock(&bnad->conf_mutex);
2779         bnad->vlan_grp = vlan_grp;
2780         mutex_unlock(&bnad->conf_mutex);
2781 }
2782
2783 static void
2784 bnad_vlan_rx_add_vid(struct net_device *netdev,
2785                                  unsigned short vid)
2786 {
2787         struct bnad *bnad = netdev_priv(netdev);
2788         unsigned long flags;
2789
2790         if (!bnad->rx_info[0].rx)
2791                 return;
2792
2793         mutex_lock(&bnad->conf_mutex);
2794
2795         spin_lock_irqsave(&bnad->bna_lock, flags);
2796         bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2797         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2798
2799         mutex_unlock(&bnad->conf_mutex);
2800 }
2801
2802 static void
2803 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2804                                   unsigned short vid)
2805 {
2806         struct bnad *bnad = netdev_priv(netdev);
2807         unsigned long flags;
2808
2809         if (!bnad->rx_info[0].rx)
2810                 return;
2811
2812         mutex_lock(&bnad->conf_mutex);
2813
2814         spin_lock_irqsave(&bnad->bna_lock, flags);
2815         bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2816         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2817
2818         mutex_unlock(&bnad->conf_mutex);
2819 }
2820
2821 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 static void
2823 bnad_netpoll(struct net_device *netdev)
2824 {
2825         struct bnad *bnad = netdev_priv(netdev);
2826         struct bnad_rx_info *rx_info;
2827         struct bnad_rx_ctrl *rx_ctrl;
2828         u32 curr_mask;
2829         int i, j;
2830
2831         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2832                 bna_intx_disable(&bnad->bna, curr_mask);
2833                 bnad_isr(bnad->pcidev->irq, netdev);
2834                 bna_intx_enable(&bnad->bna, curr_mask);
2835         } else {
2836                 for (i = 0; i < bnad->num_rx; i++) {
2837                         rx_info = &bnad->rx_info[i];
2838                         if (!rx_info->rx)
2839                                 continue;
2840                         for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2841                                 rx_ctrl = &rx_info->rx_ctrl[j];
2842                                 if (rx_ctrl->ccb) {
2843                                         bnad_disable_rx_irq(bnad,
2844                                                             rx_ctrl->ccb);
2845                                         bnad_netif_rx_schedule_poll(bnad,
2846                                                             rx_ctrl->ccb);
2847                                 }
2848                         }
2849                 }
2850         }
2851 }
2852 #endif
2853
2854 static const struct net_device_ops bnad_netdev_ops = {
2855         .ndo_open               = bnad_open,
2856         .ndo_stop               = bnad_stop,
2857         .ndo_start_xmit         = bnad_start_xmit,
2858         .ndo_get_stats64                = bnad_get_stats64,
2859         .ndo_set_rx_mode        = bnad_set_rx_mode,
2860         .ndo_set_multicast_list = bnad_set_rx_mode,
2861         .ndo_validate_addr      = eth_validate_addr,
2862         .ndo_set_mac_address    = bnad_set_mac_address,
2863         .ndo_change_mtu         = bnad_change_mtu,
2864         .ndo_vlan_rx_register   = bnad_vlan_rx_register,
2865         .ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
2866         .ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
2867 #ifdef CONFIG_NET_POLL_CONTROLLER
2868         .ndo_poll_controller    = bnad_netpoll
2869 #endif
2870 };
2871
2872 static void
2873 bnad_netdev_init(struct bnad *bnad, bool using_dac)
2874 {
2875         struct net_device *netdev = bnad->netdev;
2876
2877         netdev->features |= NETIF_F_IPV6_CSUM;
2878         netdev->features |= NETIF_F_TSO;
2879         netdev->features |= NETIF_F_TSO6;
2880
2881         netdev->features |= NETIF_F_GRO;
2882         pr_warn("bna: GRO enabled, using kernel stack GRO\n");
2883
2884         netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2885
2886         if (using_dac)
2887                 netdev->features |= NETIF_F_HIGHDMA;
2888
2889         netdev->features |=
2890                 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2891                 NETIF_F_HW_VLAN_FILTER;
2892
2893         netdev->vlan_features = netdev->features;
2894         netdev->mem_start = bnad->mmio_start;
2895         netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2896
2897         netdev->netdev_ops = &bnad_netdev_ops;
2898         bnad_set_ethtool_ops(netdev);
2899 }
2900
2901 /*
2902  * 1. Initialize the bnad structure
2903  * 2. Setup netdev pointer in pci_dev
2904  * 3. Initialze Tx free tasklet
2905  * 4. Initialize no. of TxQ & CQs & MSIX vectors
2906  */
2907 static int
2908 bnad_init(struct bnad *bnad,
2909           struct pci_dev *pdev, struct net_device *netdev)
2910 {
2911         unsigned long flags;
2912
2913         SET_NETDEV_DEV(netdev, &pdev->dev);
2914         pci_set_drvdata(pdev, netdev);
2915
2916         bnad->netdev = netdev;
2917         bnad->pcidev = pdev;
2918         bnad->mmio_start = pci_resource_start(pdev, 0);
2919         bnad->mmio_len = pci_resource_len(pdev, 0);
2920         bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2921         if (!bnad->bar0) {
2922                 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2923                 pci_set_drvdata(pdev, NULL);
2924                 return -ENOMEM;
2925         }
2926         pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2927                (unsigned long long) bnad->mmio_len);
2928
2929         spin_lock_irqsave(&bnad->bna_lock, flags);
2930         if (!bnad_msix_disable)
2931                 bnad->cfg_flags = BNAD_CF_MSIX;
2932
2933         bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2934
2935         bnad_q_num_init(bnad);
2936         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2937
2938         bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2939                 (bnad->num_rx * bnad->num_rxp_per_rx) +
2940                          BNAD_MAILBOX_MSIX_VECTORS;
2941
2942         bnad->txq_depth = BNAD_TXQ_DEPTH;
2943         bnad->rxq_depth = BNAD_RXQ_DEPTH;
2944         bnad->rx_csum = true;
2945
2946         bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2947         bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2948
2949         tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2950                      (unsigned long)bnad);
2951
2952         return 0;
2953 }
2954
2955 /*
2956  * Must be called after bnad_pci_uninit()
2957  * so that iounmap() and pci_set_drvdata(NULL)
2958  * happens only after PCI uninitialization.
2959  */
2960 static void
2961 bnad_uninit(struct bnad *bnad)
2962 {
2963         if (bnad->bar0)
2964                 iounmap(bnad->bar0);
2965         pci_set_drvdata(bnad->pcidev, NULL);
2966 }
2967
2968 /*
2969  * Initialize locks
2970         a) Per device mutes used for serializing configuration
2971            changes from OS interface
2972         b) spin lock used to protect bna state machine
2973  */
2974 static void
2975 bnad_lock_init(struct bnad *bnad)
2976 {
2977         spin_lock_init(&bnad->bna_lock);
2978         mutex_init(&bnad->conf_mutex);
2979 }
2980
2981 static void
2982 bnad_lock_uninit(struct bnad *bnad)
2983 {
2984         mutex_destroy(&bnad->conf_mutex);
2985 }
2986
2987 /* PCI Initialization */
2988 static int
2989 bnad_pci_init(struct bnad *bnad,
2990               struct pci_dev *pdev, bool *using_dac)
2991 {
2992         int err;
2993
2994         err = pci_enable_device(pdev);
2995         if (err)
2996                 return err;
2997         err = pci_request_regions(pdev, BNAD_NAME);
2998         if (err)
2999                 goto disable_device;
3000         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
3001             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3002                 *using_dac = 1;
3003         } else {
3004                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3005                 if (err) {
3006                         err = pci_set_consistent_dma_mask(pdev,
3007                                                 DMA_BIT_MASK(32));
3008                         if (err)
3009                                 goto release_regions;
3010                 }
3011                 *using_dac = 0;
3012         }
3013         pci_set_master(pdev);
3014         return 0;
3015
3016 release_regions:
3017         pci_release_regions(pdev);
3018 disable_device:
3019         pci_disable_device(pdev);
3020
3021         return err;
3022 }
3023
3024 static void
3025 bnad_pci_uninit(struct pci_dev *pdev)
3026 {
3027         pci_release_regions(pdev);
3028         pci_disable_device(pdev);
3029 }
3030
3031 static int __devinit
3032 bnad_pci_probe(struct pci_dev *pdev,
3033                 const struct pci_device_id *pcidev_id)
3034 {
3035         bool    using_dac;
3036         int     err;
3037         struct bnad *bnad;
3038         struct bna *bna;
3039         struct net_device *netdev;
3040         struct bfa_pcidev pcidev_info;
3041         unsigned long flags;
3042
3043         pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3044                pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3045
3046         mutex_lock(&bnad_fwimg_mutex);
3047         if (!cna_get_firmware_buf(pdev)) {
3048                 mutex_unlock(&bnad_fwimg_mutex);
3049                 pr_warn("Failed to load Firmware Image!\n");
3050                 return -ENODEV;
3051         }
3052         mutex_unlock(&bnad_fwimg_mutex);
3053
3054         /*
3055          * Allocates sizeof(struct net_device + struct bnad)
3056          * bnad = netdev->priv
3057          */
3058         netdev = alloc_etherdev(sizeof(struct bnad));
3059         if (!netdev) {
3060                 dev_err(&pdev->dev, "alloc_etherdev failed\n");
3061                 err = -ENOMEM;
3062                 return err;
3063         }
3064         bnad = netdev_priv(netdev);
3065
3066         /*
3067          * PCI initialization
3068          *      Output : using_dac = 1 for 64 bit DMA
3069          *                         = 0 for 32 bit DMA
3070          */
3071         err = bnad_pci_init(bnad, pdev, &using_dac);
3072         if (err)
3073                 goto free_netdev;
3074
3075         bnad_lock_init(bnad);
3076         /*
3077          * Initialize bnad structure
3078          * Setup relation between pci_dev & netdev
3079          * Init Tx free tasklet
3080          */
3081         err = bnad_init(bnad, pdev, netdev);
3082         if (err)
3083                 goto pci_uninit;
3084         /* Initialize netdev structure, set up ethtool ops */
3085         bnad_netdev_init(bnad, using_dac);
3086
3087         bnad_enable_msix(bnad);
3088
3089         /* Get resource requirement form bna */
3090         bna_res_req(&bnad->res_info[0]);
3091
3092         /* Allocate resources from bna */
3093         err = bnad_res_alloc(bnad);
3094         if (err)
3095                 goto free_netdev;
3096
3097         bna = &bnad->bna;
3098
3099         /* Setup pcidev_info for bna_init() */
3100         pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3101         pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3102         pcidev_info.device_id = bnad->pcidev->device;
3103         pcidev_info.pci_bar_kva = bnad->bar0;
3104
3105         mutex_lock(&bnad->conf_mutex);
3106
3107         spin_lock_irqsave(&bnad->bna_lock, flags);
3108         bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3109         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3110
3111         bnad->stats.bna_stats = &bna->stats;
3112
3113         /* Set up timers */
3114         setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3115                                 ((unsigned long)bnad));
3116         setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3117                                 ((unsigned long)bnad));
3118         setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_ioc_sem_timeout,
3119                                 ((unsigned long)bnad));
3120
3121         /* Now start the timer before calling IOC */
3122         mod_timer(&bnad->bna.device.ioc.ioc_timer,
3123                   jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3124
3125         /*
3126          * Start the chip
3127          * Don't care even if err != 0, bna state machine will
3128          * deal with it
3129          */
3130         err = bnad_device_enable(bnad);
3131
3132         /* Get the burnt-in mac */
3133         spin_lock_irqsave(&bnad->bna_lock, flags);
3134         bna_port_mac_get(&bna->port, &bnad->perm_addr);
3135         bnad_set_netdev_perm_addr(bnad);
3136         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3137
3138         mutex_unlock(&bnad->conf_mutex);
3139
3140         /*
3141          * Make sure the link appears down to the stack
3142          */
3143         netif_carrier_off(netdev);
3144
3145         /* Finally, reguister with net_device layer */
3146         err = register_netdev(netdev);
3147         if (err) {
3148                 pr_err("BNA : Registering with netdev failed\n");
3149                 goto disable_device;
3150         }
3151
3152         return 0;
3153
3154 disable_device:
3155         mutex_lock(&bnad->conf_mutex);
3156         bnad_device_disable(bnad);
3157         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3158         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3159         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3160         spin_lock_irqsave(&bnad->bna_lock, flags);
3161         bna_uninit(bna);
3162         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3163         mutex_unlock(&bnad->conf_mutex);
3164
3165         bnad_res_free(bnad);
3166         bnad_disable_msix(bnad);
3167 pci_uninit:
3168         bnad_pci_uninit(pdev);
3169         bnad_lock_uninit(bnad);
3170         bnad_uninit(bnad);
3171 free_netdev:
3172         free_netdev(netdev);
3173         return err;
3174 }
3175
3176 static void __devexit
3177 bnad_pci_remove(struct pci_dev *pdev)
3178 {
3179         struct net_device *netdev = pci_get_drvdata(pdev);
3180         struct bnad *bnad;
3181         struct bna *bna;
3182         unsigned long flags;
3183
3184         if (!netdev)
3185                 return;
3186
3187         pr_info("%s bnad_pci_remove\n", netdev->name);
3188         bnad = netdev_priv(netdev);
3189         bna = &bnad->bna;
3190
3191         unregister_netdev(netdev);
3192
3193         mutex_lock(&bnad->conf_mutex);
3194         bnad_device_disable(bnad);
3195         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3196         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3197         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3198         spin_lock_irqsave(&bnad->bna_lock, flags);
3199         bna_uninit(bna);
3200         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3201         mutex_unlock(&bnad->conf_mutex);
3202
3203         bnad_res_free(bnad);
3204         bnad_disable_msix(bnad);
3205         bnad_pci_uninit(pdev);
3206         bnad_lock_uninit(bnad);
3207         bnad_uninit(bnad);
3208         free_netdev(netdev);
3209 }
3210
3211 static const struct pci_device_id bnad_pci_id_table[] = {
3212         {
3213                 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3214                         PCI_DEVICE_ID_BROCADE_CT),
3215                 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3216                 .class_mask =  0xffff00
3217         }, {0,  }
3218 };
3219
3220 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3221
3222 static struct pci_driver bnad_pci_driver = {
3223         .name = BNAD_NAME,
3224         .id_table = bnad_pci_id_table,
3225         .probe = bnad_pci_probe,
3226         .remove = __devexit_p(bnad_pci_remove),
3227 };
3228
3229 static int __init
3230 bnad_module_init(void)
3231 {
3232         int err;
3233
3234         pr_info("Brocade 10G Ethernet driver\n");
3235
3236         bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3237
3238         err = pci_register_driver(&bnad_pci_driver);
3239         if (err < 0) {
3240                 pr_err("bna : PCI registration failed in module init "
3241                        "(%d)\n", err);
3242                 return err;
3243         }
3244
3245         return 0;
3246 }
3247
3248 static void __exit
3249 bnad_module_exit(void)
3250 {
3251         pci_unregister_driver(&bnad_pci_driver);
3252
3253         if (bfi_fw)
3254                 release_firmware(bfi_fw);
3255 }
3256
3257 module_init(bnad_module_init);
3258 module_exit(bnad_module_exit);
3259
3260 MODULE_AUTHOR("Brocade");
3261 MODULE_LICENSE("GPL");
3262 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3263 MODULE_VERSION(BNAD_VERSION);
3264 MODULE_FIRMWARE(CNA_FW_FILE_CT);