]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/can/dev.c
ufs_truncate_blocks(): fix the case when size is in the last direct block
[karo-tx-linux.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41                              8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
45 {
46         return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
51                              9, 9, 9, 9,                        /* 9 - 12 */
52                              10, 10, 10, 10,                    /* 13 - 16 */
53                              11, 11, 11, 11,                    /* 17 - 20 */
54                              12, 12, 12, 12,                    /* 21 - 24 */
55                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
56                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
57                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
58                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
59                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
63 {
64         if (unlikely(len > 64))
65                 return 0xF;
66
67         return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73 #define CAN_CALC_SYNC_SEG 1
74
75 /*
76  * Bit-timing calculation derived from:
77  *
78  * Code based on LinCAN sources and H8S2638 project
79  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
80  * Copyright 2005      Stanislav Marek
81  * email: pisa@cmp.felk.cvut.cz
82  *
83  * Calculates proper bit-timing parameters for a specified bit-rate
84  * and sample-point, which can then be used to set the bit-timing
85  * registers of the CAN controller. You can find more information
86  * in the header file linux/can/netlink.h.
87  */
88 static int can_update_sample_point(const struct can_bittiming_const *btc,
89                           unsigned int sample_point_nominal, unsigned int tseg,
90                           unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
91                           unsigned int *sample_point_error_ptr)
92 {
93         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
94         unsigned int sample_point, best_sample_point = 0;
95         unsigned int tseg1, tseg2;
96         int i;
97
98         for (i = 0; i <= 1; i++) {
99                 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
100                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
101                 tseg1 = tseg - tseg2;
102                 if (tseg1 > btc->tseg1_max) {
103                         tseg1 = btc->tseg1_max;
104                         tseg2 = tseg - tseg1;
105                 }
106
107                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
108                 sample_point_error = abs(sample_point_nominal - sample_point);
109
110                 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
111                         best_sample_point = sample_point;
112                         best_sample_point_error = sample_point_error;
113                         *tseg1_ptr = tseg1;
114                         *tseg2_ptr = tseg2;
115                 }
116         }
117
118         if (sample_point_error_ptr)
119                 *sample_point_error_ptr = best_sample_point_error;
120
121         return best_sample_point;
122 }
123
124 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
125                               const struct can_bittiming_const *btc)
126 {
127         struct can_priv *priv = netdev_priv(dev);
128         unsigned int bitrate;                   /* current bitrate */
129         unsigned int bitrate_error;             /* difference between current and nominal value */
130         unsigned int best_bitrate_error = UINT_MAX;
131         unsigned int sample_point_error;        /* difference between current and nominal value */
132         unsigned int best_sample_point_error = UINT_MAX;
133         unsigned int sample_point_nominal;      /* nominal sample point */
134         unsigned int best_tseg = 0;             /* current best value for tseg */
135         unsigned int best_brp = 0;              /* current best value for brp */
136         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
137         u64 v64;
138
139         /* Use CiA recommended sample points */
140         if (bt->sample_point) {
141                 sample_point_nominal = bt->sample_point;
142         } else {
143                 if (bt->bitrate > 800000)
144                         sample_point_nominal = 750;
145                 else if (bt->bitrate > 500000)
146                         sample_point_nominal = 800;
147                 else
148                         sample_point_nominal = 875;
149         }
150
151         /* tseg even = round down, odd = round up */
152         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
153              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
154                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
155
156                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
157                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
158
159                 /* choose brp step which is possible in system */
160                 brp = (brp / btc->brp_inc) * btc->brp_inc;
161                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
162                         continue;
163
164                 bitrate = priv->clock.freq / (brp * tsegall);
165                 bitrate_error = abs(bt->bitrate - bitrate);
166
167                 /* tseg brp biterror */
168                 if (bitrate_error > best_bitrate_error)
169                         continue;
170
171                 /* reset sample point error if we have a better bitrate */
172                 if (bitrate_error < best_bitrate_error)
173                         best_sample_point_error = UINT_MAX;
174
175                 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
176                 if (sample_point_error > best_sample_point_error)
177                         continue;
178
179                 best_sample_point_error = sample_point_error;
180                 best_bitrate_error = bitrate_error;
181                 best_tseg = tseg / 2;
182                 best_brp = brp;
183
184                 if (bitrate_error == 0 && sample_point_error == 0)
185                         break;
186         }
187
188         if (best_bitrate_error) {
189                 /* Error in one-tenth of a percent */
190                 v64 = (u64)best_bitrate_error * 1000;
191                 do_div(v64, bt->bitrate);
192                 bitrate_error = (u32)v64;
193                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
194                         netdev_err(dev,
195                                    "bitrate error %d.%d%% too high\n",
196                                    bitrate_error / 10, bitrate_error % 10);
197                         return -EDOM;
198                 }
199                 netdev_warn(dev, "bitrate error %d.%d%%\n",
200                             bitrate_error / 10, bitrate_error % 10);
201         }
202
203         /* real sample point */
204         bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
205                                           &tseg1, &tseg2, NULL);
206
207         v64 = (u64)best_brp * 1000 * 1000 * 1000;
208         do_div(v64, priv->clock.freq);
209         bt->tq = (u32)v64;
210         bt->prop_seg = tseg1 / 2;
211         bt->phase_seg1 = tseg1 - bt->prop_seg;
212         bt->phase_seg2 = tseg2;
213
214         /* check for sjw user settings */
215         if (!bt->sjw || !btc->sjw_max) {
216                 bt->sjw = 1;
217         } else {
218                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
219                 if (bt->sjw > btc->sjw_max)
220                         bt->sjw = btc->sjw_max;
221                 /* bt->sjw must not be higher than tseg2 */
222                 if (tseg2 < bt->sjw)
223                         bt->sjw = tseg2;
224         }
225
226         bt->brp = best_brp;
227
228         /* real bitrate */
229         bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
230
231         return 0;
232 }
233 #else /* !CONFIG_CAN_CALC_BITTIMING */
234 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
235                               const struct can_bittiming_const *btc)
236 {
237         netdev_err(dev, "bit-timing calculation not available\n");
238         return -EINVAL;
239 }
240 #endif /* CONFIG_CAN_CALC_BITTIMING */
241
242 /*
243  * Checks the validity of the specified bit-timing parameters prop_seg,
244  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
245  * prescaler value brp. You can find more information in the header
246  * file linux/can/netlink.h.
247  */
248 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
249                                const struct can_bittiming_const *btc)
250 {
251         struct can_priv *priv = netdev_priv(dev);
252         int tseg1, alltseg;
253         u64 brp64;
254
255         tseg1 = bt->prop_seg + bt->phase_seg1;
256         if (!bt->sjw)
257                 bt->sjw = 1;
258         if (bt->sjw > btc->sjw_max ||
259             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
260             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
261                 return -ERANGE;
262
263         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
264         if (btc->brp_inc > 1)
265                 do_div(brp64, btc->brp_inc);
266         brp64 += 500000000UL - 1;
267         do_div(brp64, 1000000000UL); /* the practicable BRP */
268         if (btc->brp_inc > 1)
269                 brp64 *= btc->brp_inc;
270         bt->brp = (u32)brp64;
271
272         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
273                 return -EINVAL;
274
275         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
276         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
277         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
278
279         return 0;
280 }
281
282 /* Checks the validity of predefined bitrate settings */
283 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
284                                 const u32 *bitrate_const,
285                                 const unsigned int bitrate_const_cnt)
286 {
287         struct can_priv *priv = netdev_priv(dev);
288         unsigned int i;
289
290         for (i = 0; i < bitrate_const_cnt; i++) {
291                 if (bt->bitrate == bitrate_const[i])
292                         break;
293         }
294
295         if (i >= priv->bitrate_const_cnt)
296                 return -EINVAL;
297
298         return 0;
299 }
300
301 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
302                              const struct can_bittiming_const *btc,
303                              const u32 *bitrate_const,
304                              const unsigned int bitrate_const_cnt)
305 {
306         int err;
307
308         /*
309          * Depending on the given can_bittiming parameter structure the CAN
310          * timing parameters are calculated based on the provided bitrate OR
311          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
312          * provided directly which are then checked and fixed up.
313          */
314         if (!bt->tq && bt->bitrate && btc)
315                 err = can_calc_bittiming(dev, bt, btc);
316         else if (bt->tq && !bt->bitrate && btc)
317                 err = can_fixup_bittiming(dev, bt, btc);
318         else if (!bt->tq && bt->bitrate && bitrate_const)
319                 err = can_validate_bitrate(dev, bt, bitrate_const,
320                                            bitrate_const_cnt);
321         else
322                 err = -EINVAL;
323
324         return err;
325 }
326
327 static void can_update_state_error_stats(struct net_device *dev,
328                                          enum can_state new_state)
329 {
330         struct can_priv *priv = netdev_priv(dev);
331
332         if (new_state <= priv->state)
333                 return;
334
335         switch (new_state) {
336         case CAN_STATE_ERROR_WARNING:
337                 priv->can_stats.error_warning++;
338                 break;
339         case CAN_STATE_ERROR_PASSIVE:
340                 priv->can_stats.error_passive++;
341                 break;
342         case CAN_STATE_BUS_OFF:
343                 priv->can_stats.bus_off++;
344                 break;
345         default:
346                 break;
347         }
348 }
349
350 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
351 {
352         switch (state) {
353         case CAN_STATE_ERROR_ACTIVE:
354                 return CAN_ERR_CRTL_ACTIVE;
355         case CAN_STATE_ERROR_WARNING:
356                 return CAN_ERR_CRTL_TX_WARNING;
357         case CAN_STATE_ERROR_PASSIVE:
358                 return CAN_ERR_CRTL_TX_PASSIVE;
359         default:
360                 return 0;
361         }
362 }
363
364 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
365 {
366         switch (state) {
367         case CAN_STATE_ERROR_ACTIVE:
368                 return CAN_ERR_CRTL_ACTIVE;
369         case CAN_STATE_ERROR_WARNING:
370                 return CAN_ERR_CRTL_RX_WARNING;
371         case CAN_STATE_ERROR_PASSIVE:
372                 return CAN_ERR_CRTL_RX_PASSIVE;
373         default:
374                 return 0;
375         }
376 }
377
378 void can_change_state(struct net_device *dev, struct can_frame *cf,
379                       enum can_state tx_state, enum can_state rx_state)
380 {
381         struct can_priv *priv = netdev_priv(dev);
382         enum can_state new_state = max(tx_state, rx_state);
383
384         if (unlikely(new_state == priv->state)) {
385                 netdev_warn(dev, "%s: oops, state did not change", __func__);
386                 return;
387         }
388
389         netdev_dbg(dev, "New error state: %d\n", new_state);
390
391         can_update_state_error_stats(dev, new_state);
392         priv->state = new_state;
393
394         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
395                 cf->can_id |= CAN_ERR_BUSOFF;
396                 return;
397         }
398
399         cf->can_id |= CAN_ERR_CRTL;
400         cf->data[1] |= tx_state >= rx_state ?
401                        can_tx_state_to_frame(dev, tx_state) : 0;
402         cf->data[1] |= tx_state <= rx_state ?
403                        can_rx_state_to_frame(dev, rx_state) : 0;
404 }
405 EXPORT_SYMBOL_GPL(can_change_state);
406
407 /*
408  * Local echo of CAN messages
409  *
410  * CAN network devices *should* support a local echo functionality
411  * (see Documentation/networking/can.txt). To test the handling of CAN
412  * interfaces that do not support the local echo both driver types are
413  * implemented. In the case that the driver does not support the echo
414  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
415  * to perform the echo as a fallback solution.
416  */
417 static void can_flush_echo_skb(struct net_device *dev)
418 {
419         struct can_priv *priv = netdev_priv(dev);
420         struct net_device_stats *stats = &dev->stats;
421         int i;
422
423         for (i = 0; i < priv->echo_skb_max; i++) {
424                 if (priv->echo_skb[i]) {
425                         kfree_skb(priv->echo_skb[i]);
426                         priv->echo_skb[i] = NULL;
427                         stats->tx_dropped++;
428                         stats->tx_aborted_errors++;
429                 }
430         }
431 }
432
433 /*
434  * Put the skb on the stack to be looped backed locally lateron
435  *
436  * The function is typically called in the start_xmit function
437  * of the device driver. The driver must protect access to
438  * priv->echo_skb, if necessary.
439  */
440 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
441                       unsigned int idx)
442 {
443         struct can_priv *priv = netdev_priv(dev);
444
445         BUG_ON(idx >= priv->echo_skb_max);
446
447         /* check flag whether this packet has to be looped back */
448         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
449             (skb->protocol != htons(ETH_P_CAN) &&
450              skb->protocol != htons(ETH_P_CANFD))) {
451                 kfree_skb(skb);
452                 return;
453         }
454
455         if (!priv->echo_skb[idx]) {
456
457                 skb = can_create_echo_skb(skb);
458                 if (!skb)
459                         return;
460
461                 /* make settings for echo to reduce code in irq context */
462                 skb->pkt_type = PACKET_BROADCAST;
463                 skb->ip_summed = CHECKSUM_UNNECESSARY;
464                 skb->dev = dev;
465
466                 /* save this skb for tx interrupt echo handling */
467                 priv->echo_skb[idx] = skb;
468         } else {
469                 /* locking problem with netif_stop_queue() ?? */
470                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
471                 kfree_skb(skb);
472         }
473 }
474 EXPORT_SYMBOL_GPL(can_put_echo_skb);
475
476 /*
477  * Get the skb from the stack and loop it back locally
478  *
479  * The function is typically called when the TX done interrupt
480  * is handled in the device driver. The driver must protect
481  * access to priv->echo_skb, if necessary.
482  */
483 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
484 {
485         struct can_priv *priv = netdev_priv(dev);
486
487         BUG_ON(idx >= priv->echo_skb_max);
488
489         if (priv->echo_skb[idx]) {
490                 struct sk_buff *skb = priv->echo_skb[idx];
491                 struct can_frame *cf = (struct can_frame *)skb->data;
492                 u8 dlc = cf->can_dlc;
493
494                 netif_rx(priv->echo_skb[idx]);
495                 priv->echo_skb[idx] = NULL;
496
497                 return dlc;
498         }
499
500         return 0;
501 }
502 EXPORT_SYMBOL_GPL(can_get_echo_skb);
503
504 /*
505   * Remove the skb from the stack and free it.
506   *
507   * The function is typically called when TX failed.
508   */
509 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
510 {
511         struct can_priv *priv = netdev_priv(dev);
512
513         BUG_ON(idx >= priv->echo_skb_max);
514
515         if (priv->echo_skb[idx]) {
516                 dev_kfree_skb_any(priv->echo_skb[idx]);
517                 priv->echo_skb[idx] = NULL;
518         }
519 }
520 EXPORT_SYMBOL_GPL(can_free_echo_skb);
521
522 /*
523  * CAN device restart for bus-off recovery
524  */
525 static void can_restart(struct net_device *dev)
526 {
527         struct can_priv *priv = netdev_priv(dev);
528         struct net_device_stats *stats = &dev->stats;
529         struct sk_buff *skb;
530         struct can_frame *cf;
531         int err;
532
533         BUG_ON(netif_carrier_ok(dev));
534
535         /*
536          * No synchronization needed because the device is bus-off and
537          * no messages can come in or go out.
538          */
539         can_flush_echo_skb(dev);
540
541         /* send restart message upstream */
542         skb = alloc_can_err_skb(dev, &cf);
543         if (skb == NULL) {
544                 err = -ENOMEM;
545                 goto restart;
546         }
547         cf->can_id |= CAN_ERR_RESTARTED;
548
549         netif_rx(skb);
550
551         stats->rx_packets++;
552         stats->rx_bytes += cf->can_dlc;
553
554 restart:
555         netdev_dbg(dev, "restarted\n");
556         priv->can_stats.restarts++;
557
558         /* Now restart the device */
559         err = priv->do_set_mode(dev, CAN_MODE_START);
560
561         netif_carrier_on(dev);
562         if (err)
563                 netdev_err(dev, "Error %d during restart", err);
564 }
565
566 static void can_restart_work(struct work_struct *work)
567 {
568         struct delayed_work *dwork = to_delayed_work(work);
569         struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
570
571         can_restart(priv->dev);
572 }
573
574 int can_restart_now(struct net_device *dev)
575 {
576         struct can_priv *priv = netdev_priv(dev);
577
578         /*
579          * A manual restart is only permitted if automatic restart is
580          * disabled and the device is in the bus-off state
581          */
582         if (priv->restart_ms)
583                 return -EINVAL;
584         if (priv->state != CAN_STATE_BUS_OFF)
585                 return -EBUSY;
586
587         cancel_delayed_work_sync(&priv->restart_work);
588         can_restart(dev);
589
590         return 0;
591 }
592
593 /*
594  * CAN bus-off
595  *
596  * This functions should be called when the device goes bus-off to
597  * tell the netif layer that no more packets can be sent or received.
598  * If enabled, a timer is started to trigger bus-off recovery.
599  */
600 void can_bus_off(struct net_device *dev)
601 {
602         struct can_priv *priv = netdev_priv(dev);
603
604         netdev_dbg(dev, "bus-off\n");
605
606         netif_carrier_off(dev);
607
608         if (priv->restart_ms)
609                 schedule_delayed_work(&priv->restart_work,
610                                       msecs_to_jiffies(priv->restart_ms));
611 }
612 EXPORT_SYMBOL_GPL(can_bus_off);
613
614 static void can_setup(struct net_device *dev)
615 {
616         dev->type = ARPHRD_CAN;
617         dev->mtu = CAN_MTU;
618         dev->hard_header_len = 0;
619         dev->addr_len = 0;
620         dev->tx_queue_len = 10;
621
622         /* New-style flags. */
623         dev->flags = IFF_NOARP;
624         dev->features = NETIF_F_HW_CSUM;
625 }
626
627 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
628 {
629         struct sk_buff *skb;
630
631         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
632                                sizeof(struct can_frame));
633         if (unlikely(!skb))
634                 return NULL;
635
636         skb->protocol = htons(ETH_P_CAN);
637         skb->pkt_type = PACKET_BROADCAST;
638         skb->ip_summed = CHECKSUM_UNNECESSARY;
639
640         skb_reset_mac_header(skb);
641         skb_reset_network_header(skb);
642         skb_reset_transport_header(skb);
643
644         can_skb_reserve(skb);
645         can_skb_prv(skb)->ifindex = dev->ifindex;
646         can_skb_prv(skb)->skbcnt = 0;
647
648         *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
649         memset(*cf, 0, sizeof(struct can_frame));
650
651         return skb;
652 }
653 EXPORT_SYMBOL_GPL(alloc_can_skb);
654
655 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
656                                 struct canfd_frame **cfd)
657 {
658         struct sk_buff *skb;
659
660         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
661                                sizeof(struct canfd_frame));
662         if (unlikely(!skb))
663                 return NULL;
664
665         skb->protocol = htons(ETH_P_CANFD);
666         skb->pkt_type = PACKET_BROADCAST;
667         skb->ip_summed = CHECKSUM_UNNECESSARY;
668
669         skb_reset_mac_header(skb);
670         skb_reset_network_header(skb);
671         skb_reset_transport_header(skb);
672
673         can_skb_reserve(skb);
674         can_skb_prv(skb)->ifindex = dev->ifindex;
675         can_skb_prv(skb)->skbcnt = 0;
676
677         *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
678         memset(*cfd, 0, sizeof(struct canfd_frame));
679
680         return skb;
681 }
682 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
683
684 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
685 {
686         struct sk_buff *skb;
687
688         skb = alloc_can_skb(dev, cf);
689         if (unlikely(!skb))
690                 return NULL;
691
692         (*cf)->can_id = CAN_ERR_FLAG;
693         (*cf)->can_dlc = CAN_ERR_DLC;
694
695         return skb;
696 }
697 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
698
699 /*
700  * Allocate and setup space for the CAN network device
701  */
702 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
703 {
704         struct net_device *dev;
705         struct can_priv *priv;
706         int size;
707
708         if (echo_skb_max)
709                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
710                         echo_skb_max * sizeof(struct sk_buff *);
711         else
712                 size = sizeof_priv;
713
714         dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
715         if (!dev)
716                 return NULL;
717
718         priv = netdev_priv(dev);
719         priv->dev = dev;
720
721         if (echo_skb_max) {
722                 priv->echo_skb_max = echo_skb_max;
723                 priv->echo_skb = (void *)priv +
724                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
725         }
726
727         priv->state = CAN_STATE_STOPPED;
728
729         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
730
731         return dev;
732 }
733 EXPORT_SYMBOL_GPL(alloc_candev);
734
735 /*
736  * Free space of the CAN network device
737  */
738 void free_candev(struct net_device *dev)
739 {
740         free_netdev(dev);
741 }
742 EXPORT_SYMBOL_GPL(free_candev);
743
744 /*
745  * changing MTU and control mode for CAN/CANFD devices
746  */
747 int can_change_mtu(struct net_device *dev, int new_mtu)
748 {
749         struct can_priv *priv = netdev_priv(dev);
750
751         /* Do not allow changing the MTU while running */
752         if (dev->flags & IFF_UP)
753                 return -EBUSY;
754
755         /* allow change of MTU according to the CANFD ability of the device */
756         switch (new_mtu) {
757         case CAN_MTU:
758                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
759                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
760                         return -EINVAL;
761
762                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
763                 break;
764
765         case CANFD_MTU:
766                 /* check for potential CANFD ability */
767                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
768                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
769                         return -EINVAL;
770
771                 priv->ctrlmode |= CAN_CTRLMODE_FD;
772                 break;
773
774         default:
775                 return -EINVAL;
776         }
777
778         dev->mtu = new_mtu;
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(can_change_mtu);
782
783 /*
784  * Common open function when the device gets opened.
785  *
786  * This function should be called in the open function of the device
787  * driver.
788  */
789 int open_candev(struct net_device *dev)
790 {
791         struct can_priv *priv = netdev_priv(dev);
792
793         if (!priv->bittiming.bitrate) {
794                 netdev_err(dev, "bit-timing not yet defined\n");
795                 return -EINVAL;
796         }
797
798         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
799         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
800             (!priv->data_bittiming.bitrate ||
801              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
802                 netdev_err(dev, "incorrect/missing data bit-timing\n");
803                 return -EINVAL;
804         }
805
806         /* Switch carrier on if device was stopped while in bus-off state */
807         if (!netif_carrier_ok(dev))
808                 netif_carrier_on(dev);
809
810         return 0;
811 }
812 EXPORT_SYMBOL_GPL(open_candev);
813
814 /*
815  * Common close function for cleanup before the device gets closed.
816  *
817  * This function should be called in the close function of the device
818  * driver.
819  */
820 void close_candev(struct net_device *dev)
821 {
822         struct can_priv *priv = netdev_priv(dev);
823
824         cancel_delayed_work_sync(&priv->restart_work);
825         can_flush_echo_skb(dev);
826 }
827 EXPORT_SYMBOL_GPL(close_candev);
828
829 /*
830  * CAN netlink interface
831  */
832 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
833         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
834         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
835         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
836         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
837         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
838         [IFLA_CAN_BITTIMING_CONST]
839                                 = { .len = sizeof(struct can_bittiming_const) },
840         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
841         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
842         [IFLA_CAN_DATA_BITTIMING]
843                                 = { .len = sizeof(struct can_bittiming) },
844         [IFLA_CAN_DATA_BITTIMING_CONST]
845                                 = { .len = sizeof(struct can_bittiming_const) },
846 };
847
848 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
849 {
850         bool is_can_fd = false;
851
852         /* Make sure that valid CAN FD configurations always consist of
853          * - nominal/arbitration bittiming
854          * - data bittiming
855          * - control mode with CAN_CTRLMODE_FD set
856          */
857
858         if (!data)
859                 return 0;
860
861         if (data[IFLA_CAN_CTRLMODE]) {
862                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
863
864                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
865         }
866
867         if (is_can_fd) {
868                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
869                         return -EOPNOTSUPP;
870         }
871
872         if (data[IFLA_CAN_DATA_BITTIMING]) {
873                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
874                         return -EOPNOTSUPP;
875         }
876
877         return 0;
878 }
879
880 static int can_changelink(struct net_device *dev,
881                           struct nlattr *tb[], struct nlattr *data[])
882 {
883         struct can_priv *priv = netdev_priv(dev);
884         int err;
885
886         /* We need synchronization with dev->stop() */
887         ASSERT_RTNL();
888
889         if (data[IFLA_CAN_BITTIMING]) {
890                 struct can_bittiming bt;
891
892                 /* Do not allow changing bittiming while running */
893                 if (dev->flags & IFF_UP)
894                         return -EBUSY;
895
896                 /* Calculate bittiming parameters based on
897                  * bittiming_const if set, otherwise pass bitrate
898                  * directly via do_set_bitrate(). Bail out if neither
899                  * is given.
900                  */
901                 if (!priv->bittiming_const && !priv->do_set_bittiming)
902                         return -EOPNOTSUPP;
903
904                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
905                 err = can_get_bittiming(dev, &bt,
906                                         priv->bittiming_const,
907                                         priv->bitrate_const,
908                                         priv->bitrate_const_cnt);
909                 if (err)
910                         return err;
911                 memcpy(&priv->bittiming, &bt, sizeof(bt));
912
913                 if (priv->do_set_bittiming) {
914                         /* Finally, set the bit-timing registers */
915                         err = priv->do_set_bittiming(dev);
916                         if (err)
917                                 return err;
918                 }
919         }
920
921         if (data[IFLA_CAN_CTRLMODE]) {
922                 struct can_ctrlmode *cm;
923                 u32 ctrlstatic;
924                 u32 maskedflags;
925
926                 /* Do not allow changing controller mode while running */
927                 if (dev->flags & IFF_UP)
928                         return -EBUSY;
929                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
930                 ctrlstatic = priv->ctrlmode_static;
931                 maskedflags = cm->flags & cm->mask;
932
933                 /* check whether provided bits are allowed to be passed */
934                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
935                         return -EOPNOTSUPP;
936
937                 /* do not check for static fd-non-iso if 'fd' is disabled */
938                 if (!(maskedflags & CAN_CTRLMODE_FD))
939                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
940
941                 /* make sure static options are provided by configuration */
942                 if ((maskedflags & ctrlstatic) != ctrlstatic)
943                         return -EOPNOTSUPP;
944
945                 /* clear bits to be modified and copy the flag values */
946                 priv->ctrlmode &= ~cm->mask;
947                 priv->ctrlmode |= maskedflags;
948
949                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
950                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
951                         dev->mtu = CANFD_MTU;
952                 else
953                         dev->mtu = CAN_MTU;
954         }
955
956         if (data[IFLA_CAN_RESTART_MS]) {
957                 /* Do not allow changing restart delay while running */
958                 if (dev->flags & IFF_UP)
959                         return -EBUSY;
960                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
961         }
962
963         if (data[IFLA_CAN_RESTART]) {
964                 /* Do not allow a restart while not running */
965                 if (!(dev->flags & IFF_UP))
966                         return -EINVAL;
967                 err = can_restart_now(dev);
968                 if (err)
969                         return err;
970         }
971
972         if (data[IFLA_CAN_DATA_BITTIMING]) {
973                 struct can_bittiming dbt;
974
975                 /* Do not allow changing bittiming while running */
976                 if (dev->flags & IFF_UP)
977                         return -EBUSY;
978
979                 /* Calculate bittiming parameters based on
980                  * data_bittiming_const if set, otherwise pass bitrate
981                  * directly via do_set_bitrate(). Bail out if neither
982                  * is given.
983                  */
984                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
985                         return -EOPNOTSUPP;
986
987                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
988                        sizeof(dbt));
989                 err = can_get_bittiming(dev, &dbt,
990                                         priv->data_bittiming_const,
991                                         priv->data_bitrate_const,
992                                         priv->data_bitrate_const_cnt);
993                 if (err)
994                         return err;
995                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
996
997                 if (priv->do_set_data_bittiming) {
998                         /* Finally, set the bit-timing registers */
999                         err = priv->do_set_data_bittiming(dev);
1000                         if (err)
1001                                 return err;
1002                 }
1003         }
1004
1005         if (data[IFLA_CAN_TERMINATION]) {
1006                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1007                 const unsigned int num_term = priv->termination_const_cnt;
1008                 unsigned int i;
1009
1010                 if (!priv->do_set_termination)
1011                         return -EOPNOTSUPP;
1012
1013                 /* check whether given value is supported by the interface */
1014                 for (i = 0; i < num_term; i++) {
1015                         if (termval == priv->termination_const[i])
1016                                 break;
1017                 }
1018                 if (i >= num_term)
1019                         return -EINVAL;
1020
1021                 /* Finally, set the termination value */
1022                 err = priv->do_set_termination(dev, termval);
1023                 if (err)
1024                         return err;
1025
1026                 priv->termination = termval;
1027         }
1028
1029         return 0;
1030 }
1031
1032 static size_t can_get_size(const struct net_device *dev)
1033 {
1034         struct can_priv *priv = netdev_priv(dev);
1035         size_t size = 0;
1036
1037         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1038                 size += nla_total_size(sizeof(struct can_bittiming));
1039         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1040                 size += nla_total_size(sizeof(struct can_bittiming_const));
1041         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1042         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1043         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1044         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1045         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1046                 size += nla_total_size(sizeof(struct can_berr_counter));
1047         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1048                 size += nla_total_size(sizeof(struct can_bittiming));
1049         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1050                 size += nla_total_size(sizeof(struct can_bittiming_const));
1051         if (priv->termination_const) {
1052                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1053                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1054                                        priv->termination_const_cnt);
1055         }
1056         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1057                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1058                                        priv->bitrate_const_cnt);
1059         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1060                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1061                                        priv->data_bitrate_const_cnt);
1062
1063         return size;
1064 }
1065
1066 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1067 {
1068         struct can_priv *priv = netdev_priv(dev);
1069         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1070         struct can_berr_counter bec;
1071         enum can_state state = priv->state;
1072
1073         if (priv->do_get_state)
1074                 priv->do_get_state(dev, &state);
1075
1076         if ((priv->bittiming.bitrate &&
1077              nla_put(skb, IFLA_CAN_BITTIMING,
1078                      sizeof(priv->bittiming), &priv->bittiming)) ||
1079
1080             (priv->bittiming_const &&
1081              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1082                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1083
1084             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1085             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1086             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1087             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1088
1089             (priv->do_get_berr_counter &&
1090              !priv->do_get_berr_counter(dev, &bec) &&
1091              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1092
1093             (priv->data_bittiming.bitrate &&
1094              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1095                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1096
1097             (priv->data_bittiming_const &&
1098              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1099                      sizeof(*priv->data_bittiming_const),
1100                      priv->data_bittiming_const)) ||
1101
1102             (priv->termination_const &&
1103              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1104               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1105                       sizeof(*priv->termination_const) *
1106                       priv->termination_const_cnt,
1107                       priv->termination_const))) ||
1108
1109             (priv->bitrate_const &&
1110              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1111                      sizeof(*priv->bitrate_const) *
1112                      priv->bitrate_const_cnt,
1113                      priv->bitrate_const)) ||
1114
1115             (priv->data_bitrate_const &&
1116              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1117                      sizeof(*priv->data_bitrate_const) *
1118                      priv->data_bitrate_const_cnt,
1119                      priv->data_bitrate_const))
1120             )
1121
1122                 return -EMSGSIZE;
1123
1124         return 0;
1125 }
1126
1127 static size_t can_get_xstats_size(const struct net_device *dev)
1128 {
1129         return sizeof(struct can_device_stats);
1130 }
1131
1132 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1133 {
1134         struct can_priv *priv = netdev_priv(dev);
1135
1136         if (nla_put(skb, IFLA_INFO_XSTATS,
1137                     sizeof(priv->can_stats), &priv->can_stats))
1138                 goto nla_put_failure;
1139         return 0;
1140
1141 nla_put_failure:
1142         return -EMSGSIZE;
1143 }
1144
1145 static int can_newlink(struct net *src_net, struct net_device *dev,
1146                        struct nlattr *tb[], struct nlattr *data[])
1147 {
1148         return -EOPNOTSUPP;
1149 }
1150
1151 static void can_dellink(struct net_device *dev, struct list_head *head)
1152 {
1153         return;
1154 }
1155
1156 static struct rtnl_link_ops can_link_ops __read_mostly = {
1157         .kind           = "can",
1158         .maxtype        = IFLA_CAN_MAX,
1159         .policy         = can_policy,
1160         .setup          = can_setup,
1161         .validate       = can_validate,
1162         .newlink        = can_newlink,
1163         .changelink     = can_changelink,
1164         .dellink        = can_dellink,
1165         .get_size       = can_get_size,
1166         .fill_info      = can_fill_info,
1167         .get_xstats_size = can_get_xstats_size,
1168         .fill_xstats    = can_fill_xstats,
1169 };
1170
1171 /*
1172  * Register the CAN network device
1173  */
1174 int register_candev(struct net_device *dev)
1175 {
1176         struct can_priv *priv = netdev_priv(dev);
1177
1178         /* Ensure termination_const, termination_const_cnt and
1179          * do_set_termination consistency. All must be either set or
1180          * unset.
1181          */
1182         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1183             (!priv->termination_const != !priv->do_set_termination))
1184                 return -EINVAL;
1185
1186         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1187                 return -EINVAL;
1188
1189         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1190                 return -EINVAL;
1191
1192         dev->rtnl_link_ops = &can_link_ops;
1193         return register_netdev(dev);
1194 }
1195 EXPORT_SYMBOL_GPL(register_candev);
1196
1197 /*
1198  * Unregister the CAN network device
1199  */
1200 void unregister_candev(struct net_device *dev)
1201 {
1202         unregister_netdev(dev);
1203 }
1204 EXPORT_SYMBOL_GPL(unregister_candev);
1205
1206 /*
1207  * Test if a network device is a candev based device
1208  * and return the can_priv* if so.
1209  */
1210 struct can_priv *safe_candev_priv(struct net_device *dev)
1211 {
1212         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1213                 return NULL;
1214
1215         return netdev_priv(dev);
1216 }
1217 EXPORT_SYMBOL_GPL(safe_candev_priv);
1218
1219 static __init int can_dev_init(void)
1220 {
1221         int err;
1222
1223         can_led_notifier_init();
1224
1225         err = rtnl_link_register(&can_link_ops);
1226         if (!err)
1227                 printk(KERN_INFO MOD_DESC "\n");
1228
1229         return err;
1230 }
1231 module_init(can_dev_init);
1232
1233 static __exit void can_dev_exit(void)
1234 {
1235         rtnl_link_unregister(&can_link_ops);
1236
1237         can_led_notifier_exit();
1238 }
1239 module_exit(can_dev_exit);
1240
1241 MODULE_ALIAS_RTNL_LINK("can");