2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
36 * Your platform definition file should specify something like:
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
41 * .model = CAN_MCP251X_MCP2510,
42 * .power_enable = mcp251x_power_enable,
43 * .transceiver_enable = NULL,
46 * static struct spi_board_info spi_board_info[] = {
48 * .modalias = "mcp251x",
49 * .platform_data = &mcp251x_info,
51 * .max_speed_hz = 2*1000*1000,
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
61 #include <linux/can.h>
62 #include <linux/can/core.h>
63 #include <linux/can/dev.h>
64 #include <linux/can/platform/mcp251x.h>
65 #include <linux/completion.h>
66 #include <linux/delay.h>
67 #include <linux/device.h>
68 #include <linux/dma-mapping.h>
69 #include <linux/freezer.h>
70 #include <linux/interrupt.h>
72 #include <linux/kernel.h>
73 #include <linux/module.h>
74 #include <linux/netdevice.h>
75 #include <linux/platform_device.h>
76 #include <linux/spi/spi.h>
77 #include <linux/uaccess.h>
79 /* SPI interface instruction set */
80 #define INSTRUCTION_WRITE 0x02
81 #define INSTRUCTION_READ 0x03
82 #define INSTRUCTION_BIT_MODIFY 0x05
83 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85 #define INSTRUCTION_RESET 0xC0
87 /* MPC251x registers */
90 # define CANCTRL_REQOP_MASK 0xe0
91 # define CANCTRL_REQOP_CONF 0x80
92 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
93 # define CANCTRL_REQOP_LOOPBACK 0x40
94 # define CANCTRL_REQOP_SLEEP 0x20
95 # define CANCTRL_REQOP_NORMAL 0x00
96 # define CANCTRL_OSM 0x08
97 # define CANCTRL_ABAT 0x10
101 # define CNF1_SJW_SHIFT 6
103 # define CNF2_BTLMODE 0x80
104 # define CNF2_SAM 0x40
105 # define CNF2_PS1_SHIFT 3
107 # define CNF3_SOF 0x08
108 # define CNF3_WAKFIL 0x04
109 # define CNF3_PHSEG2_MASK 0x07
111 # define CANINTE_MERRE 0x80
112 # define CANINTE_WAKIE 0x40
113 # define CANINTE_ERRIE 0x20
114 # define CANINTE_TX2IE 0x10
115 # define CANINTE_TX1IE 0x08
116 # define CANINTE_TX0IE 0x04
117 # define CANINTE_RX1IE 0x02
118 # define CANINTE_RX0IE 0x01
120 # define CANINTF_MERRF 0x80
121 # define CANINTF_WAKIF 0x40
122 # define CANINTF_ERRIF 0x20
123 # define CANINTF_TX2IF 0x10
124 # define CANINTF_TX1IF 0x08
125 # define CANINTF_TX0IF 0x04
126 # define CANINTF_RX1IF 0x02
127 # define CANINTF_RX0IF 0x01
129 # define EFLG_EWARN 0x01
130 # define EFLG_RXWAR 0x02
131 # define EFLG_TXWAR 0x04
132 # define EFLG_RXEP 0x08
133 # define EFLG_TXEP 0x10
134 # define EFLG_TXBO 0x20
135 # define EFLG_RX0OVR 0x40
136 # define EFLG_RX1OVR 0x80
137 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
138 # define TXBCTRL_ABTF 0x40
139 # define TXBCTRL_MLOA 0x20
140 # define TXBCTRL_TXERR 0x10
141 # define TXBCTRL_TXREQ 0x08
142 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
143 # define SIDH_SHIFT 3
144 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
145 # define SIDL_SID_MASK 7
146 # define SIDL_SID_SHIFT 5
147 # define SIDL_EXIDE_SHIFT 3
148 # define SIDL_EID_SHIFT 16
149 # define SIDL_EID_MASK 3
150 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
151 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
152 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
153 # define DLC_RTR_SHIFT 6
154 #define TXBCTRL_OFF 0
155 #define TXBSIDH_OFF 1
156 #define TXBSIDL_OFF 2
157 #define TXBEID8_OFF 3
158 #define TXBEID0_OFF 4
161 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
162 # define RXBCTRL_BUKT 0x04
163 # define RXBCTRL_RXM0 0x20
164 # define RXBCTRL_RXM1 0x40
165 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
166 # define RXBSIDH_SHIFT 3
167 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
168 # define RXBSIDL_IDE 0x08
169 # define RXBSIDL_EID 3
170 # define RXBSIDL_SHIFT 5
171 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
172 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
173 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
174 # define RXBDLC_LEN_MASK 0x0f
175 # define RXBDLC_RTR 0x40
176 #define RXBCTRL_OFF 0
177 #define RXBSIDH_OFF 1
178 #define RXBSIDL_OFF 2
179 #define RXBEID8_OFF 3
180 #define RXBEID0_OFF 4
184 #define GET_BYTE(val, byte) \
185 (((val) >> ((byte) * 8)) & 0xff)
186 #define SET_BYTE(val, byte) \
187 (((val) & 0xff) << ((byte) * 8))
190 * Buffer size required for the largest SPI transfer (i.e., reading a
193 #define CAN_FRAME_MAX_DATA_LEN 8
194 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
195 #define CAN_FRAME_MAX_BITS 128
197 #define TX_ECHO_SKB_MAX 1
199 #define DEVICE_NAME "mcp251x"
201 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
202 module_param(mcp251x_enable_dma, int, S_IRUGO);
203 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
205 static struct can_bittiming_const mcp251x_bittiming_const = {
217 struct mcp251x_priv {
219 struct net_device *net;
220 struct spi_device *spi;
222 struct mutex spi_lock; /* SPI buffer lock */
225 dma_addr_t spi_tx_dma;
226 dma_addr_t spi_rx_dma;
228 struct sk_buff *tx_skb;
230 struct workqueue_struct *wq;
231 struct work_struct tx_work;
232 struct work_struct irq_work;
233 struct completion awake;
237 #define AFTER_SUSPEND_UP 1
238 #define AFTER_SUSPEND_DOWN 2
239 #define AFTER_SUSPEND_POWER 4
240 #define AFTER_SUSPEND_RESTART 8
244 static void mcp251x_clean(struct net_device *net)
246 struct mcp251x_priv *priv = netdev_priv(net);
248 net->stats.tx_errors++;
250 dev_kfree_skb(priv->tx_skb);
252 can_free_echo_skb(priv->net, 0);
258 * Note about handling of error return of mcp251x_spi_trans: accessing
259 * registers via SPI is not really different conceptually than using
260 * normal I/O assembler instructions, although it's much more
261 * complicated from a practical POV. So it's not advisable to always
262 * check the return value of this function. Imagine that every
263 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
264 * error();", it would be a great mess (well there are some situation
265 * when exception handling C++ like could be useful after all). So we
266 * just check that transfers are OK at the beginning of our
267 * conversation with the chip and to avoid doing really nasty things
268 * (like injecting bogus packets in the network stack).
270 static int mcp251x_spi_trans(struct spi_device *spi, int len)
272 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
273 struct spi_transfer t = {
274 .tx_buf = priv->spi_tx_buf,
275 .rx_buf = priv->spi_rx_buf,
279 struct spi_message m;
282 spi_message_init(&m);
284 if (mcp251x_enable_dma) {
285 t.tx_dma = priv->spi_tx_dma;
286 t.rx_dma = priv->spi_rx_dma;
290 spi_message_add_tail(&t, &m);
292 ret = spi_sync(spi, &m);
294 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
298 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
300 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
303 mutex_lock(&priv->spi_lock);
305 priv->spi_tx_buf[0] = INSTRUCTION_READ;
306 priv->spi_tx_buf[1] = reg;
308 mcp251x_spi_trans(spi, 3);
309 val = priv->spi_rx_buf[2];
311 mutex_unlock(&priv->spi_lock);
316 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
318 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
320 mutex_lock(&priv->spi_lock);
322 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
323 priv->spi_tx_buf[1] = reg;
324 priv->spi_tx_buf[2] = val;
326 mcp251x_spi_trans(spi, 3);
328 mutex_unlock(&priv->spi_lock);
331 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
332 u8 mask, uint8_t val)
334 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
336 mutex_lock(&priv->spi_lock);
338 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
339 priv->spi_tx_buf[1] = reg;
340 priv->spi_tx_buf[2] = mask;
341 priv->spi_tx_buf[3] = val;
343 mcp251x_spi_trans(spi, 4);
345 mutex_unlock(&priv->spi_lock);
348 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
349 int len, int tx_buf_idx)
351 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
352 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
354 if (pdata->model == CAN_MCP251X_MCP2510) {
357 for (i = 1; i < TXBDAT_OFF + len; i++)
358 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
361 mutex_lock(&priv->spi_lock);
362 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
363 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
364 mutex_unlock(&priv->spi_lock);
368 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
371 u32 sid, eid, exide, rtr;
372 u8 buf[SPI_TRANSFER_BUF_LEN];
374 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
376 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
378 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
379 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
380 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
382 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
383 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
384 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
385 (exide << SIDL_EXIDE_SHIFT) |
386 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
387 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
388 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
389 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
390 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
391 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
392 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
395 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
398 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
399 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
401 if (pdata->model == CAN_MCP251X_MCP2510) {
404 for (i = 1; i < RXBDAT_OFF; i++)
405 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
406 len = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
409 for (; i < (RXBDAT_OFF + len); i++)
410 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
412 mutex_lock(&priv->spi_lock);
414 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
415 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
416 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
418 mutex_unlock(&priv->spi_lock);
422 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
424 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
426 struct can_frame *frame;
427 u8 buf[SPI_TRANSFER_BUF_LEN];
429 skb = alloc_can_skb(priv->net, &frame);
431 dev_err(&spi->dev, "cannot allocate RX skb\n");
432 priv->net->stats.rx_dropped++;
436 mcp251x_hw_rx_frame(spi, buf, buf_idx);
437 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
438 /* Extended ID format */
439 frame->can_id = CAN_EFF_FLAG;
441 /* Extended ID part */
442 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
443 SET_BYTE(buf[RXBEID8_OFF], 1) |
444 SET_BYTE(buf[RXBEID0_OFF], 0) |
445 /* Standard ID part */
446 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
447 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
448 /* Remote transmission request */
449 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
450 frame->can_id |= CAN_RTR_FLAG;
452 /* Standard ID format */
454 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
455 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
458 frame->can_dlc = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
459 if (frame->can_dlc > 8) {
460 dev_warn(&spi->dev, "invalid frame recevied\n");
461 priv->net->stats.rx_errors++;
465 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
467 priv->net->stats.rx_packets++;
468 priv->net->stats.rx_bytes += frame->can_dlc;
472 static void mcp251x_hw_sleep(struct spi_device *spi)
474 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
477 static void mcp251x_hw_wakeup(struct spi_device *spi)
479 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
483 /* Can only wake up by generating a wake-up interrupt. */
484 mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
485 mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
487 /* Wait until the device is awake */
488 if (!wait_for_completion_timeout(&priv->awake, HZ))
489 dev_err(&spi->dev, "MCP251x didn't wake-up\n");
492 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
493 struct net_device *net)
495 struct mcp251x_priv *priv = netdev_priv(net);
496 struct spi_device *spi = priv->spi;
498 if (priv->tx_skb || priv->tx_len) {
499 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
500 netif_stop_queue(net);
501 return NETDEV_TX_BUSY;
504 if (skb->len != sizeof(struct can_frame)) {
505 dev_err(&spi->dev, "dropping packet - bad length\n");
507 net->stats.tx_dropped++;
511 netif_stop_queue(net);
513 net->trans_start = jiffies;
514 queue_work(priv->wq, &priv->tx_work);
519 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
521 struct mcp251x_priv *priv = netdev_priv(net);
525 /* We have to delay work since SPI I/O may sleep */
526 priv->can.state = CAN_STATE_ERROR_ACTIVE;
527 priv->restart_tx = 1;
528 if (priv->can.restart_ms == 0)
529 priv->after_suspend = AFTER_SUSPEND_RESTART;
530 queue_work(priv->wq, &priv->irq_work);
539 static void mcp251x_set_normal_mode(struct spi_device *spi)
541 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
542 unsigned long timeout;
544 /* Enable interrupts */
545 mcp251x_write_reg(spi, CANINTE,
546 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
547 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
550 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
551 /* Put device into loopback mode */
552 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
554 /* Put device into normal mode */
555 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
557 /* Wait for the device to enter normal mode */
558 timeout = jiffies + HZ;
559 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
561 if (time_after(jiffies, timeout)) {
562 dev_err(&spi->dev, "MCP251x didn't"
563 " enter in normal mode\n");
568 priv->can.state = CAN_STATE_ERROR_ACTIVE;
571 static int mcp251x_do_set_bittiming(struct net_device *net)
573 struct mcp251x_priv *priv = netdev_priv(net);
574 struct can_bittiming *bt = &priv->can.bittiming;
575 struct spi_device *spi = priv->spi;
577 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
579 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
580 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
582 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
584 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
585 (bt->phase_seg2 - 1));
586 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
587 mcp251x_read_reg(spi, CNF1),
588 mcp251x_read_reg(spi, CNF2),
589 mcp251x_read_reg(spi, CNF3));
594 static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
595 struct spi_device *spi)
597 mcp251x_do_set_bittiming(net);
599 /* Enable RX0->RX1 buffer roll over and disable filters */
600 mcp251x_write_bits(spi, RXBCTRL(0),
601 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
602 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
603 mcp251x_write_bits(spi, RXBCTRL(1),
604 RXBCTRL_RXM0 | RXBCTRL_RXM1,
605 RXBCTRL_RXM0 | RXBCTRL_RXM1);
609 static void mcp251x_hw_reset(struct spi_device *spi)
611 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
614 mutex_lock(&priv->spi_lock);
616 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
618 ret = spi_write(spi, priv->spi_tx_buf, 1);
620 mutex_unlock(&priv->spi_lock);
623 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
624 /* Wait for reset to finish */
628 static int mcp251x_hw_probe(struct spi_device *spi)
632 mcp251x_hw_reset(spi);
635 * Please note that these are "magic values" based on after
636 * reset defaults taken from data sheet which allows us to see
637 * if we really have a chip on the bus (we avoid common all
638 * zeroes or all ones situations)
640 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
641 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
643 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
645 /* Check for power up default values */
646 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
649 static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
651 struct net_device *net = (struct net_device *)dev_id;
652 struct mcp251x_priv *priv = netdev_priv(net);
654 /* Schedule bottom half */
655 if (!work_pending(&priv->irq_work))
656 queue_work(priv->wq, &priv->irq_work);
661 static int mcp251x_open(struct net_device *net)
663 struct mcp251x_priv *priv = netdev_priv(net);
664 struct spi_device *spi = priv->spi;
665 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
668 ret = open_candev(net);
670 dev_err(&spi->dev, "unable to set initial baudrate!\n");
674 if (pdata->transceiver_enable)
675 pdata->transceiver_enable(1);
677 priv->force_quit = 0;
681 ret = request_irq(spi->irq, mcp251x_can_isr,
682 IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
684 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
685 if (pdata->transceiver_enable)
686 pdata->transceiver_enable(0);
691 mcp251x_hw_wakeup(spi);
692 mcp251x_hw_reset(spi);
693 ret = mcp251x_setup(net, priv, spi);
695 free_irq(spi->irq, net);
696 mcp251x_hw_sleep(spi);
697 if (pdata->transceiver_enable)
698 pdata->transceiver_enable(0);
702 mcp251x_set_normal_mode(spi);
703 netif_wake_queue(net);
708 static int mcp251x_stop(struct net_device *net)
710 struct mcp251x_priv *priv = netdev_priv(net);
711 struct spi_device *spi = priv->spi;
712 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
716 /* Disable and clear pending interrupts */
717 mcp251x_write_reg(spi, CANINTE, 0x00);
718 mcp251x_write_reg(spi, CANINTF, 0x00);
720 priv->force_quit = 1;
721 free_irq(spi->irq, net);
722 flush_workqueue(priv->wq);
724 mcp251x_write_reg(spi, TXBCTRL(0), 0);
725 if (priv->tx_skb || priv->tx_len)
728 mcp251x_hw_sleep(spi);
730 if (pdata->transceiver_enable)
731 pdata->transceiver_enable(0);
733 priv->can.state = CAN_STATE_STOPPED;
738 static void mcp251x_tx_work_handler(struct work_struct *ws)
740 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
742 struct spi_device *spi = priv->spi;
743 struct net_device *net = priv->net;
744 struct can_frame *frame;
747 frame = (struct can_frame *)priv->tx_skb->data;
749 if (priv->can.state == CAN_STATE_BUS_OFF) {
751 netif_wake_queue(net);
754 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
755 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
756 mcp251x_hw_tx(spi, frame, 0);
757 priv->tx_len = 1 + frame->can_dlc;
758 can_put_echo_skb(priv->tx_skb, net, 0);
763 static void mcp251x_irq_work_handler(struct work_struct *ws)
765 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
767 struct spi_device *spi = priv->spi;
768 struct net_device *net = priv->net;
771 enum can_state new_state;
773 if (priv->after_suspend) {
775 mcp251x_hw_reset(spi);
776 mcp251x_setup(net, priv, spi);
777 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
778 mcp251x_set_normal_mode(spi);
779 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
780 netif_device_attach(net);
781 /* Clean since we lost tx buffer */
782 if (priv->tx_skb || priv->tx_len) {
784 netif_wake_queue(net);
786 mcp251x_set_normal_mode(spi);
788 mcp251x_hw_sleep(spi);
790 priv->after_suspend = 0;
793 if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
796 while (!priv->force_quit && !freezing(current)) {
797 u8 eflag = mcp251x_read_reg(spi, EFLG);
798 int can_id = 0, data1 = 0;
800 mcp251x_write_reg(spi, EFLG, 0x00);
802 if (priv->restart_tx) {
803 priv->restart_tx = 0;
804 mcp251x_write_reg(spi, TXBCTRL(0), 0);
805 if (priv->tx_skb || priv->tx_len)
807 netif_wake_queue(net);
808 can_id |= CAN_ERR_RESTARTED;
812 /* Wait whilst the device wakes up */
817 intf = mcp251x_read_reg(spi, CANINTF);
818 mcp251x_write_bits(spi, CANINTF, intf, 0x00);
820 /* Update can state */
821 if (eflag & EFLG_TXBO) {
822 new_state = CAN_STATE_BUS_OFF;
823 can_id |= CAN_ERR_BUSOFF;
824 } else if (eflag & EFLG_TXEP) {
825 new_state = CAN_STATE_ERROR_PASSIVE;
826 can_id |= CAN_ERR_CRTL;
827 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
828 } else if (eflag & EFLG_RXEP) {
829 new_state = CAN_STATE_ERROR_PASSIVE;
830 can_id |= CAN_ERR_CRTL;
831 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
832 } else if (eflag & EFLG_TXWAR) {
833 new_state = CAN_STATE_ERROR_WARNING;
834 can_id |= CAN_ERR_CRTL;
835 data1 |= CAN_ERR_CRTL_TX_WARNING;
836 } else if (eflag & EFLG_RXWAR) {
837 new_state = CAN_STATE_ERROR_WARNING;
838 can_id |= CAN_ERR_CRTL;
839 data1 |= CAN_ERR_CRTL_RX_WARNING;
841 new_state = CAN_STATE_ERROR_ACTIVE;
844 /* Update can state statistics */
845 switch (priv->can.state) {
846 case CAN_STATE_ERROR_ACTIVE:
847 if (new_state >= CAN_STATE_ERROR_WARNING &&
848 new_state <= CAN_STATE_BUS_OFF)
849 priv->can.can_stats.error_warning++;
850 case CAN_STATE_ERROR_WARNING: /* fallthrough */
851 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
852 new_state <= CAN_STATE_BUS_OFF)
853 priv->can.can_stats.error_passive++;
858 priv->can.state = new_state;
860 if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
862 struct can_frame *frame;
864 /* Create error frame */
865 skb = alloc_can_err_skb(net, &frame);
867 /* Set error frame flags based on bus state */
868 frame->can_id = can_id;
869 frame->data[1] = data1;
871 /* Update net stats for overflows */
872 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
873 if (eflag & EFLG_RX0OVR)
874 net->stats.rx_over_errors++;
875 if (eflag & EFLG_RX1OVR)
876 net->stats.rx_over_errors++;
877 frame->can_id |= CAN_ERR_CRTL;
879 CAN_ERR_CRTL_RX_OVERFLOW;
885 "cannot allocate error skb\n");
889 if (priv->can.state == CAN_STATE_BUS_OFF) {
890 if (priv->can.restart_ms == 0) {
892 mcp251x_hw_sleep(spi);
900 if (intf & CANINTF_WAKIF)
901 complete(&priv->awake);
903 if (intf & CANINTF_MERRF) {
904 /* If there are pending Tx buffers, restart queue */
905 txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
906 if (!(txbnctrl & TXBCTRL_TXREQ)) {
907 if (priv->tx_skb || priv->tx_len)
909 netif_wake_queue(net);
913 if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
914 net->stats.tx_packets++;
915 net->stats.tx_bytes += priv->tx_len - 1;
917 can_get_echo_skb(net, 0);
920 netif_wake_queue(net);
923 if (intf & CANINTF_RX0IF)
924 mcp251x_hw_rx(spi, 0);
926 if (intf & CANINTF_RX1IF)
927 mcp251x_hw_rx(spi, 1);
931 static const struct net_device_ops mcp251x_netdev_ops = {
932 .ndo_open = mcp251x_open,
933 .ndo_stop = mcp251x_stop,
934 .ndo_start_xmit = mcp251x_hard_start_xmit,
937 static int __devinit mcp251x_can_probe(struct spi_device *spi)
939 struct net_device *net;
940 struct mcp251x_priv *priv;
941 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
945 /* Platform data is required for osc freq */
948 /* Allocate can/net device */
949 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
955 net->netdev_ops = &mcp251x_netdev_ops;
956 net->flags |= IFF_ECHO;
958 priv = netdev_priv(net);
959 priv->can.bittiming_const = &mcp251x_bittiming_const;
960 priv->can.do_set_mode = mcp251x_do_set_mode;
961 priv->can.clock.freq = pdata->oscillator_frequency / 2;
963 dev_set_drvdata(&spi->dev, priv);
966 mutex_init(&priv->spi_lock);
968 /* If requested, allocate DMA buffers */
969 if (mcp251x_enable_dma) {
970 spi->dev.coherent_dma_mask = ~0;
973 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
974 * that much and share it between Tx and Rx DMA buffers.
976 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
981 if (priv->spi_tx_buf) {
982 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
984 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
987 /* Fall back to non-DMA */
988 mcp251x_enable_dma = 0;
992 /* Allocate non-DMA buffers */
993 if (!mcp251x_enable_dma) {
994 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
995 if (!priv->spi_tx_buf) {
999 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1000 if (!priv->spi_tx_buf) {
1006 if (pdata->power_enable)
1007 pdata->power_enable(1);
1009 /* Call out to platform specific setup */
1010 if (pdata->board_specific_setup)
1011 pdata->board_specific_setup(spi);
1013 SET_NETDEV_DEV(net, &spi->dev);
1015 priv->wq = create_freezeable_workqueue("mcp251x_wq");
1017 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1018 INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
1020 init_completion(&priv->awake);
1022 /* Configure the SPI bus */
1023 spi->mode = SPI_MODE_0;
1024 spi->bits_per_word = 8;
1027 if (!mcp251x_hw_probe(spi)) {
1028 dev_info(&spi->dev, "Probe failed\n");
1031 mcp251x_hw_sleep(spi);
1033 if (pdata->transceiver_enable)
1034 pdata->transceiver_enable(0);
1036 ret = register_candev(net);
1038 dev_info(&spi->dev, "probed\n");
1042 if (!mcp251x_enable_dma)
1043 kfree(priv->spi_rx_buf);
1045 if (!mcp251x_enable_dma)
1046 kfree(priv->spi_tx_buf);
1049 if (mcp251x_enable_dma)
1050 dma_free_coherent(&spi->dev, PAGE_SIZE,
1051 priv->spi_tx_buf, priv->spi_tx_dma);
1053 if (pdata->power_enable)
1054 pdata->power_enable(0);
1055 dev_err(&spi->dev, "probe failed\n");
1060 static int __devexit mcp251x_can_remove(struct spi_device *spi)
1062 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1063 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1064 struct net_device *net = priv->net;
1066 unregister_candev(net);
1069 priv->force_quit = 1;
1070 flush_workqueue(priv->wq);
1071 destroy_workqueue(priv->wq);
1073 if (mcp251x_enable_dma) {
1074 dma_free_coherent(&spi->dev, PAGE_SIZE,
1075 priv->spi_tx_buf, priv->spi_tx_dma);
1077 kfree(priv->spi_tx_buf);
1078 kfree(priv->spi_rx_buf);
1081 if (pdata->power_enable)
1082 pdata->power_enable(0);
1088 static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1090 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1091 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1092 struct net_device *net = priv->net;
1094 if (netif_running(net)) {
1095 netif_device_detach(net);
1097 mcp251x_hw_sleep(spi);
1098 if (pdata->transceiver_enable)
1099 pdata->transceiver_enable(0);
1100 priv->after_suspend = AFTER_SUSPEND_UP;
1102 priv->after_suspend = AFTER_SUSPEND_DOWN;
1105 if (pdata->power_enable) {
1106 pdata->power_enable(0);
1107 priv->after_suspend |= AFTER_SUSPEND_POWER;
1113 static int mcp251x_can_resume(struct spi_device *spi)
1115 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1116 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1118 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1119 pdata->power_enable(1);
1120 queue_work(priv->wq, &priv->irq_work);
1122 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1123 if (pdata->transceiver_enable)
1124 pdata->transceiver_enable(1);
1125 queue_work(priv->wq, &priv->irq_work);
1127 priv->after_suspend = 0;
1133 #define mcp251x_can_suspend NULL
1134 #define mcp251x_can_resume NULL
1137 static struct spi_driver mcp251x_can_driver = {
1139 .name = DEVICE_NAME,
1140 .bus = &spi_bus_type,
1141 .owner = THIS_MODULE,
1144 .probe = mcp251x_can_probe,
1145 .remove = __devexit_p(mcp251x_can_remove),
1146 .suspend = mcp251x_can_suspend,
1147 .resume = mcp251x_can_resume,
1150 static int __init mcp251x_can_init(void)
1152 return spi_register_driver(&mcp251x_can_driver);
1155 static void __exit mcp251x_can_exit(void)
1157 spi_unregister_driver(&mcp251x_can_driver);
1160 module_init(mcp251x_can_init);
1161 module_exit(mcp251x_can_exit);
1163 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1164 "Christian Pellegrin <chripell@evolware.org>");
1165 MODULE_DESCRIPTION("Microchip 251x CAN driver");
1166 MODULE_LICENSE("GPL v2");