]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/cassini.c
Merge branch 'io_remap_pfn_range' of git://www.jni.nu/cris
[karo-tx-linux.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targetted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
97
98 #include <net/checksum.h>
99
100 #include <asm/atomic.h>
101 #include <asm/system.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105
106 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS            num_online_cpus()
109
110 #define cas_skb_release(x)  netif_rx(x)
111
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
116
117 #include "cassini.h"
118
119 #define USE_TX_COMPWB      /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
121 #define USE_RX_BLANK       /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
123
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125  * also, we need to make cp->lock finer-grained.
126  */
127 #undef  USE_PCI_INTB
128 #undef  USE_PCI_INTC
129 #undef  USE_PCI_INTD
130 #undef  USE_QOS
131
132 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
133
134 /* rx processing options */
135 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
138 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
139 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
140
141 #define DRV_MODULE_NAME         "cassini"
142 #define DRV_MODULE_VERSION      "1.6"
143 #define DRV_MODULE_RELDATE      "21 May 2008"
144
145 #define CAS_DEF_MSG_ENABLE        \
146         (NETIF_MSG_DRV          | \
147          NETIF_MSG_PROBE        | \
148          NETIF_MSG_LINK         | \
149          NETIF_MSG_TIMER        | \
150          NETIF_MSG_IFDOWN       | \
151          NETIF_MSG_IFUP         | \
152          NETIF_MSG_RX_ERR       | \
153          NETIF_MSG_TX_ERR)
154
155 /* length of time before we decide the hardware is borked,
156  * and dev->tx_timeout() should be called to fix the problem
157  */
158 #define CAS_TX_TIMEOUT                  (HZ)
159 #define CAS_LINK_TIMEOUT                (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT           (1)
161
162 /* timeout values for state changing. these specify the number
163  * of 10us delays to be used before giving up.
164  */
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES     5000
167
168 /* specify a minimum frame size to deal with some fifo issues
169  * max mtu == 2 * page size - ethernet header - 64 - swivel =
170  *            2 * page_size - 0x50
171  */
172 #define CAS_MIN_FRAME                   97
173 #define CAS_1000MB_MIN_FRAME            255
174 #define CAS_MIN_MTU                     60
175 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
176
177 #if 1
178 /*
179  * Eliminate these and use separate atomic counters for each, to
180  * avoid a race condition.
181  */
182 #else
183 #define CAS_RESET_MTU                   1
184 #define CAS_RESET_ALL                   2
185 #define CAS_RESET_SPARE                 3
186 #endif
187
188 static char version[] __devinitdata =
189         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
190
191 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
193
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
202
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /*
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222
223
224
225 static u16 link_modes[] __devinitdata = {
226         BMCR_ANENABLE,                   /* 0 : autoneg */
227         0,                               /* 1 : 10bt half duplex */
228         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
229         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
230         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
231         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
232 };
233
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239         { 0, }
240 };
241
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243
244 static void cas_set_link_modes(struct cas *cp);
245
246 static inline void cas_lock_tx(struct cas *cp)
247 {
248         int i;
249
250         for (i = 0; i < N_TX_RINGS; i++)
251                 spin_lock(&cp->tx_lock[i]);
252 }
253
254 static inline void cas_lock_all(struct cas *cp)
255 {
256         spin_lock_irq(&cp->lock);
257         cas_lock_tx(cp);
258 }
259
260 /* WTZ: QA was finding deadlock problems with the previous
261  * versions after long test runs with multiple cards per machine.
262  * See if replacing cas_lock_all with safer versions helps. The
263  * symptoms QA is reporting match those we'd expect if interrupts
264  * aren't being properly restored, and we fixed a previous deadlock
265  * with similar symptoms by using save/restore versions in other
266  * places.
267  */
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270         struct cas *xxxcp = (cp); \
271         spin_lock_irqsave(&xxxcp->lock, flags); \
272         cas_lock_tx(xxxcp); \
273 } while (0)
274
275 static inline void cas_unlock_tx(struct cas *cp)
276 {
277         int i;
278
279         for (i = N_TX_RINGS; i > 0; i--)
280                 spin_unlock(&cp->tx_lock[i - 1]);
281 }
282
283 static inline void cas_unlock_all(struct cas *cp)
284 {
285         cas_unlock_tx(cp);
286         spin_unlock_irq(&cp->lock);
287 }
288
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291         struct cas *xxxcp = (cp); \
292         cas_unlock_tx(xxxcp); \
293         spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
295
296 static void cas_disable_irq(struct cas *cp, const int ring)
297 {
298         /* Make sure we won't get any more interrupts */
299         if (ring == 0) {
300                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301                 return;
302         }
303
304         /* disable completion interrupts and selectively mask */
305         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306                 switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309                 case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312                 case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315                 case 3:
316 #endif
317                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318                                cp->regs + REG_PLUS_INTRN_MASK(ring));
319                         break;
320 #endif
321                 default:
322                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323                                REG_PLUS_INTRN_MASK(ring));
324                         break;
325                 }
326         }
327 }
328
329 static inline void cas_mask_intr(struct cas *cp)
330 {
331         int i;
332
333         for (i = 0; i < N_RX_COMP_RINGS; i++)
334                 cas_disable_irq(cp, i);
335 }
336
337 static void cas_enable_irq(struct cas *cp, const int ring)
338 {
339         if (ring == 0) { /* all but TX_DONE */
340                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341                 return;
342         }
343
344         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345                 switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348                 case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351                 case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354                 case 3:
355 #endif
356                         writel(INTRN_MASK_RX_EN, cp->regs +
357                                REG_PLUS_INTRN_MASK(ring));
358                         break;
359 #endif
360                 default:
361                         break;
362                 }
363         }
364 }
365
366 static inline void cas_unmask_intr(struct cas *cp)
367 {
368         int i;
369
370         for (i = 0; i < N_RX_COMP_RINGS; i++)
371                 cas_enable_irq(cp, i);
372 }
373
374 static inline void cas_entropy_gather(struct cas *cp)
375 {
376 #ifdef USE_ENTROPY_DEV
377         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378                 return;
379
380         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381                             readl(cp->regs + REG_ENTROPY_IV),
382                             sizeof(uint64_t)*8);
383 #endif
384 }
385
386 static inline void cas_entropy_reset(struct cas *cp)
387 {
388 #ifdef USE_ENTROPY_DEV
389         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390                 return;
391
392         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393                cp->regs + REG_BIM_LOCAL_DEV_EN);
394         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396
397         /* if we read back 0x0, we don't have an entropy device */
398         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
401 }
402
403 /* access to the phy. the following assumes that we've initialized the MIF to
404  * be in frame rather than bit-bang mode
405  */
406 static u16 cas_phy_read(struct cas *cp, int reg)
407 {
408         u32 cmd;
409         int limit = STOP_TRIES_PHY;
410
411         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414         cmd |= MIF_FRAME_TURN_AROUND_MSB;
415         writel(cmd, cp->regs + REG_MIF_FRAME);
416
417         /* poll for completion */
418         while (limit-- > 0) {
419                 udelay(10);
420                 cmd = readl(cp->regs + REG_MIF_FRAME);
421                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422                         return (cmd & MIF_FRAME_DATA_MASK);
423         }
424         return 0xFFFF; /* -1 */
425 }
426
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 {
429         int limit = STOP_TRIES_PHY;
430         u32 cmd;
431
432         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435         cmd |= MIF_FRAME_TURN_AROUND_MSB;
436         cmd |= val & MIF_FRAME_DATA_MASK;
437         writel(cmd, cp->regs + REG_MIF_FRAME);
438
439         /* poll for completion */
440         while (limit-- > 0) {
441                 udelay(10);
442                 cmd = readl(cp->regs + REG_MIF_FRAME);
443                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444                         return 0;
445         }
446         return -1;
447 }
448
449 static void cas_phy_powerup(struct cas *cp)
450 {
451         u16 ctl = cas_phy_read(cp, MII_BMCR);
452
453         if ((ctl & BMCR_PDOWN) == 0)
454                 return;
455         ctl &= ~BMCR_PDOWN;
456         cas_phy_write(cp, MII_BMCR, ctl);
457 }
458
459 static void cas_phy_powerdown(struct cas *cp)
460 {
461         u16 ctl = cas_phy_read(cp, MII_BMCR);
462
463         if (ctl & BMCR_PDOWN)
464                 return;
465         ctl |= BMCR_PDOWN;
466         cas_phy_write(cp, MII_BMCR, ctl);
467 }
468
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 {
472         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473                        PCI_DMA_FROMDEVICE);
474         __free_pages(page->buffer, cp->page_order);
475         kfree(page);
476         return 0;
477 }
478
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y)       ((x)->used += (y))
481 #define RX_USED_SET(x, y)       ((x)->used  = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
486
487 /* local page allocation routines for the receive buffers. jumbo pages
488  * require at least 8K contiguous and 8K aligned buffers.
489  */
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 {
492         cas_page_t *page;
493
494         page = kmalloc(sizeof(cas_page_t), flags);
495         if (!page)
496                 return NULL;
497
498         INIT_LIST_HEAD(&page->list);
499         RX_USED_SET(page, 0);
500         page->buffer = alloc_pages(flags, cp->page_order);
501         if (!page->buffer)
502                 goto page_err;
503         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504                                       cp->page_size, PCI_DMA_FROMDEVICE);
505         return page;
506
507 page_err:
508         kfree(page);
509         return NULL;
510 }
511
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
514 {
515         spin_lock(&cp->rx_inuse_lock);
516         INIT_LIST_HEAD(&cp->rx_inuse_list);
517         spin_unlock(&cp->rx_inuse_lock);
518
519         spin_lock(&cp->rx_spare_lock);
520         INIT_LIST_HEAD(&cp->rx_spare_list);
521         cp->rx_spares_needed = RX_SPARE_COUNT;
522         spin_unlock(&cp->rx_spare_lock);
523 }
524
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
527 {
528         struct list_head list, *elem, *tmp;
529
530         /* free spare buffers */
531         INIT_LIST_HEAD(&list);
532         spin_lock(&cp->rx_spare_lock);
533         list_splice_init(&cp->rx_spare_list, &list);
534         spin_unlock(&cp->rx_spare_lock);
535         list_for_each_safe(elem, tmp, &list) {
536                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
537         }
538
539         INIT_LIST_HEAD(&list);
540 #if 1
541         /*
542          * Looks like Adrian had protected this with a different
543          * lock than used everywhere else to manipulate this list.
544          */
545         spin_lock(&cp->rx_inuse_lock);
546         list_splice_init(&cp->rx_inuse_list, &list);
547         spin_unlock(&cp->rx_inuse_lock);
548 #else
549         spin_lock(&cp->rx_spare_lock);
550         list_splice_init(&cp->rx_inuse_list, &list);
551         spin_unlock(&cp->rx_spare_lock);
552 #endif
553         list_for_each_safe(elem, tmp, &list) {
554                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
555         }
556 }
557
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 {
561         struct list_head list, *elem, *tmp;
562         int needed, i;
563
564         /* check inuse list. if we don't need any more free buffers,
565          * just free it
566          */
567
568         /* make a local copy of the list */
569         INIT_LIST_HEAD(&list);
570         spin_lock(&cp->rx_inuse_lock);
571         list_splice_init(&cp->rx_inuse_list, &list);
572         spin_unlock(&cp->rx_inuse_lock);
573
574         list_for_each_safe(elem, tmp, &list) {
575                 cas_page_t *page = list_entry(elem, cas_page_t, list);
576
577                 /*
578                  * With the lockless pagecache, cassini buffering scheme gets
579                  * slightly less accurate: we might find that a page has an
580                  * elevated reference count here, due to a speculative ref,
581                  * and skip it as in-use. Ideally we would be able to reclaim
582                  * it. However this would be such a rare case, it doesn't
583                  * matter too much as we should pick it up the next time round.
584                  *
585                  * Importantly, if we find that the page has a refcount of 1
586                  * here (our refcount), then we know it is definitely not inuse
587                  * so we can reuse it.
588                  */
589                 if (page_count(page->buffer) > 1)
590                         continue;
591
592                 list_del(elem);
593                 spin_lock(&cp->rx_spare_lock);
594                 if (cp->rx_spares_needed > 0) {
595                         list_add(elem, &cp->rx_spare_list);
596                         cp->rx_spares_needed--;
597                         spin_unlock(&cp->rx_spare_lock);
598                 } else {
599                         spin_unlock(&cp->rx_spare_lock);
600                         cas_page_free(cp, page);
601                 }
602         }
603
604         /* put any inuse buffers back on the list */
605         if (!list_empty(&list)) {
606                 spin_lock(&cp->rx_inuse_lock);
607                 list_splice(&list, &cp->rx_inuse_list);
608                 spin_unlock(&cp->rx_inuse_lock);
609         }
610
611         spin_lock(&cp->rx_spare_lock);
612         needed = cp->rx_spares_needed;
613         spin_unlock(&cp->rx_spare_lock);
614         if (!needed)
615                 return;
616
617         /* we still need spares, so try to allocate some */
618         INIT_LIST_HEAD(&list);
619         i = 0;
620         while (i < needed) {
621                 cas_page_t *spare = cas_page_alloc(cp, flags);
622                 if (!spare)
623                         break;
624                 list_add(&spare->list, &list);
625                 i++;
626         }
627
628         spin_lock(&cp->rx_spare_lock);
629         list_splice(&list, &cp->rx_spare_list);
630         cp->rx_spares_needed -= i;
631         spin_unlock(&cp->rx_spare_lock);
632 }
633
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 {
637         struct list_head *entry;
638         int recover;
639
640         spin_lock(&cp->rx_spare_lock);
641         if (list_empty(&cp->rx_spare_list)) {
642                 /* try to do a quick recovery */
643                 spin_unlock(&cp->rx_spare_lock);
644                 cas_spare_recover(cp, GFP_ATOMIC);
645                 spin_lock(&cp->rx_spare_lock);
646                 if (list_empty(&cp->rx_spare_list)) {
647                         netif_err(cp, rx_err, cp->dev,
648                                   "no spare buffers available\n");
649                         spin_unlock(&cp->rx_spare_lock);
650                         return NULL;
651                 }
652         }
653
654         entry = cp->rx_spare_list.next;
655         list_del(entry);
656         recover = ++cp->rx_spares_needed;
657         spin_unlock(&cp->rx_spare_lock);
658
659         /* trigger the timer to do the recovery */
660         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662                 atomic_inc(&cp->reset_task_pending);
663                 atomic_inc(&cp->reset_task_pending_spare);
664                 schedule_work(&cp->reset_task);
665 #else
666                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667                 schedule_work(&cp->reset_task);
668 #endif
669         }
670         return list_entry(entry, cas_page_t, list);
671 }
672
673
674 static void cas_mif_poll(struct cas *cp, const int enable)
675 {
676         u32 cfg;
677
678         cfg  = readl(cp->regs + REG_MIF_CFG);
679         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680
681         if (cp->phy_type & CAS_PHY_MII_MDIO1)
682                 cfg |= MIF_CFG_PHY_SELECT;
683
684         /* poll and interrupt on link status change. */
685         if (enable) {
686                 cfg |= MIF_CFG_POLL_EN;
687                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689         }
690         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691                cp->regs + REG_MIF_MASK);
692         writel(cfg, cp->regs + REG_MIF_CFG);
693 }
694
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
697 {
698         u16 ctl;
699 #if 1
700         int lcntl;
701         int changed = 0;
702         int oldstate = cp->lstate;
703         int link_was_not_down = !(oldstate == link_down);
704 #endif
705         /* Setup link parameters */
706         if (!ep)
707                 goto start_aneg;
708         lcntl = cp->link_cntl;
709         if (ep->autoneg == AUTONEG_ENABLE)
710                 cp->link_cntl = BMCR_ANENABLE;
711         else {
712                 cp->link_cntl = 0;
713                 if (ep->speed == SPEED_100)
714                         cp->link_cntl |= BMCR_SPEED100;
715                 else if (ep->speed == SPEED_1000)
716                         cp->link_cntl |= CAS_BMCR_SPEED1000;
717                 if (ep->duplex == DUPLEX_FULL)
718                         cp->link_cntl |= BMCR_FULLDPLX;
719         }
720 #if 1
721         changed = (lcntl != cp->link_cntl);
722 #endif
723 start_aneg:
724         if (cp->lstate == link_up) {
725                 netdev_info(cp->dev, "PCS link down\n");
726         } else {
727                 if (changed) {
728                         netdev_info(cp->dev, "link configuration changed\n");
729                 }
730         }
731         cp->lstate = link_down;
732         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
733         if (!cp->hw_running)
734                 return;
735 #if 1
736         /*
737          * WTZ: If the old state was link_up, we turn off the carrier
738          * to replicate everything we do elsewhere on a link-down
739          * event when we were already in a link-up state..
740          */
741         if (oldstate == link_up)
742                 netif_carrier_off(cp->dev);
743         if (changed  && link_was_not_down) {
744                 /*
745                  * WTZ: This branch will simply schedule a full reset after
746                  * we explicitly changed link modes in an ioctl. See if this
747                  * fixes the link-problems we were having for forced mode.
748                  */
749                 atomic_inc(&cp->reset_task_pending);
750                 atomic_inc(&cp->reset_task_pending_all);
751                 schedule_work(&cp->reset_task);
752                 cp->timer_ticks = 0;
753                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
754                 return;
755         }
756 #endif
757         if (cp->phy_type & CAS_PHY_SERDES) {
758                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
759
760                 if (cp->link_cntl & BMCR_ANENABLE) {
761                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
762                         cp->lstate = link_aneg;
763                 } else {
764                         if (cp->link_cntl & BMCR_FULLDPLX)
765                                 val |= PCS_MII_CTRL_DUPLEX;
766                         val &= ~PCS_MII_AUTONEG_EN;
767                         cp->lstate = link_force_ok;
768                 }
769                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
770                 writel(val, cp->regs + REG_PCS_MII_CTRL);
771
772         } else {
773                 cas_mif_poll(cp, 0);
774                 ctl = cas_phy_read(cp, MII_BMCR);
775                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
776                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
777                 ctl |= cp->link_cntl;
778                 if (ctl & BMCR_ANENABLE) {
779                         ctl |= BMCR_ANRESTART;
780                         cp->lstate = link_aneg;
781                 } else {
782                         cp->lstate = link_force_ok;
783                 }
784                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
785                 cas_phy_write(cp, MII_BMCR, ctl);
786                 cas_mif_poll(cp, 1);
787         }
788
789         cp->timer_ticks = 0;
790         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
791 }
792
793 /* Must be invoked under cp->lock. */
794 static int cas_reset_mii_phy(struct cas *cp)
795 {
796         int limit = STOP_TRIES_PHY;
797         u16 val;
798
799         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
800         udelay(100);
801         while (--limit) {
802                 val = cas_phy_read(cp, MII_BMCR);
803                 if ((val & BMCR_RESET) == 0)
804                         break;
805                 udelay(10);
806         }
807         return (limit <= 0);
808 }
809
810 static int cas_saturn_firmware_init(struct cas *cp)
811 {
812         const struct firmware *fw;
813         const char fw_name[] = "sun/cassini.bin";
814         int err;
815
816         if (PHY_NS_DP83065 != cp->phy_id)
817                 return 0;
818
819         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
820         if (err) {
821                 pr_err("Failed to load firmware \"%s\"\n",
822                        fw_name);
823                 return err;
824         }
825         if (fw->size < 2) {
826                 pr_err("bogus length %zu in \"%s\"\n",
827                        fw->size, fw_name);
828                 err = -EINVAL;
829                 goto out;
830         }
831         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832         cp->fw_size = fw->size - 2;
833         cp->fw_data = vmalloc(cp->fw_size);
834         if (!cp->fw_data) {
835                 err = -ENOMEM;
836                 pr_err("\"%s\" Failed %d\n", fw_name, err);
837                 goto out;
838         }
839         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
840 out:
841         release_firmware(fw);
842         return err;
843 }
844
845 static void cas_saturn_firmware_load(struct cas *cp)
846 {
847         int i;
848
849         cas_phy_powerdown(cp);
850
851         /* expanded memory access mode */
852         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853
854         /* pointer configuration for new firmware */
855         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
856         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
857         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
858         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
859         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
860         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
861         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
862         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863
864         /* download new firmware */
865         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
866         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
867         for (i = 0; i < cp->fw_size; i++)
868                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869
870         /* enable firmware */
871         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
872         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
873 }
874
875
876 /* phy initialization */
877 static void cas_phy_init(struct cas *cp)
878 {
879         u16 val;
880
881         /* if we're in MII/GMII mode, set up phy */
882         if (CAS_PHY_MII(cp->phy_type)) {
883                 writel(PCS_DATAPATH_MODE_MII,
884                        cp->regs + REG_PCS_DATAPATH_MODE);
885
886                 cas_mif_poll(cp, 0);
887                 cas_reset_mii_phy(cp); /* take out of isolate mode */
888
889                 if (PHY_LUCENT_B0 == cp->phy_id) {
890                         /* workaround link up/down issue with lucent */
891                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
892                         cas_phy_write(cp, MII_BMCR, 0x00f1);
893                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894
895                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
896                         /* workarounds for broadcom phy */
897                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
898                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
899                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
900                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
901                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
902                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
904                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
906                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
907                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908
909                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
910                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
911                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
912                         if (val & 0x0080) {
913                                 /* link workaround */
914                                 cas_phy_write(cp, BROADCOM_MII_REG4,
915                                               val & ~0x0080);
916                         }
917
918                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
919                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
920                                SATURN_PCFG_FSI : 0x0,
921                                cp->regs + REG_SATURN_PCFG);
922
923                         /* load firmware to address 10Mbps auto-negotiation
924                          * issue. NOTE: this will need to be changed if the
925                          * default firmware gets fixed.
926                          */
927                         if (PHY_NS_DP83065 == cp->phy_id) {
928                                 cas_saturn_firmware_load(cp);
929                         }
930                         cas_phy_powerup(cp);
931                 }
932
933                 /* advertise capabilities */
934                 val = cas_phy_read(cp, MII_BMCR);
935                 val &= ~BMCR_ANENABLE;
936                 cas_phy_write(cp, MII_BMCR, val);
937                 udelay(10);
938
939                 cas_phy_write(cp, MII_ADVERTISE,
940                               cas_phy_read(cp, MII_ADVERTISE) |
941                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
942                                ADVERTISE_100HALF | ADVERTISE_100FULL |
943                                CAS_ADVERTISE_PAUSE |
944                                CAS_ADVERTISE_ASYM_PAUSE));
945
946                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
947                         /* make sure that we don't advertise half
948                          * duplex to avoid a chip issue
949                          */
950                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
951                         val &= ~CAS_ADVERTISE_1000HALF;
952                         val |= CAS_ADVERTISE_1000FULL;
953                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
954                 }
955
956         } else {
957                 /* reset pcs for serdes */
958                 u32 val;
959                 int limit;
960
961                 writel(PCS_DATAPATH_MODE_SERDES,
962                        cp->regs + REG_PCS_DATAPATH_MODE);
963
964                 /* enable serdes pins on saturn */
965                 if (cp->cas_flags & CAS_FLAG_SATURN)
966                         writel(0, cp->regs + REG_SATURN_PCFG);
967
968                 /* Reset PCS unit. */
969                 val = readl(cp->regs + REG_PCS_MII_CTRL);
970                 val |= PCS_MII_RESET;
971                 writel(val, cp->regs + REG_PCS_MII_CTRL);
972
973                 limit = STOP_TRIES;
974                 while (--limit > 0) {
975                         udelay(10);
976                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
977                              PCS_MII_RESET) == 0)
978                                 break;
979                 }
980                 if (limit <= 0)
981                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
982                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
983
984                 /* Make sure PCS is disabled while changing advertisement
985                  * configuration.
986                  */
987                 writel(0x0, cp->regs + REG_PCS_CFG);
988
989                 /* Advertise all capabilities except half-duplex. */
990                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
991                 val &= ~PCS_MII_ADVERT_HD;
992                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
993                         PCS_MII_ADVERT_ASYM_PAUSE);
994                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
995
996                 /* enable PCS */
997                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
998
999                 /* pcs workaround: enable sync detect */
1000                 writel(PCS_SERDES_CTRL_SYNCD_EN,
1001                        cp->regs + REG_PCS_SERDES_CTRL);
1002         }
1003 }
1004
1005
1006 static int cas_pcs_link_check(struct cas *cp)
1007 {
1008         u32 stat, state_machine;
1009         int retval = 0;
1010
1011         /* The link status bit latches on zero, so you must
1012          * read it twice in such a case to see a transition
1013          * to the link being up.
1014          */
1015         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1017                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018
1019         /* The remote-fault indication is only valid
1020          * when autoneg has completed.
1021          */
1022         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1023                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1024             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1025                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026
1027         /* work around link detection issue by querying the PCS state
1028          * machine directly.
1029          */
1030         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1031         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1032                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1033         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1034                 stat |= PCS_MII_STATUS_LINK_STATUS;
1035         }
1036
1037         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1038                 if (cp->lstate != link_up) {
1039                         if (cp->opened) {
1040                                 cp->lstate = link_up;
1041                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1042
1043                                 cas_set_link_modes(cp);
1044                                 netif_carrier_on(cp->dev);
1045                         }
1046                 }
1047         } else if (cp->lstate == link_up) {
1048                 cp->lstate = link_down;
1049                 if (link_transition_timeout != 0 &&
1050                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1051                     !cp->link_transition_jiffies_valid) {
1052                         /*
1053                          * force a reset, as a workaround for the
1054                          * link-failure problem. May want to move this to a
1055                          * point a bit earlier in the sequence. If we had
1056                          * generated a reset a short time ago, we'll wait for
1057                          * the link timer to check the status until a
1058                          * timer expires (link_transistion_jiffies_valid is
1059                          * true when the timer is running.)  Instead of using
1060                          * a system timer, we just do a check whenever the
1061                          * link timer is running - this clears the flag after
1062                          * a suitable delay.
1063                          */
1064                         retval = 1;
1065                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066                         cp->link_transition_jiffies = jiffies;
1067                         cp->link_transition_jiffies_valid = 1;
1068                 } else {
1069                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1070                 }
1071                 netif_carrier_off(cp->dev);
1072                 if (cp->opened)
1073                         netif_info(cp, link, cp->dev, "PCS link down\n");
1074
1075                 /* Cassini only: if you force a mode, there can be
1076                  * sync problems on link down. to fix that, the following
1077                  * things need to be checked:
1078                  * 1) read serialink state register
1079                  * 2) read pcs status register to verify link down.
1080                  * 3) if link down and serial link == 0x03, then you need
1081                  *    to global reset the chip.
1082                  */
1083                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1084                         /* should check to see if we're in a forced mode */
1085                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1086                         if (stat == 0x03)
1087                                 return 1;
1088                 }
1089         } else if (cp->lstate == link_down) {
1090                 if (link_transition_timeout != 0 &&
1091                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1092                     !cp->link_transition_jiffies_valid) {
1093                         /* force a reset, as a workaround for the
1094                          * link-failure problem.  May want to move
1095                          * this to a point a bit earlier in the
1096                          * sequence.
1097                          */
1098                         retval = 1;
1099                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1100                         cp->link_transition_jiffies = jiffies;
1101                         cp->link_transition_jiffies_valid = 1;
1102                 } else {
1103                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1104                 }
1105         }
1106
1107         return retval;
1108 }
1109
1110 static int cas_pcs_interrupt(struct net_device *dev,
1111                              struct cas *cp, u32 status)
1112 {
1113         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114
1115         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116                 return 0;
1117         return cas_pcs_link_check(cp);
1118 }
1119
1120 static int cas_txmac_interrupt(struct net_device *dev,
1121                                struct cas *cp, u32 status)
1122 {
1123         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124
1125         if (!txmac_stat)
1126                 return 0;
1127
1128         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1129                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130
1131         /* Defer timer expiration is quite normal,
1132          * don't even log the event.
1133          */
1134         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1135             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1136                 return 0;
1137
1138         spin_lock(&cp->stat_lock[0]);
1139         if (txmac_stat & MAC_TX_UNDERRUN) {
1140                 netdev_err(dev, "TX MAC xmit underrun\n");
1141                 cp->net_stats[0].tx_fifo_errors++;
1142         }
1143
1144         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1145                 netdev_err(dev, "TX MAC max packet size error\n");
1146                 cp->net_stats[0].tx_errors++;
1147         }
1148
1149         /* The rest are all cases of one of the 16-bit TX
1150          * counters expiring.
1151          */
1152         if (txmac_stat & MAC_TX_COLL_NORMAL)
1153                 cp->net_stats[0].collisions += 0x10000;
1154
1155         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1157                 cp->net_stats[0].collisions += 0x10000;
1158         }
1159
1160         if (txmac_stat & MAC_TX_COLL_LATE) {
1161                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162                 cp->net_stats[0].collisions += 0x10000;
1163         }
1164         spin_unlock(&cp->stat_lock[0]);
1165
1166         /* We do not keep track of MAC_TX_COLL_FIRST and
1167          * MAC_TX_PEAK_ATTEMPTS events.
1168          */
1169         return 0;
1170 }
1171
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 {
1174         cas_hp_inst_t *inst;
1175         u32 val;
1176         int i;
1177
1178         i = 0;
1179         while ((inst = firmware) && inst->note) {
1180                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181
1182                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185
1186                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194
1195                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200                 ++firmware;
1201                 ++i;
1202         }
1203 }
1204
1205 static void cas_init_rx_dma(struct cas *cp)
1206 {
1207         u64 desc_dma = cp->block_dvma;
1208         u32 val;
1209         int i, size;
1210
1211         /* rx free descriptors */
1212         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215         if ((N_RX_DESC_RINGS > 1) &&
1216             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1217                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218         writel(val, cp->regs + REG_RX_CFG);
1219
1220         val = (unsigned long) cp->init_rxds[0] -
1221                 (unsigned long) cp->init_block;
1222         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225
1226         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227                 /* rx desc 2 is for IPSEC packets. however,
1228                  * we don't it that for that purpose.
1229                  */
1230                 val = (unsigned long) cp->init_rxds[1] -
1231                         (unsigned long) cp->init_block;
1232                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1234                        REG_PLUS_RX_DB1_LOW);
1235                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1236                        REG_PLUS_RX_KICK1);
1237         }
1238
1239         /* rx completion registers */
1240         val = (unsigned long) cp->init_rxcs[0] -
1241                 (unsigned long) cp->init_block;
1242         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244
1245         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246                 /* rx comp 2-4 */
1247                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248                         val = (unsigned long) cp->init_rxcs[i] -
1249                                 (unsigned long) cp->init_block;
1250                         writel((desc_dma + val) >> 32, cp->regs +
1251                                REG_PLUS_RX_CBN_HI(i));
1252                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1253                                REG_PLUS_RX_CBN_LOW(i));
1254                 }
1255         }
1256
1257         /* read selective clear regs to prevent spurious interrupts
1258          * on reset because complete == kick.
1259          * selective clear set up to prevent interrupts on resets
1260          */
1261         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1265                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266
1267                 /* 2 is different from 3 and 4 */
1268                 if (N_RX_COMP_RINGS > 1)
1269                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1270                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271
1272                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1273                         writel(INTR_RX_DONE_ALT,
1274                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275         }
1276
1277         /* set up pause thresholds */
1278         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1281                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283
1284         /* zero out dma reassembly buffers */
1285         for (i = 0; i < 64; i++) {
1286                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290         }
1291
1292         /* make sure address register is 0 for normal operation */
1293         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295
1296         /* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300         writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302         writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1304
1305         /* interrupt generation as a function of low water marks for
1306          * free desc and completion entries. these are used to trigger
1307          * housekeeping for rx descs. we don't use the free interrupt
1308          * as it's not very useful
1309          */
1310         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312         writel(val, cp->regs + REG_RX_AE_THRESH);
1313         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316         }
1317
1318         /* Random early detect registers. useful for congestion avoidance.
1319          * this should be tunable.
1320          */
1321         writel(0x0, cp->regs + REG_RX_RED);
1322
1323         /* receive page sizes. default == 2K (0x800) */
1324         val = 0;
1325         if (cp->page_size == 0x1000)
1326                 val = 0x1;
1327         else if (cp->page_size == 0x2000)
1328                 val = 0x2;
1329         else if (cp->page_size == 0x4000)
1330                 val = 0x3;
1331
1332         /* round mtu + offset. constrain to page size. */
1333         size = cp->dev->mtu + 64;
1334         if (size > cp->page_size)
1335                 size = cp->page_size;
1336
1337         if (size <= 0x400)
1338                 i = 0x0;
1339         else if (size <= 0x800)
1340                 i = 0x1;
1341         else if (size <= 0x1000)
1342                 i = 0x2;
1343         else
1344                 i = 0x3;
1345
1346         cp->mtu_stride = 1 << (i + 10);
1347         val  = CAS_BASE(RX_PAGE_SIZE, val);
1348         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352
1353         /* enable the header parser if desired */
1354         if (CAS_HP_FIRMWARE == cas_prog_null)
1355                 return;
1356
1357         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360         writel(val, cp->regs + REG_HP_CFG);
1361 }
1362
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 {
1365         memset(rxc, 0, sizeof(*rxc));
1366         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1367 }
1368
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370  * flipping is protected by the fact that the chip will not
1371  * hand back the same page index while it's being processed.
1372  */
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 {
1375         cas_page_t *page = cp->rx_pages[1][index];
1376         cas_page_t *new;
1377
1378         if (page_count(page->buffer) == 1)
1379                 return page;
1380
1381         new = cas_page_dequeue(cp);
1382         if (new) {
1383                 spin_lock(&cp->rx_inuse_lock);
1384                 list_add(&page->list, &cp->rx_inuse_list);
1385                 spin_unlock(&cp->rx_inuse_lock);
1386         }
1387         return new;
1388 }
1389
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392                                  const int index)
1393 {
1394         cas_page_t **page0 = cp->rx_pages[0];
1395         cas_page_t **page1 = cp->rx_pages[1];
1396
1397         /* swap if buffer is in use */
1398         if (page_count(page0[index]->buffer) > 1) {
1399                 cas_page_t *new = cas_page_spare(cp, index);
1400                 if (new) {
1401                         page1[index] = page0[index];
1402                         page0[index] = new;
1403                 }
1404         }
1405         RX_USED_SET(page0[index], 0);
1406         return page0[index];
1407 }
1408
1409 static void cas_clean_rxds(struct cas *cp)
1410 {
1411         /* only clean ring 0 as ring 1 is used for spare buffers */
1412         struct cas_rx_desc *rxd = cp->init_rxds[0];
1413         int i, size;
1414
1415         /* release all rx flows */
1416         for (i = 0; i < N_RX_FLOWS; i++) {
1417                 struct sk_buff *skb;
1418                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419                         cas_skb_release(skb);
1420                 }
1421         }
1422
1423         /* initialize descriptors */
1424         size = RX_DESC_RINGN_SIZE(0);
1425         for (i = 0; i < size; i++) {
1426                 cas_page_t *page = cas_page_swap(cp, 0, i);
1427                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429                                             CAS_BASE(RX_INDEX_RING, 0));
1430         }
1431
1432         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1433         cp->rx_last[0] = 0;
1434         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 }
1436
1437 static void cas_clean_rxcs(struct cas *cp)
1438 {
1439         int i, j;
1440
1441         /* take ownership of rx comp descriptors */
1442         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447                         cas_rxc_init(rxc + j);
1448                 }
1449         }
1450 }
1451
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454  * so we do the following.
1455  *
1456  * If any part of the reset goes wrong, we return 1 and that causes the
1457  * whole chip to be reset.
1458  */
1459 static int cas_rxmac_reset(struct cas *cp)
1460 {
1461         struct net_device *dev = cp->dev;
1462         int limit;
1463         u32 val;
1464
1465         /* First, reset MAC RX. */
1466         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467         for (limit = 0; limit < STOP_TRIES; limit++) {
1468                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469                         break;
1470                 udelay(10);
1471         }
1472         if (limit == STOP_TRIES) {
1473                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1474                 return 1;
1475         }
1476
1477         /* Second, disable RX DMA. */
1478         writel(0, cp->regs + REG_RX_CFG);
1479         for (limit = 0; limit < STOP_TRIES; limit++) {
1480                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481                         break;
1482                 udelay(10);
1483         }
1484         if (limit == STOP_TRIES) {
1485                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1486                 return 1;
1487         }
1488
1489         mdelay(5);
1490
1491         /* Execute RX reset command. */
1492         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1493         for (limit = 0; limit < STOP_TRIES; limit++) {
1494                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495                         break;
1496                 udelay(10);
1497         }
1498         if (limit == STOP_TRIES) {
1499                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1500                 return 1;
1501         }
1502
1503         /* reset driver rx state */
1504         cas_clean_rxds(cp);
1505         cas_clean_rxcs(cp);
1506
1507         /* Now, reprogram the rest of RX unit. */
1508         cas_init_rx_dma(cp);
1509
1510         /* re-enable */
1511         val = readl(cp->regs + REG_RX_CFG);
1512         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1513         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1514         val = readl(cp->regs + REG_MAC_RX_CFG);
1515         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1516         return 0;
1517 }
1518 #endif
1519
1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1521                                u32 status)
1522 {
1523         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1524
1525         if (!stat)
1526                 return 0;
1527
1528         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529
1530         /* these are all rollovers */
1531         spin_lock(&cp->stat_lock[0]);
1532         if (stat & MAC_RX_ALIGN_ERR)
1533                 cp->net_stats[0].rx_frame_errors += 0x10000;
1534
1535         if (stat & MAC_RX_CRC_ERR)
1536                 cp->net_stats[0].rx_crc_errors += 0x10000;
1537
1538         if (stat & MAC_RX_LEN_ERR)
1539                 cp->net_stats[0].rx_length_errors += 0x10000;
1540
1541         if (stat & MAC_RX_OVERFLOW) {
1542                 cp->net_stats[0].rx_over_errors++;
1543                 cp->net_stats[0].rx_fifo_errors++;
1544         }
1545
1546         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1547          * events.
1548          */
1549         spin_unlock(&cp->stat_lock[0]);
1550         return 0;
1551 }
1552
1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1554                              u32 status)
1555 {
1556         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1557
1558         if (!stat)
1559                 return 0;
1560
1561         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1562                      "mac interrupt, stat: 0x%x\n", stat);
1563
1564         /* This interrupt is just for pause frame and pause
1565          * tracking.  It is useful for diagnostics and debug
1566          * but probably by default we will mask these events.
1567          */
1568         if (stat & MAC_CTRL_PAUSE_STATE)
1569                 cp->pause_entered++;
1570
1571         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1572                 cp->pause_last_time_recvd = (stat >> 16);
1573
1574         return 0;
1575 }
1576
1577
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas *cp)
1580 {
1581         u16 val;
1582
1583         switch (cp->lstate) {
1584         case link_force_ret:
1585                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1586                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1587                 cp->timer_ticks = 5;
1588                 cp->lstate = link_force_ok;
1589                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1590                 break;
1591
1592         case link_aneg:
1593                 val = cas_phy_read(cp, MII_BMCR);
1594
1595                 /* Try forced modes. we try things in the following order:
1596                  * 1000 full -> 100 full/half -> 10 half
1597                  */
1598                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1599                 val |= BMCR_FULLDPLX;
1600                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1601                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1602                 cas_phy_write(cp, MII_BMCR, val);
1603                 cp->timer_ticks = 5;
1604                 cp->lstate = link_force_try;
1605                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1606                 break;
1607
1608         case link_force_try:
1609                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610                 val = cas_phy_read(cp, MII_BMCR);
1611                 cp->timer_ticks = 5;
1612                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1613                         val &= ~CAS_BMCR_SPEED1000;
1614                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1615                         cas_phy_write(cp, MII_BMCR, val);
1616                         break;
1617                 }
1618
1619                 if (val & BMCR_SPEED100) {
1620                         if (val & BMCR_FULLDPLX) /* fd failed */
1621                                 val &= ~BMCR_FULLDPLX;
1622                         else { /* 100Mbps failed */
1623                                 val &= ~BMCR_SPEED100;
1624                         }
1625                         cas_phy_write(cp, MII_BMCR, val);
1626                         break;
1627                 }
1628         default:
1629                 break;
1630         }
1631         return 0;
1632 }
1633
1634
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1637 {
1638         int restart;
1639
1640         if (bmsr & BMSR_LSTATUS) {
1641                 /* Ok, here we got a link. If we had it due to a forced
1642                  * fallback, and we were configured for autoneg, we
1643                  * retry a short autoneg pass. If you know your hub is
1644                  * broken, use ethtool ;)
1645                  */
1646                 if ((cp->lstate == link_force_try) &&
1647                     (cp->link_cntl & BMCR_ANENABLE)) {
1648                         cp->lstate = link_force_ret;
1649                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1650                         cas_mif_poll(cp, 0);
1651                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1652                         cp->timer_ticks = 5;
1653                         if (cp->opened)
1654                                 netif_info(cp, link, cp->dev,
1655                                            "Got link after fallback, retrying autoneg once...\n");
1656                         cas_phy_write(cp, MII_BMCR,
1657                                       cp->link_fcntl | BMCR_ANENABLE |
1658                                       BMCR_ANRESTART);
1659                         cas_mif_poll(cp, 1);
1660
1661                 } else if (cp->lstate != link_up) {
1662                         cp->lstate = link_up;
1663                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1664
1665                         if (cp->opened) {
1666                                 cas_set_link_modes(cp);
1667                                 netif_carrier_on(cp->dev);
1668                         }
1669                 }
1670                 return 0;
1671         }
1672
1673         /* link not up. if the link was previously up, we restart the
1674          * whole process
1675          */
1676         restart = 0;
1677         if (cp->lstate == link_up) {
1678                 cp->lstate = link_down;
1679                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1680
1681                 netif_carrier_off(cp->dev);
1682                 if (cp->opened)
1683                         netif_info(cp, link, cp->dev, "Link down\n");
1684                 restart = 1;
1685
1686         } else if (++cp->timer_ticks > 10)
1687                 cas_mdio_link_not_up(cp);
1688
1689         return restart;
1690 }
1691
1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1693                              u32 status)
1694 {
1695         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1696         u16 bmsr;
1697
1698         /* check for a link change */
1699         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1700                 return 0;
1701
1702         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1703         return cas_mii_link_check(cp, bmsr);
1704 }
1705
1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1707                              u32 status)
1708 {
1709         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1710
1711         if (!stat)
1712                 return 0;
1713
1714         netdev_err(dev, "PCI error [%04x:%04x]",
1715                    stat, readl(cp->regs + REG_BIM_DIAG));
1716
1717         /* cassini+ has this reserved */
1718         if ((stat & PCI_ERR_BADACK) &&
1719             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1720                 pr_cont(" <No ACK64# during ABS64 cycle>");
1721
1722         if (stat & PCI_ERR_DTRTO)
1723                 pr_cont(" <Delayed transaction timeout>");
1724         if (stat & PCI_ERR_OTHER)
1725                 pr_cont(" <other>");
1726         if (stat & PCI_ERR_BIM_DMA_WRITE)
1727                 pr_cont(" <BIM DMA 0 write req>");
1728         if (stat & PCI_ERR_BIM_DMA_READ)
1729                 pr_cont(" <BIM DMA 0 read req>");
1730         pr_cont("\n");
1731
1732         if (stat & PCI_ERR_OTHER) {
1733                 u16 cfg;
1734
1735                 /* Interrogate PCI config space for the
1736                  * true cause.
1737                  */
1738                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1739                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1740                 if (cfg & PCI_STATUS_PARITY)
1741                         netdev_err(dev, "PCI parity error detected\n");
1742                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1743                         netdev_err(dev, "PCI target abort\n");
1744                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1745                         netdev_err(dev, "PCI master acks target abort\n");
1746                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1747                         netdev_err(dev, "PCI master abort\n");
1748                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1749                         netdev_err(dev, "PCI system error SERR#\n");
1750                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1751                         netdev_err(dev, "PCI parity error\n");
1752
1753                 /* Write the error bits back to clear them. */
1754                 cfg &= (PCI_STATUS_PARITY |
1755                         PCI_STATUS_SIG_TARGET_ABORT |
1756                         PCI_STATUS_REC_TARGET_ABORT |
1757                         PCI_STATUS_REC_MASTER_ABORT |
1758                         PCI_STATUS_SIG_SYSTEM_ERROR |
1759                         PCI_STATUS_DETECTED_PARITY);
1760                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1761         }
1762
1763         /* For all PCI errors, we should reset the chip. */
1764         return 1;
1765 }
1766
1767 /* All non-normal interrupt conditions get serviced here.
1768  * Returns non-zero if we should just exit the interrupt
1769  * handler right now (ie. if we reset the card which invalidates
1770  * all of the other original irq status bits).
1771  */
1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1773                             u32 status)
1774 {
1775         if (status & INTR_RX_TAG_ERROR) {
1776                 /* corrupt RX tag framing */
1777                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1778                              "corrupt rx tag framing\n");
1779                 spin_lock(&cp->stat_lock[0]);
1780                 cp->net_stats[0].rx_errors++;
1781                 spin_unlock(&cp->stat_lock[0]);
1782                 goto do_reset;
1783         }
1784
1785         if (status & INTR_RX_LEN_MISMATCH) {
1786                 /* length mismatch. */
1787                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1788                              "length mismatch for rx frame\n");
1789                 spin_lock(&cp->stat_lock[0]);
1790                 cp->net_stats[0].rx_errors++;
1791                 spin_unlock(&cp->stat_lock[0]);
1792                 goto do_reset;
1793         }
1794
1795         if (status & INTR_PCS_STATUS) {
1796                 if (cas_pcs_interrupt(dev, cp, status))
1797                         goto do_reset;
1798         }
1799
1800         if (status & INTR_TX_MAC_STATUS) {
1801                 if (cas_txmac_interrupt(dev, cp, status))
1802                         goto do_reset;
1803         }
1804
1805         if (status & INTR_RX_MAC_STATUS) {
1806                 if (cas_rxmac_interrupt(dev, cp, status))
1807                         goto do_reset;
1808         }
1809
1810         if (status & INTR_MAC_CTRL_STATUS) {
1811                 if (cas_mac_interrupt(dev, cp, status))
1812                         goto do_reset;
1813         }
1814
1815         if (status & INTR_MIF_STATUS) {
1816                 if (cas_mif_interrupt(dev, cp, status))
1817                         goto do_reset;
1818         }
1819
1820         if (status & INTR_PCI_ERROR_STATUS) {
1821                 if (cas_pci_interrupt(dev, cp, status))
1822                         goto do_reset;
1823         }
1824         return 0;
1825
1826 do_reset:
1827 #if 1
1828         atomic_inc(&cp->reset_task_pending);
1829         atomic_inc(&cp->reset_task_pending_all);
1830         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1831         schedule_work(&cp->reset_task);
1832 #else
1833         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1834         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1835         schedule_work(&cp->reset_task);
1836 #endif
1837         return 1;
1838 }
1839
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841  *       determining whether to do a netif_stop/wakeup
1842  */
1843 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1846                                   const int len)
1847 {
1848         unsigned long off = addr + len;
1849
1850         if (CAS_TABORT(cp) == 1)
1851                 return 0;
1852         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853                 return 0;
1854         return TX_TARGET_ABORT_LEN;
1855 }
1856
1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 {
1859         struct cas_tx_desc *txds;
1860         struct sk_buff **skbs;
1861         struct net_device *dev = cp->dev;
1862         int entry, count;
1863
1864         spin_lock(&cp->tx_lock[ring]);
1865         txds = cp->init_txds[ring];
1866         skbs = cp->tx_skbs[ring];
1867         entry = cp->tx_old[ring];
1868
1869         count = TX_BUFF_COUNT(ring, entry, limit);
1870         while (entry != limit) {
1871                 struct sk_buff *skb = skbs[entry];
1872                 dma_addr_t daddr;
1873                 u32 dlen;
1874                 int frag;
1875
1876                 if (!skb) {
1877                         /* this should never occur */
1878                         entry = TX_DESC_NEXT(ring, entry);
1879                         continue;
1880                 }
1881
1882                 /* however, we might get only a partial skb release. */
1883                 count -= skb_shinfo(skb)->nr_frags +
1884                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1885                 if (count < 0)
1886                         break;
1887
1888                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1889                              "tx[%d] done, slot %d\n", ring, entry);
1890
1891                 skbs[entry] = NULL;
1892                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1893
1894                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895                         struct cas_tx_desc *txd = txds + entry;
1896
1897                         daddr = le64_to_cpu(txd->buffer);
1898                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1899                                        le64_to_cpu(txd->control));
1900                         pci_unmap_page(cp->pdev, daddr, dlen,
1901                                        PCI_DMA_TODEVICE);
1902                         entry = TX_DESC_NEXT(ring, entry);
1903
1904                         /* tiny buffer may follow */
1905                         if (cp->tx_tiny_use[ring][entry].used) {
1906                                 cp->tx_tiny_use[ring][entry].used = 0;
1907                                 entry = TX_DESC_NEXT(ring, entry);
1908                         }
1909                 }
1910
1911                 spin_lock(&cp->stat_lock[ring]);
1912                 cp->net_stats[ring].tx_packets++;
1913                 cp->net_stats[ring].tx_bytes += skb->len;
1914                 spin_unlock(&cp->stat_lock[ring]);
1915                 dev_kfree_skb_irq(skb);
1916         }
1917         cp->tx_old[ring] = entry;
1918
1919         /* this is wrong for multiple tx rings. the net device needs
1920          * multiple queues for this to do the right thing.  we wait
1921          * for 2*packets to be available when using tiny buffers
1922          */
1923         if (netif_queue_stopped(dev) &&
1924             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925                 netif_wake_queue(dev);
1926         spin_unlock(&cp->tx_lock[ring]);
1927 }
1928
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1930                    u32 status)
1931 {
1932         int limit, ring;
1933 #ifdef USE_TX_COMPWB
1934         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 #endif
1936         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1937                      "tx interrupt, status: 0x%x, %llx\n",
1938                      status, (unsigned long long)compwb);
1939         /* process all the rings */
1940         for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942                 /* use the completion writeback registers */
1943                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944                         CAS_VAL(TX_COMPWB_LSB, compwb);
1945                 compwb = TX_COMPWB_NEXT(compwb);
1946 #else
1947                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 #endif
1949                 if (cp->tx_old[ring] != limit)
1950                         cas_tx_ringN(cp, ring, limit);
1951         }
1952 }
1953
1954
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956                               int entry, const u64 *words,
1957                               struct sk_buff **skbref)
1958 {
1959         int dlen, hlen, len, i, alloclen;
1960         int off, swivel = RX_SWIVEL_OFF_VAL;
1961         struct cas_page *page;
1962         struct sk_buff *skb;
1963         void *addr, *crcaddr;
1964         __sum16 csum;
1965         char *p;
1966
1967         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1969         len  = hlen + dlen;
1970
1971         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1972                 alloclen = len;
1973         else
1974                 alloclen = max(hlen, RX_COPY_MIN);
1975
1976         skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1977         if (skb == NULL)
1978                 return -1;
1979
1980         *skbref = skb;
1981         skb_reserve(skb, swivel);
1982
1983         p = skb->data;
1984         addr = crcaddr = NULL;
1985         if (hlen) { /* always copy header pages */
1986                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1989                         swivel;
1990
1991                 i = hlen;
1992                 if (!dlen) /* attach FCS */
1993                         i += cp->crc_size;
1994                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1995                                     PCI_DMA_FROMDEVICE);
1996                 addr = cas_page_map(page->buffer);
1997                 memcpy(p, addr + off, i);
1998                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1999                                     PCI_DMA_FROMDEVICE);
2000                 cas_page_unmap(addr);
2001                 RX_USED_ADD(page, 0x100);
2002                 p += hlen;
2003                 swivel = 0;
2004         }
2005
2006
2007         if (alloclen < (hlen + dlen)) {
2008                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2009
2010                 /* normal or jumbo packets. we use frags */
2011                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014
2015                 hlen = min(cp->page_size - off, dlen);
2016                 if (hlen < 0) {
2017                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2018                                      "rx page overflow: %d\n", hlen);
2019                         dev_kfree_skb_irq(skb);
2020                         return -1;
2021                 }
2022                 i = hlen;
2023                 if (i == dlen)  /* attach FCS */
2024                         i += cp->crc_size;
2025                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2026                                     PCI_DMA_FROMDEVICE);
2027
2028                 /* make sure we always copy a header */
2029                 swivel = 0;
2030                 if (p == (char *) skb->data) { /* not split */
2031                         addr = cas_page_map(page->buffer);
2032                         memcpy(p, addr + off, RX_COPY_MIN);
2033                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2034                                         PCI_DMA_FROMDEVICE);
2035                         cas_page_unmap(addr);
2036                         off += RX_COPY_MIN;
2037                         swivel = RX_COPY_MIN;
2038                         RX_USED_ADD(page, cp->mtu_stride);
2039                 } else {
2040                         RX_USED_ADD(page, hlen);
2041                 }
2042                 skb_put(skb, alloclen);
2043
2044                 skb_shinfo(skb)->nr_frags++;
2045                 skb->data_len += hlen - swivel;
2046                 skb->truesize += hlen - swivel;
2047                 skb->len      += hlen - swivel;
2048
2049                 get_page(page->buffer);
2050                 frag->page = page->buffer;
2051                 frag->page_offset = off;
2052                 frag->size = hlen - swivel;
2053
2054                 /* any more data? */
2055                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2056                         hlen = dlen;
2057                         off = 0;
2058
2059                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2060                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2061                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2062                                             hlen + cp->crc_size,
2063                                             PCI_DMA_FROMDEVICE);
2064                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2065                                             hlen + cp->crc_size,
2066                                             PCI_DMA_FROMDEVICE);
2067
2068                         skb_shinfo(skb)->nr_frags++;
2069                         skb->data_len += hlen;
2070                         skb->len      += hlen;
2071                         frag++;
2072
2073                         get_page(page->buffer);
2074                         frag->page = page->buffer;
2075                         frag->page_offset = 0;
2076                         frag->size = hlen;
2077                         RX_USED_ADD(page, hlen + cp->crc_size);
2078                 }
2079
2080                 if (cp->crc_size) {
2081                         addr = cas_page_map(page->buffer);
2082                         crcaddr  = addr + off + hlen;
2083                 }
2084
2085         } else {
2086                 /* copying packet */
2087                 if (!dlen)
2088                         goto end_copy_pkt;
2089
2090                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2091                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2093                 hlen = min(cp->page_size - off, dlen);
2094                 if (hlen < 0) {
2095                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2096                                      "rx page overflow: %d\n", hlen);
2097                         dev_kfree_skb_irq(skb);
2098                         return -1;
2099                 }
2100                 i = hlen;
2101                 if (i == dlen) /* attach FCS */
2102                         i += cp->crc_size;
2103                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2104                                     PCI_DMA_FROMDEVICE);
2105                 addr = cas_page_map(page->buffer);
2106                 memcpy(p, addr + off, i);
2107                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2108                                     PCI_DMA_FROMDEVICE);
2109                 cas_page_unmap(addr);
2110                 if (p == (char *) skb->data) /* not split */
2111                         RX_USED_ADD(page, cp->mtu_stride);
2112                 else
2113                         RX_USED_ADD(page, i);
2114
2115                 /* any more data? */
2116                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117                         p += hlen;
2118                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2119                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2120                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2121                                             dlen + cp->crc_size,
2122                                             PCI_DMA_FROMDEVICE);
2123                         addr = cas_page_map(page->buffer);
2124                         memcpy(p, addr, dlen + cp->crc_size);
2125                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2126                                             dlen + cp->crc_size,
2127                                             PCI_DMA_FROMDEVICE);
2128                         cas_page_unmap(addr);
2129                         RX_USED_ADD(page, dlen + cp->crc_size);
2130                 }
2131 end_copy_pkt:
2132                 if (cp->crc_size) {
2133                         addr    = NULL;
2134                         crcaddr = skb->data + alloclen;
2135                 }
2136                 skb_put(skb, alloclen);
2137         }
2138
2139         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140         if (cp->crc_size) {
2141                 /* checksum includes FCS. strip it out. */
2142                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2143                                               csum_unfold(csum)));
2144                 if (addr)
2145                         cas_page_unmap(addr);
2146         }
2147         skb->protocol = eth_type_trans(skb, cp->dev);
2148         if (skb->protocol == htons(ETH_P_IP)) {
2149                 skb->csum = csum_unfold(~csum);
2150                 skb->ip_summed = CHECKSUM_COMPLETE;
2151         } else
2152                 skb->ip_summed = CHECKSUM_NONE;
2153         return len;
2154 }
2155
2156
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158  * as nonreassm except that we batch up the buffers.
2159  * NOTE: we currently just treat each flow as a bunch of packets that
2160  *       we pass up. a better way would be to coalesce the packets
2161  *       into a jumbo packet. to do that, we need to do the following:
2162  *       1) the first packet will have a clean split between header and
2163  *          data. save both.
2164  *       2) each time the next flow packet comes in, extend the
2165  *          data length and merge the checksums.
2166  *       3) on flow release, fix up the header.
2167  *       4) make sure the higher layer doesn't care.
2168  * because packets get coalesced, we shouldn't run into fragment count
2169  * issues.
2170  */
2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2172                                    struct sk_buff *skb)
2173 {
2174         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2175         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176
2177         /* this is protected at a higher layer, so no need to
2178          * do any additional locking here. stick the buffer
2179          * at the end.
2180          */
2181         __skb_queue_tail(flow, skb);
2182         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2183                 while ((skb = __skb_dequeue(flow))) {
2184                         cas_skb_release(skb);
2185                 }
2186         }
2187 }
2188
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190  * layer, this will need to put in a replacement.
2191  */
2192 static void cas_post_page(struct cas *cp, const int ring, const int index)
2193 {
2194         cas_page_t *new;
2195         int entry;
2196
2197         entry = cp->rx_old[ring];
2198
2199         new = cas_page_swap(cp, ring, index);
2200         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2201         cp->init_rxds[ring][entry].index  =
2202                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2203                             CAS_BASE(RX_INDEX_RING, ring));
2204
2205         entry = RX_DESC_ENTRY(ring, entry + 1);
2206         cp->rx_old[ring] = entry;
2207
2208         if (entry % 4)
2209                 return;
2210
2211         if (ring == 0)
2212                 writel(entry, cp->regs + REG_RX_KICK);
2213         else if ((N_RX_DESC_RINGS > 1) &&
2214                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2215                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2216 }
2217
2218
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 {
2222         unsigned int entry, last, count, released;
2223         int cluster;
2224         cas_page_t **page = cp->rx_pages[ring];
2225
2226         entry = cp->rx_old[ring];
2227
2228         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2229                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2230
2231         cluster = -1;
2232         count = entry & 0x3;
2233         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234         released = 0;
2235         while (entry != last) {
2236                 /* make a new buffer if it's still in use */
2237                 if (page_count(page[entry]->buffer) > 1) {
2238                         cas_page_t *new = cas_page_dequeue(cp);
2239                         if (!new) {
2240                                 /* let the timer know that we need to
2241                                  * do this again
2242                                  */
2243                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2244                                 if (!timer_pending(&cp->link_timer))
2245                                         mod_timer(&cp->link_timer, jiffies +
2246                                                   CAS_LINK_FAST_TIMEOUT);
2247                                 cp->rx_old[ring]  = entry;
2248                                 cp->rx_last[ring] = num ? num - released : 0;
2249                                 return -ENOMEM;
2250                         }
2251                         spin_lock(&cp->rx_inuse_lock);
2252                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2253                         spin_unlock(&cp->rx_inuse_lock);
2254                         cp->init_rxds[ring][entry].buffer =
2255                                 cpu_to_le64(new->dma_addr);
2256                         page[entry] = new;
2257
2258                 }
2259
2260                 if (++count == 4) {
2261                         cluster = entry;
2262                         count = 0;
2263                 }
2264                 released++;
2265                 entry = RX_DESC_ENTRY(ring, entry + 1);
2266         }
2267         cp->rx_old[ring] = entry;
2268
2269         if (cluster < 0)
2270                 return 0;
2271
2272         if (ring == 0)
2273                 writel(cluster, cp->regs + REG_RX_KICK);
2274         else if ((N_RX_DESC_RINGS > 1) &&
2275                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2276                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2277         return 0;
2278 }
2279
2280
2281 /* process a completion ring. packets are set up in three basic ways:
2282  * small packets: should be copied header + data in single buffer.
2283  * large packets: header and data in a single buffer.
2284  * split packets: header in a separate buffer from data.
2285  *                data may be in multiple pages. data may be > 256
2286  *                bytes but in a single page.
2287  *
2288  * NOTE: RX page posting is done in this routine as well. while there's
2289  *       the capability of using multiple RX completion rings, it isn't
2290  *       really worthwhile due to the fact that the page posting will
2291  *       force serialization on the single descriptor ring.
2292  */
2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 {
2295         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2296         int entry, drops;
2297         int npackets = 0;
2298
2299         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2300                      "rx[%d] interrupt, done: %d/%d\n",
2301                      ring,
2302                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303
2304         entry = cp->rx_new[ring];
2305         drops = 0;
2306         while (1) {
2307                 struct cas_rx_comp *rxc = rxcs + entry;
2308                 struct sk_buff *uninitialized_var(skb);
2309                 int type, len;
2310                 u64 words[4];
2311                 int i, dring;
2312
2313                 words[0] = le64_to_cpu(rxc->word1);
2314                 words[1] = le64_to_cpu(rxc->word2);
2315                 words[2] = le64_to_cpu(rxc->word3);
2316                 words[3] = le64_to_cpu(rxc->word4);
2317
2318                 /* don't touch if still owned by hw */
2319                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2320                 if (type == 0)
2321                         break;
2322
2323                 /* hw hasn't cleared the zero bit yet */
2324                 if (words[3] & RX_COMP4_ZERO) {
2325                         break;
2326                 }
2327
2328                 /* get info on the packet */
2329                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2330                         spin_lock(&cp->stat_lock[ring]);
2331                         cp->net_stats[ring].rx_errors++;
2332                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2333                                 cp->net_stats[ring].rx_length_errors++;
2334                         if (words[3] & RX_COMP4_BAD)
2335                                 cp->net_stats[ring].rx_crc_errors++;
2336                         spin_unlock(&cp->stat_lock[ring]);
2337
2338                         /* We'll just return it to Cassini. */
2339                 drop_it:
2340                         spin_lock(&cp->stat_lock[ring]);
2341                         ++cp->net_stats[ring].rx_dropped;
2342                         spin_unlock(&cp->stat_lock[ring]);
2343                         goto next;
2344                 }
2345
2346                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2347                 if (len < 0) {
2348                         ++drops;
2349                         goto drop_it;
2350                 }
2351
2352                 /* see if it's a flow re-assembly or not. the driver
2353                  * itself handles release back up.
2354                  */
2355                 if (RX_DONT_BATCH || (type == 0x2)) {
2356                         /* non-reassm: these always get released */
2357                         cas_skb_release(skb);
2358                 } else {
2359                         cas_rx_flow_pkt(cp, words, skb);
2360                 }
2361
2362                 spin_lock(&cp->stat_lock[ring]);
2363                 cp->net_stats[ring].rx_packets++;
2364                 cp->net_stats[ring].rx_bytes += len;
2365                 spin_unlock(&cp->stat_lock[ring]);
2366
2367         next:
2368                 npackets++;
2369
2370                 /* should it be released? */
2371                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2372                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2373                         dring = CAS_VAL(RX_INDEX_RING, i);
2374                         i = CAS_VAL(RX_INDEX_NUM, i);
2375                         cas_post_page(cp, dring, i);
2376                 }
2377
2378                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2379                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2380                         dring = CAS_VAL(RX_INDEX_RING, i);
2381                         i = CAS_VAL(RX_INDEX_NUM, i);
2382                         cas_post_page(cp, dring, i);
2383                 }
2384
2385                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2386                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2387                         dring = CAS_VAL(RX_INDEX_RING, i);
2388                         i = CAS_VAL(RX_INDEX_NUM, i);
2389                         cas_post_page(cp, dring, i);
2390                 }
2391
2392                 /* skip to the next entry */
2393                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2394                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 #ifdef USE_NAPI
2396                 if (budget && (npackets >= budget))
2397                         break;
2398 #endif
2399         }
2400         cp->rx_new[ring] = entry;
2401
2402         if (drops)
2403                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2404         return npackets;
2405 }
2406
2407
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device *dev,
2410                                 struct cas *cp, int ring)
2411 {
2412         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2413         int last, entry;
2414
2415         last = cp->rx_cur[ring];
2416         entry = cp->rx_new[ring];
2417         netif_printk(cp, intr, KERN_DEBUG, dev,
2418                      "rxc[%d] interrupt, done: %d/%d\n",
2419                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420
2421         /* zero and re-mark descriptors */
2422         while (last != entry) {
2423                 cas_rxc_init(rxc + last);
2424                 last = RX_COMP_ENTRY(ring, last + 1);
2425         }
2426         cp->rx_cur[ring] = last;
2427
2428         if (ring == 0)
2429                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2430         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2431                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2432 }
2433
2434
2435
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437  * rings 3 and 4 are identical
2438  */
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device *dev,
2441                                    struct cas *cp, const u32 status,
2442                                    const int ring)
2443 {
2444         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2445                 cas_post_rxcs_ringN(dev, cp, ring);
2446 }
2447
2448 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 {
2450         struct net_device *dev = dev_id;
2451         struct cas *cp = netdev_priv(dev);
2452         unsigned long flags;
2453         int ring;
2454         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455
2456         /* check for shared irq */
2457         if (status == 0)
2458                 return IRQ_NONE;
2459
2460         ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2461         spin_lock_irqsave(&cp->lock, flags);
2462         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2463 #ifdef USE_NAPI
2464                 cas_mask_intr(cp);
2465                 napi_schedule(&cp->napi);
2466 #else
2467                 cas_rx_ringN(cp, ring, 0);
2468 #endif
2469                 status &= ~INTR_RX_DONE_ALT;
2470         }
2471
2472         if (status)
2473                 cas_handle_irqN(dev, cp, status, ring);
2474         spin_unlock_irqrestore(&cp->lock, flags);
2475         return IRQ_HANDLED;
2476 }
2477 #endif
2478
2479 #ifdef USE_PCI_INTB
2480 /* everything but rx packets */
2481 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2482 {
2483         if (status & INTR_RX_BUF_UNAVAIL_1) {
2484                 /* Frame arrived, no free RX buffers available.
2485                  * NOTE: we can get this on a link transition. */
2486                 cas_post_rxds_ringN(cp, 1, 0);
2487                 spin_lock(&cp->stat_lock[1]);
2488                 cp->net_stats[1].rx_dropped++;
2489                 spin_unlock(&cp->stat_lock[1]);
2490         }
2491
2492         if (status & INTR_RX_BUF_AE_1)
2493                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2494                                     RX_AE_FREEN_VAL(1));
2495
2496         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497                 cas_post_rxcs_ringN(cp, 1);
2498 }
2499
2500 /* ring 2 handles a few more events than 3 and 4 */
2501 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2502 {
2503         struct net_device *dev = dev_id;
2504         struct cas *cp = netdev_priv(dev);
2505         unsigned long flags;
2506         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2507
2508         /* check for shared interrupt */
2509         if (status == 0)
2510                 return IRQ_NONE;
2511
2512         spin_lock_irqsave(&cp->lock, flags);
2513         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2514 #ifdef USE_NAPI
2515                 cas_mask_intr(cp);
2516                 napi_schedule(&cp->napi);
2517 #else
2518                 cas_rx_ringN(cp, 1, 0);
2519 #endif
2520                 status &= ~INTR_RX_DONE_ALT;
2521         }
2522         if (status)
2523                 cas_handle_irq1(cp, status);
2524         spin_unlock_irqrestore(&cp->lock, flags);
2525         return IRQ_HANDLED;
2526 }
2527 #endif
2528
2529 static inline void cas_handle_irq(struct net_device *dev,
2530                                   struct cas *cp, const u32 status)
2531 {
2532         /* housekeeping interrupts */
2533         if (status & INTR_ERROR_MASK)
2534                 cas_abnormal_irq(dev, cp, status);
2535
2536         if (status & INTR_RX_BUF_UNAVAIL) {
2537                 /* Frame arrived, no free RX buffers available.
2538                  * NOTE: we can get this on a link transition.
2539                  */
2540                 cas_post_rxds_ringN(cp, 0, 0);
2541                 spin_lock(&cp->stat_lock[0]);
2542                 cp->net_stats[0].rx_dropped++;
2543                 spin_unlock(&cp->stat_lock[0]);
2544         } else if (status & INTR_RX_BUF_AE) {
2545                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2546                                     RX_AE_FREEN_VAL(0));
2547         }
2548
2549         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2550                 cas_post_rxcs_ringN(dev, cp, 0);
2551 }
2552
2553 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2554 {
2555         struct net_device *dev = dev_id;
2556         struct cas *cp = netdev_priv(dev);
2557         unsigned long flags;
2558         u32 status = readl(cp->regs + REG_INTR_STATUS);
2559
2560         if (status == 0)
2561                 return IRQ_NONE;
2562
2563         spin_lock_irqsave(&cp->lock, flags);
2564         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2565                 cas_tx(dev, cp, status);
2566                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567         }
2568
2569         if (status & INTR_RX_DONE) {
2570 #ifdef USE_NAPI
2571                 cas_mask_intr(cp);
2572                 napi_schedule(&cp->napi);
2573 #else
2574                 cas_rx_ringN(cp, 0, 0);
2575 #endif
2576                 status &= ~INTR_RX_DONE;
2577         }
2578
2579         if (status)
2580                 cas_handle_irq(dev, cp, status);
2581         spin_unlock_irqrestore(&cp->lock, flags);
2582         return IRQ_HANDLED;
2583 }
2584
2585
2586 #ifdef USE_NAPI
2587 static int cas_poll(struct napi_struct *napi, int budget)
2588 {
2589         struct cas *cp = container_of(napi, struct cas, napi);
2590         struct net_device *dev = cp->dev;
2591         int i, enable_intr, credits;
2592         u32 status = readl(cp->regs + REG_INTR_STATUS);
2593         unsigned long flags;
2594
2595         spin_lock_irqsave(&cp->lock, flags);
2596         cas_tx(dev, cp, status);
2597         spin_unlock_irqrestore(&cp->lock, flags);
2598
2599         /* NAPI rx packets. we spread the credits across all of the
2600          * rxc rings
2601          *
2602          * to make sure we're fair with the work we loop through each
2603          * ring N_RX_COMP_RING times with a request of
2604          * budget / N_RX_COMP_RINGS
2605          */
2606         enable_intr = 1;
2607         credits = 0;
2608         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2609                 int j;
2610                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2611                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2612                         if (credits >= budget) {
2613                                 enable_intr = 0;
2614                                 goto rx_comp;
2615                         }
2616                 }
2617         }
2618
2619 rx_comp:
2620         /* final rx completion */
2621         spin_lock_irqsave(&cp->lock, flags);
2622         if (status)
2623                 cas_handle_irq(dev, cp, status);
2624
2625 #ifdef USE_PCI_INTB
2626         if (N_RX_COMP_RINGS > 1) {
2627                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2628                 if (status)
2629                         cas_handle_irq1(dev, cp, status);
2630         }
2631 #endif
2632
2633 #ifdef USE_PCI_INTC
2634         if (N_RX_COMP_RINGS > 2) {
2635                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2636                 if (status)
2637                         cas_handle_irqN(dev, cp, status, 2);
2638         }
2639 #endif
2640
2641 #ifdef USE_PCI_INTD
2642         if (N_RX_COMP_RINGS > 3) {
2643                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2644                 if (status)
2645                         cas_handle_irqN(dev, cp, status, 3);
2646         }
2647 #endif
2648         spin_unlock_irqrestore(&cp->lock, flags);
2649         if (enable_intr) {
2650                 napi_complete(napi);
2651                 cas_unmask_intr(cp);
2652         }
2653         return credits;
2654 }
2655 #endif
2656
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 static void cas_netpoll(struct net_device *dev)
2659 {
2660         struct cas *cp = netdev_priv(dev);
2661
2662         cas_disable_irq(cp, 0);
2663         cas_interrupt(cp->pdev->irq, dev);
2664         cas_enable_irq(cp, 0);
2665
2666 #ifdef USE_PCI_INTB
2667         if (N_RX_COMP_RINGS > 1) {
2668                 /* cas_interrupt1(); */
2669         }
2670 #endif
2671 #ifdef USE_PCI_INTC
2672         if (N_RX_COMP_RINGS > 2) {
2673                 /* cas_interruptN(); */
2674         }
2675 #endif
2676 #ifdef USE_PCI_INTD
2677         if (N_RX_COMP_RINGS > 3) {
2678                 /* cas_interruptN(); */
2679         }
2680 #endif
2681 }
2682 #endif
2683
2684 static void cas_tx_timeout(struct net_device *dev)
2685 {
2686         struct cas *cp = netdev_priv(dev);
2687
2688         netdev_err(dev, "transmit timed out, resetting\n");
2689         if (!cp->hw_running) {
2690                 netdev_err(dev, "hrm.. hw not running!\n");
2691                 return;
2692         }
2693
2694         netdev_err(dev, "MIF_STATE[%08x]\n",
2695                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2696
2697         netdev_err(dev, "MAC_STATE[%08x]\n",
2698                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2699
2700         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2701                    readl(cp->regs + REG_TX_CFG),
2702                    readl(cp->regs + REG_MAC_TX_STATUS),
2703                    readl(cp->regs + REG_MAC_TX_CFG),
2704                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707                    readl(cp->regs + REG_TX_SM_1),
2708                    readl(cp->regs + REG_TX_SM_2));
2709
2710         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2711                    readl(cp->regs + REG_RX_CFG),
2712                    readl(cp->regs + REG_MAC_RX_STATUS),
2713                    readl(cp->regs + REG_MAC_RX_CFG));
2714
2715         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2716                    readl(cp->regs + REG_HP_STATE_MACHINE),
2717                    readl(cp->regs + REG_HP_STATUS0),
2718                    readl(cp->regs + REG_HP_STATUS1),
2719                    readl(cp->regs + REG_HP_STATUS2));
2720
2721 #if 1
2722         atomic_inc(&cp->reset_task_pending);
2723         atomic_inc(&cp->reset_task_pending_all);
2724         schedule_work(&cp->reset_task);
2725 #else
2726         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2727         schedule_work(&cp->reset_task);
2728 #endif
2729 }
2730
2731 static inline int cas_intme(int ring, int entry)
2732 {
2733         /* Algorithm: IRQ every 1/2 of descriptors. */
2734         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2735                 return 1;
2736         return 0;
2737 }
2738
2739
2740 static void cas_write_txd(struct cas *cp, int ring, int entry,
2741                           dma_addr_t mapping, int len, u64 ctrl, int last)
2742 {
2743         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2744
2745         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2746         if (cas_intme(ring, entry))
2747                 ctrl |= TX_DESC_INTME;
2748         if (last)
2749                 ctrl |= TX_DESC_EOF;
2750         txd->control = cpu_to_le64(ctrl);
2751         txd->buffer = cpu_to_le64(mapping);
2752 }
2753
2754 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2755                                 const int entry)
2756 {
2757         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 }
2759
2760 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2761                                      const int entry, const int tentry)
2762 {
2763         cp->tx_tiny_use[ring][tentry].nbufs++;
2764         cp->tx_tiny_use[ring][entry].used = 1;
2765         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 }
2767
2768 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2769                                     struct sk_buff *skb)
2770 {
2771         struct net_device *dev = cp->dev;
2772         int entry, nr_frags, frag, tabort, tentry;
2773         dma_addr_t mapping;
2774         unsigned long flags;
2775         u64 ctrl;
2776         u32 len;
2777
2778         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2779
2780         /* This is a hard error, log it. */
2781         if (TX_BUFFS_AVAIL(cp, ring) <=
2782             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2783                 netif_stop_queue(dev);
2784                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2785                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2786                 return 1;
2787         }
2788
2789         ctrl = 0;
2790         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2791                 const u64 csum_start_off = skb_transport_offset(skb);
2792                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2793
2794                 ctrl =  TX_DESC_CSUM_EN |
2795                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2796                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2797         }
2798
2799         entry = cp->tx_new[ring];
2800         cp->tx_skbs[ring][entry] = skb;
2801
2802         nr_frags = skb_shinfo(skb)->nr_frags;
2803         len = skb_headlen(skb);
2804         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2805                                offset_in_page(skb->data), len,
2806                                PCI_DMA_TODEVICE);
2807
2808         tentry = entry;
2809         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2810         if (unlikely(tabort)) {
2811                 /* NOTE: len is always >  tabort */
2812                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2813                               ctrl | TX_DESC_SOF, 0);
2814                 entry = TX_DESC_NEXT(ring, entry);
2815
2816                 skb_copy_from_linear_data_offset(skb, len - tabort,
2817                               tx_tiny_buf(cp, ring, entry), tabort);
2818                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2819                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2820                               (nr_frags == 0));
2821         } else {
2822                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2823                               TX_DESC_SOF, (nr_frags == 0));
2824         }
2825         entry = TX_DESC_NEXT(ring, entry);
2826
2827         for (frag = 0; frag < nr_frags; frag++) {
2828                 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2829
2830                 len = fragp->size;
2831                 mapping = pci_map_page(cp->pdev, fragp->page,
2832                                        fragp->page_offset, len,
2833                                        PCI_DMA_TODEVICE);
2834
2835                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2836                 if (unlikely(tabort)) {
2837                         void *addr;
2838
2839                         /* NOTE: len is always > tabort */
2840                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2841                                       ctrl, 0);
2842                         entry = TX_DESC_NEXT(ring, entry);
2843
2844                         addr = cas_page_map(fragp->page);
2845                         memcpy(tx_tiny_buf(cp, ring, entry),
2846                                addr + fragp->page_offset + len - tabort,
2847                                tabort);
2848                         cas_page_unmap(addr);
2849                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2850                         len     = tabort;
2851                 }
2852
2853                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2854                               (frag + 1 == nr_frags));
2855                 entry = TX_DESC_NEXT(ring, entry);
2856         }
2857
2858         cp->tx_new[ring] = entry;
2859         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2860                 netif_stop_queue(dev);
2861
2862         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2863                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2864                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2865         writel(entry, cp->regs + REG_TX_KICKN(ring));
2866         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2867         return 0;
2868 }
2869
2870 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2871 {
2872         struct cas *cp = netdev_priv(dev);
2873
2874         /* this is only used as a load-balancing hint, so it doesn't
2875          * need to be SMP safe
2876          */
2877         static int ring;
2878
2879         if (skb_padto(skb, cp->min_frame_size))
2880                 return NETDEV_TX_OK;
2881
2882         /* XXX: we need some higher-level QoS hooks to steer packets to
2883          *      individual queues.
2884          */
2885         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2886                 return NETDEV_TX_BUSY;
2887         return NETDEV_TX_OK;
2888 }
2889
2890 static void cas_init_tx_dma(struct cas *cp)
2891 {
2892         u64 desc_dma = cp->block_dvma;
2893         unsigned long off;
2894         u32 val;
2895         int i;
2896
2897         /* set up tx completion writeback registers. must be 8-byte aligned */
2898 #ifdef USE_TX_COMPWB
2899         off = offsetof(struct cas_init_block, tx_compwb);
2900         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2901         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2902 #endif
2903
2904         /* enable completion writebacks, enable paced mode,
2905          * disable read pipe, and disable pre-interrupt compwbs
2906          */
2907         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2908                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2909                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2910                 TX_CFG_INTR_COMPWB_DIS;
2911
2912         /* write out tx ring info and tx desc bases */
2913         for (i = 0; i < MAX_TX_RINGS; i++) {
2914                 off = (unsigned long) cp->init_txds[i] -
2915                         (unsigned long) cp->init_block;
2916
2917                 val |= CAS_TX_RINGN_BASE(i);
2918                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2919                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2920                        REG_TX_DBN_LOW(i));
2921                 /* don't zero out the kick register here as the system
2922                  * will wedge
2923                  */
2924         }
2925         writel(val, cp->regs + REG_TX_CFG);
2926
2927         /* program max burst sizes. these numbers should be different
2928          * if doing QoS.
2929          */
2930 #ifdef USE_QOS
2931         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2933         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2934         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2935 #else
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2937         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2938         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2939         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2940 #endif
2941 }
2942
2943 /* Must be invoked under cp->lock. */
2944 static inline void cas_init_dma(struct cas *cp)
2945 {
2946         cas_init_tx_dma(cp);
2947         cas_init_rx_dma(cp);
2948 }
2949
2950 static void cas_process_mc_list(struct cas *cp)
2951 {
2952         u16 hash_table[16];
2953         u32 crc;
2954         struct netdev_hw_addr *ha;
2955         int i = 1;
2956
2957         memset(hash_table, 0, sizeof(hash_table));
2958         netdev_for_each_mc_addr(ha, cp->dev) {
2959                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2960                         /* use the alternate mac address registers for the
2961                          * first 15 multicast addresses
2962                          */
2963                         writel((ha->addr[4] << 8) | ha->addr[5],
2964                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2965                         writel((ha->addr[2] << 8) | ha->addr[3],
2966                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2967                         writel((ha->addr[0] << 8) | ha->addr[1],
2968                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2969                         i++;
2970                 }
2971                 else {
2972                         /* use hw hash table for the next series of
2973                          * multicast addresses
2974                          */
2975                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2976                         crc >>= 24;
2977                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2978                 }
2979         }
2980         for (i = 0; i < 16; i++)
2981                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2982 }
2983
2984 /* Must be invoked under cp->lock. */
2985 static u32 cas_setup_multicast(struct cas *cp)
2986 {
2987         u32 rxcfg = 0;
2988         int i;
2989
2990         if (cp->dev->flags & IFF_PROMISC) {
2991                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2992
2993         } else if (cp->dev->flags & IFF_ALLMULTI) {
2994                 for (i=0; i < 16; i++)
2995                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2996                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2997
2998         } else {
2999                 cas_process_mc_list(cp);
3000                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3001         }
3002
3003         return rxcfg;
3004 }
3005
3006 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3007 static void cas_clear_mac_err(struct cas *cp)
3008 {
3009         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3010         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3011         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3012         writel(0, cp->regs + REG_MAC_COLL_LATE);
3013         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3014         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3015         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3016         writel(0, cp->regs + REG_MAC_LEN_ERR);
3017         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3018         writel(0, cp->regs + REG_MAC_FCS_ERR);
3019         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3020 }
3021
3022
3023 static void cas_mac_reset(struct cas *cp)
3024 {
3025         int i;
3026
3027         /* do both TX and RX reset */
3028         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3029         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3030
3031         /* wait for TX */
3032         i = STOP_TRIES;
3033         while (i-- > 0) {
3034                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3035                         break;
3036                 udelay(10);
3037         }
3038
3039         /* wait for RX */
3040         i = STOP_TRIES;
3041         while (i-- > 0) {
3042                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3043                         break;
3044                 udelay(10);
3045         }
3046
3047         if (readl(cp->regs + REG_MAC_TX_RESET) |
3048             readl(cp->regs + REG_MAC_RX_RESET))
3049                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3050                            readl(cp->regs + REG_MAC_TX_RESET),
3051                            readl(cp->regs + REG_MAC_RX_RESET),
3052                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3053 }
3054
3055
3056 /* Must be invoked under cp->lock. */
3057 static void cas_init_mac(struct cas *cp)
3058 {
3059         unsigned char *e = &cp->dev->dev_addr[0];
3060         int i;
3061         cas_mac_reset(cp);
3062
3063         /* setup core arbitration weight register */
3064         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3065
3066         /* XXX Use pci_dma_burst_advice() */
3067 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3068         /* set the infinite burst register for chips that don't have
3069          * pci issues.
3070          */
3071         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3072                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3073 #endif
3074
3075         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3076
3077         writel(0x00, cp->regs + REG_MAC_IPG0);
3078         writel(0x08, cp->regs + REG_MAC_IPG1);
3079         writel(0x04, cp->regs + REG_MAC_IPG2);
3080
3081         /* change later for 802.3z */
3082         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3083
3084         /* min frame + FCS */
3085         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3086
3087         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3088          * specify the maximum frame size to prevent RX tag errors on
3089          * oversized frames.
3090          */
3091         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3092                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3093                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3094                cp->regs + REG_MAC_FRAMESIZE_MAX);
3095
3096         /* NOTE: crc_size is used as a surrogate for half-duplex.
3097          * workaround saturn half-duplex issue by increasing preamble
3098          * size to 65 bytes.
3099          */
3100         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3101                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3102         else
3103                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3104         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3105         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3106         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3107
3108         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3109
3110         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3111         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3112         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3113         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3114         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3115
3116         /* setup mac address in perfect filter array */
3117         for (i = 0; i < 45; i++)
3118                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3119
3120         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3121         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3122         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3123
3124         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3125         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3126         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3127
3128         cp->mac_rx_cfg = cas_setup_multicast(cp);
3129
3130         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3131         cas_clear_mac_err(cp);
3132         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3133
3134         /* Setup MAC interrupts.  We want to get all of the interesting
3135          * counter expiration events, but we do not want to hear about
3136          * normal rx/tx as the DMA engine tells us that.
3137          */
3138         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3139         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3140
3141         /* Don't enable even the PAUSE interrupts for now, we
3142          * make no use of those events other than to record them.
3143          */
3144         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3145 }
3146
3147 /* Must be invoked under cp->lock. */
3148 static void cas_init_pause_thresholds(struct cas *cp)
3149 {
3150         /* Calculate pause thresholds.  Setting the OFF threshold to the
3151          * full RX fifo size effectively disables PAUSE generation
3152          */
3153         if (cp->rx_fifo_size <= (2 * 1024)) {
3154                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3155         } else {
3156                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3157                 if (max_frame * 3 > cp->rx_fifo_size) {
3158                         cp->rx_pause_off = 7104;
3159                         cp->rx_pause_on  = 960;
3160                 } else {
3161                         int off = (cp->rx_fifo_size - (max_frame * 2));
3162                         int on = off - max_frame;
3163                         cp->rx_pause_off = off;
3164                         cp->rx_pause_on = on;
3165                 }
3166         }
3167 }
3168
3169 static int cas_vpd_match(const void __iomem *p, const char *str)
3170 {
3171         int len = strlen(str) + 1;
3172         int i;
3173
3174         for (i = 0; i < len; i++) {
3175                 if (readb(p + i) != str[i])
3176                         return 0;
3177         }
3178         return 1;
3179 }
3180
3181
3182 /* get the mac address by reading the vpd information in the rom.
3183  * also get the phy type and determine if there's an entropy generator.
3184  * NOTE: this is a bit convoluted for the following reasons:
3185  *  1) vpd info has order-dependent mac addresses for multinic cards
3186  *  2) the only way to determine the nic order is to use the slot
3187  *     number.
3188  *  3) fiber cards don't have bridges, so their slot numbers don't
3189  *     mean anything.
3190  *  4) we don't actually know we have a fiber card until after
3191  *     the mac addresses are parsed.
3192  */
3193 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3194                             const int offset)
3195 {
3196         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3197         void __iomem *base, *kstart;
3198         int i, len;
3199         int found = 0;
3200 #define VPD_FOUND_MAC        0x01
3201 #define VPD_FOUND_PHY        0x02
3202
3203         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3204         int mac_off  = 0;
3205
3206         /* give us access to the PROM */
3207         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3208                cp->regs + REG_BIM_LOCAL_DEV_EN);
3209
3210         /* check for an expansion rom */
3211         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3212                 goto use_random_mac_addr;
3213
3214         /* search for beginning of vpd */
3215         base = NULL;
3216         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3217                 /* check for PCIR */
3218                 if ((readb(p + i + 0) == 0x50) &&
3219                     (readb(p + i + 1) == 0x43) &&
3220                     (readb(p + i + 2) == 0x49) &&
3221                     (readb(p + i + 3) == 0x52)) {
3222                         base = p + (readb(p + i + 8) |
3223                                     (readb(p + i + 9) << 8));
3224                         break;
3225                 }
3226         }
3227
3228         if (!base || (readb(base) != 0x82))
3229                 goto use_random_mac_addr;
3230
3231         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3232         while (i < EXPANSION_ROM_SIZE) {
3233                 if (readb(base + i) != 0x90) /* no vpd found */
3234                         goto use_random_mac_addr;
3235
3236                 /* found a vpd field */
3237                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3238
3239                 /* extract keywords */
3240                 kstart = base + i + 3;
3241                 p = kstart;
3242                 while ((p - kstart) < len) {
3243                         int klen = readb(p + 2);
3244                         int j;
3245                         char type;
3246
3247                         p += 3;
3248
3249                         /* look for the following things:
3250                          * -- correct length == 29
3251                          * 3 (type) + 2 (size) +
3252                          * 18 (strlen("local-mac-address") + 1) +
3253                          * 6 (mac addr)
3254                          * -- VPD Instance 'I'
3255                          * -- VPD Type Bytes 'B'
3256                          * -- VPD data length == 6
3257                          * -- property string == local-mac-address
3258                          *
3259                          * -- correct length == 24
3260                          * 3 (type) + 2 (size) +
3261                          * 12 (strlen("entropy-dev") + 1) +
3262                          * 7 (strlen("vms110") + 1)
3263                          * -- VPD Instance 'I'
3264                          * -- VPD Type String 'B'
3265                          * -- VPD data length == 7
3266                          * -- property string == entropy-dev
3267                          *
3268                          * -- correct length == 18
3269                          * 3 (type) + 2 (size) +
3270                          * 9 (strlen("phy-type") + 1) +
3271                          * 4 (strlen("pcs") + 1)
3272                          * -- VPD Instance 'I'
3273                          * -- VPD Type String 'S'
3274                          * -- VPD data length == 4
3275                          * -- property string == phy-type
3276                          *
3277                          * -- correct length == 23
3278                          * 3 (type) + 2 (size) +
3279                          * 14 (strlen("phy-interface") + 1) +
3280                          * 4 (strlen("pcs") + 1)
3281                          * -- VPD Instance 'I'
3282                          * -- VPD Type String 'S'
3283                          * -- VPD data length == 4
3284                          * -- property string == phy-interface
3285                          */
3286                         if (readb(p) != 'I')
3287                                 goto next;
3288
3289                         /* finally, check string and length */
3290                         type = readb(p + 3);
3291                         if (type == 'B') {
3292                                 if ((klen == 29) && readb(p + 4) == 6 &&
3293                                     cas_vpd_match(p + 5,
3294                                                   "local-mac-address")) {
3295                                         if (mac_off++ > offset)
3296                                                 goto next;
3297
3298                                         /* set mac address */
3299                                         for (j = 0; j < 6; j++)
3300                                                 dev_addr[j] =
3301                                                         readb(p + 23 + j);
3302                                         goto found_mac;
3303                                 }
3304                         }
3305
3306                         if (type != 'S')
3307                                 goto next;
3308
3309 #ifdef USE_ENTROPY_DEV
3310                         if ((klen == 24) &&
3311                             cas_vpd_match(p + 5, "entropy-dev") &&
3312                             cas_vpd_match(p + 17, "vms110")) {
3313                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3314                                 goto next;
3315                         }
3316 #endif
3317
3318                         if (found & VPD_FOUND_PHY)
3319                                 goto next;
3320
3321                         if ((klen == 18) && readb(p + 4) == 4 &&
3322                             cas_vpd_match(p + 5, "phy-type")) {
3323                                 if (cas_vpd_match(p + 14, "pcs")) {
3324                                         phy_type = CAS_PHY_SERDES;
3325                                         goto found_phy;
3326                                 }
3327                         }
3328
3329                         if ((klen == 23) && readb(p + 4) == 4 &&
3330                             cas_vpd_match(p + 5, "phy-interface")) {
3331                                 if (cas_vpd_match(p + 19, "pcs")) {
3332                                         phy_type = CAS_PHY_SERDES;
3333                                         goto found_phy;
3334                                 }
3335                         }
3336 found_mac:
3337                         found |= VPD_FOUND_MAC;
3338                         goto next;
3339
3340 found_phy:
3341                         found |= VPD_FOUND_PHY;
3342
3343 next:
3344                         p += klen;
3345                 }
3346                 i += len + 3;
3347         }
3348
3349 use_random_mac_addr:
3350         if (found & VPD_FOUND_MAC)
3351                 goto done;
3352
3353         /* Sun MAC prefix then 3 random bytes. */
3354         pr_info("MAC address not found in ROM VPD\n");
3355         dev_addr[0] = 0x08;
3356         dev_addr[1] = 0x00;
3357         dev_addr[2] = 0x20;
3358         get_random_bytes(dev_addr + 3, 3);
3359
3360 done:
3361         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3362         return phy_type;
3363 }
3364
3365 /* check pci invariants */
3366 static void cas_check_pci_invariants(struct cas *cp)
3367 {
3368         struct pci_dev *pdev = cp->pdev;
3369
3370         cp->cas_flags = 0;
3371         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3372             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3373                 if (pdev->revision >= CAS_ID_REVPLUS)
3374                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3375                 if (pdev->revision < CAS_ID_REVPLUS02u)
3376                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3377
3378                 /* Original Cassini supports HW CSUM, but it's not
3379                  * enabled by default as it can trigger TX hangs.
3380                  */
3381                 if (pdev->revision < CAS_ID_REV2)
3382                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3383         } else {
3384                 /* Only sun has original cassini chips.  */
3385                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3386
3387                 /* We use a flag because the same phy might be externally
3388                  * connected.
3389                  */
3390                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3391                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3392                         cp->cas_flags |= CAS_FLAG_SATURN;
3393         }
3394 }
3395
3396
3397 static int cas_check_invariants(struct cas *cp)
3398 {
3399         struct pci_dev *pdev = cp->pdev;
3400         u32 cfg;
3401         int i;
3402
3403         /* get page size for rx buffers. */
3404         cp->page_order = 0;
3405 #ifdef USE_PAGE_ORDER
3406         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3407                 /* see if we can allocate larger pages */
3408                 struct page *page = alloc_pages(GFP_ATOMIC,
3409                                                 CAS_JUMBO_PAGE_SHIFT -
3410                                                 PAGE_SHIFT);
3411                 if (page) {
3412                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3413                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3414                 } else {
3415                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3416                 }
3417         }
3418 #endif
3419         cp->page_size = (PAGE_SIZE << cp->page_order);
3420
3421         /* Fetch the FIFO configurations. */
3422         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3423         cp->rx_fifo_size = RX_FIFO_SIZE;
3424
3425         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3426          * they're both connected.
3427          */
3428         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3429                                         PCI_SLOT(pdev->devfn));
3430         if (cp->phy_type & CAS_PHY_SERDES) {
3431                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3432                 return 0; /* no more checking needed */
3433         }
3434
3435         /* MII */
3436         cfg = readl(cp->regs + REG_MIF_CFG);
3437         if (cfg & MIF_CFG_MDIO_1) {
3438                 cp->phy_type = CAS_PHY_MII_MDIO1;
3439         } else if (cfg & MIF_CFG_MDIO_0) {
3440                 cp->phy_type = CAS_PHY_MII_MDIO0;
3441         }
3442
3443         cas_mif_poll(cp, 0);
3444         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3445
3446         for (i = 0; i < 32; i++) {
3447                 u32 phy_id;
3448                 int j;
3449
3450                 for (j = 0; j < 3; j++) {
3451                         cp->phy_addr = i;
3452                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3453                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3454                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3455                                 cp->phy_id = phy_id;
3456                                 goto done;
3457                         }
3458                 }
3459         }
3460         pr_err("MII phy did not respond [%08x]\n",
3461                readl(cp->regs + REG_MIF_STATE_MACHINE));
3462         return -1;
3463
3464 done:
3465         /* see if we can do gigabit */
3466         cfg = cas_phy_read(cp, MII_BMSR);
3467         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3468             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3469                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3470         return 0;
3471 }
3472
3473 /* Must be invoked under cp->lock. */
3474 static inline void cas_start_dma(struct cas *cp)
3475 {
3476         int i;
3477         u32 val;
3478         int txfailed = 0;
3479
3480         /* enable dma */
3481         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3482         writel(val, cp->regs + REG_TX_CFG);
3483         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3484         writel(val, cp->regs + REG_RX_CFG);
3485
3486         /* enable the mac */
3487         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3488         writel(val, cp->regs + REG_MAC_TX_CFG);
3489         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3490         writel(val, cp->regs + REG_MAC_RX_CFG);
3491
3492         i = STOP_TRIES;
3493         while (i-- > 0) {
3494                 val = readl(cp->regs + REG_MAC_TX_CFG);
3495                 if ((val & MAC_TX_CFG_EN))
3496                         break;
3497                 udelay(10);
3498         }
3499         if (i < 0) txfailed = 1;
3500         i = STOP_TRIES;
3501         while (i-- > 0) {
3502                 val = readl(cp->regs + REG_MAC_RX_CFG);
3503                 if ((val & MAC_RX_CFG_EN)) {
3504                         if (txfailed) {
3505                                 netdev_err(cp->dev,
3506                                            "enabling mac failed [tx:%08x:%08x]\n",
3507                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3508                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3509                         }
3510                         goto enable_rx_done;
3511                 }
3512                 udelay(10);
3513         }
3514         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3515                    (txfailed ? "tx,rx" : "rx"),
3516                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3517                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3518
3519 enable_rx_done:
3520         cas_unmask_intr(cp); /* enable interrupts */
3521         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3522         writel(0, cp->regs + REG_RX_COMP_TAIL);
3523
3524         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3525                 if (N_RX_DESC_RINGS > 1)
3526                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3527                                cp->regs + REG_PLUS_RX_KICK1);
3528
3529                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3530                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3531         }
3532 }
3533
3534 /* Must be invoked under cp->lock. */
3535 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3536                                    int *pause)
3537 {
3538         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3539         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3540         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3541         if (val & PCS_MII_LPA_ASYM_PAUSE)
3542                 *pause |= 0x10;
3543         *spd = 1000;
3544 }
3545
3546 /* Must be invoked under cp->lock. */
3547 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3548                                    int *pause)
3549 {
3550         u32 val;
3551
3552         *fd = 0;
3553         *spd = 10;
3554         *pause = 0;
3555
3556         /* use GMII registers */
3557         val = cas_phy_read(cp, MII_LPA);
3558         if (val & CAS_LPA_PAUSE)
3559                 *pause = 0x01;
3560
3561         if (val & CAS_LPA_ASYM_PAUSE)
3562                 *pause |= 0x10;
3563
3564         if (val & LPA_DUPLEX)
3565                 *fd = 1;
3566         if (val & LPA_100)
3567                 *spd = 100;
3568
3569         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3570                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3571                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3572                         *spd = 1000;
3573                 if (val & CAS_LPA_1000FULL)
3574                         *fd = 1;
3575         }
3576 }
3577
3578 /* A link-up condition has occurred, initialize and enable the
3579  * rest of the chip.
3580  *
3581  * Must be invoked under cp->lock.
3582  */
3583 static void cas_set_link_modes(struct cas *cp)
3584 {
3585         u32 val;
3586         int full_duplex, speed, pause;
3587
3588         full_duplex = 0;
3589         speed = 10;
3590         pause = 0;
3591
3592         if (CAS_PHY_MII(cp->phy_type)) {
3593                 cas_mif_poll(cp, 0);
3594                 val = cas_phy_read(cp, MII_BMCR);
3595                 if (val & BMCR_ANENABLE) {
3596                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3597                                                &pause);
3598                 } else {
3599                         if (val & BMCR_FULLDPLX)
3600                                 full_duplex = 1;
3601
3602                         if (val & BMCR_SPEED100)
3603                                 speed = 100;
3604                         else if (val & CAS_BMCR_SPEED1000)
3605                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3606                                         1000 : 100;
3607                 }
3608                 cas_mif_poll(cp, 1);
3609
3610         } else {
3611                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3612                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3613                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3614                         if (val & PCS_MII_CTRL_DUPLEX)
3615                                 full_duplex = 1;
3616                 }
3617         }
3618
3619         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3620                    speed, full_duplex ? "full" : "half");
3621
3622         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3623         if (CAS_PHY_MII(cp->phy_type)) {
3624                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3625                 if (!full_duplex)
3626                         val |= MAC_XIF_DISABLE_ECHO;
3627         }
3628         if (full_duplex)
3629                 val |= MAC_XIF_FDPLX_LED;
3630         if (speed == 1000)
3631                 val |= MAC_XIF_GMII_MODE;
3632         writel(val, cp->regs + REG_MAC_XIF_CFG);
3633
3634         /* deal with carrier and collision detect. */
3635         val = MAC_TX_CFG_IPG_EN;
3636         if (full_duplex) {
3637                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3638                 val |= MAC_TX_CFG_IGNORE_COLL;
3639         } else {
3640 #ifndef USE_CSMA_CD_PROTO
3641                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3642                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3643 #endif
3644         }
3645         /* val now set up for REG_MAC_TX_CFG */
3646
3647         /* If gigabit and half-duplex, enable carrier extension
3648          * mode.  increase slot time to 512 bytes as well.
3649          * else, disable it and make sure slot time is 64 bytes.
3650          * also activate checksum bug workaround
3651          */
3652         if ((speed == 1000) && !full_duplex) {
3653                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3654                        cp->regs + REG_MAC_TX_CFG);
3655
3656                 val = readl(cp->regs + REG_MAC_RX_CFG);
3657                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3658                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3659                        cp->regs + REG_MAC_RX_CFG);
3660
3661                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3662
3663                 cp->crc_size = 4;
3664                 /* minimum size gigabit frame at half duplex */
3665                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3666
3667         } else {
3668                 writel(val, cp->regs + REG_MAC_TX_CFG);
3669
3670                 /* checksum bug workaround. don't strip FCS when in
3671                  * half-duplex mode
3672                  */
3673                 val = readl(cp->regs + REG_MAC_RX_CFG);
3674                 if (full_duplex) {
3675                         val |= MAC_RX_CFG_STRIP_FCS;
3676                         cp->crc_size = 0;
3677                         cp->min_frame_size = CAS_MIN_MTU;
3678                 } else {
3679                         val &= ~MAC_RX_CFG_STRIP_FCS;
3680                         cp->crc_size = 4;
3681                         cp->min_frame_size = CAS_MIN_FRAME;
3682                 }
3683                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3684                        cp->regs + REG_MAC_RX_CFG);
3685                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3686         }
3687
3688         if (netif_msg_link(cp)) {
3689                 if (pause & 0x01) {
3690                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3691                                     cp->rx_fifo_size,
3692                                     cp->rx_pause_off,
3693                                     cp->rx_pause_on);
3694                 } else if (pause & 0x10) {
3695                         netdev_info(cp->dev, "TX pause enabled\n");
3696                 } else {
3697                         netdev_info(cp->dev, "Pause is disabled\n");
3698                 }
3699         }
3700
3701         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3702         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3703         if (pause) { /* symmetric or asymmetric pause */
3704                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3705                 if (pause & 0x01) { /* symmetric pause */
3706                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3707                 }
3708         }
3709         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3710         cas_start_dma(cp);
3711 }
3712
3713 /* Must be invoked under cp->lock. */
3714 static void cas_init_hw(struct cas *cp, int restart_link)
3715 {
3716         if (restart_link)
3717                 cas_phy_init(cp);
3718
3719         cas_init_pause_thresholds(cp);
3720         cas_init_mac(cp);
3721         cas_init_dma(cp);
3722
3723         if (restart_link) {
3724                 /* Default aneg parameters */
3725                 cp->timer_ticks = 0;
3726                 cas_begin_auto_negotiation(cp, NULL);
3727         } else if (cp->lstate == link_up) {
3728                 cas_set_link_modes(cp);
3729                 netif_carrier_on(cp->dev);
3730         }
3731 }
3732
3733 /* Must be invoked under cp->lock. on earlier cassini boards,
3734  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3735  * let it settle out, and then restore pci state.
3736  */
3737 static void cas_hard_reset(struct cas *cp)
3738 {
3739         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3740         udelay(20);
3741         pci_restore_state(cp->pdev);
3742 }
3743
3744
3745 static void cas_global_reset(struct cas *cp, int blkflag)
3746 {
3747         int limit;
3748
3749         /* issue a global reset. don't use RSTOUT. */
3750         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3751                 /* For PCS, when the blkflag is set, we should set the
3752                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3753                  * the last autonegotiation from being cleared.  We'll
3754                  * need some special handling if the chip is set into a
3755                  * loopback mode.
3756                  */
3757                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3758                        cp->regs + REG_SW_RESET);
3759         } else {
3760                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3761         }
3762
3763         /* need to wait at least 3ms before polling register */
3764         mdelay(3);
3765
3766         limit = STOP_TRIES;
3767         while (limit-- > 0) {
3768                 u32 val = readl(cp->regs + REG_SW_RESET);
3769                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3770                         goto done;
3771                 udelay(10);
3772         }
3773         netdev_err(cp->dev, "sw reset failed\n");
3774
3775 done:
3776         /* enable various BIM interrupts */
3777         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3778                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3779
3780         /* clear out pci error status mask for handled errors.
3781          * we don't deal with DMA counter overflows as they happen
3782          * all the time.
3783          */
3784         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3785                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3786                                PCI_ERR_BIM_DMA_READ), cp->regs +
3787                REG_PCI_ERR_STATUS_MASK);
3788
3789         /* set up for MII by default to address mac rx reset timeout
3790          * issue
3791          */
3792         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3793 }
3794
3795 static void cas_reset(struct cas *cp, int blkflag)
3796 {
3797         u32 val;
3798
3799         cas_mask_intr(cp);
3800         cas_global_reset(cp, blkflag);
3801         cas_mac_reset(cp);
3802         cas_entropy_reset(cp);
3803
3804         /* disable dma engines. */
3805         val = readl(cp->regs + REG_TX_CFG);
3806         val &= ~TX_CFG_DMA_EN;
3807         writel(val, cp->regs + REG_TX_CFG);
3808
3809         val = readl(cp->regs + REG_RX_CFG);
3810         val &= ~RX_CFG_DMA_EN;
3811         writel(val, cp->regs + REG_RX_CFG);
3812
3813         /* program header parser */
3814         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3815             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3816                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3817         } else {
3818                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3819         }
3820
3821         /* clear out error registers */
3822         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3823         cas_clear_mac_err(cp);
3824         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3825 }
3826
3827 /* Shut down the chip, must be called with pm_mutex held.  */
3828 static void cas_shutdown(struct cas *cp)
3829 {
3830         unsigned long flags;
3831
3832         /* Make us not-running to avoid timers respawning */
3833         cp->hw_running = 0;
3834
3835         del_timer_sync(&cp->link_timer);
3836
3837         /* Stop the reset task */
3838 #if 0
3839         while (atomic_read(&cp->reset_task_pending_mtu) ||
3840                atomic_read(&cp->reset_task_pending_spare) ||
3841                atomic_read(&cp->reset_task_pending_all))
3842                 schedule();
3843
3844 #else
3845         while (atomic_read(&cp->reset_task_pending))
3846                 schedule();
3847 #endif
3848         /* Actually stop the chip */
3849         cas_lock_all_save(cp, flags);
3850         cas_reset(cp, 0);
3851         if (cp->cas_flags & CAS_FLAG_SATURN)
3852                 cas_phy_powerdown(cp);
3853         cas_unlock_all_restore(cp, flags);
3854 }
3855
3856 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3857 {
3858         struct cas *cp = netdev_priv(dev);
3859
3860         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3861                 return -EINVAL;
3862
3863         dev->mtu = new_mtu;
3864         if (!netif_running(dev) || !netif_device_present(dev))
3865                 return 0;
3866
3867         /* let the reset task handle it */
3868 #if 1
3869         atomic_inc(&cp->reset_task_pending);
3870         if ((cp->phy_type & CAS_PHY_SERDES)) {
3871                 atomic_inc(&cp->reset_task_pending_all);
3872         } else {
3873                 atomic_inc(&cp->reset_task_pending_mtu);
3874         }
3875         schedule_work(&cp->reset_task);
3876 #else
3877         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3878                    CAS_RESET_ALL : CAS_RESET_MTU);
3879         pr_err("reset called in cas_change_mtu\n");
3880         schedule_work(&cp->reset_task);
3881 #endif
3882
3883         flush_scheduled_work();
3884         return 0;
3885 }
3886
3887 static void cas_clean_txd(struct cas *cp, int ring)
3888 {
3889         struct cas_tx_desc *txd = cp->init_txds[ring];
3890         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3891         u64 daddr, dlen;
3892         int i, size;
3893
3894         size = TX_DESC_RINGN_SIZE(ring);
3895         for (i = 0; i < size; i++) {
3896                 int frag;
3897
3898                 if (skbs[i] == NULL)
3899                         continue;
3900
3901                 skb = skbs[i];
3902                 skbs[i] = NULL;
3903
3904                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3905                         int ent = i & (size - 1);
3906
3907                         /* first buffer is never a tiny buffer and so
3908                          * needs to be unmapped.
3909                          */
3910                         daddr = le64_to_cpu(txd[ent].buffer);
3911                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3912                                          le64_to_cpu(txd[ent].control));
3913                         pci_unmap_page(cp->pdev, daddr, dlen,
3914                                        PCI_DMA_TODEVICE);
3915
3916                         if (frag != skb_shinfo(skb)->nr_frags) {
3917                                 i++;
3918
3919                                 /* next buffer might by a tiny buffer.
3920                                  * skip past it.
3921                                  */
3922                                 ent = i & (size - 1);
3923                                 if (cp->tx_tiny_use[ring][ent].used)
3924                                         i++;
3925                         }
3926                 }
3927                 dev_kfree_skb_any(skb);
3928         }
3929
3930         /* zero out tiny buf usage */
3931         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3932 }
3933
3934 /* freed on close */
3935 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3936 {
3937         cas_page_t **page = cp->rx_pages[ring];
3938         int i, size;
3939
3940         size = RX_DESC_RINGN_SIZE(ring);
3941         for (i = 0; i < size; i++) {
3942                 if (page[i]) {
3943                         cas_page_free(cp, page[i]);
3944                         page[i] = NULL;
3945                 }
3946         }
3947 }
3948
3949 static void cas_free_rxds(struct cas *cp)
3950 {
3951         int i;
3952
3953         for (i = 0; i < N_RX_DESC_RINGS; i++)
3954                 cas_free_rx_desc(cp, i);
3955 }
3956
3957 /* Must be invoked under cp->lock. */
3958 static void cas_clean_rings(struct cas *cp)
3959 {
3960         int i;
3961
3962         /* need to clean all tx rings */
3963         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3964         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3965         for (i = 0; i < N_TX_RINGS; i++)
3966                 cas_clean_txd(cp, i);
3967
3968         /* zero out init block */
3969         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3970         cas_clean_rxds(cp);
3971         cas_clean_rxcs(cp);
3972 }
3973
3974 /* allocated on open */
3975 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3976 {
3977         cas_page_t **page = cp->rx_pages[ring];
3978         int size, i = 0;
3979
3980         size = RX_DESC_RINGN_SIZE(ring);
3981         for (i = 0; i < size; i++) {
3982                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3983                         return -1;
3984         }
3985         return 0;
3986 }
3987
3988 static int cas_alloc_rxds(struct cas *cp)
3989 {
3990         int i;
3991
3992         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3993                 if (cas_alloc_rx_desc(cp, i) < 0) {
3994                         cas_free_rxds(cp);
3995                         return -1;
3996                 }
3997         }
3998         return 0;
3999 }
4000
4001 static void cas_reset_task(struct work_struct *work)
4002 {
4003         struct cas *cp = container_of(work, struct cas, reset_task);
4004 #if 0
4005         int pending = atomic_read(&cp->reset_task_pending);
4006 #else
4007         int pending_all = atomic_read(&cp->reset_task_pending_all);
4008         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4009         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4010
4011         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4012                 /* We can have more tasks scheduled than actually
4013                  * needed.
4014                  */
4015                 atomic_dec(&cp->reset_task_pending);
4016                 return;
4017         }
4018 #endif
4019         /* The link went down, we reset the ring, but keep
4020          * DMA stopped. Use this function for reset
4021          * on error as well.
4022          */
4023         if (cp->hw_running) {
4024                 unsigned long flags;
4025
4026                 /* Make sure we don't get interrupts or tx packets */
4027                 netif_device_detach(cp->dev);
4028                 cas_lock_all_save(cp, flags);
4029
4030                 if (cp->opened) {
4031                         /* We call cas_spare_recover when we call cas_open.
4032                          * but we do not initialize the lists cas_spare_recover
4033                          * uses until cas_open is called.
4034                          */
4035                         cas_spare_recover(cp, GFP_ATOMIC);
4036                 }
4037 #if 1
4038                 /* test => only pending_spare set */
4039                 if (!pending_all && !pending_mtu)
4040                         goto done;
4041 #else
4042                 if (pending == CAS_RESET_SPARE)
4043                         goto done;
4044 #endif
4045                 /* when pending == CAS_RESET_ALL, the following
4046                  * call to cas_init_hw will restart auto negotiation.
4047                  * Setting the second argument of cas_reset to
4048                  * !(pending == CAS_RESET_ALL) will set this argument
4049                  * to 1 (avoiding reinitializing the PHY for the normal
4050                  * PCS case) when auto negotiation is not restarted.
4051                  */
4052 #if 1
4053                 cas_reset(cp, !(pending_all > 0));
4054                 if (cp->opened)
4055                         cas_clean_rings(cp);
4056                 cas_init_hw(cp, (pending_all > 0));
4057 #else
4058                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4059                 if (cp->opened)
4060                         cas_clean_rings(cp);
4061                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4062 #endif
4063
4064 done:
4065                 cas_unlock_all_restore(cp, flags);
4066                 netif_device_attach(cp->dev);
4067         }
4068 #if 1
4069         atomic_sub(pending_all, &cp->reset_task_pending_all);
4070         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4071         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4072         atomic_dec(&cp->reset_task_pending);
4073 #else
4074         atomic_set(&cp->reset_task_pending, 0);
4075 #endif
4076 }
4077
4078 static void cas_link_timer(unsigned long data)
4079 {
4080         struct cas *cp = (struct cas *) data;
4081         int mask, pending = 0, reset = 0;
4082         unsigned long flags;
4083
4084         if (link_transition_timeout != 0 &&
4085             cp->link_transition_jiffies_valid &&
4086             ((jiffies - cp->link_transition_jiffies) >
4087               (link_transition_timeout))) {
4088                 /* One-second counter so link-down workaround doesn't
4089                  * cause resets to occur so fast as to fool the switch
4090                  * into thinking the link is down.
4091                  */
4092                 cp->link_transition_jiffies_valid = 0;
4093         }
4094
4095         if (!cp->hw_running)
4096                 return;
4097
4098         spin_lock_irqsave(&cp->lock, flags);
4099         cas_lock_tx(cp);
4100         cas_entropy_gather(cp);
4101
4102         /* If the link task is still pending, we just
4103          * reschedule the link timer
4104          */
4105 #if 1
4106         if (atomic_read(&cp->reset_task_pending_all) ||
4107             atomic_read(&cp->reset_task_pending_spare) ||
4108             atomic_read(&cp->reset_task_pending_mtu))
4109                 goto done;
4110 #else
4111         if (atomic_read(&cp->reset_task_pending))
4112                 goto done;
4113 #endif
4114
4115         /* check for rx cleaning */
4116         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4117                 int i, rmask;
4118
4119                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4120                         rmask = CAS_FLAG_RXD_POST(i);
4121                         if ((mask & rmask) == 0)
4122                                 continue;
4123
4124                         /* post_rxds will do a mod_timer */
4125                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4126                                 pending = 1;
4127                                 continue;
4128                         }
4129                         cp->cas_flags &= ~rmask;
4130                 }
4131         }
4132
4133         if (CAS_PHY_MII(cp->phy_type)) {
4134                 u16 bmsr;
4135                 cas_mif_poll(cp, 0);
4136                 bmsr = cas_phy_read(cp, MII_BMSR);
4137                 /* WTZ: Solaris driver reads this twice, but that
4138                  * may be due to the PCS case and the use of a
4139                  * common implementation. Read it twice here to be
4140                  * safe.
4141                  */
4142                 bmsr = cas_phy_read(cp, MII_BMSR);
4143                 cas_mif_poll(cp, 1);
4144                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4145                 reset = cas_mii_link_check(cp, bmsr);
4146         } else {
4147                 reset = cas_pcs_link_check(cp);
4148         }
4149
4150         if (reset)
4151                 goto done;
4152
4153         /* check for tx state machine confusion */
4154         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4155                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4156                 u32 wptr, rptr;
4157                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4158
4159                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4160                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4161                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4162                                      "tx err: MAC_STATE[%08x]\n", val);
4163                         reset = 1;
4164                         goto done;
4165                 }
4166
4167                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4168                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4169                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4170                 if ((val == 0) && (wptr != rptr)) {
4171                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4172                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4173                                      val, wptr, rptr);
4174                         reset = 1;
4175                 }
4176
4177                 if (reset)
4178                         cas_hard_reset(cp);
4179         }
4180
4181 done:
4182         if (reset) {
4183 #if 1
4184                 atomic_inc(&cp->reset_task_pending);
4185                 atomic_inc(&cp->reset_task_pending_all);
4186                 schedule_work(&cp->reset_task);
4187 #else
4188                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4189                 pr_err("reset called in cas_link_timer\n");
4190                 schedule_work(&cp->reset_task);
4191 #endif
4192         }
4193
4194         if (!pending)
4195                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4196         cas_unlock_tx(cp);
4197         spin_unlock_irqrestore(&cp->lock, flags);
4198 }
4199
4200 /* tiny buffers are used to avoid target abort issues with
4201  * older cassini's
4202  */
4203 static void cas_tx_tiny_free(struct cas *cp)
4204 {
4205         struct pci_dev *pdev = cp->pdev;
4206         int i;
4207
4208         for (i = 0; i < N_TX_RINGS; i++) {
4209                 if (!cp->tx_tiny_bufs[i])
4210                         continue;
4211
4212                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4213                                     cp->tx_tiny_bufs[i],
4214                                     cp->tx_tiny_dvma[i]);
4215                 cp->tx_tiny_bufs[i] = NULL;
4216         }
4217 }
4218
4219 static int cas_tx_tiny_alloc(struct cas *cp)
4220 {
4221         struct pci_dev *pdev = cp->pdev;
4222         int i;
4223
4224         for (i = 0; i < N_TX_RINGS; i++) {
4225                 cp->tx_tiny_bufs[i] =
4226                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4227                                              &cp->tx_tiny_dvma[i]);
4228                 if (!cp->tx_tiny_bufs[i]) {
4229                         cas_tx_tiny_free(cp);
4230                         return -1;
4231                 }
4232         }
4233         return 0;
4234 }
4235
4236
4237 static int cas_open(struct net_device *dev)
4238 {
4239         struct cas *cp = netdev_priv(dev);
4240         int hw_was_up, err;
4241         unsigned long flags;
4242
4243         mutex_lock(&cp->pm_mutex);
4244
4245         hw_was_up = cp->hw_running;
4246
4247         /* The power-management mutex protects the hw_running
4248          * etc. state so it is safe to do this bit without cp->lock
4249          */
4250         if (!cp->hw_running) {
4251                 /* Reset the chip */
4252                 cas_lock_all_save(cp, flags);
4253                 /* We set the second arg to cas_reset to zero
4254                  * because cas_init_hw below will have its second
4255                  * argument set to non-zero, which will force
4256                  * autonegotiation to start.
4257                  */
4258                 cas_reset(cp, 0);
4259                 cp->hw_running = 1;
4260                 cas_unlock_all_restore(cp, flags);
4261         }
4262
4263         err = -ENOMEM;
4264         if (cas_tx_tiny_alloc(cp) < 0)
4265                 goto err_unlock;
4266
4267         /* alloc rx descriptors */
4268         if (cas_alloc_rxds(cp) < 0)
4269                 goto err_tx_tiny;
4270
4271         /* allocate spares */
4272         cas_spare_init(cp);
4273         cas_spare_recover(cp, GFP_KERNEL);
4274
4275         /* We can now request the interrupt as we know it's masked
4276          * on the controller. cassini+ has up to 4 interrupts
4277          * that can be used, but you need to do explicit pci interrupt
4278          * mapping to expose them
4279          */
4280         if (request_irq(cp->pdev->irq, cas_interrupt,
4281                         IRQF_SHARED, dev->name, (void *) dev)) {
4282                 netdev_err(cp->dev, "failed to request irq !\n");
4283                 err = -EAGAIN;
4284                 goto err_spare;
4285         }
4286
4287 #ifdef USE_NAPI
4288         napi_enable(&cp->napi);
4289 #endif
4290         /* init hw */
4291         cas_lock_all_save(cp, flags);
4292         cas_clean_rings(cp);
4293         cas_init_hw(cp, !hw_was_up);
4294         cp->opened = 1;
4295         cas_unlock_all_restore(cp, flags);
4296
4297         netif_start_queue(dev);
4298         mutex_unlock(&cp->pm_mutex);
4299         return 0;
4300
4301 err_spare:
4302         cas_spare_free(cp);
4303         cas_free_rxds(cp);
4304 err_tx_tiny:
4305         cas_tx_tiny_free(cp);
4306 err_unlock:
4307         mutex_unlock(&cp->pm_mutex);
4308         return err;
4309 }
4310
4311 static int cas_close(struct net_device *dev)
4312 {
4313         unsigned long flags;
4314         struct cas *cp = netdev_priv(dev);
4315
4316 #ifdef USE_NAPI
4317         napi_disable(&cp->napi);
4318 #endif
4319         /* Make sure we don't get distracted by suspend/resume */
4320         mutex_lock(&cp->pm_mutex);
4321
4322         netif_stop_queue(dev);
4323
4324         /* Stop traffic, mark us closed */
4325         cas_lock_all_save(cp, flags);
4326         cp->opened = 0;
4327         cas_reset(cp, 0);
4328         cas_phy_init(cp);
4329         cas_begin_auto_negotiation(cp, NULL);
4330         cas_clean_rings(cp);
4331         cas_unlock_all_restore(cp, flags);
4332
4333         free_irq(cp->pdev->irq, (void *) dev);
4334         cas_spare_free(cp);
4335         cas_free_rxds(cp);
4336         cas_tx_tiny_free(cp);
4337         mutex_unlock(&cp->pm_mutex);
4338         return 0;
4339 }
4340
4341 static struct {
4342         const char name[ETH_GSTRING_LEN];
4343 } ethtool_cassini_statnames[] = {
4344         {"collisions"},
4345         {"rx_bytes"},
4346         {"rx_crc_errors"},
4347         {"rx_dropped"},
4348         {"rx_errors"},
4349         {"rx_fifo_errors"},
4350         {"rx_frame_errors"},
4351         {"rx_length_errors"},
4352         {"rx_over_errors"},
4353         {"rx_packets"},
4354         {"tx_aborted_errors"},
4355         {"tx_bytes"},
4356         {"tx_dropped"},
4357         {"tx_errors"},
4358         {"tx_fifo_errors"},
4359         {"tx_packets"}
4360 };
4361 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4362
4363 static struct {
4364         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4365 } ethtool_register_table[] = {
4366         {-MII_BMSR},
4367         {-MII_BMCR},
4368         {REG_CAWR},
4369         {REG_INF_BURST},
4370         {REG_BIM_CFG},
4371         {REG_RX_CFG},
4372         {REG_HP_CFG},
4373         {REG_MAC_TX_CFG},
4374         {REG_MAC_RX_CFG},
4375         {REG_MAC_CTRL_CFG},
4376         {REG_MAC_XIF_CFG},
4377         {REG_MIF_CFG},
4378         {REG_PCS_CFG},
4379         {REG_SATURN_PCFG},
4380         {REG_PCS_MII_STATUS},
4381         {REG_PCS_STATE_MACHINE},
4382         {REG_MAC_COLL_EXCESS},
4383         {REG_MAC_COLL_LATE}
4384 };
4385 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4386 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4387
4388 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4389 {
4390         u8 *p;
4391         int i;
4392         unsigned long flags;
4393
4394         spin_lock_irqsave(&cp->lock, flags);
4395         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4396                 u16 hval;
4397                 u32 val;
4398                 if (ethtool_register_table[i].offsets < 0) {
4399                         hval = cas_phy_read(cp,
4400                                     -ethtool_register_table[i].offsets);
4401                         val = hval;
4402                 } else {
4403                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4404                 }
4405                 memcpy(p, (u8 *)&val, sizeof(u32));
4406         }
4407         spin_unlock_irqrestore(&cp->lock, flags);
4408 }
4409
4410 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4411 {
4412         struct cas *cp = netdev_priv(dev);
4413         struct net_device_stats *stats = cp->net_stats;
4414         unsigned long flags;
4415         int i;
4416         unsigned long tmp;
4417
4418         /* we collate all of the stats into net_stats[N_TX_RING] */
4419         if (!cp->hw_running)
4420                 return stats + N_TX_RINGS;
4421
4422         /* collect outstanding stats */
4423         /* WTZ: the Cassini spec gives these as 16 bit counters but
4424          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4425          * in case the chip somehow puts any garbage in the other bits.
4426          * Also, counter usage didn't seem to mach what Adrian did
4427          * in the parts of the code that set these quantities. Made
4428          * that consistent.
4429          */
4430         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4431         stats[N_TX_RINGS].rx_crc_errors +=
4432           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4433         stats[N_TX_RINGS].rx_frame_errors +=
4434                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4435         stats[N_TX_RINGS].rx_length_errors +=
4436                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4437 #if 1
4438         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4439                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4440         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4441         stats[N_TX_RINGS].collisions +=
4442           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4443 #else
4444         stats[N_TX_RINGS].tx_aborted_errors +=
4445                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4446         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4447                 readl(cp->regs + REG_MAC_COLL_LATE);
4448 #endif
4449         cas_clear_mac_err(cp);
4450
4451         /* saved bits that are unique to ring 0 */
4452         spin_lock(&cp->stat_lock[0]);
4453         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4454         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4455         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4456         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4457         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4458         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4459         spin_unlock(&cp->stat_lock[0]);
4460
4461         for (i = 0; i < N_TX_RINGS; i++) {
4462                 spin_lock(&cp->stat_lock[i]);
4463                 stats[N_TX_RINGS].rx_length_errors +=
4464                         stats[i].rx_length_errors;
4465                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4466                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4467                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4468                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4469                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4470                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4471                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4472                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4473                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4474                 memset(stats + i, 0, sizeof(struct net_device_stats));
4475                 spin_unlock(&cp->stat_lock[i]);
4476         }
4477         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4478         return stats + N_TX_RINGS;
4479 }
4480
4481
4482 static void cas_set_multicast(struct net_device *dev)
4483 {
4484         struct cas *cp = netdev_priv(dev);
4485         u32 rxcfg, rxcfg_new;
4486         unsigned long flags;
4487         int limit = STOP_TRIES;
4488
4489         if (!cp->hw_running)
4490                 return;
4491
4492         spin_lock_irqsave(&cp->lock, flags);
4493         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4494
4495         /* disable RX MAC and wait for completion */
4496         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4497         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4498                 if (!limit--)
4499                         break;
4500                 udelay(10);
4501         }
4502
4503         /* disable hash filter and wait for completion */
4504         limit = STOP_TRIES;
4505         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4506         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4507         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4508                 if (!limit--)
4509                         break;
4510                 udelay(10);
4511         }
4512
4513         /* program hash filters */
4514         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4515         rxcfg |= rxcfg_new;
4516         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4517         spin_unlock_irqrestore(&cp->lock, flags);
4518 }
4519
4520 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4521 {
4522         struct cas *cp = netdev_priv(dev);
4523         strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4524         strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4525         info->fw_version[0] = '\0';
4526         strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4527         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4528                 cp->casreg_len : CAS_MAX_REGS;
4529         info->n_stats = CAS_NUM_STAT_KEYS;
4530 }
4531
4532 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4533 {
4534         struct cas *cp = netdev_priv(dev);
4535         u16 bmcr;
4536         int full_duplex, speed, pause;
4537         unsigned long flags;
4538         enum link_state linkstate = link_up;
4539
4540         cmd->advertising = 0;
4541         cmd->supported = SUPPORTED_Autoneg;
4542         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4543                 cmd->supported |= SUPPORTED_1000baseT_Full;
4544                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4545         }
4546
4547         /* Record PHY settings if HW is on. */
4548         spin_lock_irqsave(&cp->lock, flags);
4549         bmcr = 0;
4550         linkstate = cp->lstate;
4551         if (CAS_PHY_MII(cp->phy_type)) {
4552                 cmd->port = PORT_MII;
4553                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4554                         XCVR_INTERNAL : XCVR_EXTERNAL;
4555                 cmd->phy_address = cp->phy_addr;
4556                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4557                         ADVERTISED_10baseT_Half |
4558                         ADVERTISED_10baseT_Full |
4559                         ADVERTISED_100baseT_Half |
4560                         ADVERTISED_100baseT_Full;
4561
4562                 cmd->supported |=
4563                         (SUPPORTED_10baseT_Half |
4564                          SUPPORTED_10baseT_Full |
4565                          SUPPORTED_100baseT_Half |
4566                          SUPPORTED_100baseT_Full |
4567                          SUPPORTED_TP | SUPPORTED_MII);
4568
4569                 if (cp->hw_running) {
4570                         cas_mif_poll(cp, 0);
4571                         bmcr = cas_phy_read(cp, MII_BMCR);
4572                         cas_read_mii_link_mode(cp, &full_duplex,
4573                                                &speed, &pause);
4574                         cas_mif_poll(cp, 1);
4575                 }
4576
4577         } else {
4578                 cmd->port = PORT_FIBRE;
4579                 cmd->transceiver = XCVR_INTERNAL;
4580                 cmd->phy_address = 0;
4581                 cmd->supported   |= SUPPORTED_FIBRE;
4582                 cmd->advertising |= ADVERTISED_FIBRE;
4583
4584                 if (cp->hw_running) {
4585                         /* pcs uses the same bits as mii */
4586                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4587                         cas_read_pcs_link_mode(cp, &full_duplex,
4588                                                &speed, &pause);
4589                 }
4590         }
4591         spin_unlock_irqrestore(&cp->lock, flags);
4592
4593         if (bmcr & BMCR_ANENABLE) {
4594                 cmd->advertising |= ADVERTISED_Autoneg;
4595                 cmd->autoneg = AUTONEG_ENABLE;
4596                 cmd->speed = ((speed == 10) ?
4597                               SPEED_10 :
4598                               ((speed == 1000) ?
4599                                SPEED_1000 : SPEED_100));
4600                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4601         } else {
4602                 cmd->autoneg = AUTONEG_DISABLE;
4603                 cmd->speed =
4604                         (bmcr & CAS_BMCR_SPEED1000) ?
4605                         SPEED_1000 :
4606                         ((bmcr & BMCR_SPEED100) ? SPEED_100:
4607                          SPEED_10);
4608                 cmd->duplex =
4609                         (bmcr & BMCR_FULLDPLX) ?
4610                         DUPLEX_FULL : DUPLEX_HALF;
4611         }
4612         if (linkstate != link_up) {
4613                 /* Force these to "unknown" if the link is not up and
4614                  * autonogotiation in enabled. We can set the link
4615                  * speed to 0, but not cmd->duplex,
4616                  * because its legal values are 0 and 1.  Ethtool will
4617                  * print the value reported in parentheses after the
4618                  * word "Unknown" for unrecognized values.
4619                  *
4620                  * If in forced mode, we report the speed and duplex
4621                  * settings that we configured.
4622                  */
4623                 if (cp->link_cntl & BMCR_ANENABLE) {
4624                         cmd->speed = 0;
4625                         cmd->duplex = 0xff;
4626                 } else {
4627                         cmd->speed = SPEED_10;
4628                         if (cp->link_cntl & BMCR_SPEED100) {
4629                                 cmd->speed = SPEED_100;
4630                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4631                                 cmd->speed = SPEED_1000;
4632                         }
4633                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4634                                 DUPLEX_FULL : DUPLEX_HALF;
4635                 }
4636         }
4637         return 0;
4638 }
4639
4640 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4641 {
4642         struct cas *cp = netdev_priv(dev);
4643         unsigned long flags;
4644
4645         /* Verify the settings we care about. */
4646         if (cmd->autoneg != AUTONEG_ENABLE &&
4647             cmd->autoneg != AUTONEG_DISABLE)
4648                 return -EINVAL;
4649
4650         if (cmd->autoneg == AUTONEG_DISABLE &&
4651             ((cmd->speed != SPEED_1000 &&
4652               cmd->speed != SPEED_100 &&
4653               cmd->speed != SPEED_10) ||
4654              (cmd->duplex != DUPLEX_HALF &&
4655               cmd->duplex != DUPLEX_FULL)))
4656                 return -EINVAL;
4657
4658         /* Apply settings and restart link process. */
4659         spin_lock_irqsave(&cp->lock, flags);
4660         cas_begin_auto_negotiation(cp, cmd);
4661         spin_unlock_irqrestore(&cp->lock, flags);
4662         return 0;
4663 }
4664
4665 static int cas_nway_reset(struct net_device *dev)
4666 {
4667         struct cas *cp = netdev_priv(dev);
4668         unsigned long flags;
4669
4670         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4671                 return -EINVAL;
4672
4673         /* Restart link process. */
4674         spin_lock_irqsave(&cp->lock, flags);
4675         cas_begin_auto_negotiation(cp, NULL);
4676         spin_unlock_irqrestore(&cp->lock, flags);
4677
4678         return 0;
4679 }
4680
4681 static u32 cas_get_link(struct net_device *dev)
4682 {
4683         struct cas *cp = netdev_priv(dev);
4684         return cp->lstate == link_up;
4685 }
4686
4687 static u32 cas_get_msglevel(struct net_device *dev)
4688 {
4689         struct cas *cp = netdev_priv(dev);
4690         return cp->msg_enable;
4691 }
4692
4693 static void cas_set_msglevel(struct net_device *dev, u32 value)
4694 {
4695         struct cas *cp = netdev_priv(dev);
4696         cp->msg_enable = value;
4697 }
4698
4699 static int cas_get_regs_len(struct net_device *dev)
4700 {
4701         struct cas *cp = netdev_priv(dev);
4702         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4703 }
4704
4705 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4706                              void *p)
4707 {
4708         struct cas *cp = netdev_priv(dev);
4709         regs->version = 0;
4710         /* cas_read_regs handles locks (cp->lock).  */
4711         cas_read_regs(cp, p, regs->len / sizeof(u32));
4712 }
4713
4714 static int cas_get_sset_count(struct net_device *dev, int sset)
4715 {
4716         switch (sset) {
4717         case ETH_SS_STATS:
4718                 return CAS_NUM_STAT_KEYS;
4719         default:
4720                 return -EOPNOTSUPP;
4721         }
4722 }
4723
4724 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4725 {
4726          memcpy(data, &ethtool_cassini_statnames,
4727                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4728 }
4729
4730 static void cas_get_ethtool_stats(struct net_device *dev,
4731                                       struct ethtool_stats *estats, u64 *data)
4732 {
4733         struct cas *cp = netdev_priv(dev);
4734         struct net_device_stats *stats = cas_get_stats(cp->dev);
4735         int i = 0;
4736         data[i++] = stats->collisions;
4737         data[i++] = stats->rx_bytes;
4738         data[i++] = stats->rx_crc_errors;
4739         data[i++] = stats->rx_dropped;
4740         data[i++] = stats->rx_errors;
4741         data[i++] = stats->rx_fifo_errors;
4742         data[i++] = stats->rx_frame_errors;
4743         data[i++] = stats->rx_length_errors;
4744         data[i++] = stats->rx_over_errors;
4745         data[i++] = stats->rx_packets;
4746         data[i++] = stats->tx_aborted_errors;
4747         data[i++] = stats->tx_bytes;
4748         data[i++] = stats->tx_dropped;
4749         data[i++] = stats->tx_errors;
4750         data[i++] = stats->tx_fifo_errors;
4751         data[i++] = stats->tx_packets;
4752         BUG_ON(i != CAS_NUM_STAT_KEYS);
4753 }
4754
4755 static const struct ethtool_ops cas_ethtool_ops = {
4756         .get_drvinfo            = cas_get_drvinfo,
4757         .get_settings           = cas_get_settings,
4758         .set_settings           = cas_set_settings,
4759         .nway_reset             = cas_nway_reset,
4760         .get_link               = cas_get_link,
4761         .get_msglevel           = cas_get_msglevel,
4762         .set_msglevel           = cas_set_msglevel,
4763         .get_regs_len           = cas_get_regs_len,
4764         .get_regs               = cas_get_regs,
4765         .get_sset_count         = cas_get_sset_count,
4766         .get_strings            = cas_get_strings,
4767         .get_ethtool_stats      = cas_get_ethtool_stats,
4768 };
4769
4770 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4771 {
4772         struct cas *cp = netdev_priv(dev);
4773         struct mii_ioctl_data *data = if_mii(ifr);
4774         unsigned long flags;
4775         int rc = -EOPNOTSUPP;
4776
4777         /* Hold the PM mutex while doing ioctl's or we may collide
4778          * with open/close and power management and oops.
4779          */
4780         mutex_lock(&cp->pm_mutex);
4781         switch (cmd) {
4782         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4783                 data->phy_id = cp->phy_addr;
4784                 /* Fallthrough... */
4785
4786         case SIOCGMIIREG:               /* Read MII PHY register. */
4787                 spin_lock_irqsave(&cp->lock, flags);
4788                 cas_mif_poll(cp, 0);
4789                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4790                 cas_mif_poll(cp, 1);
4791                 spin_unlock_irqrestore(&cp->lock, flags);
4792                 rc = 0;
4793                 break;
4794
4795         case SIOCSMIIREG:               /* Write MII PHY register. */
4796                 spin_lock_irqsave(&cp->lock, flags);
4797                 cas_mif_poll(cp, 0);
4798                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4799                 cas_mif_poll(cp, 1);
4800                 spin_unlock_irqrestore(&cp->lock, flags);
4801                 break;
4802         default:
4803                 break;
4804         }
4805
4806         mutex_unlock(&cp->pm_mutex);
4807         return rc;
4808 }
4809
4810 /* When this chip sits underneath an Intel 31154 bridge, it is the
4811  * only subordinate device and we can tweak the bridge settings to
4812  * reflect that fact.
4813  */
4814 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4815 {
4816         struct pci_dev *pdev = cas_pdev->bus->self;
4817         u32 val;
4818
4819         if (!pdev)
4820                 return;
4821
4822         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4823                 return;
4824
4825         /* Clear bit 10 (Bus Parking Control) in the Secondary
4826          * Arbiter Control/Status Register which lives at offset
4827          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4828          * is much simpler so that's how we do this.
4829          */
4830         pci_read_config_dword(pdev, 0x40, &val);
4831         val &= ~0x00040000;
4832         pci_write_config_dword(pdev, 0x40, val);
4833
4834         /* Max out the Multi-Transaction Timer settings since
4835          * Cassini is the only device present.
4836          *
4837          * The register is 16-bit and lives at 0x50.  When the
4838          * settings are enabled, it extends the GRANT# signal
4839          * for a requestor after a transaction is complete.  This
4840          * allows the next request to run without first needing
4841          * to negotiate the GRANT# signal back.
4842          *
4843          * Bits 12:10 define the grant duration:
4844          *
4845          *      1       --      16 clocks
4846          *      2       --      32 clocks
4847          *      3       --      64 clocks
4848          *      4       --      128 clocks
4849          *      5       --      256 clocks
4850          *
4851          * All other values are illegal.
4852          *
4853          * Bits 09:00 define which REQ/GNT signal pairs get the
4854          * GRANT# signal treatment.  We set them all.
4855          */
4856         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4857
4858         /* The Read Prefecth Policy register is 16-bit and sits at
4859          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4860          * enable it and max out all of the settings since only one
4861          * device is sitting underneath and thus bandwidth sharing is
4862          * not an issue.
4863          *
4864          * The register has several 3 bit fields, which indicates a
4865          * multiplier applied to the base amount of prefetching the
4866          * chip would do.  These fields are at:
4867          *
4868          *      15:13   ---     ReRead Primary Bus
4869          *      12:10   ---     FirstRead Primary Bus
4870          *      09:07   ---     ReRead Secondary Bus
4871          *      06:04   ---     FirstRead Secondary Bus
4872          *
4873          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4874          * get enabled on.  Bit 3 is a grouped enabler which controls
4875          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4876          * the individual REQ/GNT pairs [2:0].
4877          */
4878         pci_write_config_word(pdev, 0x52,
4879                               (0x7 << 13) |
4880                               (0x7 << 10) |
4881                               (0x7 <<  7) |
4882                               (0x7 <<  4) |
4883                               (0xf <<  0));
4884
4885         /* Force cacheline size to 0x8 */
4886         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4887
4888         /* Force latency timer to maximum setting so Cassini can
4889          * sit on the bus as long as it likes.
4890          */
4891         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4892 }
4893
4894 static const struct net_device_ops cas_netdev_ops = {
4895         .ndo_open               = cas_open,
4896         .ndo_stop               = cas_close,
4897         .ndo_start_xmit         = cas_start_xmit,
4898         .ndo_get_stats          = cas_get_stats,
4899         .ndo_set_multicast_list = cas_set_multicast,
4900         .ndo_do_ioctl           = cas_ioctl,
4901         .ndo_tx_timeout         = cas_tx_timeout,
4902         .ndo_change_mtu         = cas_change_mtu,
4903         .ndo_set_mac_address    = eth_mac_addr,
4904         .ndo_validate_addr      = eth_validate_addr,
4905 #ifdef CONFIG_NET_POLL_CONTROLLER
4906         .ndo_poll_controller    = cas_netpoll,
4907 #endif
4908 };
4909
4910 static int __devinit cas_init_one(struct pci_dev *pdev,
4911                                   const struct pci_device_id *ent)
4912 {
4913         static int cas_version_printed = 0;
4914         unsigned long casreg_len;
4915         struct net_device *dev;
4916         struct cas *cp;
4917         int i, err, pci_using_dac;
4918         u16 pci_cmd;
4919         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4920
4921         if (cas_version_printed++ == 0)
4922                 pr_info("%s", version);
4923
4924         err = pci_enable_device(pdev);
4925         if (err) {
4926                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4927                 return err;
4928         }
4929
4930         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4931                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4932                        "base address, aborting\n");
4933                 err = -ENODEV;
4934                 goto err_out_disable_pdev;
4935         }
4936
4937         dev = alloc_etherdev(sizeof(*cp));
4938         if (!dev) {
4939                 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4940                 err = -ENOMEM;
4941                 goto err_out_disable_pdev;
4942         }
4943         SET_NETDEV_DEV(dev, &pdev->dev);
4944
4945         err = pci_request_regions(pdev, dev->name);
4946         if (err) {
4947                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4948                 goto err_out_free_netdev;
4949         }
4950         pci_set_master(pdev);
4951
4952         /* we must always turn on parity response or else parity
4953          * doesn't get generated properly. disable SERR/PERR as well.
4954          * in addition, we want to turn MWI on.
4955          */
4956         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4957         pci_cmd &= ~PCI_COMMAND_SERR;
4958         pci_cmd |= PCI_COMMAND_PARITY;
4959         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4960         if (pci_try_set_mwi(pdev))
4961                 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4962
4963         cas_program_bridge(pdev);
4964
4965         /*
4966          * On some architectures, the default cache line size set
4967          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4968          * it for this case.  To start, we'll print some configuration
4969          * data.
4970          */
4971 #if 1
4972         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4973                              &orig_cacheline_size);
4974         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4975                 cas_cacheline_size =
4976                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4977                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4978                 if (pci_write_config_byte(pdev,
4979                                           PCI_CACHE_LINE_SIZE,
4980                                           cas_cacheline_size)) {
4981                         dev_err(&pdev->dev, "Could not set PCI cache "
4982                                "line size\n");
4983                         goto err_write_cacheline;
4984                 }
4985         }
4986 #endif
4987
4988
4989         /* Configure DMA attributes. */
4990         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4991                 pci_using_dac = 1;
4992                 err = pci_set_consistent_dma_mask(pdev,
4993                                                   DMA_BIT_MASK(64));
4994                 if (err < 0) {
4995                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4996                                "for consistent allocations\n");
4997                         goto err_out_free_res;
4998                 }
4999
5000         } else {
5001                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5002                 if (err) {
5003                         dev_err(&pdev->dev, "No usable DMA configuration, "
5004                                "aborting\n");
5005                         goto err_out_free_res;
5006                 }
5007                 pci_using_dac = 0;
5008         }
5009
5010         casreg_len = pci_resource_len(pdev, 0);
5011
5012         cp = netdev_priv(dev);
5013         cp->pdev = pdev;
5014 #if 1
5015         /* A value of 0 indicates we never explicitly set it */
5016         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5017 #endif
5018         cp->dev = dev;
5019         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5020           cassini_debug;
5021
5022         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5023         cp->link_transition_jiffies_valid = 0;
5024
5025         spin_lock_init(&cp->lock);
5026         spin_lock_init(&cp->rx_inuse_lock);
5027         spin_lock_init(&cp->rx_spare_lock);
5028         for (i = 0; i < N_TX_RINGS; i++) {
5029                 spin_lock_init(&cp->stat_lock[i]);
5030                 spin_lock_init(&cp->tx_lock[i]);
5031         }
5032         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5033         mutex_init(&cp->pm_mutex);
5034
5035         init_timer(&cp->link_timer);
5036         cp->link_timer.function = cas_link_timer;
5037         cp->link_timer.data = (unsigned long) cp;
5038
5039 #if 1
5040         /* Just in case the implementation of atomic operations
5041          * change so that an explicit initialization is necessary.
5042          */
5043         atomic_set(&cp->reset_task_pending, 0);
5044         atomic_set(&cp->reset_task_pending_all, 0);
5045         atomic_set(&cp->reset_task_pending_spare, 0);
5046         atomic_set(&cp->reset_task_pending_mtu, 0);
5047 #endif
5048         INIT_WORK(&cp->reset_task, cas_reset_task);
5049
5050         /* Default link parameters */
5051         if (link_mode >= 0 && link_mode < 6)
5052                 cp->link_cntl = link_modes[link_mode];
5053         else
5054                 cp->link_cntl = BMCR_ANENABLE;
5055         cp->lstate = link_down;
5056         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5057         netif_carrier_off(cp->dev);
5058         cp->timer_ticks = 0;
5059
5060         /* give us access to cassini registers */
5061         cp->regs = pci_iomap(pdev, 0, casreg_len);
5062         if (!cp->regs) {
5063                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5064                 goto err_out_free_res;
5065         }
5066         cp->casreg_len = casreg_len;
5067
5068         pci_save_state(pdev);
5069         cas_check_pci_invariants(cp);
5070         cas_hard_reset(cp);
5071         cas_reset(cp, 0);
5072         if (cas_check_invariants(cp))
5073                 goto err_out_iounmap;
5074         if (cp->cas_flags & CAS_FLAG_SATURN)
5075                 if (cas_saturn_firmware_init(cp))
5076                         goto err_out_iounmap;
5077
5078         cp->init_block = (struct cas_init_block *)
5079                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5080                                      &cp->block_dvma);
5081         if (!cp->init_block) {
5082                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5083                 goto err_out_iounmap;
5084         }
5085
5086         for (i = 0; i < N_TX_RINGS; i++)
5087                 cp->init_txds[i] = cp->init_block->txds[i];
5088
5089         for (i = 0; i < N_RX_DESC_RINGS; i++)
5090                 cp->init_rxds[i] = cp->init_block->rxds[i];
5091
5092         for (i = 0; i < N_RX_COMP_RINGS; i++)
5093                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5094
5095         for (i = 0; i < N_RX_FLOWS; i++)
5096                 skb_queue_head_init(&cp->rx_flows[i]);
5097
5098         dev->netdev_ops = &cas_netdev_ops;
5099         dev->ethtool_ops = &cas_ethtool_ops;
5100         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5101
5102 #ifdef USE_NAPI
5103         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5104 #endif
5105         dev->irq = pdev->irq;
5106         dev->dma = 0;
5107
5108         /* Cassini features. */
5109         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5110                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5111
5112         if (pci_using_dac)
5113                 dev->features |= NETIF_F_HIGHDMA;
5114
5115         if (register_netdev(dev)) {
5116                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5117                 goto err_out_free_consistent;
5118         }
5119
5120         i = readl(cp->regs + REG_BIM_CFG);
5121         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5122                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5123                     (i & BIM_CFG_32BIT) ? "32" : "64",
5124                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5125                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5126                     dev->dev_addr);
5127
5128         pci_set_drvdata(pdev, dev);
5129         cp->hw_running = 1;
5130         cas_entropy_reset(cp);
5131         cas_phy_init(cp);
5132         cas_begin_auto_negotiation(cp, NULL);
5133         return 0;
5134
5135 err_out_free_consistent:
5136         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5137                             cp->init_block, cp->block_dvma);
5138
5139 err_out_iounmap:
5140         mutex_lock(&cp->pm_mutex);
5141         if (cp->hw_running)
5142                 cas_shutdown(cp);
5143         mutex_unlock(&cp->pm_mutex);
5144
5145         pci_iounmap(pdev, cp->regs);
5146
5147
5148 err_out_free_res:
5149         pci_release_regions(pdev);
5150
5151 err_write_cacheline:
5152         /* Try to restore it in case the error occured after we
5153          * set it.
5154          */
5155         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5156
5157 err_out_free_netdev:
5158         free_netdev(dev);
5159
5160 err_out_disable_pdev:
5161         pci_disable_device(pdev);
5162         pci_set_drvdata(pdev, NULL);
5163         return -ENODEV;
5164 }
5165
5166 static void __devexit cas_remove_one(struct pci_dev *pdev)
5167 {
5168         struct net_device *dev = pci_get_drvdata(pdev);
5169         struct cas *cp;
5170         if (!dev)
5171                 return;
5172
5173         cp = netdev_priv(dev);
5174         unregister_netdev(dev);
5175
5176         if (cp->fw_data)
5177                 vfree(cp->fw_data);
5178
5179         mutex_lock(&cp->pm_mutex);
5180         flush_scheduled_work();
5181         if (cp->hw_running)
5182                 cas_shutdown(cp);
5183         mutex_unlock(&cp->pm_mutex);
5184
5185 #if 1
5186         if (cp->orig_cacheline_size) {
5187                 /* Restore the cache line size if we had modified
5188                  * it.
5189                  */
5190                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5191                                       cp->orig_cacheline_size);
5192         }
5193 #endif
5194         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5195                             cp->init_block, cp->block_dvma);
5196         pci_iounmap(pdev, cp->regs);
5197         free_netdev(dev);
5198         pci_release_regions(pdev);
5199         pci_disable_device(pdev);
5200         pci_set_drvdata(pdev, NULL);
5201 }
5202
5203 #ifdef CONFIG_PM
5204 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5205 {
5206         struct net_device *dev = pci_get_drvdata(pdev);
5207         struct cas *cp = netdev_priv(dev);
5208         unsigned long flags;
5209
5210         mutex_lock(&cp->pm_mutex);
5211
5212         /* If the driver is opened, we stop the DMA */
5213         if (cp->opened) {
5214                 netif_device_detach(dev);
5215
5216                 cas_lock_all_save(cp, flags);
5217
5218                 /* We can set the second arg of cas_reset to 0
5219                  * because on resume, we'll call cas_init_hw with
5220                  * its second arg set so that autonegotiation is
5221                  * restarted.
5222                  */
5223                 cas_reset(cp, 0);
5224                 cas_clean_rings(cp);
5225                 cas_unlock_all_restore(cp, flags);
5226         }
5227
5228         if (cp->hw_running)
5229                 cas_shutdown(cp);
5230         mutex_unlock(&cp->pm_mutex);
5231
5232         return 0;
5233 }
5234
5235 static int cas_resume(struct pci_dev *pdev)
5236 {
5237         struct net_device *dev = pci_get_drvdata(pdev);
5238         struct cas *cp = netdev_priv(dev);
5239
5240         netdev_info(dev, "resuming\n");
5241
5242         mutex_lock(&cp->pm_mutex);
5243         cas_hard_reset(cp);
5244         if (cp->opened) {
5245                 unsigned long flags;
5246                 cas_lock_all_save(cp, flags);
5247                 cas_reset(cp, 0);
5248                 cp->hw_running = 1;
5249                 cas_clean_rings(cp);
5250                 cas_init_hw(cp, 1);
5251                 cas_unlock_all_restore(cp, flags);
5252
5253                 netif_device_attach(dev);
5254         }
5255         mutex_unlock(&cp->pm_mutex);
5256         return 0;
5257 }
5258 #endif /* CONFIG_PM */
5259
5260 static struct pci_driver cas_driver = {
5261         .name           = DRV_MODULE_NAME,
5262         .id_table       = cas_pci_tbl,
5263         .probe          = cas_init_one,
5264         .remove         = __devexit_p(cas_remove_one),
5265 #ifdef CONFIG_PM
5266         .suspend        = cas_suspend,
5267         .resume         = cas_resume
5268 #endif
5269 };
5270
5271 static int __init cas_init(void)
5272 {
5273         if (linkdown_timeout > 0)
5274                 link_transition_timeout = linkdown_timeout * HZ;
5275         else
5276                 link_transition_timeout = 0;
5277
5278         return pci_register_driver(&cas_driver);
5279 }
5280
5281 static void __exit cas_cleanup(void)
5282 {
5283         pci_unregister_driver(&cas_driver);
5284 }
5285
5286 module_init(cas_init);
5287 module_exit(cas_cleanup);