]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/cxgb4/cxgb4_main.c
nfsd: break lease on unlink due to rename
[mv-sheeva.git] / drivers / net / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if_vlan.h>
45 #include <linux/init.h>
46 #include <linux/log2.h>
47 #include <linux/mdio.h>
48 #include <linux/module.h>
49 #include <linux/moduleparam.h>
50 #include <linux/mutex.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/aer.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <asm/uaccess.h>
63
64 #include "cxgb4.h"
65 #include "t4_regs.h"
66 #include "t4_msg.h"
67 #include "t4fw_api.h"
68 #include "l2t.h"
69
70 #define DRV_VERSION "1.3.0-ko"
71 #define DRV_DESC "Chelsio T4 Network Driver"
72
73 /*
74  * Max interrupt hold-off timer value in us.  Queues fall back to this value
75  * under extreme memory pressure so it's largish to give the system time to
76  * recover.
77  */
78 #define MAX_SGE_TIMERVAL 200U
79
80 #ifdef CONFIG_PCI_IOV
81 /*
82  * Virtual Function provisioning constants.  We need two extra Ingress Queues
83  * with Interrupt capability to serve as the VF's Firmware Event Queue and
84  * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
85  * Lists associated with them).  For each Ethernet/Control Egress Queue and
86  * for each Free List, we need an Egress Context.
87  */
88 enum {
89         VFRES_NPORTS = 1,               /* # of "ports" per VF */
90         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
91
92         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
93         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
94         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
95         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
96         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
97         VFRES_TC = 0,                   /* PCI-E traffic class */
98         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
99
100         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
101         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
102 };
103
104 /*
105  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
106  * static and likely not to be useful in the long run.  We really need to
107  * implement some form of persistent configuration which the firmware
108  * controls.
109  */
110 static unsigned int pfvfres_pmask(struct adapter *adapter,
111                                   unsigned int pf, unsigned int vf)
112 {
113         unsigned int portn, portvec;
114
115         /*
116          * Give PF's access to all of the ports.
117          */
118         if (vf == 0)
119                 return FW_PFVF_CMD_PMASK_MASK;
120
121         /*
122          * For VFs, we'll assign them access to the ports based purely on the
123          * PF.  We assign active ports in order, wrapping around if there are
124          * fewer active ports than PFs: e.g. active port[pf % nports].
125          * Unfortunately the adapter's port_info structs haven't been
126          * initialized yet so we have to compute this.
127          */
128         if (adapter->params.nports == 0)
129                 return 0;
130
131         portn = pf % adapter->params.nports;
132         portvec = adapter->params.portvec;
133         for (;;) {
134                 /*
135                  * Isolate the lowest set bit in the port vector.  If we're at
136                  * the port number that we want, return that as the pmask.
137                  * otherwise mask that bit out of the port vector and
138                  * decrement our port number ...
139                  */
140                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
141                 if (portn == 0)
142                         return pmask;
143                 portn--;
144                 portvec &= ~pmask;
145         }
146         /*NOTREACHED*/
147 }
148 #endif
149
150 enum {
151         MEMWIN0_APERTURE = 65536,
152         MEMWIN0_BASE     = 0x30000,
153         MEMWIN1_APERTURE = 32768,
154         MEMWIN1_BASE     = 0x28000,
155         MEMWIN2_APERTURE = 2048,
156         MEMWIN2_BASE     = 0x1b800,
157 };
158
159 enum {
160         MAX_TXQ_ENTRIES      = 16384,
161         MAX_CTRL_TXQ_ENTRIES = 1024,
162         MAX_RSPQ_ENTRIES     = 16384,
163         MAX_RX_BUFFERS       = 16384,
164         MIN_TXQ_ENTRIES      = 32,
165         MIN_CTRL_TXQ_ENTRIES = 32,
166         MIN_RSPQ_ENTRIES     = 128,
167         MIN_FL_ENTRIES       = 16
168 };
169
170 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
171                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
172                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
173
174 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
175
176 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
177         CH_DEVICE(0xa000, 0),  /* PE10K */
178         CH_DEVICE(0x4001, -1),
179         CH_DEVICE(0x4002, -1),
180         CH_DEVICE(0x4003, -1),
181         CH_DEVICE(0x4004, -1),
182         CH_DEVICE(0x4005, -1),
183         CH_DEVICE(0x4006, -1),
184         CH_DEVICE(0x4007, -1),
185         CH_DEVICE(0x4008, -1),
186         CH_DEVICE(0x4009, -1),
187         CH_DEVICE(0x400a, -1),
188         CH_DEVICE(0x4401, 4),
189         CH_DEVICE(0x4402, 4),
190         CH_DEVICE(0x4403, 4),
191         CH_DEVICE(0x4404, 4),
192         CH_DEVICE(0x4405, 4),
193         CH_DEVICE(0x4406, 4),
194         CH_DEVICE(0x4407, 4),
195         CH_DEVICE(0x4408, 4),
196         CH_DEVICE(0x4409, 4),
197         CH_DEVICE(0x440a, 4),
198         { 0, }
199 };
200
201 #define FW_FNAME "cxgb4/t4fw.bin"
202
203 MODULE_DESCRIPTION(DRV_DESC);
204 MODULE_AUTHOR("Chelsio Communications");
205 MODULE_LICENSE("Dual BSD/GPL");
206 MODULE_VERSION(DRV_VERSION);
207 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
208 MODULE_FIRMWARE(FW_FNAME);
209
210 static int dflt_msg_enable = DFLT_MSG_ENABLE;
211
212 module_param(dflt_msg_enable, int, 0644);
213 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
214
215 /*
216  * The driver uses the best interrupt scheme available on a platform in the
217  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
218  * of these schemes the driver may consider as follows:
219  *
220  * msi = 2: choose from among all three options
221  * msi = 1: only consider MSI and INTx interrupts
222  * msi = 0: force INTx interrupts
223  */
224 static int msi = 2;
225
226 module_param(msi, int, 0644);
227 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
228
229 /*
230  * Queue interrupt hold-off timer values.  Queues default to the first of these
231  * upon creation.
232  */
233 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
234
235 module_param_array(intr_holdoff, uint, NULL, 0644);
236 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
237                  "0..4 in microseconds");
238
239 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
240
241 module_param_array(intr_cnt, uint, NULL, 0644);
242 MODULE_PARM_DESC(intr_cnt,
243                  "thresholds 1..3 for queue interrupt packet counters");
244
245 static int vf_acls;
246
247 #ifdef CONFIG_PCI_IOV
248 module_param(vf_acls, bool, 0644);
249 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
250
251 static unsigned int num_vf[4];
252
253 module_param_array(num_vf, uint, NULL, 0644);
254 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
255 #endif
256
257 static struct dentry *cxgb4_debugfs_root;
258
259 static LIST_HEAD(adapter_list);
260 static DEFINE_MUTEX(uld_mutex);
261 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
262 static const char *uld_str[] = { "RDMA", "iSCSI" };
263
264 static void link_report(struct net_device *dev)
265 {
266         if (!netif_carrier_ok(dev))
267                 netdev_info(dev, "link down\n");
268         else {
269                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
270
271                 const char *s = "10Mbps";
272                 const struct port_info *p = netdev_priv(dev);
273
274                 switch (p->link_cfg.speed) {
275                 case SPEED_10000:
276                         s = "10Gbps";
277                         break;
278                 case SPEED_1000:
279                         s = "1000Mbps";
280                         break;
281                 case SPEED_100:
282                         s = "100Mbps";
283                         break;
284                 }
285
286                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
287                             fc[p->link_cfg.fc]);
288         }
289 }
290
291 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
292 {
293         struct net_device *dev = adapter->port[port_id];
294
295         /* Skip changes from disabled ports. */
296         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
297                 if (link_stat)
298                         netif_carrier_on(dev);
299                 else
300                         netif_carrier_off(dev);
301
302                 link_report(dev);
303         }
304 }
305
306 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
307 {
308         static const char *mod_str[] = {
309                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310         };
311
312         const struct net_device *dev = adap->port[port_id];
313         const struct port_info *pi = netdev_priv(dev);
314
315         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316                 netdev_info(dev, "port module unplugged\n");
317         else if (pi->mod_type < ARRAY_SIZE(mod_str))
318                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 }
320
321 /*
322  * Configure the exact and hash address filters to handle a port's multicast
323  * and secondary unicast MAC addresses.
324  */
325 static int set_addr_filters(const struct net_device *dev, bool sleep)
326 {
327         u64 mhash = 0;
328         u64 uhash = 0;
329         bool free = true;
330         u16 filt_idx[7];
331         const u8 *addr[7];
332         int ret, naddr = 0;
333         const struct netdev_hw_addr *ha;
334         int uc_cnt = netdev_uc_count(dev);
335         int mc_cnt = netdev_mc_count(dev);
336         const struct port_info *pi = netdev_priv(dev);
337         unsigned int mb = pi->adapter->fn;
338
339         /* first do the secondary unicast addresses */
340         netdev_for_each_uc_addr(ha, dev) {
341                 addr[naddr++] = ha->addr;
342                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
343                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
344                                         naddr, addr, filt_idx, &uhash, sleep);
345                         if (ret < 0)
346                                 return ret;
347
348                         free = false;
349                         naddr = 0;
350                 }
351         }
352
353         /* next set up the multicast addresses */
354         netdev_for_each_mc_addr(ha, dev) {
355                 addr[naddr++] = ha->addr;
356                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
357                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
358                                         naddr, addr, filt_idx, &mhash, sleep);
359                         if (ret < 0)
360                                 return ret;
361
362                         free = false;
363                         naddr = 0;
364                 }
365         }
366
367         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
368                                 uhash | mhash, sleep);
369 }
370
371 /*
372  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
373  * If @mtu is -1 it is left unchanged.
374  */
375 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
376 {
377         int ret;
378         struct port_info *pi = netdev_priv(dev);
379
380         ret = set_addr_filters(dev, sleep_ok);
381         if (ret == 0)
382                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
383                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
384                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
385                                     sleep_ok);
386         return ret;
387 }
388
389 /**
390  *      link_start - enable a port
391  *      @dev: the port to enable
392  *
393  *      Performs the MAC and PHY actions needed to enable a port.
394  */
395 static int link_start(struct net_device *dev)
396 {
397         int ret;
398         struct port_info *pi = netdev_priv(dev);
399         unsigned int mb = pi->adapter->fn;
400
401         /*
402          * We do not set address filters and promiscuity here, the stack does
403          * that step explicitly.
404          */
405         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
406                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
407         if (ret == 0) {
408                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
409                                     pi->xact_addr_filt, dev->dev_addr, true,
410                                     true);
411                 if (ret >= 0) {
412                         pi->xact_addr_filt = ret;
413                         ret = 0;
414                 }
415         }
416         if (ret == 0)
417                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
418                                     &pi->link_cfg);
419         if (ret == 0)
420                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
421         return ret;
422 }
423
424 /*
425  * Response queue handler for the FW event queue.
426  */
427 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
428                           const struct pkt_gl *gl)
429 {
430         u8 opcode = ((const struct rss_header *)rsp)->opcode;
431
432         rsp++;                                          /* skip RSS header */
433         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
434                 const struct cpl_sge_egr_update *p = (void *)rsp;
435                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
436                 struct sge_txq *txq;
437
438                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
439                 txq->restarts++;
440                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
441                         struct sge_eth_txq *eq;
442
443                         eq = container_of(txq, struct sge_eth_txq, q);
444                         netif_tx_wake_queue(eq->txq);
445                 } else {
446                         struct sge_ofld_txq *oq;
447
448                         oq = container_of(txq, struct sge_ofld_txq, q);
449                         tasklet_schedule(&oq->qresume_tsk);
450                 }
451         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
452                 const struct cpl_fw6_msg *p = (void *)rsp;
453
454                 if (p->type == 0)
455                         t4_handle_fw_rpl(q->adap, p->data);
456         } else if (opcode == CPL_L2T_WRITE_RPL) {
457                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
458
459                 do_l2t_write_rpl(q->adap, p);
460         } else
461                 dev_err(q->adap->pdev_dev,
462                         "unexpected CPL %#x on FW event queue\n", opcode);
463         return 0;
464 }
465
466 /**
467  *      uldrx_handler - response queue handler for ULD queues
468  *      @q: the response queue that received the packet
469  *      @rsp: the response queue descriptor holding the offload message
470  *      @gl: the gather list of packet fragments
471  *
472  *      Deliver an ingress offload packet to a ULD.  All processing is done by
473  *      the ULD, we just maintain statistics.
474  */
475 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
476                          const struct pkt_gl *gl)
477 {
478         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
479
480         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
481                 rxq->stats.nomem++;
482                 return -1;
483         }
484         if (gl == NULL)
485                 rxq->stats.imm++;
486         else if (gl == CXGB4_MSG_AN)
487                 rxq->stats.an++;
488         else
489                 rxq->stats.pkts++;
490         return 0;
491 }
492
493 static void disable_msi(struct adapter *adapter)
494 {
495         if (adapter->flags & USING_MSIX) {
496                 pci_disable_msix(adapter->pdev);
497                 adapter->flags &= ~USING_MSIX;
498         } else if (adapter->flags & USING_MSI) {
499                 pci_disable_msi(adapter->pdev);
500                 adapter->flags &= ~USING_MSI;
501         }
502 }
503
504 /*
505  * Interrupt handler for non-data events used with MSI-X.
506  */
507 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
508 {
509         struct adapter *adap = cookie;
510
511         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
512         if (v & PFSW) {
513                 adap->swintr = 1;
514                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
515         }
516         t4_slow_intr_handler(adap);
517         return IRQ_HANDLED;
518 }
519
520 /*
521  * Name the MSI-X interrupts.
522  */
523 static void name_msix_vecs(struct adapter *adap)
524 {
525         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
526
527         /* non-data interrupts */
528         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
529
530         /* FW events */
531         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
532                  adap->port[0]->name);
533
534         /* Ethernet queues */
535         for_each_port(adap, j) {
536                 struct net_device *d = adap->port[j];
537                 const struct port_info *pi = netdev_priv(d);
538
539                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
540                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
541                                  d->name, i);
542         }
543
544         /* offload queues */
545         for_each_ofldrxq(&adap->sge, i)
546                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
547                          adap->port[0]->name, i);
548
549         for_each_rdmarxq(&adap->sge, i)
550                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
551                          adap->port[0]->name, i);
552 }
553
554 static int request_msix_queue_irqs(struct adapter *adap)
555 {
556         struct sge *s = &adap->sge;
557         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
558
559         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
560                           adap->msix_info[1].desc, &s->fw_evtq);
561         if (err)
562                 return err;
563
564         for_each_ethrxq(s, ethqidx) {
565                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
566                                   adap->msix_info[msi].desc,
567                                   &s->ethrxq[ethqidx].rspq);
568                 if (err)
569                         goto unwind;
570                 msi++;
571         }
572         for_each_ofldrxq(s, ofldqidx) {
573                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
574                                   adap->msix_info[msi].desc,
575                                   &s->ofldrxq[ofldqidx].rspq);
576                 if (err)
577                         goto unwind;
578                 msi++;
579         }
580         for_each_rdmarxq(s, rdmaqidx) {
581                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
582                                   adap->msix_info[msi].desc,
583                                   &s->rdmarxq[rdmaqidx].rspq);
584                 if (err)
585                         goto unwind;
586                 msi++;
587         }
588         return 0;
589
590 unwind:
591         while (--rdmaqidx >= 0)
592                 free_irq(adap->msix_info[--msi].vec,
593                          &s->rdmarxq[rdmaqidx].rspq);
594         while (--ofldqidx >= 0)
595                 free_irq(adap->msix_info[--msi].vec,
596                          &s->ofldrxq[ofldqidx].rspq);
597         while (--ethqidx >= 0)
598                 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
599         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
600         return err;
601 }
602
603 static void free_msix_queue_irqs(struct adapter *adap)
604 {
605         int i, msi = 2;
606         struct sge *s = &adap->sge;
607
608         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
609         for_each_ethrxq(s, i)
610                 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
611         for_each_ofldrxq(s, i)
612                 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
613         for_each_rdmarxq(s, i)
614                 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
615 }
616
617 /**
618  *      write_rss - write the RSS table for a given port
619  *      @pi: the port
620  *      @queues: array of queue indices for RSS
621  *
622  *      Sets up the portion of the HW RSS table for the port's VI to distribute
623  *      packets to the Rx queues in @queues.
624  */
625 static int write_rss(const struct port_info *pi, const u16 *queues)
626 {
627         u16 *rss;
628         int i, err;
629         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
630
631         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
632         if (!rss)
633                 return -ENOMEM;
634
635         /* map the queue indices to queue ids */
636         for (i = 0; i < pi->rss_size; i++, queues++)
637                 rss[i] = q[*queues].rspq.abs_id;
638
639         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
640                                   pi->rss_size, rss, pi->rss_size);
641         kfree(rss);
642         return err;
643 }
644
645 /**
646  *      setup_rss - configure RSS
647  *      @adap: the adapter
648  *
649  *      Sets up RSS for each port.
650  */
651 static int setup_rss(struct adapter *adap)
652 {
653         int i, err;
654
655         for_each_port(adap, i) {
656                 const struct port_info *pi = adap2pinfo(adap, i);
657
658                 err = write_rss(pi, pi->rss);
659                 if (err)
660                         return err;
661         }
662         return 0;
663 }
664
665 /*
666  * Return the channel of the ingress queue with the given qid.
667  */
668 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
669 {
670         qid -= p->ingr_start;
671         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
672 }
673
674 /*
675  * Wait until all NAPI handlers are descheduled.
676  */
677 static void quiesce_rx(struct adapter *adap)
678 {
679         int i;
680
681         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
682                 struct sge_rspq *q = adap->sge.ingr_map[i];
683
684                 if (q && q->handler)
685                         napi_disable(&q->napi);
686         }
687 }
688
689 /*
690  * Enable NAPI scheduling and interrupt generation for all Rx queues.
691  */
692 static void enable_rx(struct adapter *adap)
693 {
694         int i;
695
696         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
697                 struct sge_rspq *q = adap->sge.ingr_map[i];
698
699                 if (!q)
700                         continue;
701                 if (q->handler)
702                         napi_enable(&q->napi);
703                 /* 0-increment GTS to start the timer and enable interrupts */
704                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
705                              SEINTARM(q->intr_params) |
706                              INGRESSQID(q->cntxt_id));
707         }
708 }
709
710 /**
711  *      setup_sge_queues - configure SGE Tx/Rx/response queues
712  *      @adap: the adapter
713  *
714  *      Determines how many sets of SGE queues to use and initializes them.
715  *      We support multiple queue sets per port if we have MSI-X, otherwise
716  *      just one queue set per port.
717  */
718 static int setup_sge_queues(struct adapter *adap)
719 {
720         int err, msi_idx, i, j;
721         struct sge *s = &adap->sge;
722
723         bitmap_zero(s->starving_fl, MAX_EGRQ);
724         bitmap_zero(s->txq_maperr, MAX_EGRQ);
725
726         if (adap->flags & USING_MSIX)
727                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
728         else {
729                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
730                                        NULL, NULL);
731                 if (err)
732                         return err;
733                 msi_idx = -((int)s->intrq.abs_id + 1);
734         }
735
736         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
737                                msi_idx, NULL, fwevtq_handler);
738         if (err) {
739 freeout:        t4_free_sge_resources(adap);
740                 return err;
741         }
742
743         for_each_port(adap, i) {
744                 struct net_device *dev = adap->port[i];
745                 struct port_info *pi = netdev_priv(dev);
746                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
747                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
748
749                 for (j = 0; j < pi->nqsets; j++, q++) {
750                         if (msi_idx > 0)
751                                 msi_idx++;
752                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
753                                                msi_idx, &q->fl,
754                                                t4_ethrx_handler);
755                         if (err)
756                                 goto freeout;
757                         q->rspq.idx = j;
758                         memset(&q->stats, 0, sizeof(q->stats));
759                 }
760                 for (j = 0; j < pi->nqsets; j++, t++) {
761                         err = t4_sge_alloc_eth_txq(adap, t, dev,
762                                         netdev_get_tx_queue(dev, j),
763                                         s->fw_evtq.cntxt_id);
764                         if (err)
765                                 goto freeout;
766                 }
767         }
768
769         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
770         for_each_ofldrxq(s, i) {
771                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
772                 struct net_device *dev = adap->port[i / j];
773
774                 if (msi_idx > 0)
775                         msi_idx++;
776                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
777                                        &q->fl, uldrx_handler);
778                 if (err)
779                         goto freeout;
780                 memset(&q->stats, 0, sizeof(q->stats));
781                 s->ofld_rxq[i] = q->rspq.abs_id;
782                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
783                                             s->fw_evtq.cntxt_id);
784                 if (err)
785                         goto freeout;
786         }
787
788         for_each_rdmarxq(s, i) {
789                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
790
791                 if (msi_idx > 0)
792                         msi_idx++;
793                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
794                                        msi_idx, &q->fl, uldrx_handler);
795                 if (err)
796                         goto freeout;
797                 memset(&q->stats, 0, sizeof(q->stats));
798                 s->rdma_rxq[i] = q->rspq.abs_id;
799         }
800
801         for_each_port(adap, i) {
802                 /*
803                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
804                  * have RDMA queues, and that's the right value.
805                  */
806                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
807                                             s->fw_evtq.cntxt_id,
808                                             s->rdmarxq[i].rspq.cntxt_id);
809                 if (err)
810                         goto freeout;
811         }
812
813         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
814                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
815                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
816         return 0;
817 }
818
819 /*
820  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
821  * started but failed, and a negative errno if flash load couldn't start.
822  */
823 static int upgrade_fw(struct adapter *adap)
824 {
825         int ret;
826         u32 vers;
827         const struct fw_hdr *hdr;
828         const struct firmware *fw;
829         struct device *dev = adap->pdev_dev;
830
831         ret = request_firmware(&fw, FW_FNAME, dev);
832         if (ret < 0) {
833                 dev_err(dev, "unable to load firmware image " FW_FNAME
834                         ", error %d\n", ret);
835                 return ret;
836         }
837
838         hdr = (const struct fw_hdr *)fw->data;
839         vers = ntohl(hdr->fw_ver);
840         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
841                 ret = -EINVAL;              /* wrong major version, won't do */
842                 goto out;
843         }
844
845         /*
846          * If the flash FW is unusable or we found something newer, load it.
847          */
848         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
849             vers > adap->params.fw_vers) {
850                 ret = -t4_load_fw(adap, fw->data, fw->size);
851                 if (!ret)
852                         dev_info(dev, "firmware upgraded to version %pI4 from "
853                                  FW_FNAME "\n", &hdr->fw_ver);
854         }
855 out:    release_firmware(fw);
856         return ret;
857 }
858
859 /*
860  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
861  * The allocated memory is cleared.
862  */
863 void *t4_alloc_mem(size_t size)
864 {
865         void *p = kzalloc(size, GFP_KERNEL);
866
867         if (!p)
868                 p = vzalloc(size);
869         return p;
870 }
871
872 /*
873  * Free memory allocated through alloc_mem().
874  */
875 static void t4_free_mem(void *addr)
876 {
877         if (is_vmalloc_addr(addr))
878                 vfree(addr);
879         else
880                 kfree(addr);
881 }
882
883 static inline int is_offload(const struct adapter *adap)
884 {
885         return adap->params.offload;
886 }
887
888 /*
889  * Implementation of ethtool operations.
890  */
891
892 static u32 get_msglevel(struct net_device *dev)
893 {
894         return netdev2adap(dev)->msg_enable;
895 }
896
897 static void set_msglevel(struct net_device *dev, u32 val)
898 {
899         netdev2adap(dev)->msg_enable = val;
900 }
901
902 static char stats_strings[][ETH_GSTRING_LEN] = {
903         "TxOctetsOK         ",
904         "TxFramesOK         ",
905         "TxBroadcastFrames  ",
906         "TxMulticastFrames  ",
907         "TxUnicastFrames    ",
908         "TxErrorFrames      ",
909
910         "TxFrames64         ",
911         "TxFrames65To127    ",
912         "TxFrames128To255   ",
913         "TxFrames256To511   ",
914         "TxFrames512To1023  ",
915         "TxFrames1024To1518 ",
916         "TxFrames1519ToMax  ",
917
918         "TxFramesDropped    ",
919         "TxPauseFrames      ",
920         "TxPPP0Frames       ",
921         "TxPPP1Frames       ",
922         "TxPPP2Frames       ",
923         "TxPPP3Frames       ",
924         "TxPPP4Frames       ",
925         "TxPPP5Frames       ",
926         "TxPPP6Frames       ",
927         "TxPPP7Frames       ",
928
929         "RxOctetsOK         ",
930         "RxFramesOK         ",
931         "RxBroadcastFrames  ",
932         "RxMulticastFrames  ",
933         "RxUnicastFrames    ",
934
935         "RxFramesTooLong    ",
936         "RxJabberErrors     ",
937         "RxFCSErrors        ",
938         "RxLengthErrors     ",
939         "RxSymbolErrors     ",
940         "RxRuntFrames       ",
941
942         "RxFrames64         ",
943         "RxFrames65To127    ",
944         "RxFrames128To255   ",
945         "RxFrames256To511   ",
946         "RxFrames512To1023  ",
947         "RxFrames1024To1518 ",
948         "RxFrames1519ToMax  ",
949
950         "RxPauseFrames      ",
951         "RxPPP0Frames       ",
952         "RxPPP1Frames       ",
953         "RxPPP2Frames       ",
954         "RxPPP3Frames       ",
955         "RxPPP4Frames       ",
956         "RxPPP5Frames       ",
957         "RxPPP6Frames       ",
958         "RxPPP7Frames       ",
959
960         "RxBG0FramesDropped ",
961         "RxBG1FramesDropped ",
962         "RxBG2FramesDropped ",
963         "RxBG3FramesDropped ",
964         "RxBG0FramesTrunc   ",
965         "RxBG1FramesTrunc   ",
966         "RxBG2FramesTrunc   ",
967         "RxBG3FramesTrunc   ",
968
969         "TSO                ",
970         "TxCsumOffload      ",
971         "RxCsumGood         ",
972         "VLANextractions    ",
973         "VLANinsertions     ",
974         "GROpackets         ",
975         "GROmerged          ",
976 };
977
978 static int get_sset_count(struct net_device *dev, int sset)
979 {
980         switch (sset) {
981         case ETH_SS_STATS:
982                 return ARRAY_SIZE(stats_strings);
983         default:
984                 return -EOPNOTSUPP;
985         }
986 }
987
988 #define T4_REGMAP_SIZE (160 * 1024)
989
990 static int get_regs_len(struct net_device *dev)
991 {
992         return T4_REGMAP_SIZE;
993 }
994
995 static int get_eeprom_len(struct net_device *dev)
996 {
997         return EEPROMSIZE;
998 }
999
1000 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1001 {
1002         struct adapter *adapter = netdev2adap(dev);
1003
1004         strcpy(info->driver, KBUILD_MODNAME);
1005         strcpy(info->version, DRV_VERSION);
1006         strcpy(info->bus_info, pci_name(adapter->pdev));
1007
1008         if (!adapter->params.fw_vers)
1009                 strcpy(info->fw_version, "N/A");
1010         else
1011                 snprintf(info->fw_version, sizeof(info->fw_version),
1012                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1013                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1014                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1015                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1016                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1017                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1018                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1019                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1020                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1021 }
1022
1023 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1024 {
1025         if (stringset == ETH_SS_STATS)
1026                 memcpy(data, stats_strings, sizeof(stats_strings));
1027 }
1028
1029 /*
1030  * port stats maintained per queue of the port.  They should be in the same
1031  * order as in stats_strings above.
1032  */
1033 struct queue_port_stats {
1034         u64 tso;
1035         u64 tx_csum;
1036         u64 rx_csum;
1037         u64 vlan_ex;
1038         u64 vlan_ins;
1039         u64 gro_pkts;
1040         u64 gro_merged;
1041 };
1042
1043 static void collect_sge_port_stats(const struct adapter *adap,
1044                 const struct port_info *p, struct queue_port_stats *s)
1045 {
1046         int i;
1047         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1048         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1049
1050         memset(s, 0, sizeof(*s));
1051         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1052                 s->tso += tx->tso;
1053                 s->tx_csum += tx->tx_cso;
1054                 s->rx_csum += rx->stats.rx_cso;
1055                 s->vlan_ex += rx->stats.vlan_ex;
1056                 s->vlan_ins += tx->vlan_ins;
1057                 s->gro_pkts += rx->stats.lro_pkts;
1058                 s->gro_merged += rx->stats.lro_merged;
1059         }
1060 }
1061
1062 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1063                       u64 *data)
1064 {
1065         struct port_info *pi = netdev_priv(dev);
1066         struct adapter *adapter = pi->adapter;
1067
1068         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1069
1070         data += sizeof(struct port_stats) / sizeof(u64);
1071         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1072 }
1073
1074 /*
1075  * Return a version number to identify the type of adapter.  The scheme is:
1076  * - bits 0..9: chip version
1077  * - bits 10..15: chip revision
1078  * - bits 16..23: register dump version
1079  */
1080 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1081 {
1082         return 4 | (ap->params.rev << 10) | (1 << 16);
1083 }
1084
1085 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1086                            unsigned int end)
1087 {
1088         u32 *p = buf + start;
1089
1090         for ( ; start <= end; start += sizeof(u32))
1091                 *p++ = t4_read_reg(ap, start);
1092 }
1093
1094 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1095                      void *buf)
1096 {
1097         static const unsigned int reg_ranges[] = {
1098                 0x1008, 0x1108,
1099                 0x1180, 0x11b4,
1100                 0x11fc, 0x123c,
1101                 0x1300, 0x173c,
1102                 0x1800, 0x18fc,
1103                 0x3000, 0x30d8,
1104                 0x30e0, 0x5924,
1105                 0x5960, 0x59d4,
1106                 0x5a00, 0x5af8,
1107                 0x6000, 0x6098,
1108                 0x6100, 0x6150,
1109                 0x6200, 0x6208,
1110                 0x6240, 0x6248,
1111                 0x6280, 0x6338,
1112                 0x6370, 0x638c,
1113                 0x6400, 0x643c,
1114                 0x6500, 0x6524,
1115                 0x6a00, 0x6a38,
1116                 0x6a60, 0x6a78,
1117                 0x6b00, 0x6b84,
1118                 0x6bf0, 0x6c84,
1119                 0x6cf0, 0x6d84,
1120                 0x6df0, 0x6e84,
1121                 0x6ef0, 0x6f84,
1122                 0x6ff0, 0x7084,
1123                 0x70f0, 0x7184,
1124                 0x71f0, 0x7284,
1125                 0x72f0, 0x7384,
1126                 0x73f0, 0x7450,
1127                 0x7500, 0x7530,
1128                 0x7600, 0x761c,
1129                 0x7680, 0x76cc,
1130                 0x7700, 0x7798,
1131                 0x77c0, 0x77fc,
1132                 0x7900, 0x79fc,
1133                 0x7b00, 0x7c38,
1134                 0x7d00, 0x7efc,
1135                 0x8dc0, 0x8e1c,
1136                 0x8e30, 0x8e78,
1137                 0x8ea0, 0x8f6c,
1138                 0x8fc0, 0x9074,
1139                 0x90fc, 0x90fc,
1140                 0x9400, 0x9458,
1141                 0x9600, 0x96bc,
1142                 0x9800, 0x9808,
1143                 0x9820, 0x983c,
1144                 0x9850, 0x9864,
1145                 0x9c00, 0x9c6c,
1146                 0x9c80, 0x9cec,
1147                 0x9d00, 0x9d6c,
1148                 0x9d80, 0x9dec,
1149                 0x9e00, 0x9e6c,
1150                 0x9e80, 0x9eec,
1151                 0x9f00, 0x9f6c,
1152                 0x9f80, 0x9fec,
1153                 0xd004, 0xd03c,
1154                 0xdfc0, 0xdfe0,
1155                 0xe000, 0xea7c,
1156                 0xf000, 0x11190,
1157                 0x19040, 0x1906c,
1158                 0x19078, 0x19080,
1159                 0x1908c, 0x19124,
1160                 0x19150, 0x191b0,
1161                 0x191d0, 0x191e8,
1162                 0x19238, 0x1924c,
1163                 0x193f8, 0x19474,
1164                 0x19490, 0x194f8,
1165                 0x19800, 0x19f30,
1166                 0x1a000, 0x1a06c,
1167                 0x1a0b0, 0x1a120,
1168                 0x1a128, 0x1a138,
1169                 0x1a190, 0x1a1c4,
1170                 0x1a1fc, 0x1a1fc,
1171                 0x1e040, 0x1e04c,
1172                 0x1e284, 0x1e28c,
1173                 0x1e2c0, 0x1e2c0,
1174                 0x1e2e0, 0x1e2e0,
1175                 0x1e300, 0x1e384,
1176                 0x1e3c0, 0x1e3c8,
1177                 0x1e440, 0x1e44c,
1178                 0x1e684, 0x1e68c,
1179                 0x1e6c0, 0x1e6c0,
1180                 0x1e6e0, 0x1e6e0,
1181                 0x1e700, 0x1e784,
1182                 0x1e7c0, 0x1e7c8,
1183                 0x1e840, 0x1e84c,
1184                 0x1ea84, 0x1ea8c,
1185                 0x1eac0, 0x1eac0,
1186                 0x1eae0, 0x1eae0,
1187                 0x1eb00, 0x1eb84,
1188                 0x1ebc0, 0x1ebc8,
1189                 0x1ec40, 0x1ec4c,
1190                 0x1ee84, 0x1ee8c,
1191                 0x1eec0, 0x1eec0,
1192                 0x1eee0, 0x1eee0,
1193                 0x1ef00, 0x1ef84,
1194                 0x1efc0, 0x1efc8,
1195                 0x1f040, 0x1f04c,
1196                 0x1f284, 0x1f28c,
1197                 0x1f2c0, 0x1f2c0,
1198                 0x1f2e0, 0x1f2e0,
1199                 0x1f300, 0x1f384,
1200                 0x1f3c0, 0x1f3c8,
1201                 0x1f440, 0x1f44c,
1202                 0x1f684, 0x1f68c,
1203                 0x1f6c0, 0x1f6c0,
1204                 0x1f6e0, 0x1f6e0,
1205                 0x1f700, 0x1f784,
1206                 0x1f7c0, 0x1f7c8,
1207                 0x1f840, 0x1f84c,
1208                 0x1fa84, 0x1fa8c,
1209                 0x1fac0, 0x1fac0,
1210                 0x1fae0, 0x1fae0,
1211                 0x1fb00, 0x1fb84,
1212                 0x1fbc0, 0x1fbc8,
1213                 0x1fc40, 0x1fc4c,
1214                 0x1fe84, 0x1fe8c,
1215                 0x1fec0, 0x1fec0,
1216                 0x1fee0, 0x1fee0,
1217                 0x1ff00, 0x1ff84,
1218                 0x1ffc0, 0x1ffc8,
1219                 0x20000, 0x2002c,
1220                 0x20100, 0x2013c,
1221                 0x20190, 0x201c8,
1222                 0x20200, 0x20318,
1223                 0x20400, 0x20528,
1224                 0x20540, 0x20614,
1225                 0x21000, 0x21040,
1226                 0x2104c, 0x21060,
1227                 0x210c0, 0x210ec,
1228                 0x21200, 0x21268,
1229                 0x21270, 0x21284,
1230                 0x212fc, 0x21388,
1231                 0x21400, 0x21404,
1232                 0x21500, 0x21518,
1233                 0x2152c, 0x2153c,
1234                 0x21550, 0x21554,
1235                 0x21600, 0x21600,
1236                 0x21608, 0x21628,
1237                 0x21630, 0x2163c,
1238                 0x21700, 0x2171c,
1239                 0x21780, 0x2178c,
1240                 0x21800, 0x21c38,
1241                 0x21c80, 0x21d7c,
1242                 0x21e00, 0x21e04,
1243                 0x22000, 0x2202c,
1244                 0x22100, 0x2213c,
1245                 0x22190, 0x221c8,
1246                 0x22200, 0x22318,
1247                 0x22400, 0x22528,
1248                 0x22540, 0x22614,
1249                 0x23000, 0x23040,
1250                 0x2304c, 0x23060,
1251                 0x230c0, 0x230ec,
1252                 0x23200, 0x23268,
1253                 0x23270, 0x23284,
1254                 0x232fc, 0x23388,
1255                 0x23400, 0x23404,
1256                 0x23500, 0x23518,
1257                 0x2352c, 0x2353c,
1258                 0x23550, 0x23554,
1259                 0x23600, 0x23600,
1260                 0x23608, 0x23628,
1261                 0x23630, 0x2363c,
1262                 0x23700, 0x2371c,
1263                 0x23780, 0x2378c,
1264                 0x23800, 0x23c38,
1265                 0x23c80, 0x23d7c,
1266                 0x23e00, 0x23e04,
1267                 0x24000, 0x2402c,
1268                 0x24100, 0x2413c,
1269                 0x24190, 0x241c8,
1270                 0x24200, 0x24318,
1271                 0x24400, 0x24528,
1272                 0x24540, 0x24614,
1273                 0x25000, 0x25040,
1274                 0x2504c, 0x25060,
1275                 0x250c0, 0x250ec,
1276                 0x25200, 0x25268,
1277                 0x25270, 0x25284,
1278                 0x252fc, 0x25388,
1279                 0x25400, 0x25404,
1280                 0x25500, 0x25518,
1281                 0x2552c, 0x2553c,
1282                 0x25550, 0x25554,
1283                 0x25600, 0x25600,
1284                 0x25608, 0x25628,
1285                 0x25630, 0x2563c,
1286                 0x25700, 0x2571c,
1287                 0x25780, 0x2578c,
1288                 0x25800, 0x25c38,
1289                 0x25c80, 0x25d7c,
1290                 0x25e00, 0x25e04,
1291                 0x26000, 0x2602c,
1292                 0x26100, 0x2613c,
1293                 0x26190, 0x261c8,
1294                 0x26200, 0x26318,
1295                 0x26400, 0x26528,
1296                 0x26540, 0x26614,
1297                 0x27000, 0x27040,
1298                 0x2704c, 0x27060,
1299                 0x270c0, 0x270ec,
1300                 0x27200, 0x27268,
1301                 0x27270, 0x27284,
1302                 0x272fc, 0x27388,
1303                 0x27400, 0x27404,
1304                 0x27500, 0x27518,
1305                 0x2752c, 0x2753c,
1306                 0x27550, 0x27554,
1307                 0x27600, 0x27600,
1308                 0x27608, 0x27628,
1309                 0x27630, 0x2763c,
1310                 0x27700, 0x2771c,
1311                 0x27780, 0x2778c,
1312                 0x27800, 0x27c38,
1313                 0x27c80, 0x27d7c,
1314                 0x27e00, 0x27e04
1315         };
1316
1317         int i;
1318         struct adapter *ap = netdev2adap(dev);
1319
1320         regs->version = mk_adap_vers(ap);
1321
1322         memset(buf, 0, T4_REGMAP_SIZE);
1323         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1324                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1325 }
1326
1327 static int restart_autoneg(struct net_device *dev)
1328 {
1329         struct port_info *p = netdev_priv(dev);
1330
1331         if (!netif_running(dev))
1332                 return -EAGAIN;
1333         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1334                 return -EINVAL;
1335         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1336         return 0;
1337 }
1338
1339 static int identify_port(struct net_device *dev, u32 data)
1340 {
1341         struct adapter *adap = netdev2adap(dev);
1342
1343         if (data == 0)
1344                 data = 2;     /* default to 2 seconds */
1345
1346         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid,
1347                                 data * 5);
1348 }
1349
1350 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1351 {
1352         unsigned int v = 0;
1353
1354         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1355             type == FW_PORT_TYPE_BT_XAUI) {
1356                 v |= SUPPORTED_TP;
1357                 if (caps & FW_PORT_CAP_SPEED_100M)
1358                         v |= SUPPORTED_100baseT_Full;
1359                 if (caps & FW_PORT_CAP_SPEED_1G)
1360                         v |= SUPPORTED_1000baseT_Full;
1361                 if (caps & FW_PORT_CAP_SPEED_10G)
1362                         v |= SUPPORTED_10000baseT_Full;
1363         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1364                 v |= SUPPORTED_Backplane;
1365                 if (caps & FW_PORT_CAP_SPEED_1G)
1366                         v |= SUPPORTED_1000baseKX_Full;
1367                 if (caps & FW_PORT_CAP_SPEED_10G)
1368                         v |= SUPPORTED_10000baseKX4_Full;
1369         } else if (type == FW_PORT_TYPE_KR)
1370                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1371         else if (type == FW_PORT_TYPE_BP_AP)
1372                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1373                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1374         else if (type == FW_PORT_TYPE_BP4_AP)
1375                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1376                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1377                      SUPPORTED_10000baseKX4_Full;
1378         else if (type == FW_PORT_TYPE_FIBER_XFI ||
1379                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1380                 v |= SUPPORTED_FIBRE;
1381
1382         if (caps & FW_PORT_CAP_ANEG)
1383                 v |= SUPPORTED_Autoneg;
1384         return v;
1385 }
1386
1387 static unsigned int to_fw_linkcaps(unsigned int caps)
1388 {
1389         unsigned int v = 0;
1390
1391         if (caps & ADVERTISED_100baseT_Full)
1392                 v |= FW_PORT_CAP_SPEED_100M;
1393         if (caps & ADVERTISED_1000baseT_Full)
1394                 v |= FW_PORT_CAP_SPEED_1G;
1395         if (caps & ADVERTISED_10000baseT_Full)
1396                 v |= FW_PORT_CAP_SPEED_10G;
1397         return v;
1398 }
1399
1400 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1401 {
1402         const struct port_info *p = netdev_priv(dev);
1403
1404         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1405             p->port_type == FW_PORT_TYPE_BT_XFI ||
1406             p->port_type == FW_PORT_TYPE_BT_XAUI)
1407                 cmd->port = PORT_TP;
1408         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1409                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1410                 cmd->port = PORT_FIBRE;
1411         else if (p->port_type == FW_PORT_TYPE_SFP) {
1412                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1413                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1414                         cmd->port = PORT_DA;
1415                 else
1416                         cmd->port = PORT_FIBRE;
1417         } else
1418                 cmd->port = PORT_OTHER;
1419
1420         if (p->mdio_addr >= 0) {
1421                 cmd->phy_address = p->mdio_addr;
1422                 cmd->transceiver = XCVR_EXTERNAL;
1423                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1424                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1425         } else {
1426                 cmd->phy_address = 0;  /* not really, but no better option */
1427                 cmd->transceiver = XCVR_INTERNAL;
1428                 cmd->mdio_support = 0;
1429         }
1430
1431         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1432         cmd->advertising = from_fw_linkcaps(p->port_type,
1433                                             p->link_cfg.advertising);
1434         cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
1435         cmd->duplex = DUPLEX_FULL;
1436         cmd->autoneg = p->link_cfg.autoneg;
1437         cmd->maxtxpkt = 0;
1438         cmd->maxrxpkt = 0;
1439         return 0;
1440 }
1441
1442 static unsigned int speed_to_caps(int speed)
1443 {
1444         if (speed == SPEED_100)
1445                 return FW_PORT_CAP_SPEED_100M;
1446         if (speed == SPEED_1000)
1447                 return FW_PORT_CAP_SPEED_1G;
1448         if (speed == SPEED_10000)
1449                 return FW_PORT_CAP_SPEED_10G;
1450         return 0;
1451 }
1452
1453 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1454 {
1455         unsigned int cap;
1456         struct port_info *p = netdev_priv(dev);
1457         struct link_config *lc = &p->link_cfg;
1458
1459         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1460                 return -EINVAL;
1461
1462         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1463                 /*
1464                  * PHY offers a single speed.  See if that's what's
1465                  * being requested.
1466                  */
1467                 if (cmd->autoneg == AUTONEG_DISABLE &&
1468                     (lc->supported & speed_to_caps(cmd->speed)))
1469                                 return 0;
1470                 return -EINVAL;
1471         }
1472
1473         if (cmd->autoneg == AUTONEG_DISABLE) {
1474                 cap = speed_to_caps(cmd->speed);
1475
1476                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
1477                     cmd->speed == SPEED_10000)
1478                         return -EINVAL;
1479                 lc->requested_speed = cap;
1480                 lc->advertising = 0;
1481         } else {
1482                 cap = to_fw_linkcaps(cmd->advertising);
1483                 if (!(lc->supported & cap))
1484                         return -EINVAL;
1485                 lc->requested_speed = 0;
1486                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1487         }
1488         lc->autoneg = cmd->autoneg;
1489
1490         if (netif_running(dev))
1491                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1492                                      lc);
1493         return 0;
1494 }
1495
1496 static void get_pauseparam(struct net_device *dev,
1497                            struct ethtool_pauseparam *epause)
1498 {
1499         struct port_info *p = netdev_priv(dev);
1500
1501         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1502         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1503         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1504 }
1505
1506 static int set_pauseparam(struct net_device *dev,
1507                           struct ethtool_pauseparam *epause)
1508 {
1509         struct port_info *p = netdev_priv(dev);
1510         struct link_config *lc = &p->link_cfg;
1511
1512         if (epause->autoneg == AUTONEG_DISABLE)
1513                 lc->requested_fc = 0;
1514         else if (lc->supported & FW_PORT_CAP_ANEG)
1515                 lc->requested_fc = PAUSE_AUTONEG;
1516         else
1517                 return -EINVAL;
1518
1519         if (epause->rx_pause)
1520                 lc->requested_fc |= PAUSE_RX;
1521         if (epause->tx_pause)
1522                 lc->requested_fc |= PAUSE_TX;
1523         if (netif_running(dev))
1524                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1525                                      lc);
1526         return 0;
1527 }
1528
1529 static u32 get_rx_csum(struct net_device *dev)
1530 {
1531         struct port_info *p = netdev_priv(dev);
1532
1533         return p->rx_offload & RX_CSO;
1534 }
1535
1536 static int set_rx_csum(struct net_device *dev, u32 data)
1537 {
1538         struct port_info *p = netdev_priv(dev);
1539
1540         if (data)
1541                 p->rx_offload |= RX_CSO;
1542         else
1543                 p->rx_offload &= ~RX_CSO;
1544         return 0;
1545 }
1546
1547 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1548 {
1549         const struct port_info *pi = netdev_priv(dev);
1550         const struct sge *s = &pi->adapter->sge;
1551
1552         e->rx_max_pending = MAX_RX_BUFFERS;
1553         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1554         e->rx_jumbo_max_pending = 0;
1555         e->tx_max_pending = MAX_TXQ_ENTRIES;
1556
1557         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1558         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1559         e->rx_jumbo_pending = 0;
1560         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1561 }
1562
1563 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1564 {
1565         int i;
1566         const struct port_info *pi = netdev_priv(dev);
1567         struct adapter *adapter = pi->adapter;
1568         struct sge *s = &adapter->sge;
1569
1570         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1571             e->tx_pending > MAX_TXQ_ENTRIES ||
1572             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1573             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1574             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1575                 return -EINVAL;
1576
1577         if (adapter->flags & FULL_INIT_DONE)
1578                 return -EBUSY;
1579
1580         for (i = 0; i < pi->nqsets; ++i) {
1581                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1582                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1583                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1584         }
1585         return 0;
1586 }
1587
1588 static int closest_timer(const struct sge *s, int time)
1589 {
1590         int i, delta, match = 0, min_delta = INT_MAX;
1591
1592         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1593                 delta = time - s->timer_val[i];
1594                 if (delta < 0)
1595                         delta = -delta;
1596                 if (delta < min_delta) {
1597                         min_delta = delta;
1598                         match = i;
1599                 }
1600         }
1601         return match;
1602 }
1603
1604 static int closest_thres(const struct sge *s, int thres)
1605 {
1606         int i, delta, match = 0, min_delta = INT_MAX;
1607
1608         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1609                 delta = thres - s->counter_val[i];
1610                 if (delta < 0)
1611                         delta = -delta;
1612                 if (delta < min_delta) {
1613                         min_delta = delta;
1614                         match = i;
1615                 }
1616         }
1617         return match;
1618 }
1619
1620 /*
1621  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1622  */
1623 static unsigned int qtimer_val(const struct adapter *adap,
1624                                const struct sge_rspq *q)
1625 {
1626         unsigned int idx = q->intr_params >> 1;
1627
1628         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1629 }
1630
1631 /**
1632  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1633  *      @adap: the adapter
1634  *      @q: the Rx queue
1635  *      @us: the hold-off time in us, or 0 to disable timer
1636  *      @cnt: the hold-off packet count, or 0 to disable counter
1637  *
1638  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1639  *      one of the two needs to be enabled for the queue to generate interrupts.
1640  */
1641 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1642                                unsigned int us, unsigned int cnt)
1643 {
1644         if ((us | cnt) == 0)
1645                 cnt = 1;
1646
1647         if (cnt) {
1648                 int err;
1649                 u32 v, new_idx;
1650
1651                 new_idx = closest_thres(&adap->sge, cnt);
1652                 if (q->desc && q->pktcnt_idx != new_idx) {
1653                         /* the queue has already been created, update it */
1654                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1655                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1656                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1657                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1658                                             &new_idx);
1659                         if (err)
1660                                 return err;
1661                 }
1662                 q->pktcnt_idx = new_idx;
1663         }
1664
1665         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1666         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1667         return 0;
1668 }
1669
1670 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1671 {
1672         const struct port_info *pi = netdev_priv(dev);
1673         struct adapter *adap = pi->adapter;
1674
1675         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1676                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1677 }
1678
1679 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1680 {
1681         const struct port_info *pi = netdev_priv(dev);
1682         const struct adapter *adap = pi->adapter;
1683         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1684
1685         c->rx_coalesce_usecs = qtimer_val(adap, rq);
1686         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1687                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1688         return 0;
1689 }
1690
1691 /**
1692  *      eeprom_ptov - translate a physical EEPROM address to virtual
1693  *      @phys_addr: the physical EEPROM address
1694  *      @fn: the PCI function number
1695  *      @sz: size of function-specific area
1696  *
1697  *      Translate a physical EEPROM address to virtual.  The first 1K is
1698  *      accessed through virtual addresses starting at 31K, the rest is
1699  *      accessed through virtual addresses starting at 0.
1700  *
1701  *      The mapping is as follows:
1702  *      [0..1K) -> [31K..32K)
1703  *      [1K..1K+A) -> [31K-A..31K)
1704  *      [1K+A..ES) -> [0..ES-A-1K)
1705  *
1706  *      where A = @fn * @sz, and ES = EEPROM size.
1707  */
1708 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1709 {
1710         fn *= sz;
1711         if (phys_addr < 1024)
1712                 return phys_addr + (31 << 10);
1713         if (phys_addr < 1024 + fn)
1714                 return 31744 - fn + phys_addr - 1024;
1715         if (phys_addr < EEPROMSIZE)
1716                 return phys_addr - 1024 - fn;
1717         return -EINVAL;
1718 }
1719
1720 /*
1721  * The next two routines implement eeprom read/write from physical addresses.
1722  */
1723 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1724 {
1725         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1726
1727         if (vaddr >= 0)
1728                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1729         return vaddr < 0 ? vaddr : 0;
1730 }
1731
1732 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1733 {
1734         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1735
1736         if (vaddr >= 0)
1737                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1738         return vaddr < 0 ? vaddr : 0;
1739 }
1740
1741 #define EEPROM_MAGIC 0x38E2F10C
1742
1743 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1744                       u8 *data)
1745 {
1746         int i, err = 0;
1747         struct adapter *adapter = netdev2adap(dev);
1748
1749         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1750         if (!buf)
1751                 return -ENOMEM;
1752
1753         e->magic = EEPROM_MAGIC;
1754         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1755                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1756
1757         if (!err)
1758                 memcpy(data, buf + e->offset, e->len);
1759         kfree(buf);
1760         return err;
1761 }
1762
1763 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1764                       u8 *data)
1765 {
1766         u8 *buf;
1767         int err = 0;
1768         u32 aligned_offset, aligned_len, *p;
1769         struct adapter *adapter = netdev2adap(dev);
1770
1771         if (eeprom->magic != EEPROM_MAGIC)
1772                 return -EINVAL;
1773
1774         aligned_offset = eeprom->offset & ~3;
1775         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1776
1777         if (adapter->fn > 0) {
1778                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
1779
1780                 if (aligned_offset < start ||
1781                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
1782                         return -EPERM;
1783         }
1784
1785         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1786                 /*
1787                  * RMW possibly needed for first or last words.
1788                  */
1789                 buf = kmalloc(aligned_len, GFP_KERNEL);
1790                 if (!buf)
1791                         return -ENOMEM;
1792                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1793                 if (!err && aligned_len > 4)
1794                         err = eeprom_rd_phys(adapter,
1795                                              aligned_offset + aligned_len - 4,
1796                                              (u32 *)&buf[aligned_len - 4]);
1797                 if (err)
1798                         goto out;
1799                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1800         } else
1801                 buf = data;
1802
1803         err = t4_seeprom_wp(adapter, false);
1804         if (err)
1805                 goto out;
1806
1807         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1808                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1809                 aligned_offset += 4;
1810         }
1811
1812         if (!err)
1813                 err = t4_seeprom_wp(adapter, true);
1814 out:
1815         if (buf != data)
1816                 kfree(buf);
1817         return err;
1818 }
1819
1820 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1821 {
1822         int ret;
1823         const struct firmware *fw;
1824         struct adapter *adap = netdev2adap(netdev);
1825
1826         ef->data[sizeof(ef->data) - 1] = '\0';
1827         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1828         if (ret < 0)
1829                 return ret;
1830
1831         ret = t4_load_fw(adap, fw->data, fw->size);
1832         release_firmware(fw);
1833         if (!ret)
1834                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1835         return ret;
1836 }
1837
1838 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1839 #define BCAST_CRC 0xa0ccc1a6
1840
1841 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1842 {
1843         wol->supported = WAKE_BCAST | WAKE_MAGIC;
1844         wol->wolopts = netdev2adap(dev)->wol;
1845         memset(&wol->sopass, 0, sizeof(wol->sopass));
1846 }
1847
1848 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1849 {
1850         int err = 0;
1851         struct port_info *pi = netdev_priv(dev);
1852
1853         if (wol->wolopts & ~WOL_SUPPORTED)
1854                 return -EINVAL;
1855         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1856                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1857         if (wol->wolopts & WAKE_BCAST) {
1858                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1859                                         ~0ULL, 0, false);
1860                 if (!err)
1861                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1862                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
1863         } else
1864                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1865         return err;
1866 }
1867
1868 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1869
1870 static int set_tso(struct net_device *dev, u32 value)
1871 {
1872         if (value)
1873                 dev->features |= TSO_FLAGS;
1874         else
1875                 dev->features &= ~TSO_FLAGS;
1876         return 0;
1877 }
1878
1879 static int set_flags(struct net_device *dev, u32 flags)
1880 {
1881         int err;
1882         unsigned long old_feat = dev->features;
1883
1884         err = ethtool_op_set_flags(dev, flags, ETH_FLAG_RXHASH |
1885                                    ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN);
1886         if (err)
1887                 return err;
1888
1889         if ((old_feat ^ dev->features) & NETIF_F_HW_VLAN_RX) {
1890                 const struct port_info *pi = netdev_priv(dev);
1891
1892                 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1893                                     -1, -1, -1, !!(flags & ETH_FLAG_RXVLAN),
1894                                     true);
1895                 if (err)
1896                         dev->features = old_feat;
1897         }
1898         return err;
1899 }
1900
1901 static int get_rss_table(struct net_device *dev, struct ethtool_rxfh_indir *p)
1902 {
1903         const struct port_info *pi = netdev_priv(dev);
1904         unsigned int n = min_t(unsigned int, p->size, pi->rss_size);
1905
1906         p->size = pi->rss_size;
1907         while (n--)
1908                 p->ring_index[n] = pi->rss[n];
1909         return 0;
1910 }
1911
1912 static int set_rss_table(struct net_device *dev,
1913                          const struct ethtool_rxfh_indir *p)
1914 {
1915         unsigned int i;
1916         struct port_info *pi = netdev_priv(dev);
1917
1918         if (p->size != pi->rss_size)
1919                 return -EINVAL;
1920         for (i = 0; i < p->size; i++)
1921                 if (p->ring_index[i] >= pi->nqsets)
1922                         return -EINVAL;
1923         for (i = 0; i < p->size; i++)
1924                 pi->rss[i] = p->ring_index[i];
1925         if (pi->adapter->flags & FULL_INIT_DONE)
1926                 return write_rss(pi, pi->rss);
1927         return 0;
1928 }
1929
1930 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1931                      void *rules)
1932 {
1933         const struct port_info *pi = netdev_priv(dev);
1934
1935         switch (info->cmd) {
1936         case ETHTOOL_GRXFH: {
1937                 unsigned int v = pi->rss_mode;
1938
1939                 info->data = 0;
1940                 switch (info->flow_type) {
1941                 case TCP_V4_FLOW:
1942                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
1943                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1944                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1945                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1946                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1947                         break;
1948                 case UDP_V4_FLOW:
1949                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
1950                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1951                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1952                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1953                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1954                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1955                         break;
1956                 case SCTP_V4_FLOW:
1957                 case AH_ESP_V4_FLOW:
1958                 case IPV4_FLOW:
1959                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1960                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1961                         break;
1962                 case TCP_V6_FLOW:
1963                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
1964                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1965                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1966                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1967                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1968                         break;
1969                 case UDP_V6_FLOW:
1970                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
1971                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1972                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1973                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1974                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1975                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1976                         break;
1977                 case SCTP_V6_FLOW:
1978                 case AH_ESP_V6_FLOW:
1979                 case IPV6_FLOW:
1980                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1981                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1982                         break;
1983                 }
1984                 return 0;
1985         }
1986         case ETHTOOL_GRXRINGS:
1987                 info->data = pi->nqsets;
1988                 return 0;
1989         }
1990         return -EOPNOTSUPP;
1991 }
1992
1993 static struct ethtool_ops cxgb_ethtool_ops = {
1994         .get_settings      = get_settings,
1995         .set_settings      = set_settings,
1996         .get_drvinfo       = get_drvinfo,
1997         .get_msglevel      = get_msglevel,
1998         .set_msglevel      = set_msglevel,
1999         .get_ringparam     = get_sge_param,
2000         .set_ringparam     = set_sge_param,
2001         .get_coalesce      = get_coalesce,
2002         .set_coalesce      = set_coalesce,
2003         .get_eeprom_len    = get_eeprom_len,
2004         .get_eeprom        = get_eeprom,
2005         .set_eeprom        = set_eeprom,
2006         .get_pauseparam    = get_pauseparam,
2007         .set_pauseparam    = set_pauseparam,
2008         .get_rx_csum       = get_rx_csum,
2009         .set_rx_csum       = set_rx_csum,
2010         .set_tx_csum       = ethtool_op_set_tx_ipv6_csum,
2011         .set_sg            = ethtool_op_set_sg,
2012         .get_link          = ethtool_op_get_link,
2013         .get_strings       = get_strings,
2014         .phys_id           = identify_port,
2015         .nway_reset        = restart_autoneg,
2016         .get_sset_count    = get_sset_count,
2017         .get_ethtool_stats = get_stats,
2018         .get_regs_len      = get_regs_len,
2019         .get_regs          = get_regs,
2020         .get_wol           = get_wol,
2021         .set_wol           = set_wol,
2022         .set_tso           = set_tso,
2023         .set_flags         = set_flags,
2024         .get_rxnfc         = get_rxnfc,
2025         .get_rxfh_indir    = get_rss_table,
2026         .set_rxfh_indir    = set_rss_table,
2027         .flash_device      = set_flash,
2028 };
2029
2030 /*
2031  * debugfs support
2032  */
2033
2034 static int mem_open(struct inode *inode, struct file *file)
2035 {
2036         file->private_data = inode->i_private;
2037         return 0;
2038 }
2039
2040 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2041                         loff_t *ppos)
2042 {
2043         loff_t pos = *ppos;
2044         loff_t avail = file->f_path.dentry->d_inode->i_size;
2045         unsigned int mem = (uintptr_t)file->private_data & 3;
2046         struct adapter *adap = file->private_data - mem;
2047
2048         if (pos < 0)
2049                 return -EINVAL;
2050         if (pos >= avail)
2051                 return 0;
2052         if (count > avail - pos)
2053                 count = avail - pos;
2054
2055         while (count) {
2056                 size_t len;
2057                 int ret, ofst;
2058                 __be32 data[16];
2059
2060                 if (mem == MEM_MC)
2061                         ret = t4_mc_read(adap, pos, data, NULL);
2062                 else
2063                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2064                 if (ret)
2065                         return ret;
2066
2067                 ofst = pos % sizeof(data);
2068                 len = min(count, sizeof(data) - ofst);
2069                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2070                         return -EFAULT;
2071
2072                 buf += len;
2073                 pos += len;
2074                 count -= len;
2075         }
2076         count = pos - *ppos;
2077         *ppos = pos;
2078         return count;
2079 }
2080
2081 static const struct file_operations mem_debugfs_fops = {
2082         .owner   = THIS_MODULE,
2083         .open    = mem_open,
2084         .read    = mem_read,
2085         .llseek  = default_llseek,
2086 };
2087
2088 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
2089                                       unsigned int idx, unsigned int size_mb)
2090 {
2091         struct dentry *de;
2092
2093         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2094                                  (void *)adap + idx, &mem_debugfs_fops);
2095         if (de && de->d_inode)
2096                 de->d_inode->i_size = size_mb << 20;
2097 }
2098
2099 static int __devinit setup_debugfs(struct adapter *adap)
2100 {
2101         int i;
2102
2103         if (IS_ERR_OR_NULL(adap->debugfs_root))
2104                 return -1;
2105
2106         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2107         if (i & EDRAM0_ENABLE)
2108                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2109         if (i & EDRAM1_ENABLE)
2110                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2111         if (i & EXT_MEM_ENABLE)
2112                 add_debugfs_mem(adap, "mc", MEM_MC,
2113                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2114         if (adap->l2t)
2115                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2116                                     &t4_l2t_fops);
2117         return 0;
2118 }
2119
2120 /*
2121  * upper-layer driver support
2122  */
2123
2124 /*
2125  * Allocate an active-open TID and set it to the supplied value.
2126  */
2127 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2128 {
2129         int atid = -1;
2130
2131         spin_lock_bh(&t->atid_lock);
2132         if (t->afree) {
2133                 union aopen_entry *p = t->afree;
2134
2135                 atid = p - t->atid_tab;
2136                 t->afree = p->next;
2137                 p->data = data;
2138                 t->atids_in_use++;
2139         }
2140         spin_unlock_bh(&t->atid_lock);
2141         return atid;
2142 }
2143 EXPORT_SYMBOL(cxgb4_alloc_atid);
2144
2145 /*
2146  * Release an active-open TID.
2147  */
2148 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2149 {
2150         union aopen_entry *p = &t->atid_tab[atid];
2151
2152         spin_lock_bh(&t->atid_lock);
2153         p->next = t->afree;
2154         t->afree = p;
2155         t->atids_in_use--;
2156         spin_unlock_bh(&t->atid_lock);
2157 }
2158 EXPORT_SYMBOL(cxgb4_free_atid);
2159
2160 /*
2161  * Allocate a server TID and set it to the supplied value.
2162  */
2163 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2164 {
2165         int stid;
2166
2167         spin_lock_bh(&t->stid_lock);
2168         if (family == PF_INET) {
2169                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2170                 if (stid < t->nstids)
2171                         __set_bit(stid, t->stid_bmap);
2172                 else
2173                         stid = -1;
2174         } else {
2175                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2176                 if (stid < 0)
2177                         stid = -1;
2178         }
2179         if (stid >= 0) {
2180                 t->stid_tab[stid].data = data;
2181                 stid += t->stid_base;
2182                 t->stids_in_use++;
2183         }
2184         spin_unlock_bh(&t->stid_lock);
2185         return stid;
2186 }
2187 EXPORT_SYMBOL(cxgb4_alloc_stid);
2188
2189 /*
2190  * Release a server TID.
2191  */
2192 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2193 {
2194         stid -= t->stid_base;
2195         spin_lock_bh(&t->stid_lock);
2196         if (family == PF_INET)
2197                 __clear_bit(stid, t->stid_bmap);
2198         else
2199                 bitmap_release_region(t->stid_bmap, stid, 2);
2200         t->stid_tab[stid].data = NULL;
2201         t->stids_in_use--;
2202         spin_unlock_bh(&t->stid_lock);
2203 }
2204 EXPORT_SYMBOL(cxgb4_free_stid);
2205
2206 /*
2207  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
2208  */
2209 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2210                            unsigned int tid)
2211 {
2212         struct cpl_tid_release *req;
2213
2214         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2215         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2216         INIT_TP_WR(req, tid);
2217         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2218 }
2219
2220 /*
2221  * Queue a TID release request and if necessary schedule a work queue to
2222  * process it.
2223  */
2224 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2225                                     unsigned int tid)
2226 {
2227         void **p = &t->tid_tab[tid];
2228         struct adapter *adap = container_of(t, struct adapter, tids);
2229
2230         spin_lock_bh(&adap->tid_release_lock);
2231         *p = adap->tid_release_head;
2232         /* Low 2 bits encode the Tx channel number */
2233         adap->tid_release_head = (void **)((uintptr_t)p | chan);
2234         if (!adap->tid_release_task_busy) {
2235                 adap->tid_release_task_busy = true;
2236                 schedule_work(&adap->tid_release_task);
2237         }
2238         spin_unlock_bh(&adap->tid_release_lock);
2239 }
2240
2241 /*
2242  * Process the list of pending TID release requests.
2243  */
2244 static void process_tid_release_list(struct work_struct *work)
2245 {
2246         struct sk_buff *skb;
2247         struct adapter *adap;
2248
2249         adap = container_of(work, struct adapter, tid_release_task);
2250
2251         spin_lock_bh(&adap->tid_release_lock);
2252         while (adap->tid_release_head) {
2253                 void **p = adap->tid_release_head;
2254                 unsigned int chan = (uintptr_t)p & 3;
2255                 p = (void *)p - chan;
2256
2257                 adap->tid_release_head = *p;
2258                 *p = NULL;
2259                 spin_unlock_bh(&adap->tid_release_lock);
2260
2261                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2262                                          GFP_KERNEL)))
2263                         schedule_timeout_uninterruptible(1);
2264
2265                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2266                 t4_ofld_send(adap, skb);
2267                 spin_lock_bh(&adap->tid_release_lock);
2268         }
2269         adap->tid_release_task_busy = false;
2270         spin_unlock_bh(&adap->tid_release_lock);
2271 }
2272
2273 /*
2274  * Release a TID and inform HW.  If we are unable to allocate the release
2275  * message we defer to a work queue.
2276  */
2277 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2278 {
2279         void *old;
2280         struct sk_buff *skb;
2281         struct adapter *adap = container_of(t, struct adapter, tids);
2282
2283         old = t->tid_tab[tid];
2284         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2285         if (likely(skb)) {
2286                 t->tid_tab[tid] = NULL;
2287                 mk_tid_release(skb, chan, tid);
2288                 t4_ofld_send(adap, skb);
2289         } else
2290                 cxgb4_queue_tid_release(t, chan, tid);
2291         if (old)
2292                 atomic_dec(&t->tids_in_use);
2293 }
2294 EXPORT_SYMBOL(cxgb4_remove_tid);
2295
2296 /*
2297  * Allocate and initialize the TID tables.  Returns 0 on success.
2298  */
2299 static int tid_init(struct tid_info *t)
2300 {
2301         size_t size;
2302         unsigned int natids = t->natids;
2303
2304         size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2305                t->nstids * sizeof(*t->stid_tab) +
2306                BITS_TO_LONGS(t->nstids) * sizeof(long);
2307         t->tid_tab = t4_alloc_mem(size);
2308         if (!t->tid_tab)
2309                 return -ENOMEM;
2310
2311         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2312         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2313         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2314         spin_lock_init(&t->stid_lock);
2315         spin_lock_init(&t->atid_lock);
2316
2317         t->stids_in_use = 0;
2318         t->afree = NULL;
2319         t->atids_in_use = 0;
2320         atomic_set(&t->tids_in_use, 0);
2321
2322         /* Setup the free list for atid_tab and clear the stid bitmap. */
2323         if (natids) {
2324                 while (--natids)
2325                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2326                 t->afree = t->atid_tab;
2327         }
2328         bitmap_zero(t->stid_bmap, t->nstids);
2329         return 0;
2330 }
2331
2332 /**
2333  *      cxgb4_create_server - create an IP server
2334  *      @dev: the device
2335  *      @stid: the server TID
2336  *      @sip: local IP address to bind server to
2337  *      @sport: the server's TCP port
2338  *      @queue: queue to direct messages from this server to
2339  *
2340  *      Create an IP server for the given port and address.
2341  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2342  */
2343 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2344                         __be32 sip, __be16 sport, unsigned int queue)
2345 {
2346         unsigned int chan;
2347         struct sk_buff *skb;
2348         struct adapter *adap;
2349         struct cpl_pass_open_req *req;
2350
2351         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2352         if (!skb)
2353                 return -ENOMEM;
2354
2355         adap = netdev2adap(dev);
2356         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2357         INIT_TP_WR(req, 0);
2358         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2359         req->local_port = sport;
2360         req->peer_port = htons(0);
2361         req->local_ip = sip;
2362         req->peer_ip = htonl(0);
2363         chan = rxq_to_chan(&adap->sge, queue);
2364         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2365         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2366                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2367         return t4_mgmt_tx(adap, skb);
2368 }
2369 EXPORT_SYMBOL(cxgb4_create_server);
2370
2371 /**
2372  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2373  *      @mtus: the HW MTU table
2374  *      @mtu: the target MTU
2375  *      @idx: index of selected entry in the MTU table
2376  *
2377  *      Returns the index and the value in the HW MTU table that is closest to
2378  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2379  *      table, in which case that smallest available value is selected.
2380  */
2381 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2382                             unsigned int *idx)
2383 {
2384         unsigned int i = 0;
2385
2386         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2387                 ++i;
2388         if (idx)
2389                 *idx = i;
2390         return mtus[i];
2391 }
2392 EXPORT_SYMBOL(cxgb4_best_mtu);
2393
2394 /**
2395  *      cxgb4_port_chan - get the HW channel of a port
2396  *      @dev: the net device for the port
2397  *
2398  *      Return the HW Tx channel of the given port.
2399  */
2400 unsigned int cxgb4_port_chan(const struct net_device *dev)
2401 {
2402         return netdev2pinfo(dev)->tx_chan;
2403 }
2404 EXPORT_SYMBOL(cxgb4_port_chan);
2405
2406 /**
2407  *      cxgb4_port_viid - get the VI id of a port
2408  *      @dev: the net device for the port
2409  *
2410  *      Return the VI id of the given port.
2411  */
2412 unsigned int cxgb4_port_viid(const struct net_device *dev)
2413 {
2414         return netdev2pinfo(dev)->viid;
2415 }
2416 EXPORT_SYMBOL(cxgb4_port_viid);
2417
2418 /**
2419  *      cxgb4_port_idx - get the index of a port
2420  *      @dev: the net device for the port
2421  *
2422  *      Return the index of the given port.
2423  */
2424 unsigned int cxgb4_port_idx(const struct net_device *dev)
2425 {
2426         return netdev2pinfo(dev)->port_id;
2427 }
2428 EXPORT_SYMBOL(cxgb4_port_idx);
2429
2430 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2431                          struct tp_tcp_stats *v6)
2432 {
2433         struct adapter *adap = pci_get_drvdata(pdev);
2434
2435         spin_lock(&adap->stats_lock);
2436         t4_tp_get_tcp_stats(adap, v4, v6);
2437         spin_unlock(&adap->stats_lock);
2438 }
2439 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2440
2441 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2442                       const unsigned int *pgsz_order)
2443 {
2444         struct adapter *adap = netdev2adap(dev);
2445
2446         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2447         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2448                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2449                      HPZ3(pgsz_order[3]));
2450 }
2451 EXPORT_SYMBOL(cxgb4_iscsi_init);
2452
2453 static struct pci_driver cxgb4_driver;
2454
2455 static void check_neigh_update(struct neighbour *neigh)
2456 {
2457         const struct device *parent;
2458         const struct net_device *netdev = neigh->dev;
2459
2460         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2461                 netdev = vlan_dev_real_dev(netdev);
2462         parent = netdev->dev.parent;
2463         if (parent && parent->driver == &cxgb4_driver.driver)
2464                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2465 }
2466
2467 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2468                        void *data)
2469 {
2470         switch (event) {
2471         case NETEVENT_NEIGH_UPDATE:
2472                 check_neigh_update(data);
2473                 break;
2474         case NETEVENT_PMTU_UPDATE:
2475         case NETEVENT_REDIRECT:
2476         default:
2477                 break;
2478         }
2479         return 0;
2480 }
2481
2482 static bool netevent_registered;
2483 static struct notifier_block cxgb4_netevent_nb = {
2484         .notifier_call = netevent_cb
2485 };
2486
2487 static void uld_attach(struct adapter *adap, unsigned int uld)
2488 {
2489         void *handle;
2490         struct cxgb4_lld_info lli;
2491
2492         lli.pdev = adap->pdev;
2493         lli.l2t = adap->l2t;
2494         lli.tids = &adap->tids;
2495         lli.ports = adap->port;
2496         lli.vr = &adap->vres;
2497         lli.mtus = adap->params.mtus;
2498         if (uld == CXGB4_ULD_RDMA) {
2499                 lli.rxq_ids = adap->sge.rdma_rxq;
2500                 lli.nrxq = adap->sge.rdmaqs;
2501         } else if (uld == CXGB4_ULD_ISCSI) {
2502                 lli.rxq_ids = adap->sge.ofld_rxq;
2503                 lli.nrxq = adap->sge.ofldqsets;
2504         }
2505         lli.ntxq = adap->sge.ofldqsets;
2506         lli.nchan = adap->params.nports;
2507         lli.nports = adap->params.nports;
2508         lli.wr_cred = adap->params.ofldq_wr_cred;
2509         lli.adapter_type = adap->params.rev;
2510         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2511         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2512                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
2513                         (adap->fn * 4));
2514         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2515                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
2516                         (adap->fn * 4));
2517         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2518         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2519         lli.fw_vers = adap->params.fw_vers;
2520
2521         handle = ulds[uld].add(&lli);
2522         if (IS_ERR(handle)) {
2523                 dev_warn(adap->pdev_dev,
2524                          "could not attach to the %s driver, error %ld\n",
2525                          uld_str[uld], PTR_ERR(handle));
2526                 return;
2527         }
2528
2529         adap->uld_handle[uld] = handle;
2530
2531         if (!netevent_registered) {
2532                 register_netevent_notifier(&cxgb4_netevent_nb);
2533                 netevent_registered = true;
2534         }
2535
2536         if (adap->flags & FULL_INIT_DONE)
2537                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2538 }
2539
2540 static void attach_ulds(struct adapter *adap)
2541 {
2542         unsigned int i;
2543
2544         mutex_lock(&uld_mutex);
2545         list_add_tail(&adap->list_node, &adapter_list);
2546         for (i = 0; i < CXGB4_ULD_MAX; i++)
2547                 if (ulds[i].add)
2548                         uld_attach(adap, i);
2549         mutex_unlock(&uld_mutex);
2550 }
2551
2552 static void detach_ulds(struct adapter *adap)
2553 {
2554         unsigned int i;
2555
2556         mutex_lock(&uld_mutex);
2557         list_del(&adap->list_node);
2558         for (i = 0; i < CXGB4_ULD_MAX; i++)
2559                 if (adap->uld_handle[i]) {
2560                         ulds[i].state_change(adap->uld_handle[i],
2561                                              CXGB4_STATE_DETACH);
2562                         adap->uld_handle[i] = NULL;
2563                 }
2564         if (netevent_registered && list_empty(&adapter_list)) {
2565                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2566                 netevent_registered = false;
2567         }
2568         mutex_unlock(&uld_mutex);
2569 }
2570
2571 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2572 {
2573         unsigned int i;
2574
2575         mutex_lock(&uld_mutex);
2576         for (i = 0; i < CXGB4_ULD_MAX; i++)
2577                 if (adap->uld_handle[i])
2578                         ulds[i].state_change(adap->uld_handle[i], new_state);
2579         mutex_unlock(&uld_mutex);
2580 }
2581
2582 /**
2583  *      cxgb4_register_uld - register an upper-layer driver
2584  *      @type: the ULD type
2585  *      @p: the ULD methods
2586  *
2587  *      Registers an upper-layer driver with this driver and notifies the ULD
2588  *      about any presently available devices that support its type.  Returns
2589  *      %-EBUSY if a ULD of the same type is already registered.
2590  */
2591 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2592 {
2593         int ret = 0;
2594         struct adapter *adap;
2595
2596         if (type >= CXGB4_ULD_MAX)
2597                 return -EINVAL;
2598         mutex_lock(&uld_mutex);
2599         if (ulds[type].add) {
2600                 ret = -EBUSY;
2601                 goto out;
2602         }
2603         ulds[type] = *p;
2604         list_for_each_entry(adap, &adapter_list, list_node)
2605                 uld_attach(adap, type);
2606 out:    mutex_unlock(&uld_mutex);
2607         return ret;
2608 }
2609 EXPORT_SYMBOL(cxgb4_register_uld);
2610
2611 /**
2612  *      cxgb4_unregister_uld - unregister an upper-layer driver
2613  *      @type: the ULD type
2614  *
2615  *      Unregisters an existing upper-layer driver.
2616  */
2617 int cxgb4_unregister_uld(enum cxgb4_uld type)
2618 {
2619         struct adapter *adap;
2620
2621         if (type >= CXGB4_ULD_MAX)
2622                 return -EINVAL;
2623         mutex_lock(&uld_mutex);
2624         list_for_each_entry(adap, &adapter_list, list_node)
2625                 adap->uld_handle[type] = NULL;
2626         ulds[type].add = NULL;
2627         mutex_unlock(&uld_mutex);
2628         return 0;
2629 }
2630 EXPORT_SYMBOL(cxgb4_unregister_uld);
2631
2632 /**
2633  *      cxgb_up - enable the adapter
2634  *      @adap: adapter being enabled
2635  *
2636  *      Called when the first port is enabled, this function performs the
2637  *      actions necessary to make an adapter operational, such as completing
2638  *      the initialization of HW modules, and enabling interrupts.
2639  *
2640  *      Must be called with the rtnl lock held.
2641  */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644         int err;
2645
2646         err = setup_sge_queues(adap);
2647         if (err)
2648                 goto out;
2649         err = setup_rss(adap);
2650         if (err)
2651                 goto freeq;
2652
2653         if (adap->flags & USING_MSIX) {
2654                 name_msix_vecs(adap);
2655                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656                                   adap->msix_info[0].desc, adap);
2657                 if (err)
2658                         goto irq_err;
2659
2660                 err = request_msix_queue_irqs(adap);
2661                 if (err) {
2662                         free_irq(adap->msix_info[0].vec, adap);
2663                         goto irq_err;
2664                 }
2665         } else {
2666                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668                                   adap->port[0]->name, adap);
2669                 if (err)
2670                         goto irq_err;
2671         }
2672         enable_rx(adap);
2673         t4_sge_start(adap);
2674         t4_intr_enable(adap);
2675         adap->flags |= FULL_INIT_DONE;
2676         notify_ulds(adap, CXGB4_STATE_UP);
2677  out:
2678         return err;
2679  irq_err:
2680         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2681  freeq:
2682         t4_free_sge_resources(adap);
2683         goto out;
2684 }
2685
2686 static void cxgb_down(struct adapter *adapter)
2687 {
2688         t4_intr_disable(adapter);
2689         cancel_work_sync(&adapter->tid_release_task);
2690         adapter->tid_release_task_busy = false;
2691         adapter->tid_release_head = NULL;
2692
2693         if (adapter->flags & USING_MSIX) {
2694                 free_msix_queue_irqs(adapter);
2695                 free_irq(adapter->msix_info[0].vec, adapter);
2696         } else
2697                 free_irq(adapter->pdev->irq, adapter);
2698         quiesce_rx(adapter);
2699         t4_sge_stop(adapter);
2700         t4_free_sge_resources(adapter);
2701         adapter->flags &= ~FULL_INIT_DONE;
2702 }
2703
2704 /*
2705  * net_device operations
2706  */
2707 static int cxgb_open(struct net_device *dev)
2708 {
2709         int err;
2710         struct port_info *pi = netdev_priv(dev);
2711         struct adapter *adapter = pi->adapter;
2712
2713         if (!(adapter->flags & FULL_INIT_DONE)) {
2714                 err = cxgb_up(adapter);
2715                 if (err < 0)
2716                         return err;
2717         }
2718
2719         err = link_start(dev);
2720         if (!err)
2721                 netif_tx_start_all_queues(dev);
2722         return err;
2723 }
2724
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727         struct port_info *pi = netdev_priv(dev);
2728         struct adapter *adapter = pi->adapter;
2729
2730         netif_tx_stop_all_queues(dev);
2731         netif_carrier_off(dev);
2732         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733 }
2734
2735 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2736                                                 struct rtnl_link_stats64 *ns)
2737 {
2738         struct port_stats stats;
2739         struct port_info *p = netdev_priv(dev);
2740         struct adapter *adapter = p->adapter;
2741
2742         spin_lock(&adapter->stats_lock);
2743         t4_get_port_stats(adapter, p->tx_chan, &stats);
2744         spin_unlock(&adapter->stats_lock);
2745
2746         ns->tx_bytes   = stats.tx_octets;
2747         ns->tx_packets = stats.tx_frames;
2748         ns->rx_bytes   = stats.rx_octets;
2749         ns->rx_packets = stats.rx_frames;
2750         ns->multicast  = stats.rx_mcast_frames;
2751
2752         /* detailed rx_errors */
2753         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2754                                stats.rx_runt;
2755         ns->rx_over_errors   = 0;
2756         ns->rx_crc_errors    = stats.rx_fcs_err;
2757         ns->rx_frame_errors  = stats.rx_symbol_err;
2758         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2759                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2760                                stats.rx_trunc0 + stats.rx_trunc1 +
2761                                stats.rx_trunc2 + stats.rx_trunc3;
2762         ns->rx_missed_errors = 0;
2763
2764         /* detailed tx_errors */
2765         ns->tx_aborted_errors   = 0;
2766         ns->tx_carrier_errors   = 0;
2767         ns->tx_fifo_errors      = 0;
2768         ns->tx_heartbeat_errors = 0;
2769         ns->tx_window_errors    = 0;
2770
2771         ns->tx_errors = stats.tx_error_frames;
2772         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2773                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2774         return ns;
2775 }
2776
2777 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2778 {
2779         unsigned int mbox;
2780         int ret = 0, prtad, devad;
2781         struct port_info *pi = netdev_priv(dev);
2782         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2783
2784         switch (cmd) {
2785         case SIOCGMIIPHY:
2786                 if (pi->mdio_addr < 0)
2787                         return -EOPNOTSUPP;
2788                 data->phy_id = pi->mdio_addr;
2789                 break;
2790         case SIOCGMIIREG:
2791         case SIOCSMIIREG:
2792                 if (mdio_phy_id_is_c45(data->phy_id)) {
2793                         prtad = mdio_phy_id_prtad(data->phy_id);
2794                         devad = mdio_phy_id_devad(data->phy_id);
2795                 } else if (data->phy_id < 32) {
2796                         prtad = data->phy_id;
2797                         devad = 0;
2798                         data->reg_num &= 0x1f;
2799                 } else
2800                         return -EINVAL;
2801
2802                 mbox = pi->adapter->fn;
2803                 if (cmd == SIOCGMIIREG)
2804                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2805                                          data->reg_num, &data->val_out);
2806                 else
2807                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2808                                          data->reg_num, data->val_in);
2809                 break;
2810         default:
2811                 return -EOPNOTSUPP;
2812         }
2813         return ret;
2814 }
2815
2816 static void cxgb_set_rxmode(struct net_device *dev)
2817 {
2818         /* unfortunately we can't return errors to the stack */
2819         set_rxmode(dev, -1, false);
2820 }
2821
2822 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2823 {
2824         int ret;
2825         struct port_info *pi = netdev_priv(dev);
2826
2827         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2828                 return -EINVAL;
2829         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2830                             -1, -1, -1, true);
2831         if (!ret)
2832                 dev->mtu = new_mtu;
2833         return ret;
2834 }
2835
2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2837 {
2838         int ret;
2839         struct sockaddr *addr = p;
2840         struct port_info *pi = netdev_priv(dev);
2841
2842         if (!is_valid_ether_addr(addr->sa_data))
2843                 return -EINVAL;
2844
2845         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2846                             pi->xact_addr_filt, addr->sa_data, true, true);
2847         if (ret < 0)
2848                 return ret;
2849
2850         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2851         pi->xact_addr_filt = ret;
2852         return 0;
2853 }
2854
2855 #ifdef CONFIG_NET_POLL_CONTROLLER
2856 static void cxgb_netpoll(struct net_device *dev)
2857 {
2858         struct port_info *pi = netdev_priv(dev);
2859         struct adapter *adap = pi->adapter;
2860
2861         if (adap->flags & USING_MSIX) {
2862                 int i;
2863                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2864
2865                 for (i = pi->nqsets; i; i--, rx++)
2866                         t4_sge_intr_msix(0, &rx->rspq);
2867         } else
2868                 t4_intr_handler(adap)(0, adap);
2869 }
2870 #endif
2871
2872 static const struct net_device_ops cxgb4_netdev_ops = {
2873         .ndo_open             = cxgb_open,
2874         .ndo_stop             = cxgb_close,
2875         .ndo_start_xmit       = t4_eth_xmit,
2876         .ndo_get_stats64      = cxgb_get_stats,
2877         .ndo_set_rx_mode      = cxgb_set_rxmode,
2878         .ndo_set_mac_address  = cxgb_set_mac_addr,
2879         .ndo_validate_addr    = eth_validate_addr,
2880         .ndo_do_ioctl         = cxgb_ioctl,
2881         .ndo_change_mtu       = cxgb_change_mtu,
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2883         .ndo_poll_controller  = cxgb_netpoll,
2884 #endif
2885 };
2886
2887 void t4_fatal_err(struct adapter *adap)
2888 {
2889         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2890         t4_intr_disable(adap);
2891         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2892 }
2893
2894 static void setup_memwin(struct adapter *adap)
2895 {
2896         u32 bar0;
2897
2898         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
2899         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2900                      (bar0 + MEMWIN0_BASE) | BIR(0) |
2901                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2902         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2903                      (bar0 + MEMWIN1_BASE) | BIR(0) |
2904                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2905         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2906                      (bar0 + MEMWIN2_BASE) | BIR(0) |
2907                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2908         if (adap->vres.ocq.size) {
2909                 unsigned int start, sz_kb;
2910
2911                 start = pci_resource_start(adap->pdev, 2) +
2912                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2913                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2914                 t4_write_reg(adap,
2915                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
2916                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
2917                 t4_write_reg(adap,
2918                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
2919                              adap->vres.ocq.start);
2920                 t4_read_reg(adap,
2921                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
2922         }
2923 }
2924
2925 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2926 {
2927         u32 v;
2928         int ret;
2929
2930         /* get device capabilities */
2931         memset(c, 0, sizeof(*c));
2932         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2933                                FW_CMD_REQUEST | FW_CMD_READ);
2934         c->retval_len16 = htonl(FW_LEN16(*c));
2935         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2936         if (ret < 0)
2937                 return ret;
2938
2939         /* select capabilities we'll be using */
2940         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2941                 if (!vf_acls)
2942                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2943                 else
2944                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2945         } else if (vf_acls) {
2946                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2947                 return ret;
2948         }
2949         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2950                                FW_CMD_REQUEST | FW_CMD_WRITE);
2951         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2952         if (ret < 0)
2953                 return ret;
2954
2955         ret = t4_config_glbl_rss(adap, adap->fn,
2956                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2957                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2958                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2959         if (ret < 0)
2960                 return ret;
2961
2962         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
2963                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2964         if (ret < 0)
2965                 return ret;
2966
2967         t4_sge_init(adap);
2968
2969         /* tweak some settings */
2970         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2971         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2972         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2973         v = t4_read_reg(adap, TP_PIO_DATA);
2974         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2975
2976         /* get basic stuff going */
2977         return t4_early_init(adap, adap->fn);
2978 }
2979
2980 /*
2981  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2982  */
2983 #define MAX_ATIDS 8192U
2984
2985 /*
2986  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2987  */
2988 static int adap_init0(struct adapter *adap)
2989 {
2990         int ret;
2991         u32 v, port_vec;
2992         enum dev_state state;
2993         u32 params[7], val[7];
2994         struct fw_caps_config_cmd c;
2995
2996         ret = t4_check_fw_version(adap);
2997         if (ret == -EINVAL || ret > 0) {
2998                 if (upgrade_fw(adap) >= 0)             /* recache FW version */
2999                         ret = t4_check_fw_version(adap);
3000         }
3001         if (ret < 0)
3002                 return ret;
3003
3004         /* contact FW, request master */
3005         ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
3006         if (ret < 0) {
3007                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3008                         ret);
3009                 return ret;
3010         }
3011
3012         /* reset device */
3013         ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
3014         if (ret < 0)
3015                 goto bye;
3016
3017         for (v = 0; v < SGE_NTIMERS - 1; v++)
3018                 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
3019         adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
3020         adap->sge.counter_val[0] = 1;
3021         for (v = 1; v < SGE_NCOUNTERS; v++)
3022                 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
3023                                                THRESHOLD_3_MASK);
3024 #define FW_PARAM_DEV(param) \
3025         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3026          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3027
3028         params[0] = FW_PARAM_DEV(CCLK);
3029         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
3030         if (ret < 0)
3031                 goto bye;
3032         adap->params.vpd.cclk = val[0];
3033
3034         ret = adap_init1(adap, &c);
3035         if (ret < 0)
3036                 goto bye;
3037
3038 #define FW_PARAM_PFVF(param) \
3039         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3040          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
3041          FW_PARAMS_PARAM_Y(adap->fn))
3042
3043         params[0] = FW_PARAM_DEV(PORTVEC);
3044         params[1] = FW_PARAM_PFVF(L2T_START);
3045         params[2] = FW_PARAM_PFVF(L2T_END);
3046         params[3] = FW_PARAM_PFVF(FILTER_START);
3047         params[4] = FW_PARAM_PFVF(FILTER_END);
3048         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3049         params[6] = FW_PARAM_PFVF(EQ_START);
3050         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3051         if (ret < 0)
3052                 goto bye;
3053         port_vec = val[0];
3054         adap->tids.ftid_base = val[3];
3055         adap->tids.nftids = val[4] - val[3] + 1;
3056         adap->sge.ingr_start = val[5];
3057         adap->sge.egr_start = val[6];
3058
3059         if (c.ofldcaps) {
3060                 /* query offload-related parameters */
3061                 params[0] = FW_PARAM_DEV(NTID);
3062                 params[1] = FW_PARAM_PFVF(SERVER_START);
3063                 params[2] = FW_PARAM_PFVF(SERVER_END);
3064                 params[3] = FW_PARAM_PFVF(TDDP_START);
3065                 params[4] = FW_PARAM_PFVF(TDDP_END);
3066                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3067                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3068                                       val);
3069                 if (ret < 0)
3070                         goto bye;
3071                 adap->tids.ntids = val[0];
3072                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3073                 adap->tids.stid_base = val[1];
3074                 adap->tids.nstids = val[2] - val[1] + 1;
3075                 adap->vres.ddp.start = val[3];
3076                 adap->vres.ddp.size = val[4] - val[3] + 1;
3077                 adap->params.ofldq_wr_cred = val[5];
3078                 adap->params.offload = 1;
3079         }
3080         if (c.rdmacaps) {
3081                 params[0] = FW_PARAM_PFVF(STAG_START);
3082                 params[1] = FW_PARAM_PFVF(STAG_END);
3083                 params[2] = FW_PARAM_PFVF(RQ_START);
3084                 params[3] = FW_PARAM_PFVF(RQ_END);
3085                 params[4] = FW_PARAM_PFVF(PBL_START);
3086                 params[5] = FW_PARAM_PFVF(PBL_END);
3087                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3088                                       val);
3089                 if (ret < 0)
3090                         goto bye;
3091                 adap->vres.stag.start = val[0];
3092                 adap->vres.stag.size = val[1] - val[0] + 1;
3093                 adap->vres.rq.start = val[2];
3094                 adap->vres.rq.size = val[3] - val[2] + 1;
3095                 adap->vres.pbl.start = val[4];
3096                 adap->vres.pbl.size = val[5] - val[4] + 1;
3097
3098                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3099                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3100                 params[2] = FW_PARAM_PFVF(CQ_START);
3101                 params[3] = FW_PARAM_PFVF(CQ_END);
3102                 params[4] = FW_PARAM_PFVF(OCQ_START);
3103                 params[5] = FW_PARAM_PFVF(OCQ_END);
3104                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3105                                       val);
3106                 if (ret < 0)
3107                         goto bye;
3108                 adap->vres.qp.start = val[0];
3109                 adap->vres.qp.size = val[1] - val[0] + 1;
3110                 adap->vres.cq.start = val[2];
3111                 adap->vres.cq.size = val[3] - val[2] + 1;
3112                 adap->vres.ocq.start = val[4];
3113                 adap->vres.ocq.size = val[5] - val[4] + 1;
3114         }
3115         if (c.iscsicaps) {
3116                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3117                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3118                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
3119                                       val);
3120                 if (ret < 0)
3121                         goto bye;
3122                 adap->vres.iscsi.start = val[0];
3123                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3124         }
3125 #undef FW_PARAM_PFVF
3126 #undef FW_PARAM_DEV
3127
3128         adap->params.nports = hweight32(port_vec);
3129         adap->params.portvec = port_vec;
3130         adap->flags |= FW_OK;
3131
3132         /* These are finalized by FW initialization, load their values now */
3133         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
3134         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
3135         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3136         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3137                      adap->params.b_wnd);
3138
3139 #ifdef CONFIG_PCI_IOV
3140         /*
3141          * Provision resource limits for Virtual Functions.  We currently
3142          * grant them all the same static resource limits except for the Port
3143          * Access Rights Mask which we're assigning based on the PF.  All of
3144          * the static provisioning stuff for both the PF and VF really needs
3145          * to be managed in a persistent manner for each device which the
3146          * firmware controls.
3147          */
3148         {
3149                 int pf, vf;
3150
3151                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
3152                         if (num_vf[pf] <= 0)
3153                                 continue;
3154
3155                         /* VF numbering starts at 1! */
3156                         for (vf = 1; vf <= num_vf[pf]; vf++) {
3157                                 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3158                                                   VFRES_NEQ, VFRES_NETHCTRL,
3159                                                   VFRES_NIQFLINT, VFRES_NIQ,
3160                                                   VFRES_TC, VFRES_NVI,
3161                                                   FW_PFVF_CMD_CMASK_MASK,
3162                                                   pfvfres_pmask(adap, pf, vf),
3163                                                   VFRES_NEXACTF,
3164                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
3165                                 if (ret < 0)
3166                                         dev_warn(adap->pdev_dev, "failed to "
3167                                                  "provision pf/vf=%d/%d; "
3168                                                  "err=%d\n", pf, vf, ret);
3169                         }
3170                 }
3171         }
3172 #endif
3173
3174         setup_memwin(adap);
3175         return 0;
3176
3177         /*
3178          * If a command timed out or failed with EIO FW does not operate within
3179          * its spec or something catastrophic happened to HW/FW, stop issuing
3180          * commands.
3181          */
3182 bye:    if (ret != -ETIMEDOUT && ret != -EIO)
3183                 t4_fw_bye(adap, adap->fn);
3184         return ret;
3185 }
3186
3187 /* EEH callbacks */
3188
3189 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3190                                          pci_channel_state_t state)
3191 {
3192         int i;
3193         struct adapter *adap = pci_get_drvdata(pdev);
3194
3195         if (!adap)
3196                 goto out;
3197
3198         rtnl_lock();
3199         adap->flags &= ~FW_OK;
3200         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3201         for_each_port(adap, i) {
3202                 struct net_device *dev = adap->port[i];
3203
3204                 netif_device_detach(dev);
3205                 netif_carrier_off(dev);
3206         }
3207         if (adap->flags & FULL_INIT_DONE)
3208                 cxgb_down(adap);
3209         rtnl_unlock();
3210         pci_disable_device(pdev);
3211 out:    return state == pci_channel_io_perm_failure ?
3212                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3213 }
3214
3215 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3216 {
3217         int i, ret;
3218         struct fw_caps_config_cmd c;
3219         struct adapter *adap = pci_get_drvdata(pdev);
3220
3221         if (!adap) {
3222                 pci_restore_state(pdev);
3223                 pci_save_state(pdev);
3224                 return PCI_ERS_RESULT_RECOVERED;
3225         }
3226
3227         if (pci_enable_device(pdev)) {
3228                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
3229                 return PCI_ERS_RESULT_DISCONNECT;
3230         }
3231
3232         pci_set_master(pdev);
3233         pci_restore_state(pdev);
3234         pci_save_state(pdev);
3235         pci_cleanup_aer_uncorrect_error_status(pdev);
3236
3237         if (t4_wait_dev_ready(adap) < 0)
3238                 return PCI_ERS_RESULT_DISCONNECT;
3239         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
3240                 return PCI_ERS_RESULT_DISCONNECT;
3241         adap->flags |= FW_OK;
3242         if (adap_init1(adap, &c))
3243                 return PCI_ERS_RESULT_DISCONNECT;
3244
3245         for_each_port(adap, i) {
3246                 struct port_info *p = adap2pinfo(adap, i);
3247
3248                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
3249                                   NULL, NULL);
3250                 if (ret < 0)
3251                         return PCI_ERS_RESULT_DISCONNECT;
3252                 p->viid = ret;
3253                 p->xact_addr_filt = -1;
3254         }
3255
3256         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3257                      adap->params.b_wnd);
3258         setup_memwin(adap);
3259         if (cxgb_up(adap))
3260                 return PCI_ERS_RESULT_DISCONNECT;
3261         return PCI_ERS_RESULT_RECOVERED;
3262 }
3263
3264 static void eeh_resume(struct pci_dev *pdev)
3265 {
3266         int i;
3267         struct adapter *adap = pci_get_drvdata(pdev);
3268
3269         if (!adap)
3270                 return;
3271
3272         rtnl_lock();
3273         for_each_port(adap, i) {
3274                 struct net_device *dev = adap->port[i];
3275
3276                 if (netif_running(dev)) {
3277                         link_start(dev);
3278                         cxgb_set_rxmode(dev);
3279                 }
3280                 netif_device_attach(dev);
3281         }
3282         rtnl_unlock();
3283 }
3284
3285 static struct pci_error_handlers cxgb4_eeh = {
3286         .error_detected = eeh_err_detected,
3287         .slot_reset     = eeh_slot_reset,
3288         .resume         = eeh_resume,
3289 };
3290
3291 static inline bool is_10g_port(const struct link_config *lc)
3292 {
3293         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
3294 }
3295
3296 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
3297                              unsigned int size, unsigned int iqe_size)
3298 {
3299         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
3300                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
3301         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
3302         q->iqe_len = iqe_size;
3303         q->size = size;
3304 }
3305
3306 /*
3307  * Perform default configuration of DMA queues depending on the number and type
3308  * of ports we found and the number of available CPUs.  Most settings can be
3309  * modified by the admin prior to actual use.
3310  */
3311 static void __devinit cfg_queues(struct adapter *adap)
3312 {
3313         struct sge *s = &adap->sge;
3314         int i, q10g = 0, n10g = 0, qidx = 0;
3315
3316         for_each_port(adap, i)
3317                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
3318
3319         /*
3320          * We default to 1 queue per non-10G port and up to # of cores queues
3321          * per 10G port.
3322          */
3323         if (n10g)
3324                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
3325         if (q10g > num_online_cpus())
3326                 q10g = num_online_cpus();
3327
3328         for_each_port(adap, i) {
3329                 struct port_info *pi = adap2pinfo(adap, i);
3330
3331                 pi->first_qset = qidx;
3332                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
3333                 qidx += pi->nqsets;
3334         }
3335
3336         s->ethqsets = qidx;
3337         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
3338
3339         if (is_offload(adap)) {
3340                 /*
3341                  * For offload we use 1 queue/channel if all ports are up to 1G,
3342                  * otherwise we divide all available queues amongst the channels
3343                  * capped by the number of available cores.
3344                  */
3345                 if (n10g) {
3346                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
3347                                   num_online_cpus());
3348                         s->ofldqsets = roundup(i, adap->params.nports);
3349                 } else
3350                         s->ofldqsets = adap->params.nports;
3351                 /* For RDMA one Rx queue per channel suffices */
3352                 s->rdmaqs = adap->params.nports;
3353         }
3354
3355         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
3356                 struct sge_eth_rxq *r = &s->ethrxq[i];
3357
3358                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3359                 r->fl.size = 72;
3360         }
3361
3362         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
3363                 s->ethtxq[i].q.size = 1024;
3364
3365         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
3366                 s->ctrlq[i].q.size = 512;
3367
3368         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
3369                 s->ofldtxq[i].q.size = 1024;
3370
3371         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
3372                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
3373
3374                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3375                 r->rspq.uld = CXGB4_ULD_ISCSI;
3376                 r->fl.size = 72;
3377         }
3378
3379         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
3380                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
3381
3382                 init_rspq(&r->rspq, 0, 0, 511, 64);
3383                 r->rspq.uld = CXGB4_ULD_RDMA;
3384                 r->fl.size = 72;
3385         }
3386
3387         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
3388         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3389 }
3390
3391 /*
3392  * Reduce the number of Ethernet queues across all ports to at most n.
3393  * n provides at least one queue per port.
3394  */
3395 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3396 {
3397         int i;
3398         struct port_info *pi;
3399
3400         while (n < adap->sge.ethqsets)
3401                 for_each_port(adap, i) {
3402                         pi = adap2pinfo(adap, i);
3403                         if (pi->nqsets > 1) {
3404                                 pi->nqsets--;
3405                                 adap->sge.ethqsets--;
3406                                 if (adap->sge.ethqsets <= n)
3407                                         break;
3408                         }
3409                 }
3410
3411         n = 0;
3412         for_each_port(adap, i) {
3413                 pi = adap2pinfo(adap, i);
3414                 pi->first_qset = n;
3415                 n += pi->nqsets;
3416         }
3417 }
3418
3419 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3420 #define EXTRA_VECS 2
3421
3422 static int __devinit enable_msix(struct adapter *adap)
3423 {
3424         int ofld_need = 0;
3425         int i, err, want, need;
3426         struct sge *s = &adap->sge;
3427         unsigned int nchan = adap->params.nports;
3428         struct msix_entry entries[MAX_INGQ + 1];
3429
3430         for (i = 0; i < ARRAY_SIZE(entries); ++i)
3431                 entries[i].entry = i;
3432
3433         want = s->max_ethqsets + EXTRA_VECS;
3434         if (is_offload(adap)) {
3435                 want += s->rdmaqs + s->ofldqsets;
3436                 /* need nchan for each possible ULD */
3437                 ofld_need = 2 * nchan;
3438         }
3439         need = adap->params.nports + EXTRA_VECS + ofld_need;
3440
3441         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3442                 want = err;
3443
3444         if (!err) {
3445                 /*
3446                  * Distribute available vectors to the various queue groups.
3447                  * Every group gets its minimum requirement and NIC gets top
3448                  * priority for leftovers.
3449                  */
3450                 i = want - EXTRA_VECS - ofld_need;
3451                 if (i < s->max_ethqsets) {
3452                         s->max_ethqsets = i;
3453                         if (i < s->ethqsets)
3454                                 reduce_ethqs(adap, i);
3455                 }
3456                 if (is_offload(adap)) {
3457                         i = want - EXTRA_VECS - s->max_ethqsets;
3458                         i -= ofld_need - nchan;
3459                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
3460                 }
3461                 for (i = 0; i < want; ++i)
3462                         adap->msix_info[i].vec = entries[i].vector;
3463         } else if (err > 0)
3464                 dev_info(adap->pdev_dev,
3465                          "only %d MSI-X vectors left, not using MSI-X\n", err);
3466         return err;
3467 }
3468
3469 #undef EXTRA_VECS
3470
3471 static int __devinit init_rss(struct adapter *adap)
3472 {
3473         unsigned int i, j;
3474
3475         for_each_port(adap, i) {
3476                 struct port_info *pi = adap2pinfo(adap, i);
3477
3478                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
3479                 if (!pi->rss)
3480                         return -ENOMEM;
3481                 for (j = 0; j < pi->rss_size; j++)
3482                         pi->rss[j] = j % pi->nqsets;
3483         }
3484         return 0;
3485 }
3486
3487 static void __devinit print_port_info(const struct net_device *dev)
3488 {
3489         static const char *base[] = {
3490                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
3491                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
3492         };
3493
3494         char buf[80];
3495         char *bufp = buf;
3496         const char *spd = "";
3497         const struct port_info *pi = netdev_priv(dev);
3498         const struct adapter *adap = pi->adapter;
3499
3500         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3501                 spd = " 2.5 GT/s";
3502         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3503                 spd = " 5 GT/s";
3504
3505         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3506                 bufp += sprintf(bufp, "100/");
3507         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3508                 bufp += sprintf(bufp, "1000/");
3509         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3510                 bufp += sprintf(bufp, "10G/");
3511         if (bufp != buf)
3512                 --bufp;
3513         sprintf(bufp, "BASE-%s", base[pi->port_type]);
3514
3515         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3516                     adap->params.vpd.id, adap->params.rev, buf,
3517                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
3518                     (adap->flags & USING_MSIX) ? " MSI-X" :
3519                     (adap->flags & USING_MSI) ? " MSI" : "");
3520         netdev_info(dev, "S/N: %s, E/C: %s\n",
3521                     adap->params.vpd.sn, adap->params.vpd.ec);
3522 }
3523
3524 static void __devinit enable_pcie_relaxed_ordering(struct pci_dev *dev)
3525 {
3526         u16 v;
3527         int pos;
3528
3529         pos = pci_pcie_cap(dev);
3530         if (pos > 0) {
3531                 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &v);
3532                 v |= PCI_EXP_DEVCTL_RELAX_EN;
3533                 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, v);
3534         }
3535 }
3536
3537 /*
3538  * Free the following resources:
3539  * - memory used for tables
3540  * - MSI/MSI-X
3541  * - net devices
3542  * - resources FW is holding for us
3543  */
3544 static void free_some_resources(struct adapter *adapter)
3545 {
3546         unsigned int i;
3547
3548         t4_free_mem(adapter->l2t);
3549         t4_free_mem(adapter->tids.tid_tab);
3550         disable_msi(adapter);
3551
3552         for_each_port(adapter, i)
3553                 if (adapter->port[i]) {
3554                         kfree(adap2pinfo(adapter, i)->rss);
3555                         free_netdev(adapter->port[i]);
3556                 }
3557         if (adapter->flags & FW_OK)
3558                 t4_fw_bye(adapter, adapter->fn);
3559 }
3560
3561 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3562                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3563
3564 static int __devinit init_one(struct pci_dev *pdev,
3565                               const struct pci_device_id *ent)
3566 {
3567         int func, i, err;
3568         struct port_info *pi;
3569         unsigned int highdma = 0;
3570         struct adapter *adapter = NULL;
3571
3572         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3573
3574         err = pci_request_regions(pdev, KBUILD_MODNAME);
3575         if (err) {
3576                 /* Just info, some other driver may have claimed the device. */
3577                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3578                 return err;
3579         }
3580
3581         /* We control everything through one PF */
3582         func = PCI_FUNC(pdev->devfn);
3583         if (func != ent->driver_data) {
3584                 pci_save_state(pdev);        /* to restore SR-IOV later */
3585                 goto sriov;
3586         }
3587
3588         err = pci_enable_device(pdev);
3589         if (err) {
3590                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3591                 goto out_release_regions;
3592         }
3593
3594         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3595                 highdma = NETIF_F_HIGHDMA;
3596                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3597                 if (err) {
3598                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3599                                 "coherent allocations\n");
3600                         goto out_disable_device;
3601                 }
3602         } else {
3603                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3604                 if (err) {
3605                         dev_err(&pdev->dev, "no usable DMA configuration\n");
3606                         goto out_disable_device;
3607                 }
3608         }
3609
3610         pci_enable_pcie_error_reporting(pdev);
3611         enable_pcie_relaxed_ordering(pdev);
3612         pci_set_master(pdev);
3613         pci_save_state(pdev);
3614
3615         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3616         if (!adapter) {
3617                 err = -ENOMEM;
3618                 goto out_disable_device;
3619         }
3620
3621         adapter->regs = pci_ioremap_bar(pdev, 0);
3622         if (!adapter->regs) {
3623                 dev_err(&pdev->dev, "cannot map device registers\n");
3624                 err = -ENOMEM;
3625                 goto out_free_adapter;
3626         }
3627
3628         adapter->pdev = pdev;
3629         adapter->pdev_dev = &pdev->dev;
3630         adapter->fn = func;
3631         adapter->msg_enable = dflt_msg_enable;
3632         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3633
3634         spin_lock_init(&adapter->stats_lock);
3635         spin_lock_init(&adapter->tid_release_lock);
3636
3637         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3638
3639         err = t4_prep_adapter(adapter);
3640         if (err)
3641                 goto out_unmap_bar;
3642         err = adap_init0(adapter);
3643         if (err)
3644                 goto out_unmap_bar;
3645
3646         for_each_port(adapter, i) {
3647                 struct net_device *netdev;
3648
3649                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3650                                            MAX_ETH_QSETS);
3651                 if (!netdev) {
3652                         err = -ENOMEM;
3653                         goto out_free_dev;
3654                 }
3655
3656                 SET_NETDEV_DEV(netdev, &pdev->dev);
3657
3658                 adapter->port[i] = netdev;
3659                 pi = netdev_priv(netdev);
3660                 pi->adapter = adapter;
3661                 pi->xact_addr_filt = -1;
3662                 pi->rx_offload = RX_CSO;
3663                 pi->port_id = i;
3664                 netif_carrier_off(netdev);
3665                 netdev->irq = pdev->irq;
3666
3667                 netdev->features |= NETIF_F_SG | TSO_FLAGS;
3668                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3669                 netdev->features |= NETIF_F_GRO | NETIF_F_RXHASH | highdma;
3670                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3671                 netdev->vlan_features = netdev->features & VLAN_FEAT;
3672
3673                 netdev->netdev_ops = &cxgb4_netdev_ops;
3674                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3675         }
3676
3677         pci_set_drvdata(pdev, adapter);
3678
3679         if (adapter->flags & FW_OK) {
3680                 err = t4_port_init(adapter, func, func, 0);
3681                 if (err)
3682                         goto out_free_dev;
3683         }
3684
3685         /*
3686          * Configure queues and allocate tables now, they can be needed as
3687          * soon as the first register_netdev completes.
3688          */
3689         cfg_queues(adapter);
3690
3691         adapter->l2t = t4_init_l2t();
3692         if (!adapter->l2t) {
3693                 /* We tolerate a lack of L2T, giving up some functionality */
3694                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3695                 adapter->params.offload = 0;
3696         }
3697
3698         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3699                 dev_warn(&pdev->dev, "could not allocate TID table, "
3700                          "continuing\n");
3701                 adapter->params.offload = 0;
3702         }
3703
3704         /* See what interrupts we'll be using */
3705         if (msi > 1 && enable_msix(adapter) == 0)
3706                 adapter->flags |= USING_MSIX;
3707         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3708                 adapter->flags |= USING_MSI;
3709
3710         err = init_rss(adapter);
3711         if (err)
3712                 goto out_free_dev;
3713
3714         /*
3715          * The card is now ready to go.  If any errors occur during device
3716          * registration we do not fail the whole card but rather proceed only
3717          * with the ports we manage to register successfully.  However we must
3718          * register at least one net device.
3719          */
3720         for_each_port(adapter, i) {
3721                 pi = adap2pinfo(adapter, i);
3722                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
3723                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
3724
3725                 err = register_netdev(adapter->port[i]);
3726                 if (err)
3727                         break;
3728                 adapter->chan_map[pi->tx_chan] = i;
3729                 print_port_info(adapter->port[i]);
3730         }
3731         if (i == 0) {
3732                 dev_err(&pdev->dev, "could not register any net devices\n");
3733                 goto out_free_dev;
3734         }
3735         if (err) {
3736                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
3737                 err = 0;
3738         };
3739
3740         if (cxgb4_debugfs_root) {
3741                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3742                                                            cxgb4_debugfs_root);
3743                 setup_debugfs(adapter);
3744         }
3745
3746         if (is_offload(adapter))
3747                 attach_ulds(adapter);
3748
3749 sriov:
3750 #ifdef CONFIG_PCI_IOV
3751         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3752                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3753                         dev_info(&pdev->dev,
3754                                  "instantiated %u virtual functions\n",
3755                                  num_vf[func]);
3756 #endif
3757         return 0;
3758
3759  out_free_dev:
3760         free_some_resources(adapter);
3761  out_unmap_bar:
3762         iounmap(adapter->regs);
3763  out_free_adapter:
3764         kfree(adapter);
3765  out_disable_device:
3766         pci_disable_pcie_error_reporting(pdev);
3767         pci_disable_device(pdev);
3768  out_release_regions:
3769         pci_release_regions(pdev);
3770         pci_set_drvdata(pdev, NULL);
3771         return err;
3772 }
3773
3774 static void __devexit remove_one(struct pci_dev *pdev)
3775 {
3776         struct adapter *adapter = pci_get_drvdata(pdev);
3777
3778         pci_disable_sriov(pdev);
3779
3780         if (adapter) {
3781                 int i;
3782
3783                 if (is_offload(adapter))
3784                         detach_ulds(adapter);
3785
3786                 for_each_port(adapter, i)
3787                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
3788                                 unregister_netdev(adapter->port[i]);
3789
3790                 if (adapter->debugfs_root)
3791                         debugfs_remove_recursive(adapter->debugfs_root);
3792
3793                 if (adapter->flags & FULL_INIT_DONE)
3794                         cxgb_down(adapter);
3795
3796                 free_some_resources(adapter);
3797                 iounmap(adapter->regs);
3798                 kfree(adapter);
3799                 pci_disable_pcie_error_reporting(pdev);
3800                 pci_disable_device(pdev);
3801                 pci_release_regions(pdev);
3802                 pci_set_drvdata(pdev, NULL);
3803         } else
3804                 pci_release_regions(pdev);
3805 }
3806
3807 static struct pci_driver cxgb4_driver = {
3808         .name     = KBUILD_MODNAME,
3809         .id_table = cxgb4_pci_tbl,
3810         .probe    = init_one,
3811         .remove   = __devexit_p(remove_one),
3812         .err_handler = &cxgb4_eeh,
3813 };
3814
3815 static int __init cxgb4_init_module(void)
3816 {
3817         int ret;
3818
3819         /* Debugfs support is optional, just warn if this fails */
3820         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3821         if (!cxgb4_debugfs_root)
3822                 pr_warning("could not create debugfs entry, continuing\n");
3823
3824         ret = pci_register_driver(&cxgb4_driver);
3825         if (ret < 0)
3826                 debugfs_remove(cxgb4_debugfs_root);
3827         return ret;
3828 }
3829
3830 static void __exit cxgb4_cleanup_module(void)
3831 {
3832         pci_unregister_driver(&cxgb4_driver);
3833         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
3834 }
3835
3836 module_init(cxgb4_init_module);
3837 module_exit(cxgb4_cleanup_module);