]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000/e1000_main.c
e1000: Enable custom configuration bits for 82571/2 controllers
[mv-sheeva.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION             "6.0.60-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x108A),
92         INTEL_E1000_ETHERNET_DEVICE(0x108B),
93         INTEL_E1000_ETHERNET_DEVICE(0x108C),
94         INTEL_E1000_ETHERNET_DEVICE(0x1099),
95         /* required last entry */
96         {0,}
97 };
98
99 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
100
101 int e1000_up(struct e1000_adapter *adapter);
102 void e1000_down(struct e1000_adapter *adapter);
103 void e1000_reset(struct e1000_adapter *adapter);
104 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
105 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
106 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
107 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
108 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
109 int e1000_setup_tx_resources(struct e1000_adapter *adapter,
110                              struct e1000_tx_ring *txdr);
111 int e1000_setup_rx_resources(struct e1000_adapter *adapter,
112                              struct e1000_rx_ring *rxdr);
113 void e1000_free_tx_resources(struct e1000_adapter *adapter,
114                              struct e1000_tx_ring *tx_ring);
115 void e1000_free_rx_resources(struct e1000_adapter *adapter,
116                              struct e1000_rx_ring *rx_ring);
117 void e1000_update_stats(struct e1000_adapter *adapter);
118
119 /* Local Function Prototypes */
120
121 static int e1000_init_module(void);
122 static void e1000_exit_module(void);
123 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
124 static void __devexit e1000_remove(struct pci_dev *pdev);
125 static int e1000_alloc_queues(struct e1000_adapter *adapter);
126 #ifdef CONFIG_E1000_MQ
127 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
128 #endif
129 static int e1000_sw_init(struct e1000_adapter *adapter);
130 static int e1000_open(struct net_device *netdev);
131 static int e1000_close(struct net_device *netdev);
132 static void e1000_configure_tx(struct e1000_adapter *adapter);
133 static void e1000_configure_rx(struct e1000_adapter *adapter);
134 static void e1000_setup_rctl(struct e1000_adapter *adapter);
135 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
136 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
137 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_tx_ring *tx_ring);
139 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
140                                 struct e1000_rx_ring *rx_ring);
141 static void e1000_set_multi(struct net_device *netdev);
142 static void e1000_update_phy_info(unsigned long data);
143 static void e1000_watchdog(unsigned long data);
144 static void e1000_watchdog_task(struct e1000_adapter *adapter);
145 static void e1000_82547_tx_fifo_stall(unsigned long data);
146 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
147 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
148 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
149 static int e1000_set_mac(struct net_device *netdev, void *p);
150 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
151 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
152                                     struct e1000_tx_ring *tx_ring);
153 #ifdef CONFIG_E1000_NAPI
154 static int e1000_clean(struct net_device *poll_dev, int *budget);
155 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
156                                     struct e1000_rx_ring *rx_ring,
157                                     int *work_done, int work_to_do);
158 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
159                                        struct e1000_rx_ring *rx_ring,
160                                        int *work_done, int work_to_do);
161 #else
162 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
163                                     struct e1000_rx_ring *rx_ring);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring);
166 #endif
167 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
168                                    struct e1000_rx_ring *rx_ring);
169 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
170                                       struct e1000_rx_ring *rx_ring);
171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
172 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
173                            int cmd);
174 void e1000_set_ethtool_ops(struct net_device *netdev);
175 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
176 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
177 static void e1000_tx_timeout(struct net_device *dev);
178 static void e1000_tx_timeout_task(struct net_device *dev);
179 static void e1000_smartspeed(struct e1000_adapter *adapter);
180 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
181                                               struct sk_buff *skb);
182
183 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
184 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
185 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
186 static void e1000_restore_vlan(struct e1000_adapter *adapter);
187
188 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
189 #ifdef CONFIG_PM
190 static int e1000_resume(struct pci_dev *pdev);
191 #endif
192
193 #ifdef CONFIG_NET_POLL_CONTROLLER
194 /* for netdump / net console */
195 static void e1000_netpoll (struct net_device *netdev);
196 #endif
197
198 #ifdef CONFIG_E1000_MQ
199 /* for multiple Rx queues */
200 void e1000_rx_schedule(void *data);
201 #endif
202
203 /* Exported from other modules */
204
205 extern void e1000_check_options(struct e1000_adapter *adapter);
206
207 static struct pci_driver e1000_driver = {
208         .name     = e1000_driver_name,
209         .id_table = e1000_pci_tbl,
210         .probe    = e1000_probe,
211         .remove   = __devexit_p(e1000_remove),
212         /* Power Managment Hooks */
213 #ifdef CONFIG_PM
214         .suspend  = e1000_suspend,
215         .resume   = e1000_resume
216 #endif
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_module_init(&e1000_driver);
245
246         return ret;
247 }
248
249 module_init(e1000_init_module);
250
251 /**
252  * e1000_exit_module - Driver Exit Cleanup Routine
253  *
254  * e1000_exit_module is called just before the driver is removed
255  * from memory.
256  **/
257
258 static void __exit
259 e1000_exit_module(void)
260 {
261         pci_unregister_driver(&e1000_driver);
262 }
263
264 module_exit(e1000_exit_module);
265
266 /**
267  * e1000_irq_disable - Mask off interrupt generation on the NIC
268  * @adapter: board private structure
269  **/
270
271 static inline void
272 e1000_irq_disable(struct e1000_adapter *adapter)
273 {
274         atomic_inc(&adapter->irq_sem);
275         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
276         E1000_WRITE_FLUSH(&adapter->hw);
277         synchronize_irq(adapter->pdev->irq);
278 }
279
280 /**
281  * e1000_irq_enable - Enable default interrupt generation settings
282  * @adapter: board private structure
283  **/
284
285 static inline void
286 e1000_irq_enable(struct e1000_adapter *adapter)
287 {
288         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
289                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
290                 E1000_WRITE_FLUSH(&adapter->hw);
291         }
292 }
293 void
294 e1000_update_mng_vlan(struct e1000_adapter *adapter)
295 {
296         struct net_device *netdev = adapter->netdev;
297         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
298         uint16_t old_vid = adapter->mng_vlan_id;
299         if(adapter->vlgrp) {
300                 if(!adapter->vlgrp->vlan_devices[vid]) {
301                         if(adapter->hw.mng_cookie.status &
302                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
303                                 e1000_vlan_rx_add_vid(netdev, vid);
304                                 adapter->mng_vlan_id = vid;
305                         } else
306                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
307                                 
308                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
309                                         (vid != old_vid) && 
310                                         !adapter->vlgrp->vlan_devices[old_vid])
311                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
312                 }
313         }
314 }
315         
316 int
317 e1000_up(struct e1000_adapter *adapter)
318 {
319         struct net_device *netdev = adapter->netdev;
320         int i, err;
321
322         /* hardware has been reset, we need to reload some things */
323
324         /* Reset the PHY if it was previously powered down */
325         if(adapter->hw.media_type == e1000_media_type_copper) {
326                 uint16_t mii_reg;
327                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
328                 if(mii_reg & MII_CR_POWER_DOWN)
329                         e1000_phy_reset(&adapter->hw);
330         }
331
332         e1000_set_multi(netdev);
333
334         e1000_restore_vlan(adapter);
335
336         e1000_configure_tx(adapter);
337         e1000_setup_rctl(adapter);
338         e1000_configure_rx(adapter);
339         for (i = 0; i < adapter->num_queues; i++)
340                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
341
342 #ifdef CONFIG_PCI_MSI
343         if(adapter->hw.mac_type > e1000_82547_rev_2) {
344                 adapter->have_msi = TRUE;
345                 if((err = pci_enable_msi(adapter->pdev))) {
346                         DPRINTK(PROBE, ERR,
347                          "Unable to allocate MSI interrupt Error: %d\n", err);
348                         adapter->have_msi = FALSE;
349                 }
350         }
351 #endif
352         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
353                               SA_SHIRQ | SA_SAMPLE_RANDOM,
354                               netdev->name, netdev))) {
355                 DPRINTK(PROBE, ERR,
356                     "Unable to allocate interrupt Error: %d\n", err);
357                 return err;
358         }
359
360         mod_timer(&adapter->watchdog_timer, jiffies);
361
362 #ifdef CONFIG_E1000_NAPI
363         netif_poll_enable(netdev);
364 #endif
365         e1000_irq_enable(adapter);
366
367         return 0;
368 }
369
370 void
371 e1000_down(struct e1000_adapter *adapter)
372 {
373         struct net_device *netdev = adapter->netdev;
374
375         e1000_irq_disable(adapter);
376 #ifdef CONFIG_E1000_MQ
377         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
378 #endif
379         free_irq(adapter->pdev->irq, netdev);
380 #ifdef CONFIG_PCI_MSI
381         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
382            adapter->have_msi == TRUE)
383                 pci_disable_msi(adapter->pdev);
384 #endif
385         del_timer_sync(&adapter->tx_fifo_stall_timer);
386         del_timer_sync(&adapter->watchdog_timer);
387         del_timer_sync(&adapter->phy_info_timer);
388
389 #ifdef CONFIG_E1000_NAPI
390         netif_poll_disable(netdev);
391 #endif
392         adapter->link_speed = 0;
393         adapter->link_duplex = 0;
394         netif_carrier_off(netdev);
395         netif_stop_queue(netdev);
396
397         e1000_reset(adapter);
398         e1000_clean_all_tx_rings(adapter);
399         e1000_clean_all_rx_rings(adapter);
400
401         /* If WoL is not enabled
402          * and management mode is not IAMT
403          * Power down the PHY so no link is implied when interface is down */
404         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
405            adapter->hw.media_type == e1000_media_type_copper &&
406            !e1000_check_mng_mode(&adapter->hw) &&
407            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
408                 uint16_t mii_reg;
409                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
410                 mii_reg |= MII_CR_POWER_DOWN;
411                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
412                 mdelay(1);
413         }
414 }
415
416 void
417 e1000_reset(struct e1000_adapter *adapter)
418 {
419         struct net_device *netdev = adapter->netdev;
420         uint32_t pba, manc;
421         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
422         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
423
424         /* Repartition Pba for greater than 9k mtu
425          * To take effect CTRL.RST is required.
426          */
427
428         switch (adapter->hw.mac_type) {
429         case e1000_82547:
430         case e1000_82547_rev_2:
431                 pba = E1000_PBA_30K;
432                 break;
433         case e1000_82571:
434         case e1000_82572:
435                 pba = E1000_PBA_38K;
436                 break;
437         case e1000_82573:
438                 pba = E1000_PBA_12K;
439                 break;
440         default:
441                 pba = E1000_PBA_48K;
442                 break;
443         }
444
445         if((adapter->hw.mac_type != e1000_82573) &&
446            (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
447                 pba -= 8; /* allocate more FIFO for Tx */
448                 /* send an XOFF when there is enough space in the
449                  * Rx FIFO to hold one extra full size Rx packet 
450                 */
451                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
452                                         ETHERNET_FCS_SIZE + 1;
453                 fc_low_water_mark = fc_high_water_mark + 8;
454         }
455
456
457         if(adapter->hw.mac_type == e1000_82547) {
458                 adapter->tx_fifo_head = 0;
459                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
460                 adapter->tx_fifo_size =
461                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
462                 atomic_set(&adapter->tx_fifo_stall, 0);
463         }
464
465         E1000_WRITE_REG(&adapter->hw, PBA, pba);
466
467         /* flow control settings */
468         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
469                                     fc_high_water_mark;
470         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
471                                    fc_low_water_mark;
472         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
473         adapter->hw.fc_send_xon = 1;
474         adapter->hw.fc = adapter->hw.original_fc;
475
476         /* Allow time for pending master requests to run */
477         e1000_reset_hw(&adapter->hw);
478         if(adapter->hw.mac_type >= e1000_82544)
479                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
480         if(e1000_init_hw(&adapter->hw))
481                 DPRINTK(PROBE, ERR, "Hardware Error\n");
482         e1000_update_mng_vlan(adapter);
483         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
484         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
485
486         e1000_reset_adaptive(&adapter->hw);
487         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
488         if (adapter->en_mng_pt) {
489                 manc = E1000_READ_REG(&adapter->hw, MANC);
490                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
491                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
492         }
493 }
494
495 /**
496  * e1000_probe - Device Initialization Routine
497  * @pdev: PCI device information struct
498  * @ent: entry in e1000_pci_tbl
499  *
500  * Returns 0 on success, negative on failure
501  *
502  * e1000_probe initializes an adapter identified by a pci_dev structure.
503  * The OS initialization, configuring of the adapter private structure,
504  * and a hardware reset occur.
505  **/
506
507 static int __devinit
508 e1000_probe(struct pci_dev *pdev,
509             const struct pci_device_id *ent)
510 {
511         struct net_device *netdev;
512         struct e1000_adapter *adapter;
513         unsigned long mmio_start, mmio_len;
514         uint32_t ctrl_ext;
515         uint32_t swsm;
516
517         static int cards_found = 0;
518         int i, err, pci_using_dac;
519         uint16_t eeprom_data;
520         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
521         if((err = pci_enable_device(pdev)))
522                 return err;
523
524         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
525                 pci_using_dac = 1;
526         } else {
527                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
528                         E1000_ERR("No usable DMA configuration, aborting\n");
529                         return err;
530                 }
531                 pci_using_dac = 0;
532         }
533
534         if((err = pci_request_regions(pdev, e1000_driver_name)))
535                 return err;
536
537         pci_set_master(pdev);
538
539         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
540         if(!netdev) {
541                 err = -ENOMEM;
542                 goto err_alloc_etherdev;
543         }
544
545         SET_MODULE_OWNER(netdev);
546         SET_NETDEV_DEV(netdev, &pdev->dev);
547
548         pci_set_drvdata(pdev, netdev);
549         adapter = netdev_priv(netdev);
550         adapter->netdev = netdev;
551         adapter->pdev = pdev;
552         adapter->hw.back = adapter;
553         adapter->msg_enable = (1 << debug) - 1;
554
555         mmio_start = pci_resource_start(pdev, BAR_0);
556         mmio_len = pci_resource_len(pdev, BAR_0);
557
558         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
559         if(!adapter->hw.hw_addr) {
560                 err = -EIO;
561                 goto err_ioremap;
562         }
563
564         for(i = BAR_1; i <= BAR_5; i++) {
565                 if(pci_resource_len(pdev, i) == 0)
566                         continue;
567                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
568                         adapter->hw.io_base = pci_resource_start(pdev, i);
569                         break;
570                 }
571         }
572
573         netdev->open = &e1000_open;
574         netdev->stop = &e1000_close;
575         netdev->hard_start_xmit = &e1000_xmit_frame;
576         netdev->get_stats = &e1000_get_stats;
577         netdev->set_multicast_list = &e1000_set_multi;
578         netdev->set_mac_address = &e1000_set_mac;
579         netdev->change_mtu = &e1000_change_mtu;
580         netdev->do_ioctl = &e1000_ioctl;
581         e1000_set_ethtool_ops(netdev);
582         netdev->tx_timeout = &e1000_tx_timeout;
583         netdev->watchdog_timeo = 5 * HZ;
584 #ifdef CONFIG_E1000_NAPI
585         netdev->poll = &e1000_clean;
586         netdev->weight = 64;
587 #endif
588         netdev->vlan_rx_register = e1000_vlan_rx_register;
589         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
590         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
591 #ifdef CONFIG_NET_POLL_CONTROLLER
592         netdev->poll_controller = e1000_netpoll;
593 #endif
594         strcpy(netdev->name, pci_name(pdev));
595
596         netdev->mem_start = mmio_start;
597         netdev->mem_end = mmio_start + mmio_len;
598         netdev->base_addr = adapter->hw.io_base;
599
600         adapter->bd_number = cards_found;
601
602         /* setup the private structure */
603
604         if((err = e1000_sw_init(adapter)))
605                 goto err_sw_init;
606
607         if((err = e1000_check_phy_reset_block(&adapter->hw)))
608                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
609
610         if(adapter->hw.mac_type >= e1000_82543) {
611                 netdev->features = NETIF_F_SG |
612                                    NETIF_F_HW_CSUM |
613                                    NETIF_F_HW_VLAN_TX |
614                                    NETIF_F_HW_VLAN_RX |
615                                    NETIF_F_HW_VLAN_FILTER;
616         }
617
618 #ifdef NETIF_F_TSO
619         if((adapter->hw.mac_type >= e1000_82544) &&
620            (adapter->hw.mac_type != e1000_82547))
621                 netdev->features |= NETIF_F_TSO;
622
623 #ifdef NETIF_F_TSO_IPV6
624         if(adapter->hw.mac_type > e1000_82547_rev_2)
625                 netdev->features |= NETIF_F_TSO_IPV6;
626 #endif
627 #endif
628         if(pci_using_dac)
629                 netdev->features |= NETIF_F_HIGHDMA;
630
631         /* hard_start_xmit is safe against parallel locking */
632         netdev->features |= NETIF_F_LLTX; 
633  
634         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
635
636         /* before reading the EEPROM, reset the controller to 
637          * put the device in a known good starting state */
638         
639         e1000_reset_hw(&adapter->hw);
640
641         /* make sure the EEPROM is good */
642
643         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
644                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
645                 err = -EIO;
646                 goto err_eeprom;
647         }
648
649         /* copy the MAC address out of the EEPROM */
650
651         if(e1000_read_mac_addr(&adapter->hw))
652                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
653         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
654         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
655
656         if(!is_valid_ether_addr(netdev->perm_addr)) {
657                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
658                 err = -EIO;
659                 goto err_eeprom;
660         }
661
662         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
663
664         e1000_get_bus_info(&adapter->hw);
665
666         init_timer(&adapter->tx_fifo_stall_timer);
667         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
668         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
669
670         init_timer(&adapter->watchdog_timer);
671         adapter->watchdog_timer.function = &e1000_watchdog;
672         adapter->watchdog_timer.data = (unsigned long) adapter;
673
674         INIT_WORK(&adapter->watchdog_task,
675                 (void (*)(void *))e1000_watchdog_task, adapter);
676
677         init_timer(&adapter->phy_info_timer);
678         adapter->phy_info_timer.function = &e1000_update_phy_info;
679         adapter->phy_info_timer.data = (unsigned long) adapter;
680
681         INIT_WORK(&adapter->tx_timeout_task,
682                 (void (*)(void *))e1000_tx_timeout_task, netdev);
683
684         /* we're going to reset, so assume we have no link for now */
685
686         netif_carrier_off(netdev);
687         netif_stop_queue(netdev);
688
689         e1000_check_options(adapter);
690
691         /* Initial Wake on LAN setting
692          * If APM wake is enabled in the EEPROM,
693          * enable the ACPI Magic Packet filter
694          */
695
696         switch(adapter->hw.mac_type) {
697         case e1000_82542_rev2_0:
698         case e1000_82542_rev2_1:
699         case e1000_82543:
700                 break;
701         case e1000_82544:
702                 e1000_read_eeprom(&adapter->hw,
703                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
704                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
705                 break;
706         case e1000_82546:
707         case e1000_82546_rev_3:
708                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
709                    && (adapter->hw.media_type == e1000_media_type_copper)) {
710                         e1000_read_eeprom(&adapter->hw,
711                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
712                         break;
713                 }
714                 /* Fall Through */
715         default:
716                 e1000_read_eeprom(&adapter->hw,
717                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718                 break;
719         }
720         if(eeprom_data & eeprom_apme_mask)
721                 adapter->wol |= E1000_WUFC_MAG;
722
723         /* reset the hardware with the new settings */
724         e1000_reset(adapter);
725
726         /* Let firmware know the driver has taken over */
727         switch(adapter->hw.mac_type) {
728         case e1000_82571:
729         case e1000_82572:
730                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
731                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
732                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
733                 break;
734         case e1000_82573:
735                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
736                 E1000_WRITE_REG(&adapter->hw, SWSM,
737                                 swsm | E1000_SWSM_DRV_LOAD);
738                 break;
739         default:
740                 break;
741         }
742
743         strcpy(netdev->name, "eth%d");
744         if((err = register_netdev(netdev)))
745                 goto err_register;
746
747         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
748
749         cards_found++;
750         return 0;
751
752 err_register:
753 err_sw_init:
754 err_eeprom:
755         iounmap(adapter->hw.hw_addr);
756 err_ioremap:
757         free_netdev(netdev);
758 err_alloc_etherdev:
759         pci_release_regions(pdev);
760         return err;
761 }
762
763 /**
764  * e1000_remove - Device Removal Routine
765  * @pdev: PCI device information struct
766  *
767  * e1000_remove is called by the PCI subsystem to alert the driver
768  * that it should release a PCI device.  The could be caused by a
769  * Hot-Plug event, or because the driver is going to be removed from
770  * memory.
771  **/
772
773 static void __devexit
774 e1000_remove(struct pci_dev *pdev)
775 {
776         struct net_device *netdev = pci_get_drvdata(pdev);
777         struct e1000_adapter *adapter = netdev_priv(netdev);
778         uint32_t ctrl_ext;
779         uint32_t manc, swsm;
780
781         flush_scheduled_work();
782 #ifdef CONFIG_E1000_NAPI
783         int i;
784 #endif
785
786         if(adapter->hw.mac_type >= e1000_82540 &&
787            adapter->hw.media_type == e1000_media_type_copper) {
788                 manc = E1000_READ_REG(&adapter->hw, MANC);
789                 if(manc & E1000_MANC_SMBUS_EN) {
790                         manc |= E1000_MANC_ARP_EN;
791                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
792                 }
793         }
794
795         switch(adapter->hw.mac_type) {
796         case e1000_82571:
797         case e1000_82572:
798                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
799                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
800                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
801                 break;
802         case e1000_82573:
803                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
804                 E1000_WRITE_REG(&adapter->hw, SWSM,
805                                 swsm & ~E1000_SWSM_DRV_LOAD);
806                 break;
807
808         default:
809                 break;
810         }
811
812         unregister_netdev(netdev);
813 #ifdef CONFIG_E1000_NAPI
814         for (i = 0; i < adapter->num_queues; i++)
815                 __dev_put(&adapter->polling_netdev[i]);
816 #endif
817
818         if(!e1000_check_phy_reset_block(&adapter->hw))
819                 e1000_phy_hw_reset(&adapter->hw);
820
821         kfree(adapter->tx_ring);
822         kfree(adapter->rx_ring);
823 #ifdef CONFIG_E1000_NAPI
824         kfree(adapter->polling_netdev);
825 #endif
826
827         iounmap(adapter->hw.hw_addr);
828         pci_release_regions(pdev);
829
830 #ifdef CONFIG_E1000_MQ
831         free_percpu(adapter->cpu_netdev);
832         free_percpu(adapter->cpu_tx_ring);
833 #endif
834         free_netdev(netdev);
835
836         pci_disable_device(pdev);
837 }
838
839 /**
840  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
841  * @adapter: board private structure to initialize
842  *
843  * e1000_sw_init initializes the Adapter private data structure.
844  * Fields are initialized based on PCI device information and
845  * OS network device settings (MTU size).
846  **/
847
848 static int __devinit
849 e1000_sw_init(struct e1000_adapter *adapter)
850 {
851         struct e1000_hw *hw = &adapter->hw;
852         struct net_device *netdev = adapter->netdev;
853         struct pci_dev *pdev = adapter->pdev;
854 #ifdef CONFIG_E1000_NAPI
855         int i;
856 #endif
857
858         /* PCI config space info */
859
860         hw->vendor_id = pdev->vendor;
861         hw->device_id = pdev->device;
862         hw->subsystem_vendor_id = pdev->subsystem_vendor;
863         hw->subsystem_id = pdev->subsystem_device;
864
865         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
866
867         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
868
869         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
870         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
871         hw->max_frame_size = netdev->mtu +
872                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875         /* identify the MAC */
876
877         if(e1000_set_mac_type(hw)) {
878                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
879                 return -EIO;
880         }
881
882         /* initialize eeprom parameters */
883
884         if(e1000_init_eeprom_params(hw)) {
885                 E1000_ERR("EEPROM initialization failed\n");
886                 return -EIO;
887         }
888
889         switch(hw->mac_type) {
890         default:
891                 break;
892         case e1000_82541:
893         case e1000_82547:
894         case e1000_82541_rev_2:
895         case e1000_82547_rev_2:
896                 hw->phy_init_script = 1;
897                 break;
898         }
899
900         e1000_set_media_type(hw);
901
902         hw->wait_autoneg_complete = FALSE;
903         hw->tbi_compatibility_en = TRUE;
904         hw->adaptive_ifs = TRUE;
905
906         /* Copper options */
907
908         if(hw->media_type == e1000_media_type_copper) {
909                 hw->mdix = AUTO_ALL_MODES;
910                 hw->disable_polarity_correction = FALSE;
911                 hw->master_slave = E1000_MASTER_SLAVE;
912         }
913
914 #ifdef CONFIG_E1000_MQ
915         /* Number of supported queues */
916         switch (hw->mac_type) {
917         case e1000_82571:
918         case e1000_82572:
919                 adapter->num_queues = 2;
920                 break;
921         default:
922                 adapter->num_queues = 1;
923                 break;
924         }
925         adapter->num_queues = min(adapter->num_queues, num_online_cpus());
926 #else
927         adapter->num_queues = 1;
928 #endif
929
930         if (e1000_alloc_queues(adapter)) {
931                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
932                 return -ENOMEM;
933         }
934
935 #ifdef CONFIG_E1000_NAPI
936         for (i = 0; i < adapter->num_queues; i++) {
937                 adapter->polling_netdev[i].priv = adapter;
938                 adapter->polling_netdev[i].poll = &e1000_clean;
939                 adapter->polling_netdev[i].weight = 64;
940                 dev_hold(&adapter->polling_netdev[i]);
941                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
942         }
943 #endif
944
945 #ifdef CONFIG_E1000_MQ
946         e1000_setup_queue_mapping(adapter);
947 #endif
948
949         atomic_set(&adapter->irq_sem, 1);
950         spin_lock_init(&adapter->stats_lock);
951
952         return 0;
953 }
954
955 /**
956  * e1000_alloc_queues - Allocate memory for all rings
957  * @adapter: board private structure to initialize
958  *
959  * We allocate one ring per queue at run-time since we don't know the
960  * number of queues at compile-time.  The polling_netdev array is
961  * intended for Multiqueue, but should work fine with a single queue.
962  **/
963
964 static int __devinit
965 e1000_alloc_queues(struct e1000_adapter *adapter)
966 {
967         int size;
968
969         size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
970         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
971         if (!adapter->tx_ring)
972                 return -ENOMEM;
973         memset(adapter->tx_ring, 0, size);
974
975         size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
976         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
977         if (!adapter->rx_ring) {
978                 kfree(adapter->tx_ring);
979                 return -ENOMEM;
980         }
981         memset(adapter->rx_ring, 0, size);
982
983 #ifdef CONFIG_E1000_NAPI
984         size = sizeof(struct net_device) * adapter->num_queues;
985         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
986         if (!adapter->polling_netdev) {
987                 kfree(adapter->tx_ring);
988                 kfree(adapter->rx_ring);
989                 return -ENOMEM;
990         }
991         memset(adapter->polling_netdev, 0, size);
992 #endif
993
994         return E1000_SUCCESS;
995 }
996
997 #ifdef CONFIG_E1000_MQ
998 static void __devinit
999 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1000 {
1001         int i, cpu;
1002
1003         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1004         adapter->rx_sched_call_data.info = adapter->netdev;
1005         cpus_clear(adapter->rx_sched_call_data.cpumask);
1006
1007         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1008         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1009
1010         lock_cpu_hotplug();
1011         i = 0;
1012         for_each_online_cpu(cpu) {
1013                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1014                 /* This is incomplete because we'd like to assign separate
1015                  * physical cpus to these netdev polling structures and
1016                  * avoid saturating a subset of cpus.
1017                  */
1018                 if (i < adapter->num_queues) {
1019                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1020                         adapter->cpu_for_queue[i] = cpu;
1021                 } else
1022                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1023
1024                 i++;
1025         }
1026         unlock_cpu_hotplug();
1027 }
1028 #endif
1029
1030 /**
1031  * e1000_open - Called when a network interface is made active
1032  * @netdev: network interface device structure
1033  *
1034  * Returns 0 on success, negative value on failure
1035  *
1036  * The open entry point is called when a network interface is made
1037  * active by the system (IFF_UP).  At this point all resources needed
1038  * for transmit and receive operations are allocated, the interrupt
1039  * handler is registered with the OS, the watchdog timer is started,
1040  * and the stack is notified that the interface is ready.
1041  **/
1042
1043 static int
1044 e1000_open(struct net_device *netdev)
1045 {
1046         struct e1000_adapter *adapter = netdev_priv(netdev);
1047         int err;
1048
1049         /* allocate transmit descriptors */
1050
1051         if ((err = e1000_setup_all_tx_resources(adapter)))
1052                 goto err_setup_tx;
1053
1054         /* allocate receive descriptors */
1055
1056         if ((err = e1000_setup_all_rx_resources(adapter)))
1057                 goto err_setup_rx;
1058
1059         if((err = e1000_up(adapter)))
1060                 goto err_up;
1061         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1062         if((adapter->hw.mng_cookie.status &
1063                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1064                 e1000_update_mng_vlan(adapter);
1065         }
1066
1067         return E1000_SUCCESS;
1068
1069 err_up:
1070         e1000_free_all_rx_resources(adapter);
1071 err_setup_rx:
1072         e1000_free_all_tx_resources(adapter);
1073 err_setup_tx:
1074         e1000_reset(adapter);
1075
1076         return err;
1077 }
1078
1079 /**
1080  * e1000_close - Disables a network interface
1081  * @netdev: network interface device structure
1082  *
1083  * Returns 0, this is not allowed to fail
1084  *
1085  * The close entry point is called when an interface is de-activated
1086  * by the OS.  The hardware is still under the drivers control, but
1087  * needs to be disabled.  A global MAC reset is issued to stop the
1088  * hardware, and all transmit and receive resources are freed.
1089  **/
1090
1091 static int
1092 e1000_close(struct net_device *netdev)
1093 {
1094         struct e1000_adapter *adapter = netdev_priv(netdev);
1095
1096         e1000_down(adapter);
1097
1098         e1000_free_all_tx_resources(adapter);
1099         e1000_free_all_rx_resources(adapter);
1100
1101         if((adapter->hw.mng_cookie.status &
1102                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1103                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1104         }
1105         return 0;
1106 }
1107
1108 /**
1109  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1110  * @adapter: address of board private structure
1111  * @start: address of beginning of memory
1112  * @len: length of memory
1113  **/
1114 static inline boolean_t
1115 e1000_check_64k_bound(struct e1000_adapter *adapter,
1116                       void *start, unsigned long len)
1117 {
1118         unsigned long begin = (unsigned long) start;
1119         unsigned long end = begin + len;
1120
1121         /* First rev 82545 and 82546 need to not allow any memory
1122          * write location to cross 64k boundary due to errata 23 */
1123         if (adapter->hw.mac_type == e1000_82545 ||
1124             adapter->hw.mac_type == e1000_82546) {
1125                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1126         }
1127
1128         return TRUE;
1129 }
1130
1131 /**
1132  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1133  * @adapter: board private structure
1134  * @txdr:    tx descriptor ring (for a specific queue) to setup
1135  *
1136  * Return 0 on success, negative on failure
1137  **/
1138
1139 int
1140 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1141                          struct e1000_tx_ring *txdr)
1142 {
1143         struct pci_dev *pdev = adapter->pdev;
1144         int size;
1145
1146         size = sizeof(struct e1000_buffer) * txdr->count;
1147         txdr->buffer_info = vmalloc(size);
1148         if(!txdr->buffer_info) {
1149                 DPRINTK(PROBE, ERR,
1150                 "Unable to allocate memory for the transmit descriptor ring\n");
1151                 return -ENOMEM;
1152         }
1153         memset(txdr->buffer_info, 0, size);
1154         memset(&txdr->previous_buffer_info, 0, sizeof(struct e1000_buffer));
1155
1156         /* round up to nearest 4K */
1157
1158         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1159         E1000_ROUNDUP(txdr->size, 4096);
1160
1161         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1162         if(!txdr->desc) {
1163 setup_tx_desc_die:
1164                 vfree(txdr->buffer_info);
1165                 DPRINTK(PROBE, ERR,
1166                 "Unable to allocate memory for the transmit descriptor ring\n");
1167                 return -ENOMEM;
1168         }
1169
1170         /* Fix for errata 23, can't cross 64kB boundary */
1171         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1172                 void *olddesc = txdr->desc;
1173                 dma_addr_t olddma = txdr->dma;
1174                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1175                                      "at %p\n", txdr->size, txdr->desc);
1176                 /* Try again, without freeing the previous */
1177                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1178                 if(!txdr->desc) {
1179                 /* Failed allocation, critical failure */
1180                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1181                         goto setup_tx_desc_die;
1182                 }
1183
1184                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1185                         /* give up */
1186                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1187                                             txdr->dma);
1188                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1189                         DPRINTK(PROBE, ERR,
1190                                 "Unable to allocate aligned memory "
1191                                 "for the transmit descriptor ring\n");
1192                         vfree(txdr->buffer_info);
1193                         return -ENOMEM;
1194                 } else {
1195                         /* Free old allocation, new allocation was successful */
1196                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1197                 }
1198         }
1199         memset(txdr->desc, 0, txdr->size);
1200
1201         txdr->next_to_use = 0;
1202         txdr->next_to_clean = 0;
1203         spin_lock_init(&txdr->tx_lock);
1204
1205         return 0;
1206 }
1207
1208 /**
1209  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1210  *                                (Descriptors) for all queues
1211  * @adapter: board private structure
1212  *
1213  * If this function returns with an error, then it's possible one or
1214  * more of the rings is populated (while the rest are not).  It is the
1215  * callers duty to clean those orphaned rings.
1216  *
1217  * Return 0 on success, negative on failure
1218  **/
1219
1220 int
1221 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1222 {
1223         int i, err = 0;
1224
1225         for (i = 0; i < adapter->num_queues; i++) {
1226                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1227                 if (err) {
1228                         DPRINTK(PROBE, ERR,
1229                                 "Allocation for Tx Queue %u failed\n", i);
1230                         break;
1231                 }
1232         }
1233
1234         return err;
1235 }
1236
1237 /**
1238  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1239  * @adapter: board private structure
1240  *
1241  * Configure the Tx unit of the MAC after a reset.
1242  **/
1243
1244 static void
1245 e1000_configure_tx(struct e1000_adapter *adapter)
1246 {
1247         uint64_t tdba;
1248         struct e1000_hw *hw = &adapter->hw;
1249         uint32_t tdlen, tctl, tipg, tarc;
1250
1251         /* Setup the HW Tx Head and Tail descriptor pointers */
1252
1253         switch (adapter->num_queues) {
1254         case 2:
1255                 tdba = adapter->tx_ring[1].dma;
1256                 tdlen = adapter->tx_ring[1].count *
1257                         sizeof(struct e1000_tx_desc);
1258                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1259                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1260                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1261                 E1000_WRITE_REG(hw, TDH1, 0);
1262                 E1000_WRITE_REG(hw, TDT1, 0);
1263                 adapter->tx_ring[1].tdh = E1000_TDH1;
1264                 adapter->tx_ring[1].tdt = E1000_TDT1;
1265                 /* Fall Through */
1266         case 1:
1267         default:
1268                 tdba = adapter->tx_ring[0].dma;
1269                 tdlen = adapter->tx_ring[0].count *
1270                         sizeof(struct e1000_tx_desc);
1271                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1272                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1273                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1274                 E1000_WRITE_REG(hw, TDH, 0);
1275                 E1000_WRITE_REG(hw, TDT, 0);
1276                 adapter->tx_ring[0].tdh = E1000_TDH;
1277                 adapter->tx_ring[0].tdt = E1000_TDT;
1278                 break;
1279         }
1280
1281         /* Set the default values for the Tx Inter Packet Gap timer */
1282
1283         switch (hw->mac_type) {
1284         case e1000_82542_rev2_0:
1285         case e1000_82542_rev2_1:
1286                 tipg = DEFAULT_82542_TIPG_IPGT;
1287                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1288                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1289                 break;
1290         default:
1291                 if (hw->media_type == e1000_media_type_fiber ||
1292                     hw->media_type == e1000_media_type_internal_serdes)
1293                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1294                 else
1295                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1296                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1297                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1298         }
1299         E1000_WRITE_REG(hw, TIPG, tipg);
1300
1301         /* Set the Tx Interrupt Delay register */
1302
1303         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1304         if (hw->mac_type >= e1000_82540)
1305                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1306
1307         /* Program the Transmit Control Register */
1308
1309         tctl = E1000_READ_REG(hw, TCTL);
1310
1311         tctl &= ~E1000_TCTL_CT;
1312         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1313                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1314
1315         E1000_WRITE_REG(hw, TCTL, tctl);
1316
1317         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1318                 tarc = E1000_READ_REG(hw, TARC0);
1319                 tarc |= ((1 << 25) | (1 << 21));
1320                 E1000_WRITE_REG(hw, TARC0, tarc);
1321                 tarc = E1000_READ_REG(hw, TARC1);
1322                 tarc |= (1 << 25);
1323                 if (tctl & E1000_TCTL_MULR)
1324                         tarc &= ~(1 << 28);
1325                 else
1326                         tarc |= (1 << 28);
1327                 E1000_WRITE_REG(hw, TARC1, tarc);
1328         }
1329
1330         e1000_config_collision_dist(hw);
1331
1332         /* Setup Transmit Descriptor Settings for eop descriptor */
1333         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1334                 E1000_TXD_CMD_IFCS;
1335
1336         if (hw->mac_type < e1000_82543)
1337                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1338         else
1339                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1340
1341         /* Cache if we're 82544 running in PCI-X because we'll
1342          * need this to apply a workaround later in the send path. */
1343         if (hw->mac_type == e1000_82544 &&
1344             hw->bus_type == e1000_bus_type_pcix)
1345                 adapter->pcix_82544 = 1;
1346 }
1347
1348 /**
1349  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1350  * @adapter: board private structure
1351  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1352  *
1353  * Returns 0 on success, negative on failure
1354  **/
1355
1356 int
1357 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1358                          struct e1000_rx_ring *rxdr)
1359 {
1360         struct pci_dev *pdev = adapter->pdev;
1361         int size, desc_len;
1362
1363         size = sizeof(struct e1000_buffer) * rxdr->count;
1364         rxdr->buffer_info = vmalloc(size);
1365         if (!rxdr->buffer_info) {
1366                 DPRINTK(PROBE, ERR,
1367                 "Unable to allocate memory for the receive descriptor ring\n");
1368                 return -ENOMEM;
1369         }
1370         memset(rxdr->buffer_info, 0, size);
1371
1372         size = sizeof(struct e1000_ps_page) * rxdr->count;
1373         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1374         if(!rxdr->ps_page) {
1375                 vfree(rxdr->buffer_info);
1376                 DPRINTK(PROBE, ERR,
1377                 "Unable to allocate memory for the receive descriptor ring\n");
1378                 return -ENOMEM;
1379         }
1380         memset(rxdr->ps_page, 0, size);
1381
1382         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1383         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1384         if(!rxdr->ps_page_dma) {
1385                 vfree(rxdr->buffer_info);
1386                 kfree(rxdr->ps_page);
1387                 DPRINTK(PROBE, ERR,
1388                 "Unable to allocate memory for the receive descriptor ring\n");
1389                 return -ENOMEM;
1390         }
1391         memset(rxdr->ps_page_dma, 0, size);
1392
1393         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1394                 desc_len = sizeof(struct e1000_rx_desc);
1395         else
1396                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1397
1398         /* Round up to nearest 4K */
1399
1400         rxdr->size = rxdr->count * desc_len;
1401         E1000_ROUNDUP(rxdr->size, 4096);
1402
1403         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1404
1405         if (!rxdr->desc) {
1406                 DPRINTK(PROBE, ERR,
1407                 "Unable to allocate memory for the receive descriptor ring\n");
1408 setup_rx_desc_die:
1409                 vfree(rxdr->buffer_info);
1410                 kfree(rxdr->ps_page);
1411                 kfree(rxdr->ps_page_dma);
1412                 return -ENOMEM;
1413         }
1414
1415         /* Fix for errata 23, can't cross 64kB boundary */
1416         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1417                 void *olddesc = rxdr->desc;
1418                 dma_addr_t olddma = rxdr->dma;
1419                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1420                                      "at %p\n", rxdr->size, rxdr->desc);
1421                 /* Try again, without freeing the previous */
1422                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1423                 /* Failed allocation, critical failure */
1424                 if (!rxdr->desc) {
1425                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1426                         DPRINTK(PROBE, ERR,
1427                                 "Unable to allocate memory "
1428                                 "for the receive descriptor ring\n");
1429                         goto setup_rx_desc_die;
1430                 }
1431
1432                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1433                         /* give up */
1434                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1435                                             rxdr->dma);
1436                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1437                         DPRINTK(PROBE, ERR,
1438                                 "Unable to allocate aligned memory "
1439                                 "for the receive descriptor ring\n");
1440                         goto setup_rx_desc_die;
1441                 } else {
1442                         /* Free old allocation, new allocation was successful */
1443                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1444                 }
1445         }
1446         memset(rxdr->desc, 0, rxdr->size);
1447
1448         rxdr->next_to_clean = 0;
1449         rxdr->next_to_use = 0;
1450
1451         return 0;
1452 }
1453
1454 /**
1455  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1456  *                                (Descriptors) for all queues
1457  * @adapter: board private structure
1458  *
1459  * If this function returns with an error, then it's possible one or
1460  * more of the rings is populated (while the rest are not).  It is the
1461  * callers duty to clean those orphaned rings.
1462  *
1463  * Return 0 on success, negative on failure
1464  **/
1465
1466 int
1467 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1468 {
1469         int i, err = 0;
1470
1471         for (i = 0; i < adapter->num_queues; i++) {
1472                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1473                 if (err) {
1474                         DPRINTK(PROBE, ERR,
1475                                 "Allocation for Rx Queue %u failed\n", i);
1476                         break;
1477                 }
1478         }
1479
1480         return err;
1481 }
1482
1483 /**
1484  * e1000_setup_rctl - configure the receive control registers
1485  * @adapter: Board private structure
1486  **/
1487
1488 static void
1489 e1000_setup_rctl(struct e1000_adapter *adapter)
1490 {
1491         uint32_t rctl, rfctl;
1492         uint32_t psrctl = 0;
1493
1494         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1495
1496         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1497
1498         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1499                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1500                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1501
1502         if(adapter->hw.tbi_compatibility_on == 1)
1503                 rctl |= E1000_RCTL_SBP;
1504         else
1505                 rctl &= ~E1000_RCTL_SBP;
1506
1507         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1508                 rctl &= ~E1000_RCTL_LPE;
1509         else
1510                 rctl |= E1000_RCTL_LPE;
1511
1512         /* Setup buffer sizes */
1513         if(adapter->hw.mac_type >= e1000_82571) {
1514                 /* We can now specify buffers in 1K increments.
1515                  * BSIZE and BSEX are ignored in this case. */
1516                 rctl |= adapter->rx_buffer_len << 0x11;
1517         } else {
1518                 rctl &= ~E1000_RCTL_SZ_4096;
1519                 rctl |= E1000_RCTL_BSEX; 
1520                 switch (adapter->rx_buffer_len) {
1521                 case E1000_RXBUFFER_2048:
1522                 default:
1523                         rctl |= E1000_RCTL_SZ_2048;
1524                         rctl &= ~E1000_RCTL_BSEX;
1525                         break;
1526                 case E1000_RXBUFFER_4096:
1527                         rctl |= E1000_RCTL_SZ_4096;
1528                         break;
1529                 case E1000_RXBUFFER_8192:
1530                         rctl |= E1000_RCTL_SZ_8192;
1531                         break;
1532                 case E1000_RXBUFFER_16384:
1533                         rctl |= E1000_RCTL_SZ_16384;
1534                         break;
1535                 }
1536         }
1537
1538 #ifdef CONFIG_E1000_PACKET_SPLIT
1539         /* 82571 and greater support packet-split where the protocol
1540          * header is placed in skb->data and the packet data is
1541          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1542          * In the case of a non-split, skb->data is linearly filled,
1543          * followed by the page buffers.  Therefore, skb->data is
1544          * sized to hold the largest protocol header.
1545          */
1546         adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) 
1547                           && (adapter->netdev->mtu 
1548                               < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1549 #endif
1550         if(adapter->rx_ps) {
1551                 /* Configure extra packet-split registers */
1552                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1553                 rfctl |= E1000_RFCTL_EXTEN;
1554                 /* disable IPv6 packet split support */
1555                 rfctl |= E1000_RFCTL_IPV6_DIS;
1556                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1557
1558                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1559                 
1560                 psrctl |= adapter->rx_ps_bsize0 >>
1561                         E1000_PSRCTL_BSIZE0_SHIFT;
1562                 psrctl |= PAGE_SIZE >>
1563                         E1000_PSRCTL_BSIZE1_SHIFT;
1564                 psrctl |= PAGE_SIZE <<
1565                         E1000_PSRCTL_BSIZE2_SHIFT;
1566                 psrctl |= PAGE_SIZE <<
1567                         E1000_PSRCTL_BSIZE3_SHIFT;
1568
1569                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1570         }
1571
1572         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1573 }
1574
1575 /**
1576  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1577  * @adapter: board private structure
1578  *
1579  * Configure the Rx unit of the MAC after a reset.
1580  **/
1581
1582 static void
1583 e1000_configure_rx(struct e1000_adapter *adapter)
1584 {
1585         uint64_t rdba;
1586         struct e1000_hw *hw = &adapter->hw;
1587         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1588 #ifdef CONFIG_E1000_MQ
1589         uint32_t reta, mrqc;
1590         int i;
1591 #endif
1592
1593         if(adapter->rx_ps) {
1594                 rdlen = adapter->rx_ring[0].count *
1595                         sizeof(union e1000_rx_desc_packet_split);
1596                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1597                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1598         } else {
1599                 rdlen = adapter->rx_ring[0].count *
1600                         sizeof(struct e1000_rx_desc);
1601                 adapter->clean_rx = e1000_clean_rx_irq;
1602                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1603         }
1604
1605         /* disable receives while setting up the descriptors */
1606         rctl = E1000_READ_REG(hw, RCTL);
1607         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1608
1609         /* set the Receive Delay Timer Register */
1610         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1611
1612         if (hw->mac_type >= e1000_82540) {
1613                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1614                 if(adapter->itr > 1)
1615                         E1000_WRITE_REG(hw, ITR,
1616                                 1000000000 / (adapter->itr * 256));
1617         }
1618
1619         if (hw->mac_type >= e1000_82571) {
1620                 /* Reset delay timers after every interrupt */
1621                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1622                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1623                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1624                 E1000_WRITE_FLUSH(hw);
1625         }
1626
1627         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1628          * the Base and Length of the Rx Descriptor Ring */
1629         switch (adapter->num_queues) {
1630 #ifdef CONFIG_E1000_MQ
1631         case 2:
1632                 rdba = adapter->rx_ring[1].dma;
1633                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1634                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1635                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1636                 E1000_WRITE_REG(hw, RDH1, 0);
1637                 E1000_WRITE_REG(hw, RDT1, 0);
1638                 adapter->rx_ring[1].rdh = E1000_RDH1;
1639                 adapter->rx_ring[1].rdt = E1000_RDT1;
1640                 /* Fall Through */
1641 #endif
1642         case 1:
1643         default:
1644                 rdba = adapter->rx_ring[0].dma;
1645                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1646                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1647                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1648                 E1000_WRITE_REG(hw, RDH, 0);
1649                 E1000_WRITE_REG(hw, RDT, 0);
1650                 adapter->rx_ring[0].rdh = E1000_RDH;
1651                 adapter->rx_ring[0].rdt = E1000_RDT;
1652                 break;
1653         }
1654
1655 #ifdef CONFIG_E1000_MQ
1656         if (adapter->num_queues > 1) {
1657                 uint32_t random[10];
1658
1659                 get_random_bytes(&random[0], 40);
1660
1661                 if (hw->mac_type <= e1000_82572) {
1662                         E1000_WRITE_REG(hw, RSSIR, 0);
1663                         E1000_WRITE_REG(hw, RSSIM, 0);
1664                 }
1665
1666                 switch (adapter->num_queues) {
1667                 case 2:
1668                 default:
1669                         reta = 0x00800080;
1670                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1671                         break;
1672                 }
1673
1674                 /* Fill out redirection table */
1675                 for (i = 0; i < 32; i++)
1676                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1677                 /* Fill out hash function seeds */
1678                 for (i = 0; i < 10; i++)
1679                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1680
1681                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1682                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1683                 E1000_WRITE_REG(hw, MRQC, mrqc);
1684         }
1685
1686         /* Multiqueue and packet checksumming are mutually exclusive. */
1687         if (hw->mac_type >= e1000_82571) {
1688                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1689                 rxcsum |= E1000_RXCSUM_PCSD;
1690                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1691         }
1692
1693 #else
1694
1695         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1696         if (hw->mac_type >= e1000_82543) {
1697                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1698                 if(adapter->rx_csum == TRUE) {
1699                         rxcsum |= E1000_RXCSUM_TUOFL;
1700
1701                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1702                          * Must be used in conjunction with packet-split. */
1703                         if((adapter->hw.mac_type > e1000_82547_rev_2) && 
1704                            (adapter->rx_ps)) {
1705                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1706                         }
1707                 } else {
1708                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1709                         /* don't need to clear IPPCSE as it defaults to 0 */
1710                 }
1711                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1712         }
1713 #endif /* CONFIG_E1000_MQ */
1714
1715         if (hw->mac_type == e1000_82573)
1716                 E1000_WRITE_REG(hw, ERT, 0x0100);
1717
1718         /* Enable Receives */
1719         E1000_WRITE_REG(hw, RCTL, rctl);
1720 }
1721
1722 /**
1723  * e1000_free_tx_resources - Free Tx Resources per Queue
1724  * @adapter: board private structure
1725  * @tx_ring: Tx descriptor ring for a specific queue
1726  *
1727  * Free all transmit software resources
1728  **/
1729
1730 void
1731 e1000_free_tx_resources(struct e1000_adapter *adapter,
1732                         struct e1000_tx_ring *tx_ring)
1733 {
1734         struct pci_dev *pdev = adapter->pdev;
1735
1736         e1000_clean_tx_ring(adapter, tx_ring);
1737
1738         vfree(tx_ring->buffer_info);
1739         tx_ring->buffer_info = NULL;
1740
1741         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1742
1743         tx_ring->desc = NULL;
1744 }
1745
1746 /**
1747  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1748  * @adapter: board private structure
1749  *
1750  * Free all transmit software resources
1751  **/
1752
1753 void
1754 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1755 {
1756         int i;
1757
1758         for (i = 0; i < adapter->num_queues; i++)
1759                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1760 }
1761
1762 static inline void
1763 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1764                         struct e1000_buffer *buffer_info)
1765 {
1766         if(buffer_info->dma) {
1767                 pci_unmap_page(adapter->pdev,
1768                                 buffer_info->dma,
1769                                 buffer_info->length,
1770                                 PCI_DMA_TODEVICE);
1771                 buffer_info->dma = 0;
1772         }
1773         if(buffer_info->skb) {
1774                 dev_kfree_skb_any(buffer_info->skb);
1775                 buffer_info->skb = NULL;
1776         }
1777 }
1778
1779 /**
1780  * e1000_clean_tx_ring - Free Tx Buffers
1781  * @adapter: board private structure
1782  * @tx_ring: ring to be cleaned
1783  **/
1784
1785 static void
1786 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1787                     struct e1000_tx_ring *tx_ring)
1788 {
1789         struct e1000_buffer *buffer_info;
1790         unsigned long size;
1791         unsigned int i;
1792
1793         /* Free all the Tx ring sk_buffs */
1794
1795         if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
1796                 e1000_unmap_and_free_tx_resource(adapter,
1797                                 &tx_ring->previous_buffer_info);
1798         }
1799
1800         for(i = 0; i < tx_ring->count; i++) {
1801                 buffer_info = &tx_ring->buffer_info[i];
1802                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1803         }
1804
1805         size = sizeof(struct e1000_buffer) * tx_ring->count;
1806         memset(tx_ring->buffer_info, 0, size);
1807
1808         /* Zero out the descriptor ring */
1809
1810         memset(tx_ring->desc, 0, tx_ring->size);
1811
1812         tx_ring->next_to_use = 0;
1813         tx_ring->next_to_clean = 0;
1814
1815         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1816         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1817 }
1818
1819 /**
1820  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1821  * @adapter: board private structure
1822  **/
1823
1824 static void
1825 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1826 {
1827         int i;
1828
1829         for (i = 0; i < adapter->num_queues; i++)
1830                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1831 }
1832
1833 /**
1834  * e1000_free_rx_resources - Free Rx Resources
1835  * @adapter: board private structure
1836  * @rx_ring: ring to clean the resources from
1837  *
1838  * Free all receive software resources
1839  **/
1840
1841 void
1842 e1000_free_rx_resources(struct e1000_adapter *adapter,
1843                         struct e1000_rx_ring *rx_ring)
1844 {
1845         struct pci_dev *pdev = adapter->pdev;
1846
1847         e1000_clean_rx_ring(adapter, rx_ring);
1848
1849         vfree(rx_ring->buffer_info);
1850         rx_ring->buffer_info = NULL;
1851         kfree(rx_ring->ps_page);
1852         rx_ring->ps_page = NULL;
1853         kfree(rx_ring->ps_page_dma);
1854         rx_ring->ps_page_dma = NULL;
1855
1856         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1857
1858         rx_ring->desc = NULL;
1859 }
1860
1861 /**
1862  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1863  * @adapter: board private structure
1864  *
1865  * Free all receive software resources
1866  **/
1867
1868 void
1869 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1870 {
1871         int i;
1872
1873         for (i = 0; i < adapter->num_queues; i++)
1874                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1875 }
1876
1877 /**
1878  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1879  * @adapter: board private structure
1880  * @rx_ring: ring to free buffers from
1881  **/
1882
1883 static void
1884 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1885                     struct e1000_rx_ring *rx_ring)
1886 {
1887         struct e1000_buffer *buffer_info;
1888         struct e1000_ps_page *ps_page;
1889         struct e1000_ps_page_dma *ps_page_dma;
1890         struct pci_dev *pdev = adapter->pdev;
1891         unsigned long size;
1892         unsigned int i, j;
1893
1894         /* Free all the Rx ring sk_buffs */
1895
1896         for(i = 0; i < rx_ring->count; i++) {
1897                 buffer_info = &rx_ring->buffer_info[i];
1898                 if(buffer_info->skb) {
1899                         ps_page = &rx_ring->ps_page[i];
1900                         ps_page_dma = &rx_ring->ps_page_dma[i];
1901                         pci_unmap_single(pdev,
1902                                          buffer_info->dma,
1903                                          buffer_info->length,
1904                                          PCI_DMA_FROMDEVICE);
1905
1906                         dev_kfree_skb(buffer_info->skb);
1907                         buffer_info->skb = NULL;
1908
1909                         for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1910                                 if(!ps_page->ps_page[j]) break;
1911                                 pci_unmap_single(pdev,
1912                                                  ps_page_dma->ps_page_dma[j],
1913                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1914                                 ps_page_dma->ps_page_dma[j] = 0;
1915                                 put_page(ps_page->ps_page[j]);
1916                                 ps_page->ps_page[j] = NULL;
1917                         }
1918                 }
1919         }
1920
1921         size = sizeof(struct e1000_buffer) * rx_ring->count;
1922         memset(rx_ring->buffer_info, 0, size);
1923         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1924         memset(rx_ring->ps_page, 0, size);
1925         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1926         memset(rx_ring->ps_page_dma, 0, size);
1927
1928         /* Zero out the descriptor ring */
1929
1930         memset(rx_ring->desc, 0, rx_ring->size);
1931
1932         rx_ring->next_to_clean = 0;
1933         rx_ring->next_to_use = 0;
1934
1935         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1936         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1937 }
1938
1939 /**
1940  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1941  * @adapter: board private structure
1942  **/
1943
1944 static void
1945 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1946 {
1947         int i;
1948
1949         for (i = 0; i < adapter->num_queues; i++)
1950                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1951 }
1952
1953 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1954  * and memory write and invalidate disabled for certain operations
1955  */
1956 static void
1957 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1958 {
1959         struct net_device *netdev = adapter->netdev;
1960         uint32_t rctl;
1961
1962         e1000_pci_clear_mwi(&adapter->hw);
1963
1964         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1965         rctl |= E1000_RCTL_RST;
1966         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1967         E1000_WRITE_FLUSH(&adapter->hw);
1968         mdelay(5);
1969
1970         if(netif_running(netdev))
1971                 e1000_clean_all_rx_rings(adapter);
1972 }
1973
1974 static void
1975 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1976 {
1977         struct net_device *netdev = adapter->netdev;
1978         uint32_t rctl;
1979
1980         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1981         rctl &= ~E1000_RCTL_RST;
1982         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1983         E1000_WRITE_FLUSH(&adapter->hw);
1984         mdelay(5);
1985
1986         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1987                 e1000_pci_set_mwi(&adapter->hw);
1988
1989         if(netif_running(netdev)) {
1990                 e1000_configure_rx(adapter);
1991                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
1992         }
1993 }
1994
1995 /**
1996  * e1000_set_mac - Change the Ethernet Address of the NIC
1997  * @netdev: network interface device structure
1998  * @p: pointer to an address structure
1999  *
2000  * Returns 0 on success, negative on failure
2001  **/
2002
2003 static int
2004 e1000_set_mac(struct net_device *netdev, void *p)
2005 {
2006         struct e1000_adapter *adapter = netdev_priv(netdev);
2007         struct sockaddr *addr = p;
2008
2009         if(!is_valid_ether_addr(addr->sa_data))
2010                 return -EADDRNOTAVAIL;
2011
2012         /* 82542 2.0 needs to be in reset to write receive address registers */
2013
2014         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2015                 e1000_enter_82542_rst(adapter);
2016
2017         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2019
2020         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2021
2022         /* With 82571 controllers, LAA may be overwritten (with the default)
2023          * due to controller reset from the other port. */
2024         if (adapter->hw.mac_type == e1000_82571) {
2025                 /* activate the work around */
2026                 adapter->hw.laa_is_present = 1;
2027
2028                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2029                  * between the time RAR[0] gets clobbered  and the time it 
2030                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2031                  * of the RARs and no incoming packets directed to this port
2032                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2033                  * RAR[14] */
2034                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2035                                         E1000_RAR_ENTRIES - 1);
2036         }
2037
2038         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2039                 e1000_leave_82542_rst(adapter);
2040
2041         return 0;
2042 }
2043
2044 /**
2045  * e1000_set_multi - Multicast and Promiscuous mode set
2046  * @netdev: network interface device structure
2047  *
2048  * The set_multi entry point is called whenever the multicast address
2049  * list or the network interface flags are updated.  This routine is
2050  * responsible for configuring the hardware for proper multicast,
2051  * promiscuous mode, and all-multi behavior.
2052  **/
2053
2054 static void
2055 e1000_set_multi(struct net_device *netdev)
2056 {
2057         struct e1000_adapter *adapter = netdev_priv(netdev);
2058         struct e1000_hw *hw = &adapter->hw;
2059         struct dev_mc_list *mc_ptr;
2060         uint32_t rctl;
2061         uint32_t hash_value;
2062         int i, rar_entries = E1000_RAR_ENTRIES;
2063
2064         /* reserve RAR[14] for LAA over-write work-around */
2065         if (adapter->hw.mac_type == e1000_82571)
2066                 rar_entries--;
2067
2068         /* Check for Promiscuous and All Multicast modes */
2069
2070         rctl = E1000_READ_REG(hw, RCTL);
2071
2072         if(netdev->flags & IFF_PROMISC) {
2073                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2074         } else if(netdev->flags & IFF_ALLMULTI) {
2075                 rctl |= E1000_RCTL_MPE;
2076                 rctl &= ~E1000_RCTL_UPE;
2077         } else {
2078                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2079         }
2080
2081         E1000_WRITE_REG(hw, RCTL, rctl);
2082
2083         /* 82542 2.0 needs to be in reset to write receive address registers */
2084
2085         if(hw->mac_type == e1000_82542_rev2_0)
2086                 e1000_enter_82542_rst(adapter);
2087
2088         /* load the first 14 multicast address into the exact filters 1-14
2089          * RAR 0 is used for the station MAC adddress
2090          * if there are not 14 addresses, go ahead and clear the filters
2091          * -- with 82571 controllers only 0-13 entries are filled here
2092          */
2093         mc_ptr = netdev->mc_list;
2094
2095         for(i = 1; i < rar_entries; i++) {
2096                 if (mc_ptr) {
2097                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2098                         mc_ptr = mc_ptr->next;
2099                 } else {
2100                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2101                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2102                 }
2103         }
2104
2105         /* clear the old settings from the multicast hash table */
2106
2107         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2108                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2109
2110         /* load any remaining addresses into the hash table */
2111
2112         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2113                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2114                 e1000_mta_set(hw, hash_value);
2115         }
2116
2117         if(hw->mac_type == e1000_82542_rev2_0)
2118                 e1000_leave_82542_rst(adapter);
2119 }
2120
2121 /* Need to wait a few seconds after link up to get diagnostic information from
2122  * the phy */
2123
2124 static void
2125 e1000_update_phy_info(unsigned long data)
2126 {
2127         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2128         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2129 }
2130
2131 /**
2132  * e1000_82547_tx_fifo_stall - Timer Call-back
2133  * @data: pointer to adapter cast into an unsigned long
2134  **/
2135
2136 static void
2137 e1000_82547_tx_fifo_stall(unsigned long data)
2138 {
2139         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2140         struct net_device *netdev = adapter->netdev;
2141         uint32_t tctl;
2142
2143         if(atomic_read(&adapter->tx_fifo_stall)) {
2144                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2145                     E1000_READ_REG(&adapter->hw, TDH)) &&
2146                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2147                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2148                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2149                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2150                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2151                         E1000_WRITE_REG(&adapter->hw, TCTL,
2152                                         tctl & ~E1000_TCTL_EN);
2153                         E1000_WRITE_REG(&adapter->hw, TDFT,
2154                                         adapter->tx_head_addr);
2155                         E1000_WRITE_REG(&adapter->hw, TDFH,
2156                                         adapter->tx_head_addr);
2157                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2158                                         adapter->tx_head_addr);
2159                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2160                                         adapter->tx_head_addr);
2161                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2162                         E1000_WRITE_FLUSH(&adapter->hw);
2163
2164                         adapter->tx_fifo_head = 0;
2165                         atomic_set(&adapter->tx_fifo_stall, 0);
2166                         netif_wake_queue(netdev);
2167                 } else {
2168                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2169                 }
2170         }
2171 }
2172
2173 /**
2174  * e1000_watchdog - Timer Call-back
2175  * @data: pointer to adapter cast into an unsigned long
2176  **/
2177 static void
2178 e1000_watchdog(unsigned long data)
2179 {
2180         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2181
2182         /* Do the rest outside of interrupt context */
2183         schedule_work(&adapter->watchdog_task);
2184 }
2185
2186 static void
2187 e1000_watchdog_task(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190         struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
2191         uint32_t link;
2192
2193         e1000_check_for_link(&adapter->hw);
2194         if (adapter->hw.mac_type == e1000_82573) {
2195                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2196                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2197                         e1000_update_mng_vlan(adapter);
2198         }       
2199
2200         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2201            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2202                 link = !adapter->hw.serdes_link_down;
2203         else
2204                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2205
2206         if(link) {
2207                 if(!netif_carrier_ok(netdev)) {
2208                         e1000_get_speed_and_duplex(&adapter->hw,
2209                                                    &adapter->link_speed,
2210                                                    &adapter->link_duplex);
2211
2212                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2213                                adapter->link_speed,
2214                                adapter->link_duplex == FULL_DUPLEX ?
2215                                "Full Duplex" : "Half Duplex");
2216
2217                         netif_carrier_on(netdev);
2218                         netif_wake_queue(netdev);
2219                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2220                         adapter->smartspeed = 0;
2221                 }
2222         } else {
2223                 if(netif_carrier_ok(netdev)) {
2224                         adapter->link_speed = 0;
2225                         adapter->link_duplex = 0;
2226                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2227                         netif_carrier_off(netdev);
2228                         netif_stop_queue(netdev);
2229                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2230                 }
2231
2232                 e1000_smartspeed(adapter);
2233         }
2234
2235         e1000_update_stats(adapter);
2236
2237         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2238         adapter->tpt_old = adapter->stats.tpt;
2239         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2240         adapter->colc_old = adapter->stats.colc;
2241
2242         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2243         adapter->gorcl_old = adapter->stats.gorcl;
2244         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2245         adapter->gotcl_old = adapter->stats.gotcl;
2246
2247         e1000_update_adaptive(&adapter->hw);
2248
2249         if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2250                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2251                         /* We've lost link, so the controller stops DMA,
2252                          * but we've got queued Tx work that's never going
2253                          * to get done, so reset controller to flush Tx.
2254                          * (Do the reset outside of interrupt context). */
2255                         schedule_work(&adapter->tx_timeout_task);
2256                 }
2257         }
2258
2259         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2260         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2261                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2262                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2263                  * else is between 2000-8000. */
2264                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2265                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2266                         adapter->gotcl - adapter->gorcl :
2267                         adapter->gorcl - adapter->gotcl) / 10000;
2268                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2269                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2270         }
2271
2272         /* Cause software interrupt to ensure rx ring is cleaned */
2273         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2274
2275         /* Force detection of hung controller every watchdog period */
2276         adapter->detect_tx_hung = TRUE;
2277
2278         /* With 82571 controllers, LAA may be overwritten due to controller 
2279          * reset from the other port. Set the appropriate LAA in RAR[0] */
2280         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2281                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2282
2283         /* Reset the timer */
2284         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2285 }
2286
2287 #define E1000_TX_FLAGS_CSUM             0x00000001
2288 #define E1000_TX_FLAGS_VLAN             0x00000002
2289 #define E1000_TX_FLAGS_TSO              0x00000004
2290 #define E1000_TX_FLAGS_IPV4             0x00000008
2291 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2292 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2293
2294 static inline int
2295 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2296           struct sk_buff *skb)
2297 {
2298 #ifdef NETIF_F_TSO
2299         struct e1000_context_desc *context_desc;
2300         unsigned int i;
2301         uint32_t cmd_length = 0;
2302         uint16_t ipcse = 0, tucse, mss;
2303         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2304         int err;
2305
2306         if(skb_shinfo(skb)->tso_size) {
2307                 if (skb_header_cloned(skb)) {
2308                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2309                         if (err)
2310                                 return err;
2311                 }
2312
2313                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2314                 mss = skb_shinfo(skb)->tso_size;
2315                 if(skb->protocol == ntohs(ETH_P_IP)) {
2316                         skb->nh.iph->tot_len = 0;
2317                         skb->nh.iph->check = 0;
2318                         skb->h.th->check =
2319                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2320                                                    skb->nh.iph->daddr,
2321                                                    0,
2322                                                    IPPROTO_TCP,
2323                                                    0);
2324                         cmd_length = E1000_TXD_CMD_IP;
2325                         ipcse = skb->h.raw - skb->data - 1;
2326 #ifdef NETIF_F_TSO_IPV6
2327                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2328                         skb->nh.ipv6h->payload_len = 0;
2329                         skb->h.th->check =
2330                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2331                                                  &skb->nh.ipv6h->daddr,
2332                                                  0,
2333                                                  IPPROTO_TCP,
2334                                                  0);
2335                         ipcse = 0;
2336 #endif
2337                 }
2338                 ipcss = skb->nh.raw - skb->data;
2339                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2340                 tucss = skb->h.raw - skb->data;
2341                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2342                 tucse = 0;
2343
2344                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2345                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2346
2347                 i = tx_ring->next_to_use;
2348                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2349
2350                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2351                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2352                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2353                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2354                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2355                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2356                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2357                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2358                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2359
2360                 if (++i == tx_ring->count) i = 0;
2361                 tx_ring->next_to_use = i;
2362
2363                 return 1;
2364         }
2365 #endif
2366
2367         return 0;
2368 }
2369
2370 static inline boolean_t
2371 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2372               struct sk_buff *skb)
2373 {
2374         struct e1000_context_desc *context_desc;
2375         unsigned int i;
2376         uint8_t css;
2377
2378         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2379                 css = skb->h.raw - skb->data;
2380
2381                 i = tx_ring->next_to_use;
2382                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2383
2384                 context_desc->upper_setup.tcp_fields.tucss = css;
2385                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2386                 context_desc->upper_setup.tcp_fields.tucse = 0;
2387                 context_desc->tcp_seg_setup.data = 0;
2388                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2389
2390                 if (unlikely(++i == tx_ring->count)) i = 0;
2391                 tx_ring->next_to_use = i;
2392
2393                 return TRUE;
2394         }
2395
2396         return FALSE;
2397 }
2398
2399 #define E1000_MAX_TXD_PWR       12
2400 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2401
2402 static inline int
2403 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2404              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2405              unsigned int nr_frags, unsigned int mss)
2406 {
2407         struct e1000_buffer *buffer_info;
2408         unsigned int len = skb->len;
2409         unsigned int offset = 0, size, count = 0, i;
2410         unsigned int f;
2411         len -= skb->data_len;
2412
2413         i = tx_ring->next_to_use;
2414
2415         while(len) {
2416                 buffer_info = &tx_ring->buffer_info[i];
2417                 size = min(len, max_per_txd);
2418 #ifdef NETIF_F_TSO
2419                 /* Workaround for premature desc write-backs
2420                  * in TSO mode.  Append 4-byte sentinel desc */
2421                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2422                         size -= 4;
2423 #endif
2424                 /* work-around for errata 10 and it applies
2425                  * to all controllers in PCI-X mode
2426                  * The fix is to make sure that the first descriptor of a
2427                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2428                  */
2429                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2430                                 (size > 2015) && count == 0))
2431                         size = 2015;
2432                                                                                 
2433                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2434                  * terminating buffers within evenly-aligned dwords. */
2435                 if(unlikely(adapter->pcix_82544 &&
2436                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2437                    size > 4))
2438                         size -= 4;
2439
2440                 buffer_info->length = size;
2441                 buffer_info->dma =
2442                         pci_map_single(adapter->pdev,
2443                                 skb->data + offset,
2444                                 size,
2445                                 PCI_DMA_TODEVICE);
2446                 buffer_info->time_stamp = jiffies;
2447
2448                 len -= size;
2449                 offset += size;
2450                 count++;
2451                 if(unlikely(++i == tx_ring->count)) i = 0;
2452         }
2453
2454         for(f = 0; f < nr_frags; f++) {
2455                 struct skb_frag_struct *frag;
2456
2457                 frag = &skb_shinfo(skb)->frags[f];
2458                 len = frag->size;
2459                 offset = frag->page_offset;
2460
2461                 while(len) {
2462                         buffer_info = &tx_ring->buffer_info[i];
2463                         size = min(len, max_per_txd);
2464 #ifdef NETIF_F_TSO
2465                         /* Workaround for premature desc write-backs
2466                          * in TSO mode.  Append 4-byte sentinel desc */
2467                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2468                                 size -= 4;
2469 #endif
2470                         /* Workaround for potential 82544 hang in PCI-X.
2471                          * Avoid terminating buffers within evenly-aligned
2472                          * dwords. */
2473                         if(unlikely(adapter->pcix_82544 &&
2474                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2475                            size > 4))
2476                                 size -= 4;
2477
2478                         buffer_info->length = size;
2479                         buffer_info->dma =
2480                                 pci_map_page(adapter->pdev,
2481                                         frag->page,
2482                                         offset,
2483                                         size,
2484                                         PCI_DMA_TODEVICE);
2485                         buffer_info->time_stamp = jiffies;
2486
2487                         len -= size;
2488                         offset += size;
2489                         count++;
2490                         if(unlikely(++i == tx_ring->count)) i = 0;
2491                 }
2492         }
2493
2494         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2495         tx_ring->buffer_info[i].skb = skb;
2496         tx_ring->buffer_info[first].next_to_watch = i;
2497
2498         return count;
2499 }
2500
2501 static inline void
2502 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2503                int tx_flags, int count)
2504 {
2505         struct e1000_tx_desc *tx_desc = NULL;
2506         struct e1000_buffer *buffer_info;
2507         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2508         unsigned int i;
2509
2510         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2511                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2512                              E1000_TXD_CMD_TSE;
2513                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2514
2515                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2516                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2517         }
2518
2519         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2520                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2521                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2522         }
2523
2524         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2525                 txd_lower |= E1000_TXD_CMD_VLE;
2526                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2527         }
2528
2529         i = tx_ring->next_to_use;
2530
2531         while(count--) {
2532                 buffer_info = &tx_ring->buffer_info[i];
2533                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2534                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2535                 tx_desc->lower.data =
2536                         cpu_to_le32(txd_lower | buffer_info->length);
2537                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2538                 if(unlikely(++i == tx_ring->count)) i = 0;
2539         }
2540
2541         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2542
2543         /* Force memory writes to complete before letting h/w
2544          * know there are new descriptors to fetch.  (Only
2545          * applicable for weak-ordered memory model archs,
2546          * such as IA-64). */
2547         wmb();
2548
2549         tx_ring->next_to_use = i;
2550         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2551 }
2552
2553 /**
2554  * 82547 workaround to avoid controller hang in half-duplex environment.
2555  * The workaround is to avoid queuing a large packet that would span
2556  * the internal Tx FIFO ring boundary by notifying the stack to resend
2557  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2558  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2559  * to the beginning of the Tx FIFO.
2560  **/
2561
2562 #define E1000_FIFO_HDR                  0x10
2563 #define E1000_82547_PAD_LEN             0x3E0
2564
2565 static inline int
2566 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2567 {
2568         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2569         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2570
2571         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2572
2573         if(adapter->link_duplex != HALF_DUPLEX)
2574                 goto no_fifo_stall_required;
2575
2576         if(atomic_read(&adapter->tx_fifo_stall))
2577                 return 1;
2578
2579         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2580                 atomic_set(&adapter->tx_fifo_stall, 1);
2581                 return 1;
2582         }
2583
2584 no_fifo_stall_required:
2585         adapter->tx_fifo_head += skb_fifo_len;
2586         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2587                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2588         return 0;
2589 }
2590
2591 #define MINIMUM_DHCP_PACKET_SIZE 282
2592 static inline int
2593 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2594 {
2595         struct e1000_hw *hw =  &adapter->hw;
2596         uint16_t length, offset;
2597         if(vlan_tx_tag_present(skb)) {
2598                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2599                         ( adapter->hw.mng_cookie.status &
2600                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2601                         return 0;
2602         }
2603         if(htons(ETH_P_IP) == skb->protocol) {
2604                 const struct iphdr *ip = skb->nh.iph;
2605                 if(IPPROTO_UDP == ip->protocol) {
2606                         struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2607                         if(ntohs(udp->dest) == 67) {
2608                                 offset = (uint8_t *)udp + 8 - skb->data;
2609                                 length = skb->len - offset;
2610
2611                                 return e1000_mng_write_dhcp_info(hw,
2612                                                 (uint8_t *)udp + 8, length);
2613                         }
2614                 }
2615         } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2616                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2617                 if((htons(ETH_P_IP) == eth->h_proto)) {
2618                         const struct iphdr *ip = 
2619                                 (struct iphdr *)((uint8_t *)skb->data+14);
2620                         if(IPPROTO_UDP == ip->protocol) {
2621                                 struct udphdr *udp = 
2622                                         (struct udphdr *)((uint8_t *)ip + 
2623                                                 (ip->ihl << 2));
2624                                 if(ntohs(udp->dest) == 67) {
2625                                         offset = (uint8_t *)udp + 8 - skb->data;
2626                                         length = skb->len - offset;
2627
2628                                         return e1000_mng_write_dhcp_info(hw,
2629                                                         (uint8_t *)udp + 8, 
2630                                                         length);
2631                                 }
2632                         }
2633                 }
2634         }
2635         return 0;
2636 }
2637
2638 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2639 static int
2640 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2641 {
2642         struct e1000_adapter *adapter = netdev_priv(netdev);
2643         struct e1000_tx_ring *tx_ring;
2644         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2645         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2646         unsigned int tx_flags = 0;
2647         unsigned int len = skb->len;
2648         unsigned long flags;
2649         unsigned int nr_frags = 0;
2650         unsigned int mss = 0;
2651         int count = 0;
2652         int tso;
2653         unsigned int f;
2654         len -= skb->data_len;
2655
2656 #ifdef CONFIG_E1000_MQ
2657         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2658 #else
2659         tx_ring = adapter->tx_ring;
2660 #endif
2661
2662         if (unlikely(skb->len <= 0)) {
2663                 dev_kfree_skb_any(skb);
2664                 return NETDEV_TX_OK;
2665         }
2666
2667 #ifdef NETIF_F_TSO
2668         mss = skb_shinfo(skb)->tso_size;
2669         /* The controller does a simple calculation to 
2670          * make sure there is enough room in the FIFO before
2671          * initiating the DMA for each buffer.  The calc is:
2672          * 4 = ceil(buffer len/mss).  To make sure we don't
2673          * overrun the FIFO, adjust the max buffer len if mss
2674          * drops. */
2675         if(mss) {
2676                 max_per_txd = min(mss << 2, max_per_txd);
2677                 max_txd_pwr = fls(max_per_txd) - 1;
2678         }
2679
2680         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2681                 count++;
2682         count++;
2683 #else
2684         if(skb->ip_summed == CHECKSUM_HW)
2685                 count++;
2686 #endif
2687         count += TXD_USE_COUNT(len, max_txd_pwr);
2688
2689         if(adapter->pcix_82544)
2690                 count++;
2691
2692         /* work-around for errata 10 and it applies to all controllers 
2693          * in PCI-X mode, so add one more descriptor to the count
2694          */
2695         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2696                         (len > 2015)))
2697                 count++;
2698
2699         nr_frags = skb_shinfo(skb)->nr_frags;
2700         for(f = 0; f < nr_frags; f++)
2701                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2702                                        max_txd_pwr);
2703         if(adapter->pcix_82544)
2704                 count += nr_frags;
2705
2706 #ifdef NETIF_F_TSO
2707         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2708          * points to just header, pull a few bytes of payload from 
2709          * frags into skb->data */
2710         if (skb_shinfo(skb)->tso_size) {
2711                 uint8_t hdr_len;
2712                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2713                 if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) && 
2714                         (adapter->hw.mac_type == e1000_82571 ||
2715                         adapter->hw.mac_type == e1000_82572)) {
2716                         unsigned int pull_size;
2717                         pull_size = min((unsigned int)4, skb->data_len);
2718                         if (!__pskb_pull_tail(skb, pull_size)) {
2719                                 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2720                                 dev_kfree_skb_any(skb);
2721                                 return -EFAULT;
2722                         }
2723                 }
2724         }
2725 #endif
2726
2727         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2728                 e1000_transfer_dhcp_info(adapter, skb);
2729
2730         local_irq_save(flags);
2731         if (!spin_trylock(&tx_ring->tx_lock)) {
2732                 /* Collision - tell upper layer to requeue */
2733                 local_irq_restore(flags);
2734                 return NETDEV_TX_LOCKED;
2735         }
2736
2737         /* need: count + 2 desc gap to keep tail from touching
2738          * head, otherwise try next time */
2739         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2740                 netif_stop_queue(netdev);
2741                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2742                 return NETDEV_TX_BUSY;
2743         }
2744
2745         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2746                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2747                         netif_stop_queue(netdev);
2748                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2749                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2750                         return NETDEV_TX_BUSY;
2751                 }
2752         }
2753
2754         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2755                 tx_flags |= E1000_TX_FLAGS_VLAN;
2756                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2757         }
2758
2759         first = tx_ring->next_to_use;
2760         
2761         tso = e1000_tso(adapter, tx_ring, skb);
2762         if (tso < 0) {
2763                 dev_kfree_skb_any(skb);
2764                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2765                 return NETDEV_TX_OK;
2766         }
2767
2768         if (likely(tso))
2769                 tx_flags |= E1000_TX_FLAGS_TSO;
2770         else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2771                 tx_flags |= E1000_TX_FLAGS_CSUM;
2772
2773         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2774          * 82571 hardware supports TSO capabilities for IPv6 as well...
2775          * no longer assume, we must. */
2776         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2777                 tx_flags |= E1000_TX_FLAGS_IPV4;
2778
2779         e1000_tx_queue(adapter, tx_ring, tx_flags,
2780                        e1000_tx_map(adapter, tx_ring, skb, first,
2781                                     max_per_txd, nr_frags, mss));
2782
2783         netdev->trans_start = jiffies;
2784
2785         /* Make sure there is space in the ring for the next send. */
2786         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2787                 netif_stop_queue(netdev);
2788
2789         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2790         return NETDEV_TX_OK;
2791 }
2792
2793 /**
2794  * e1000_tx_timeout - Respond to a Tx Hang
2795  * @netdev: network interface device structure
2796  **/
2797
2798 static void
2799 e1000_tx_timeout(struct net_device *netdev)
2800 {
2801         struct e1000_adapter *adapter = netdev_priv(netdev);
2802
2803         /* Do the reset outside of interrupt context */
2804         schedule_work(&adapter->tx_timeout_task);
2805 }
2806
2807 static void
2808 e1000_tx_timeout_task(struct net_device *netdev)
2809 {
2810         struct e1000_adapter *adapter = netdev_priv(netdev);
2811
2812         e1000_down(adapter);
2813         e1000_up(adapter);
2814 }
2815
2816 /**
2817  * e1000_get_stats - Get System Network Statistics
2818  * @netdev: network interface device structure
2819  *
2820  * Returns the address of the device statistics structure.
2821  * The statistics are actually updated from the timer callback.
2822  **/
2823
2824 static struct net_device_stats *
2825 e1000_get_stats(struct net_device *netdev)
2826 {
2827         struct e1000_adapter *adapter = netdev_priv(netdev);
2828
2829         e1000_update_stats(adapter);
2830         return &adapter->net_stats;
2831 }
2832
2833 /**
2834  * e1000_change_mtu - Change the Maximum Transfer Unit
2835  * @netdev: network interface device structure
2836  * @new_mtu: new value for maximum frame size
2837  *
2838  * Returns 0 on success, negative on failure
2839  **/
2840
2841 static int
2842 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2843 {
2844         struct e1000_adapter *adapter = netdev_priv(netdev);
2845         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2846
2847         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2848                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2849                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2850                         return -EINVAL;
2851         }
2852
2853 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2854         /* might want this to be bigger enum check... */
2855         /* 82571 controllers limit jumbo frame size to 10500 bytes */
2856         if ((adapter->hw.mac_type == e1000_82571 || 
2857              adapter->hw.mac_type == e1000_82572) &&
2858             max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2859                 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2860                                     "on 82571 and 82572 controllers.\n");
2861                 return -EINVAL;
2862         }
2863
2864         if(adapter->hw.mac_type == e1000_82573 &&
2865             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2866                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2867                                     "on 82573\n");
2868                 return -EINVAL;
2869         }
2870
2871         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2872                 adapter->rx_buffer_len = max_frame;
2873                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2874         } else {
2875                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2876                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2877                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2878                                             "on 82542\n");
2879                         return -EINVAL;
2880
2881                 } else {
2882                         if(max_frame <= E1000_RXBUFFER_2048) {
2883                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2884                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2885                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2886                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2887                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2888                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2889                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2890                         }
2891                 }
2892         }
2893
2894         netdev->mtu = new_mtu;
2895
2896         if(netif_running(netdev)) {
2897                 e1000_down(adapter);
2898                 e1000_up(adapter);
2899         }
2900
2901         adapter->hw.max_frame_size = max_frame;
2902
2903         return 0;
2904 }
2905
2906 /**
2907  * e1000_update_stats - Update the board statistics counters
2908  * @adapter: board private structure
2909  **/
2910
2911 void
2912 e1000_update_stats(struct e1000_adapter *adapter)
2913 {
2914         struct e1000_hw *hw = &adapter->hw;
2915         unsigned long flags;
2916         uint16_t phy_tmp;
2917
2918 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2919
2920         spin_lock_irqsave(&adapter->stats_lock, flags);
2921
2922         /* these counters are modified from e1000_adjust_tbi_stats,
2923          * called from the interrupt context, so they must only
2924          * be written while holding adapter->stats_lock
2925          */
2926
2927         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2928         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2929         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2930         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2931         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2932         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2933         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2934         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2935         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2936         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2937         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2938         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2939         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2940
2941         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2942         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2943         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2944         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2945         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2946         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2947         adapter->stats.dc += E1000_READ_REG(hw, DC);
2948         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2949         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2950         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2951         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2952         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2953         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2954         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2955         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2956         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2957         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2958         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2959         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2960         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2961         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2962         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2963         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2964         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2965         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2966         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2967         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2968         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2969         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2970         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2971         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2972         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2973         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2974         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2975
2976         /* used for adaptive IFS */
2977
2978         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2979         adapter->stats.tpt += hw->tx_packet_delta;
2980         hw->collision_delta = E1000_READ_REG(hw, COLC);
2981         adapter->stats.colc += hw->collision_delta;
2982
2983         if(hw->mac_type >= e1000_82543) {
2984                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2985                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2986                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2987                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2988                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2989                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2990         }
2991         if(hw->mac_type > e1000_82547_rev_2) {
2992                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2993                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2994                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2995                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2996                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2997                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2998                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2999                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3000                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3001         }
3002
3003         /* Fill out the OS statistics structure */
3004
3005         adapter->net_stats.rx_packets = adapter->stats.gprc;
3006         adapter->net_stats.tx_packets = adapter->stats.gptc;
3007         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3008         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3009         adapter->net_stats.multicast = adapter->stats.mprc;
3010         adapter->net_stats.collisions = adapter->stats.colc;
3011
3012         /* Rx Errors */
3013
3014         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3015                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3016                 adapter->stats.rlec + adapter->stats.mpc + 
3017                 adapter->stats.cexterr;
3018         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3019         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3020         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3021         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3022         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3023
3024         /* Tx Errors */
3025
3026         adapter->net_stats.tx_errors = adapter->stats.ecol +
3027                                        adapter->stats.latecol;
3028         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3029         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3030         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3031
3032         /* Tx Dropped needs to be maintained elsewhere */
3033
3034         /* Phy Stats */
3035
3036         if(hw->media_type == e1000_media_type_copper) {
3037                 if((adapter->link_speed == SPEED_1000) &&
3038                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3039                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3040                         adapter->phy_stats.idle_errors += phy_tmp;
3041                 }
3042
3043                 if((hw->mac_type <= e1000_82546) &&
3044                    (hw->phy_type == e1000_phy_m88) &&
3045                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3046                         adapter->phy_stats.receive_errors += phy_tmp;
3047         }
3048
3049         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3050 }
3051
3052 #ifdef CONFIG_E1000_MQ
3053 void
3054 e1000_rx_schedule(void *data)
3055 {
3056         struct net_device *poll_dev, *netdev = data;
3057         struct e1000_adapter *adapter = netdev->priv;
3058         int this_cpu = get_cpu();
3059
3060         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3061         if (poll_dev == NULL) {
3062                 put_cpu();
3063                 return;
3064         }
3065
3066         if (likely(netif_rx_schedule_prep(poll_dev)))
3067                 __netif_rx_schedule(poll_dev);
3068         else
3069                 e1000_irq_enable(adapter);
3070
3071         put_cpu();
3072 }
3073 #endif
3074
3075 /**
3076  * e1000_intr - Interrupt Handler
3077  * @irq: interrupt number
3078  * @data: pointer to a network interface device structure
3079  * @pt_regs: CPU registers structure
3080  **/
3081
3082 static irqreturn_t
3083 e1000_intr(int irq, void *data, struct pt_regs *regs)
3084 {
3085         struct net_device *netdev = data;
3086         struct e1000_adapter *adapter = netdev_priv(netdev);
3087         struct e1000_hw *hw = &adapter->hw;
3088         uint32_t icr = E1000_READ_REG(hw, ICR);
3089         int i;
3090
3091         if(unlikely(!icr))
3092                 return IRQ_NONE;  /* Not our interrupt */
3093
3094         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3095                 hw->get_link_status = 1;
3096                 mod_timer(&adapter->watchdog_timer, jiffies);
3097         }
3098
3099 #ifdef CONFIG_E1000_NAPI
3100         atomic_inc(&adapter->irq_sem);
3101         E1000_WRITE_REG(hw, IMC, ~0);
3102         E1000_WRITE_FLUSH(hw);
3103 #ifdef CONFIG_E1000_MQ
3104         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3105                 cpu_set(adapter->cpu_for_queue[0],
3106                         adapter->rx_sched_call_data.cpumask);
3107                 for (i = 1; i < adapter->num_queues; i++) {
3108                         cpu_set(adapter->cpu_for_queue[i],
3109                                 adapter->rx_sched_call_data.cpumask);
3110                         atomic_inc(&adapter->irq_sem);
3111                 }
3112                 atomic_set(&adapter->rx_sched_call_data.count, i);
3113                 smp_call_async_mask(&adapter->rx_sched_call_data);
3114         } else {
3115                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3116         }
3117 #else
3118         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3119                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3120         else
3121                 e1000_irq_enable(adapter);
3122 #endif
3123 #else
3124         /* Writing IMC and IMS is needed for 82547.
3125            Due to Hub Link bus being occupied, an interrupt
3126            de-assertion message is not able to be sent.
3127            When an interrupt assertion message is generated later,
3128            two messages are re-ordered and sent out.
3129            That causes APIC to think 82547 is in de-assertion
3130            state, while 82547 is in assertion state, resulting
3131            in dead lock. Writing IMC forces 82547 into
3132            de-assertion state.
3133         */
3134         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3135                 atomic_inc(&adapter->irq_sem);
3136                 E1000_WRITE_REG(hw, IMC, ~0);
3137         }
3138
3139         for(i = 0; i < E1000_MAX_INTR; i++)
3140                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3141                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3142                         break;
3143
3144         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3145                 e1000_irq_enable(adapter);
3146
3147 #endif
3148
3149         return IRQ_HANDLED;
3150 }
3151
3152 #ifdef CONFIG_E1000_NAPI
3153 /**
3154  * e1000_clean - NAPI Rx polling callback
3155  * @adapter: board private structure
3156  **/
3157
3158 static int
3159 e1000_clean(struct net_device *poll_dev, int *budget)
3160 {
3161         struct e1000_adapter *adapter;
3162         int work_to_do = min(*budget, poll_dev->quota);
3163         int tx_cleaned, i = 0, work_done = 0;
3164
3165         /* Must NOT use netdev_priv macro here. */
3166         adapter = poll_dev->priv;
3167
3168         /* Keep link state information with original netdev */
3169         if (!netif_carrier_ok(adapter->netdev))
3170                 goto quit_polling;
3171
3172         while (poll_dev != &adapter->polling_netdev[i]) {
3173                 i++;
3174                 if (unlikely(i == adapter->num_queues))
3175                         BUG();
3176         }
3177
3178         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3179         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3180                           &work_done, work_to_do);
3181
3182         *budget -= work_done;
3183         poll_dev->quota -= work_done;
3184         
3185         /* If no Tx and not enough Rx work done, exit the polling mode */
3186         if((!tx_cleaned && (work_done == 0)) ||
3187            !netif_running(adapter->netdev)) {
3188 quit_polling:
3189                 netif_rx_complete(poll_dev);
3190                 e1000_irq_enable(adapter);
3191                 return 0;
3192         }
3193
3194         return 1;
3195 }
3196
3197 #endif
3198 /**
3199  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3200  * @adapter: board private structure
3201  **/
3202
3203 static boolean_t
3204 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3205                    struct e1000_tx_ring *tx_ring)
3206 {
3207         struct net_device *netdev = adapter->netdev;
3208         struct e1000_tx_desc *tx_desc, *eop_desc;
3209         struct e1000_buffer *buffer_info;
3210         unsigned int i, eop;
3211         boolean_t cleaned = FALSE;
3212
3213         i = tx_ring->next_to_clean;
3214         eop = tx_ring->buffer_info[i].next_to_watch;
3215         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3216
3217         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3218                 /* Premature writeback of Tx descriptors clear (free buffers
3219                  * and unmap pci_mapping) previous_buffer_info */
3220                 if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
3221                         e1000_unmap_and_free_tx_resource(adapter,
3222                                         &tx_ring->previous_buffer_info);
3223                 }
3224
3225                 for(cleaned = FALSE; !cleaned; ) {
3226                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3227                         buffer_info = &tx_ring->buffer_info[i];
3228                         cleaned = (i == eop);
3229
3230 #ifdef NETIF_F_TSO
3231                         if (!(netdev->features & NETIF_F_TSO)) {
3232 #endif
3233                                 e1000_unmap_and_free_tx_resource(adapter,
3234                                                                  buffer_info);
3235 #ifdef NETIF_F_TSO
3236                         } else {
3237                                 if (cleaned) {
3238                                         memcpy(&tx_ring->previous_buffer_info,
3239                                                buffer_info,
3240                                                sizeof(struct e1000_buffer));
3241                                         memset(buffer_info, 0,
3242                                                sizeof(struct e1000_buffer));
3243                                 } else {
3244                                         e1000_unmap_and_free_tx_resource(
3245                                             adapter, buffer_info);
3246                                 }
3247                         }
3248 #endif
3249
3250                         tx_desc->buffer_addr = 0;
3251                         tx_desc->lower.data = 0;
3252                         tx_desc->upper.data = 0;
3253
3254                         if(unlikely(++i == tx_ring->count)) i = 0;
3255                 }
3256
3257                 tx_ring->pkt++;
3258                 
3259                 eop = tx_ring->buffer_info[i].next_to_watch;
3260                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3261         }
3262
3263         tx_ring->next_to_clean = i;
3264
3265         spin_lock(&tx_ring->tx_lock);
3266
3267         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3268                     netif_carrier_ok(netdev)))
3269                 netif_wake_queue(netdev);
3270
3271         spin_unlock(&tx_ring->tx_lock);
3272
3273         if (adapter->detect_tx_hung) {
3274                 /* Detect a transmit hang in hardware, this serializes the
3275                  * check with the clearing of time_stamp and movement of i */
3276                 adapter->detect_tx_hung = FALSE;
3277                 if (tx_ring->buffer_info[i].dma &&
3278                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3279                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3280                         E1000_STATUS_TXOFF)) {
3281
3282                         /* detected Tx unit hang */
3283                         i = tx_ring->next_to_clean;
3284                         eop = tx_ring->buffer_info[i].next_to_watch;
3285                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3286                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3287                                         "  TDH                  <%x>\n"
3288                                         "  TDT                  <%x>\n"
3289                                         "  next_to_use          <%x>\n"
3290                                         "  next_to_clean        <%x>\n"
3291                                         "buffer_info[next_to_clean]\n"
3292                                         "  dma                  <%llx>\n"
3293                                         "  time_stamp           <%lx>\n"
3294                                         "  next_to_watch        <%x>\n"
3295                                         "  jiffies              <%lx>\n"
3296                                         "  next_to_watch.status <%x>\n",
3297                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3298                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3299                                 tx_ring->next_to_use,
3300                                 i,
3301                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3302                                 tx_ring->buffer_info[i].time_stamp,
3303                                 eop,
3304                                 jiffies,
3305                                 eop_desc->upper.fields.status);
3306                         netif_stop_queue(netdev);
3307                 }
3308         }
3309 #ifdef NETIF_F_TSO
3310         if (unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3311             time_after(jiffies, tx_ring->previous_buffer_info.time_stamp + HZ)))
3312                 e1000_unmap_and_free_tx_resource(
3313                     adapter, &tx_ring->previous_buffer_info);
3314 #endif
3315         return cleaned;
3316 }
3317
3318 /**
3319  * e1000_rx_checksum - Receive Checksum Offload for 82543
3320  * @adapter:     board private structure
3321  * @status_err:  receive descriptor status and error fields
3322  * @csum:        receive descriptor csum field
3323  * @sk_buff:     socket buffer with received data
3324  **/
3325
3326 static inline void
3327 e1000_rx_checksum(struct e1000_adapter *adapter,
3328                   uint32_t status_err, uint32_t csum,
3329                   struct sk_buff *skb)
3330 {
3331         uint16_t status = (uint16_t)status_err;
3332         uint8_t errors = (uint8_t)(status_err >> 24);
3333         skb->ip_summed = CHECKSUM_NONE;
3334
3335         /* 82543 or newer only */
3336         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3337         /* Ignore Checksum bit is set */
3338         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3339         /* TCP/UDP checksum error bit is set */
3340         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3341                 /* let the stack verify checksum errors */
3342                 adapter->hw_csum_err++;
3343                 return;
3344         }
3345         /* TCP/UDP Checksum has not been calculated */
3346         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3347                 if(!(status & E1000_RXD_STAT_TCPCS))
3348                         return;
3349         } else {
3350                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3351                         return;
3352         }
3353         /* It must be a TCP or UDP packet with a valid checksum */
3354         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3355                 /* TCP checksum is good */
3356                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3357         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3358                 /* IP fragment with UDP payload */
3359                 /* Hardware complements the payload checksum, so we undo it
3360                  * and then put the value in host order for further stack use.
3361                  */
3362                 csum = ntohl(csum ^ 0xFFFF);
3363                 skb->csum = csum;
3364                 skb->ip_summed = CHECKSUM_HW;
3365         }
3366         adapter->hw_csum_good++;
3367 }
3368
3369 /**
3370  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3371  * @adapter: board private structure
3372  **/
3373
3374 static boolean_t
3375 #ifdef CONFIG_E1000_NAPI
3376 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3377                    struct e1000_rx_ring *rx_ring,
3378                    int *work_done, int work_to_do)
3379 #else
3380 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3381                    struct e1000_rx_ring *rx_ring)
3382 #endif
3383 {
3384         struct net_device *netdev = adapter->netdev;
3385         struct pci_dev *pdev = adapter->pdev;
3386         struct e1000_rx_desc *rx_desc;
3387         struct e1000_buffer *buffer_info;
3388         struct sk_buff *skb;
3389         unsigned long flags;
3390         uint32_t length;
3391         uint8_t last_byte;
3392         unsigned int i;
3393         boolean_t cleaned = FALSE;
3394
3395         i = rx_ring->next_to_clean;
3396         rx_desc = E1000_RX_DESC(*rx_ring, i);
3397
3398         while(rx_desc->status & E1000_RXD_STAT_DD) {
3399                 buffer_info = &rx_ring->buffer_info[i];
3400 #ifdef CONFIG_E1000_NAPI
3401                 if(*work_done >= work_to_do)
3402                         break;
3403                 (*work_done)++;
3404 #endif
3405                 cleaned = TRUE;
3406
3407                 pci_unmap_single(pdev,
3408                                  buffer_info->dma,
3409                                  buffer_info->length,
3410                                  PCI_DMA_FROMDEVICE);
3411
3412                 skb = buffer_info->skb;
3413                 length = le16_to_cpu(rx_desc->length);
3414
3415                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3416                         /* All receives must fit into a single buffer */
3417                         E1000_DBG("%s: Receive packet consumed multiple"
3418                                   " buffers\n", netdev->name);
3419                         dev_kfree_skb_irq(skb);
3420                         goto next_desc;
3421                 }
3422
3423                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3424                         last_byte = *(skb->data + length - 1);
3425                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3426                                       rx_desc->errors, length, last_byte)) {
3427                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3428                                 e1000_tbi_adjust_stats(&adapter->hw,
3429                                                        &adapter->stats,
3430                                                        length, skb->data);
3431                                 spin_unlock_irqrestore(&adapter->stats_lock,
3432                                                        flags);
3433                                 length--;
3434                         } else {
3435                                 dev_kfree_skb_irq(skb);
3436                                 goto next_desc;
3437                         }
3438                 }
3439
3440                 /* Good Receive */
3441                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3442
3443                 /* Receive Checksum Offload */
3444                 e1000_rx_checksum(adapter,
3445                                   (uint32_t)(rx_desc->status) |
3446                                   ((uint32_t)(rx_desc->errors) << 24),
3447                                   rx_desc->csum, skb);
3448                 skb->protocol = eth_type_trans(skb, netdev);
3449 #ifdef CONFIG_E1000_NAPI
3450                 if(unlikely(adapter->vlgrp &&
3451                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3452                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3453                                                  le16_to_cpu(rx_desc->special) &
3454                                                  E1000_RXD_SPC_VLAN_MASK);
3455                 } else {
3456                         netif_receive_skb(skb);
3457                 }
3458 #else /* CONFIG_E1000_NAPI */
3459                 if(unlikely(adapter->vlgrp &&
3460                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3461                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3462                                         le16_to_cpu(rx_desc->special) &
3463                                         E1000_RXD_SPC_VLAN_MASK);
3464                 } else {
3465                         netif_rx(skb);
3466                 }
3467 #endif /* CONFIG_E1000_NAPI */
3468                 netdev->last_rx = jiffies;
3469                 rx_ring->pkt++;
3470
3471 next_desc:
3472                 rx_desc->status = 0;
3473                 buffer_info->skb = NULL;
3474                 if(unlikely(++i == rx_ring->count)) i = 0;
3475
3476                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3477         }
3478         rx_ring->next_to_clean = i;
3479         adapter->alloc_rx_buf(adapter, rx_ring);
3480
3481         return cleaned;
3482 }
3483
3484 /**
3485  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3486  * @adapter: board private structure
3487  **/
3488
3489 static boolean_t
3490 #ifdef CONFIG_E1000_NAPI
3491 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3492                       struct e1000_rx_ring *rx_ring,
3493                       int *work_done, int work_to_do)
3494 #else
3495 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3496                       struct e1000_rx_ring *rx_ring)
3497 #endif
3498 {
3499         union e1000_rx_desc_packet_split *rx_desc;
3500         struct net_device *netdev = adapter->netdev;
3501         struct pci_dev *pdev = adapter->pdev;
3502         struct e1000_buffer *buffer_info;
3503         struct e1000_ps_page *ps_page;
3504         struct e1000_ps_page_dma *ps_page_dma;
3505         struct sk_buff *skb;
3506         unsigned int i, j;
3507         uint32_t length, staterr;
3508         boolean_t cleaned = FALSE;
3509
3510         i = rx_ring->next_to_clean;
3511         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3512         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3513
3514         while(staterr & E1000_RXD_STAT_DD) {
3515                 buffer_info = &rx_ring->buffer_info[i];
3516                 ps_page = &rx_ring->ps_page[i];
3517                 ps_page_dma = &rx_ring->ps_page_dma[i];
3518 #ifdef CONFIG_E1000_NAPI
3519                 if(unlikely(*work_done >= work_to_do))
3520                         break;
3521                 (*work_done)++;
3522 #endif
3523                 cleaned = TRUE;
3524                 pci_unmap_single(pdev, buffer_info->dma,
3525                                  buffer_info->length,
3526                                  PCI_DMA_FROMDEVICE);
3527
3528                 skb = buffer_info->skb;
3529
3530                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3531                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3532                                   " the full packet\n", netdev->name);
3533                         dev_kfree_skb_irq(skb);
3534                         goto next_desc;
3535                 }
3536
3537                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3538                         dev_kfree_skb_irq(skb);
3539                         goto next_desc;
3540                 }
3541
3542                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3543
3544                 if(unlikely(!length)) {
3545                         E1000_DBG("%s: Last part of the packet spanning"
3546                                   " multiple descriptors\n", netdev->name);
3547                         dev_kfree_skb_irq(skb);
3548                         goto next_desc;
3549                 }
3550
3551                 /* Good Receive */
3552                 skb_put(skb, length);
3553
3554                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3555                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3556                                 break;
3557
3558                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3559                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3560                         ps_page_dma->ps_page_dma[j] = 0;
3561                         skb_shinfo(skb)->frags[j].page =
3562                                 ps_page->ps_page[j];
3563                         ps_page->ps_page[j] = NULL;
3564                         skb_shinfo(skb)->frags[j].page_offset = 0;
3565                         skb_shinfo(skb)->frags[j].size = length;
3566                         skb_shinfo(skb)->nr_frags++;
3567                         skb->len += length;
3568                         skb->data_len += length;
3569                 }
3570
3571                 e1000_rx_checksum(adapter, staterr,
3572                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3573                 skb->protocol = eth_type_trans(skb, netdev);
3574
3575 #ifdef HAVE_RX_ZERO_COPY
3576                 if(likely(rx_desc->wb.upper.header_status &
3577                           E1000_RXDPS_HDRSTAT_HDRSP))
3578                         skb_shinfo(skb)->zero_copy = TRUE;
3579 #endif
3580 #ifdef CONFIG_E1000_NAPI
3581                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3582                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3583                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3584                                 E1000_RXD_SPC_VLAN_MASK);
3585                 } else {
3586                         netif_receive_skb(skb);
3587                 }
3588 #else /* CONFIG_E1000_NAPI */
3589                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3590                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3591                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3592                                 E1000_RXD_SPC_VLAN_MASK);
3593                 } else {
3594                         netif_rx(skb);
3595                 }
3596 #endif /* CONFIG_E1000_NAPI */
3597                 netdev->last_rx = jiffies;
3598                 rx_ring->pkt++;
3599
3600 next_desc:
3601                 rx_desc->wb.middle.status_error &= ~0xFF;
3602                 buffer_info->skb = NULL;
3603                 if(unlikely(++i == rx_ring->count)) i = 0;
3604
3605                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3606                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3607         }
3608         rx_ring->next_to_clean = i;
3609         adapter->alloc_rx_buf(adapter, rx_ring);
3610
3611         return cleaned;
3612 }
3613
3614 /**
3615  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3616  * @adapter: address of board private structure
3617  **/
3618
3619 static void
3620 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3621                        struct e1000_rx_ring *rx_ring)
3622 {
3623         struct net_device *netdev = adapter->netdev;
3624         struct pci_dev *pdev = adapter->pdev;
3625         struct e1000_rx_desc *rx_desc;
3626         struct e1000_buffer *buffer_info;
3627         struct sk_buff *skb;
3628         unsigned int i;
3629         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3630
3631         i = rx_ring->next_to_use;
3632         buffer_info = &rx_ring->buffer_info[i];
3633
3634         while(!buffer_info->skb) {
3635                 skb = dev_alloc_skb(bufsz);
3636
3637                 if(unlikely(!skb)) {
3638                         /* Better luck next round */
3639                         break;
3640                 }
3641
3642                 /* Fix for errata 23, can't cross 64kB boundary */
3643                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3644                         struct sk_buff *oldskb = skb;
3645                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3646                                              "at %p\n", bufsz, skb->data);
3647                         /* Try again, without freeing the previous */
3648                         skb = dev_alloc_skb(bufsz);
3649                         /* Failed allocation, critical failure */
3650                         if (!skb) {
3651                                 dev_kfree_skb(oldskb);
3652                                 break;
3653                         }
3654
3655                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3656                                 /* give up */
3657                                 dev_kfree_skb(skb);
3658                                 dev_kfree_skb(oldskb);
3659                                 break; /* while !buffer_info->skb */
3660                         } else {
3661                                 /* Use new allocation */
3662                                 dev_kfree_skb(oldskb);
3663                         }
3664                 }
3665                 /* Make buffer alignment 2 beyond a 16 byte boundary
3666                  * this will result in a 16 byte aligned IP header after
3667                  * the 14 byte MAC header is removed
3668                  */
3669                 skb_reserve(skb, NET_IP_ALIGN);
3670
3671                 skb->dev = netdev;
3672
3673                 buffer_info->skb = skb;
3674                 buffer_info->length = adapter->rx_buffer_len;
3675                 buffer_info->dma = pci_map_single(pdev,
3676                                                   skb->data,
3677                                                   adapter->rx_buffer_len,
3678                                                   PCI_DMA_FROMDEVICE);
3679
3680                 /* Fix for errata 23, can't cross 64kB boundary */
3681                 if (!e1000_check_64k_bound(adapter,
3682                                         (void *)(unsigned long)buffer_info->dma,
3683                                         adapter->rx_buffer_len)) {
3684                         DPRINTK(RX_ERR, ERR,
3685                                 "dma align check failed: %u bytes at %p\n",
3686                                 adapter->rx_buffer_len,
3687                                 (void *)(unsigned long)buffer_info->dma);
3688                         dev_kfree_skb(skb);
3689                         buffer_info->skb = NULL;
3690
3691                         pci_unmap_single(pdev, buffer_info->dma,
3692                                          adapter->rx_buffer_len,
3693                                          PCI_DMA_FROMDEVICE);
3694
3695                         break; /* while !buffer_info->skb */
3696                 }
3697                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3698                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3699
3700                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3701                         /* Force memory writes to complete before letting h/w
3702                          * know there are new descriptors to fetch.  (Only
3703                          * applicable for weak-ordered memory model archs,
3704                          * such as IA-64). */
3705                         wmb();
3706                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3707                 }
3708
3709                 if(unlikely(++i == rx_ring->count)) i = 0;
3710                 buffer_info = &rx_ring->buffer_info[i];
3711         }
3712
3713         rx_ring->next_to_use = i;
3714 }
3715
3716 /**
3717  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3718  * @adapter: address of board private structure
3719  **/
3720
3721 static void
3722 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3723                           struct e1000_rx_ring *rx_ring)
3724 {
3725         struct net_device *netdev = adapter->netdev;
3726         struct pci_dev *pdev = adapter->pdev;
3727         union e1000_rx_desc_packet_split *rx_desc;
3728         struct e1000_buffer *buffer_info;
3729         struct e1000_ps_page *ps_page;
3730         struct e1000_ps_page_dma *ps_page_dma;
3731         struct sk_buff *skb;
3732         unsigned int i, j;
3733
3734         i = rx_ring->next_to_use;
3735         buffer_info = &rx_ring->buffer_info[i];
3736         ps_page = &rx_ring->ps_page[i];
3737         ps_page_dma = &rx_ring->ps_page_dma[i];
3738
3739         while(!buffer_info->skb) {
3740                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3741
3742                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3743                         if(unlikely(!ps_page->ps_page[j])) {
3744                                 ps_page->ps_page[j] =
3745                                         alloc_page(GFP_ATOMIC);
3746                                 if(unlikely(!ps_page->ps_page[j]))
3747                                         goto no_buffers;
3748                                 ps_page_dma->ps_page_dma[j] =
3749                                         pci_map_page(pdev,
3750                                                      ps_page->ps_page[j],
3751                                                      0, PAGE_SIZE,
3752                                                      PCI_DMA_FROMDEVICE);
3753                         }
3754                         /* Refresh the desc even if buffer_addrs didn't
3755                          * change because each write-back erases this info.
3756                          */
3757                         rx_desc->read.buffer_addr[j+1] =
3758                                 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3759                 }
3760
3761                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3762
3763                 if(unlikely(!skb))
3764                         break;
3765
3766                 /* Make buffer alignment 2 beyond a 16 byte boundary
3767                  * this will result in a 16 byte aligned IP header after
3768                  * the 14 byte MAC header is removed
3769                  */
3770                 skb_reserve(skb, NET_IP_ALIGN);
3771
3772                 skb->dev = netdev;
3773
3774                 buffer_info->skb = skb;
3775                 buffer_info->length = adapter->rx_ps_bsize0;
3776                 buffer_info->dma = pci_map_single(pdev, skb->data,
3777                                                   adapter->rx_ps_bsize0,
3778                                                   PCI_DMA_FROMDEVICE);
3779
3780                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3781
3782                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3783                         /* Force memory writes to complete before letting h/w
3784                          * know there are new descriptors to fetch.  (Only
3785                          * applicable for weak-ordered memory model archs,
3786                          * such as IA-64). */
3787                         wmb();
3788                         /* Hardware increments by 16 bytes, but packet split
3789                          * descriptors are 32 bytes...so we increment tail
3790                          * twice as much.
3791                          */
3792                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3793                 }
3794
3795                 if(unlikely(++i == rx_ring->count)) i = 0;
3796                 buffer_info = &rx_ring->buffer_info[i];
3797                 ps_page = &rx_ring->ps_page[i];
3798                 ps_page_dma = &rx_ring->ps_page_dma[i];
3799         }
3800
3801 no_buffers:
3802         rx_ring->next_to_use = i;
3803 }
3804
3805 /**
3806  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3807  * @adapter:
3808  **/
3809
3810 static void
3811 e1000_smartspeed(struct e1000_adapter *adapter)
3812 {
3813         uint16_t phy_status;
3814         uint16_t phy_ctrl;
3815
3816         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3817            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3818                 return;
3819
3820         if(adapter->smartspeed == 0) {
3821                 /* If Master/Slave config fault is asserted twice,
3822                  * we assume back-to-back */
3823                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3824                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3825                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3826                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3827                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3828                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3829                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3830                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3831                                             phy_ctrl);
3832                         adapter->smartspeed++;
3833                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3834                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3835                                                &phy_ctrl)) {
3836                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3837                                              MII_CR_RESTART_AUTO_NEG);
3838                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3839                                                     phy_ctrl);
3840                         }
3841                 }
3842                 return;
3843         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3844                 /* If still no link, perhaps using 2/3 pair cable */
3845                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3846                 phy_ctrl |= CR_1000T_MS_ENABLE;
3847                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3848                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3849                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3850                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3851                                      MII_CR_RESTART_AUTO_NEG);
3852                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3853                 }
3854         }
3855         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3856         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3857                 adapter->smartspeed = 0;
3858 }
3859
3860 /**
3861  * e1000_ioctl -
3862  * @netdev:
3863  * @ifreq:
3864  * @cmd:
3865  **/
3866
3867 static int
3868 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3869 {
3870         switch (cmd) {
3871         case SIOCGMIIPHY:
3872         case SIOCGMIIREG:
3873         case SIOCSMIIREG:
3874                 return e1000_mii_ioctl(netdev, ifr, cmd);
3875         default:
3876                 return -EOPNOTSUPP;
3877         }
3878 }
3879
3880 /**
3881  * e1000_mii_ioctl -
3882  * @netdev:
3883  * @ifreq:
3884  * @cmd:
3885  **/
3886
3887 static int
3888 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3889 {
3890         struct e1000_adapter *adapter = netdev_priv(netdev);
3891         struct mii_ioctl_data *data = if_mii(ifr);
3892         int retval;
3893         uint16_t mii_reg;
3894         uint16_t spddplx;
3895         unsigned long flags;
3896
3897         if(adapter->hw.media_type != e1000_media_type_copper)
3898                 return -EOPNOTSUPP;
3899
3900         switch (cmd) {
3901         case SIOCGMIIPHY:
3902                 data->phy_id = adapter->hw.phy_addr;
3903                 break;
3904         case SIOCGMIIREG:
3905                 if(!capable(CAP_NET_ADMIN))
3906                         return -EPERM;
3907                 spin_lock_irqsave(&adapter->stats_lock, flags);
3908                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3909                                    &data->val_out)) {
3910                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3911                         return -EIO;
3912                 }
3913                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3914                 break;
3915         case SIOCSMIIREG:
3916                 if(!capable(CAP_NET_ADMIN))
3917                         return -EPERM;
3918                 if(data->reg_num & ~(0x1F))
3919                         return -EFAULT;
3920                 mii_reg = data->val_in;
3921                 spin_lock_irqsave(&adapter->stats_lock, flags);
3922                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3923                                         mii_reg)) {
3924                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3925                         return -EIO;
3926                 }
3927                 if(adapter->hw.phy_type == e1000_phy_m88) {
3928                         switch (data->reg_num) {
3929                         case PHY_CTRL:
3930                                 if(mii_reg & MII_CR_POWER_DOWN)
3931                                         break;
3932                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3933                                         adapter->hw.autoneg = 1;
3934                                         adapter->hw.autoneg_advertised = 0x2F;
3935                                 } else {
3936                                         if (mii_reg & 0x40)
3937                                                 spddplx = SPEED_1000;
3938                                         else if (mii_reg & 0x2000)
3939                                                 spddplx = SPEED_100;
3940                                         else
3941                                                 spddplx = SPEED_10;
3942                                         spddplx += (mii_reg & 0x100)
3943                                                    ? FULL_DUPLEX :
3944                                                    HALF_DUPLEX;
3945                                         retval = e1000_set_spd_dplx(adapter,
3946                                                                     spddplx);
3947                                         if(retval) {
3948                                                 spin_unlock_irqrestore(
3949                                                         &adapter->stats_lock, 
3950                                                         flags);
3951                                                 return retval;
3952                                         }
3953                                 }
3954                                 if(netif_running(adapter->netdev)) {
3955                                         e1000_down(adapter);
3956                                         e1000_up(adapter);
3957                                 } else
3958                                         e1000_reset(adapter);
3959                                 break;
3960                         case M88E1000_PHY_SPEC_CTRL:
3961                         case M88E1000_EXT_PHY_SPEC_CTRL:
3962                                 if(e1000_phy_reset(&adapter->hw)) {
3963                                         spin_unlock_irqrestore(
3964                                                 &adapter->stats_lock, flags);
3965                                         return -EIO;
3966                                 }
3967                                 break;
3968                         }
3969                 } else {
3970                         switch (data->reg_num) {
3971                         case PHY_CTRL:
3972                                 if(mii_reg & MII_CR_POWER_DOWN)
3973                                         break;
3974                                 if(netif_running(adapter->netdev)) {
3975                                         e1000_down(adapter);
3976                                         e1000_up(adapter);
3977                                 } else
3978                                         e1000_reset(adapter);
3979                                 break;
3980                         }
3981                 }
3982                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3983                 break;
3984         default:
3985                 return -EOPNOTSUPP;
3986         }
3987         return E1000_SUCCESS;
3988 }
3989
3990 void
3991 e1000_pci_set_mwi(struct e1000_hw *hw)
3992 {
3993         struct e1000_adapter *adapter = hw->back;
3994         int ret_val = pci_set_mwi(adapter->pdev);
3995
3996         if(ret_val)
3997                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
3998 }
3999
4000 void
4001 e1000_pci_clear_mwi(struct e1000_hw *hw)
4002 {
4003         struct e1000_adapter *adapter = hw->back;
4004
4005         pci_clear_mwi(adapter->pdev);
4006 }
4007
4008 void
4009 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4010 {
4011         struct e1000_adapter *adapter = hw->back;
4012
4013         pci_read_config_word(adapter->pdev, reg, value);
4014 }
4015
4016 void
4017 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4018 {
4019         struct e1000_adapter *adapter = hw->back;
4020
4021         pci_write_config_word(adapter->pdev, reg, *value);
4022 }
4023
4024 uint32_t
4025 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4026 {
4027         return inl(port);
4028 }
4029
4030 void
4031 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4032 {
4033         outl(value, port);
4034 }
4035
4036 static void
4037 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4038 {
4039         struct e1000_adapter *adapter = netdev_priv(netdev);
4040         uint32_t ctrl, rctl;
4041
4042         e1000_irq_disable(adapter);
4043         adapter->vlgrp = grp;
4044
4045         if(grp) {
4046                 /* enable VLAN tag insert/strip */
4047                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4048                 ctrl |= E1000_CTRL_VME;
4049                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4050
4051                 /* enable VLAN receive filtering */
4052                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4053                 rctl |= E1000_RCTL_VFE;
4054                 rctl &= ~E1000_RCTL_CFIEN;
4055                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4056                 e1000_update_mng_vlan(adapter);
4057         } else {
4058                 /* disable VLAN tag insert/strip */
4059                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4060                 ctrl &= ~E1000_CTRL_VME;
4061                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4062
4063                 /* disable VLAN filtering */
4064                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4065                 rctl &= ~E1000_RCTL_VFE;
4066                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4067                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4068                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4069                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4070                 }
4071         }
4072
4073         e1000_irq_enable(adapter);
4074 }
4075
4076 static void
4077 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4078 {
4079         struct e1000_adapter *adapter = netdev_priv(netdev);
4080         uint32_t vfta, index;
4081         if((adapter->hw.mng_cookie.status &
4082                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4083                 (vid == adapter->mng_vlan_id))
4084                 return;
4085         /* add VID to filter table */
4086         index = (vid >> 5) & 0x7F;
4087         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4088         vfta |= (1 << (vid & 0x1F));
4089         e1000_write_vfta(&adapter->hw, index, vfta);
4090 }
4091
4092 static void
4093 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4094 {
4095         struct e1000_adapter *adapter = netdev_priv(netdev);
4096         uint32_t vfta, index;
4097
4098         e1000_irq_disable(adapter);
4099
4100         if(adapter->vlgrp)
4101                 adapter->vlgrp->vlan_devices[vid] = NULL;
4102
4103         e1000_irq_enable(adapter);
4104
4105         if((adapter->hw.mng_cookie.status &
4106                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4107                 (vid == adapter->mng_vlan_id))
4108                 return;
4109         /* remove VID from filter table */
4110         index = (vid >> 5) & 0x7F;
4111         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4112         vfta &= ~(1 << (vid & 0x1F));
4113         e1000_write_vfta(&adapter->hw, index, vfta);
4114 }
4115
4116 static void
4117 e1000_restore_vlan(struct e1000_adapter *adapter)
4118 {
4119         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4120
4121         if(adapter->vlgrp) {
4122                 uint16_t vid;
4123                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4124                         if(!adapter->vlgrp->vlan_devices[vid])
4125                                 continue;
4126                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4127                 }
4128         }
4129 }
4130
4131 int
4132 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4133 {
4134         adapter->hw.autoneg = 0;
4135
4136         /* Fiber NICs only allow 1000 gbps Full duplex */
4137         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4138                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4139                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4140                 return -EINVAL;
4141         }
4142
4143         switch(spddplx) {
4144         case SPEED_10 + DUPLEX_HALF:
4145                 adapter->hw.forced_speed_duplex = e1000_10_half;
4146                 break;
4147         case SPEED_10 + DUPLEX_FULL:
4148                 adapter->hw.forced_speed_duplex = e1000_10_full;
4149                 break;
4150         case SPEED_100 + DUPLEX_HALF:
4151                 adapter->hw.forced_speed_duplex = e1000_100_half;
4152                 break;
4153         case SPEED_100 + DUPLEX_FULL:
4154                 adapter->hw.forced_speed_duplex = e1000_100_full;
4155                 break;
4156         case SPEED_1000 + DUPLEX_FULL:
4157                 adapter->hw.autoneg = 1;
4158                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4159                 break;
4160         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4161         default:
4162                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4163                 return -EINVAL;
4164         }
4165         return 0;
4166 }
4167
4168 static int
4169 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4170 {
4171         struct net_device *netdev = pci_get_drvdata(pdev);
4172         struct e1000_adapter *adapter = netdev_priv(netdev);
4173         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
4174         uint32_t wufc = adapter->wol;
4175
4176         netif_device_detach(netdev);
4177
4178         if(netif_running(netdev))
4179                 e1000_down(adapter);
4180
4181         status = E1000_READ_REG(&adapter->hw, STATUS);
4182         if(status & E1000_STATUS_LU)
4183                 wufc &= ~E1000_WUFC_LNKC;
4184
4185         if(wufc) {
4186                 e1000_setup_rctl(adapter);
4187                 e1000_set_multi(netdev);
4188
4189                 /* turn on all-multi mode if wake on multicast is enabled */
4190                 if(adapter->wol & E1000_WUFC_MC) {
4191                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4192                         rctl |= E1000_RCTL_MPE;
4193                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4194                 }
4195
4196                 if(adapter->hw.mac_type >= e1000_82540) {
4197                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4198                         /* advertise wake from D3Cold */
4199                         #define E1000_CTRL_ADVD3WUC 0x00100000
4200                         /* phy power management enable */
4201                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4202                         ctrl |= E1000_CTRL_ADVD3WUC |
4203                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4204                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4205                 }
4206
4207                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4208                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4209                         /* keep the laser running in D3 */
4210                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4211                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4212                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4213                 }
4214
4215                 /* Allow time for pending master requests to run */
4216                 e1000_disable_pciex_master(&adapter->hw);
4217
4218                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4219                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4220                 pci_enable_wake(pdev, 3, 1);
4221                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4222         } else {
4223                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4224                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4225                 pci_enable_wake(pdev, 3, 0);
4226                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4227         }
4228
4229         pci_save_state(pdev);
4230
4231         if(adapter->hw.mac_type >= e1000_82540 &&
4232            adapter->hw.media_type == e1000_media_type_copper) {
4233                 manc = E1000_READ_REG(&adapter->hw, MANC);
4234                 if(manc & E1000_MANC_SMBUS_EN) {
4235                         manc |= E1000_MANC_ARP_EN;
4236                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4237                         pci_enable_wake(pdev, 3, 1);
4238                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4239                 }
4240         }
4241
4242         switch(adapter->hw.mac_type) {
4243         case e1000_82571:
4244         case e1000_82572:
4245                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4246                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4247                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4248                 break;
4249         case e1000_82573:
4250                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4251                 E1000_WRITE_REG(&adapter->hw, SWSM,
4252                                 swsm & ~E1000_SWSM_DRV_LOAD);
4253                 break;
4254         default:
4255                 break;
4256         }
4257
4258         pci_disable_device(pdev);
4259         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4260
4261         return 0;
4262 }
4263
4264 #ifdef CONFIG_PM
4265 static int
4266 e1000_resume(struct pci_dev *pdev)
4267 {
4268         struct net_device *netdev = pci_get_drvdata(pdev);
4269         struct e1000_adapter *adapter = netdev_priv(netdev);
4270         uint32_t manc, ret_val, swsm;
4271         uint32_t ctrl_ext;
4272
4273         pci_set_power_state(pdev, PCI_D0);
4274         pci_restore_state(pdev);
4275         ret_val = pci_enable_device(pdev);
4276         pci_set_master(pdev);
4277
4278         pci_enable_wake(pdev, PCI_D3hot, 0);
4279         pci_enable_wake(pdev, PCI_D3cold, 0);
4280
4281         e1000_reset(adapter);
4282         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4283
4284         if(netif_running(netdev))
4285                 e1000_up(adapter);
4286
4287         netif_device_attach(netdev);
4288
4289         if(adapter->hw.mac_type >= e1000_82540 &&
4290            adapter->hw.media_type == e1000_media_type_copper) {
4291                 manc = E1000_READ_REG(&adapter->hw, MANC);
4292                 manc &= ~(E1000_MANC_ARP_EN);
4293                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4294         }
4295
4296         switch(adapter->hw.mac_type) {
4297         case e1000_82571:
4298         case e1000_82572:
4299                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4300                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4301                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4302                 break;
4303         case e1000_82573:
4304                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4305                 E1000_WRITE_REG(&adapter->hw, SWSM,
4306                                 swsm | E1000_SWSM_DRV_LOAD);
4307                 break;
4308         default:
4309                 break;
4310         }
4311
4312         return 0;
4313 }
4314 #endif
4315 #ifdef CONFIG_NET_POLL_CONTROLLER
4316 /*
4317  * Polling 'interrupt' - used by things like netconsole to send skbs
4318  * without having to re-enable interrupts. It's not called while
4319  * the interrupt routine is executing.
4320  */
4321 static void
4322 e1000_netpoll(struct net_device *netdev)
4323 {
4324         struct e1000_adapter *adapter = netdev_priv(netdev);
4325         disable_irq(adapter->pdev->irq);
4326         e1000_intr(adapter->pdev->irq, netdev, NULL);
4327         e1000_clean_tx_irq(adapter);
4328         enable_irq(adapter->pdev->irq);
4329 }
4330 #endif
4331
4332 /* e1000_main.c */