]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/e1000e/82571.c
7674a91824bc0f7937cbc466cf7fe465264b85eb
[karo-tx-linux.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63                                       u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74 /**
75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
76  *  @hw: pointer to the HW structure
77  **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80         struct e1000_phy_info *phy = &hw->phy;
81         s32 ret_val;
82
83         if (hw->phy.media_type != e1000_media_type_copper) {
84                 phy->type = e1000_phy_none;
85                 return 0;
86         }
87
88         phy->addr                        = 1;
89         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90         phy->reset_delay_us              = 100;
91
92         phy->ops.power_up                = e1000_power_up_phy_copper;
93         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
94
95         switch (hw->mac.type) {
96         case e1000_82571:
97         case e1000_82572:
98                 phy->type                = e1000_phy_igp_2;
99                 break;
100         case e1000_82573:
101                 phy->type                = e1000_phy_m88;
102                 break;
103         case e1000_82574:
104         case e1000_82583:
105                 phy->type                = e1000_phy_bm;
106                 break;
107         default:
108                 return -E1000_ERR_PHY;
109                 break;
110         }
111
112         /* This can only be done after all function pointers are setup. */
113         ret_val = e1000_get_phy_id_82571(hw);
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         return -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         return -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         return -E1000_ERR_PHY;
130                 break;
131         default:
132                 return -E1000_ERR_PHY;
133                 break;
134         }
135
136         return 0;
137 }
138
139 /**
140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
141  *  @hw: pointer to the HW structure
142  **/
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144 {
145         struct e1000_nvm_info *nvm = &hw->nvm;
146         u32 eecd = er32(EECD);
147         u16 size;
148
149         nvm->opcode_bits = 8;
150         nvm->delay_usec = 1;
151         switch (nvm->override) {
152         case e1000_nvm_override_spi_large:
153                 nvm->page_size = 32;
154                 nvm->address_bits = 16;
155                 break;
156         case e1000_nvm_override_spi_small:
157                 nvm->page_size = 8;
158                 nvm->address_bits = 8;
159                 break;
160         default:
161                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163                 break;
164         }
165
166         switch (hw->mac.type) {
167         case e1000_82573:
168         case e1000_82574:
169         case e1000_82583:
170                 if (((eecd >> 15) & 0x3) == 0x3) {
171                         nvm->type = e1000_nvm_flash_hw;
172                         nvm->word_size = 2048;
173                         /*
174                          * Autonomous Flash update bit must be cleared due
175                          * to Flash update issue.
176                          */
177                         eecd &= ~E1000_EECD_AUPDEN;
178                         ew32(EECD, eecd);
179                         break;
180                 }
181                 /* Fall Through */
182         default:
183                 nvm->type = e1000_nvm_eeprom_spi;
184                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185                                   E1000_EECD_SIZE_EX_SHIFT);
186                 /*
187                  * Added to a constant, "size" becomes the left-shift value
188                  * for setting word_size.
189                  */
190                 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192                 /* EEPROM access above 16k is unsupported */
193                 if (size > 14)
194                         size = 14;
195                 nvm->word_size  = 1 << size;
196                 break;
197         }
198
199         return 0;
200 }
201
202 /**
203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
204  *  @hw: pointer to the HW structure
205  **/
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 {
208         struct e1000_hw *hw = &adapter->hw;
209         struct e1000_mac_info *mac = &hw->mac;
210         struct e1000_mac_operations *func = &mac->ops;
211         u32 swsm = 0;
212         u32 swsm2 = 0;
213         bool force_clear_smbi = false;
214
215         /* Set media type */
216         switch (adapter->pdev->device) {
217         case E1000_DEV_ID_82571EB_FIBER:
218         case E1000_DEV_ID_82572EI_FIBER:
219         case E1000_DEV_ID_82571EB_QUAD_FIBER:
220                 hw->phy.media_type = e1000_media_type_fiber;
221                 break;
222         case E1000_DEV_ID_82571EB_SERDES:
223         case E1000_DEV_ID_82572EI_SERDES:
224         case E1000_DEV_ID_82571EB_SERDES_DUAL:
225         case E1000_DEV_ID_82571EB_SERDES_QUAD:
226                 hw->phy.media_type = e1000_media_type_internal_serdes;
227                 break;
228         default:
229                 hw->phy.media_type = e1000_media_type_copper;
230                 break;
231         }
232
233         /* Set mta register count */
234         mac->mta_reg_count = 128;
235         /* Set rar entry count */
236         mac->rar_entry_count = E1000_RAR_ENTRIES;
237         /* Set if manageability features are enabled. */
238         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239                         ? true : false;
240         /* Adaptive IFS supported */
241         mac->adaptive_ifs = true;
242
243         /* check for link */
244         switch (hw->phy.media_type) {
245         case e1000_media_type_copper:
246                 func->setup_physical_interface = e1000_setup_copper_link_82571;
247                 func->check_for_link = e1000e_check_for_copper_link;
248                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
249                 break;
250         case e1000_media_type_fiber:
251                 func->setup_physical_interface =
252                         e1000_setup_fiber_serdes_link_82571;
253                 func->check_for_link = e1000e_check_for_fiber_link;
254                 func->get_link_up_info =
255                         e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         case e1000_media_type_internal_serdes:
258                 func->setup_physical_interface =
259                         e1000_setup_fiber_serdes_link_82571;
260                 func->check_for_link = e1000_check_for_serdes_link_82571;
261                 func->get_link_up_info =
262                         e1000e_get_speed_and_duplex_fiber_serdes;
263                 break;
264         default:
265                 return -E1000_ERR_CONFIG;
266                 break;
267         }
268
269         switch (hw->mac.type) {
270         case e1000_82573:
271                 func->set_lan_id = e1000_set_lan_id_single_port;
272                 func->check_mng_mode = e1000e_check_mng_mode_generic;
273                 func->led_on = e1000e_led_on_generic;
274                 break;
275         case e1000_82574:
276         case e1000_82583:
277                 func->set_lan_id = e1000_set_lan_id_single_port;
278                 func->check_mng_mode = e1000_check_mng_mode_82574;
279                 func->led_on = e1000_led_on_82574;
280                 break;
281         default:
282                 func->check_mng_mode = e1000e_check_mng_mode_generic;
283                 func->led_on = e1000e_led_on_generic;
284                 break;
285         }
286
287         /*
288          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
289          * first NVM or PHY acess. This should be done for single-port
290          * devices, and for one port only on dual-port devices so that
291          * for those devices we can still use the SMBI lock to synchronize
292          * inter-port accesses to the PHY & NVM.
293          */
294         switch (hw->mac.type) {
295         case e1000_82571:
296         case e1000_82572:
297                 swsm2 = er32(SWSM2);
298
299                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300                         /* Only do this for the first interface on this card */
301                         ew32(SWSM2,
302                             swsm2 | E1000_SWSM2_LOCK);
303                         force_clear_smbi = true;
304                 } else
305                         force_clear_smbi = false;
306                 break;
307         default:
308                 force_clear_smbi = true;
309                 break;
310         }
311
312         if (force_clear_smbi) {
313                 /* Make sure SWSM.SMBI is clear */
314                 swsm = er32(SWSM);
315                 if (swsm & E1000_SWSM_SMBI) {
316                         /* This bit should not be set on a first interface, and
317                          * indicates that the bootagent or EFI code has
318                          * improperly left this bit enabled
319                          */
320                         e_dbg("Please update your 82571 Bootagent\n");
321                 }
322                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323         }
324
325         /*
326          * Initialze device specific counter of SMBI acquisition
327          * timeouts.
328          */
329          hw->dev_spec.e82571.smb_counter = 0;
330
331         return 0;
332 }
333
334 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
335 {
336         struct e1000_hw *hw = &adapter->hw;
337         static int global_quad_port_a; /* global port a indication */
338         struct pci_dev *pdev = adapter->pdev;
339         u16 eeprom_data = 0;
340         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
341         s32 rc;
342
343         rc = e1000_init_mac_params_82571(adapter);
344         if (rc)
345                 return rc;
346
347         rc = e1000_init_nvm_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         rc = e1000_init_phy_params_82571(hw);
352         if (rc)
353                 return rc;
354
355         /* tag quad port adapters first, it's used below */
356         switch (pdev->device) {
357         case E1000_DEV_ID_82571EB_QUAD_COPPER:
358         case E1000_DEV_ID_82571EB_QUAD_FIBER:
359         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
360         case E1000_DEV_ID_82571PT_QUAD_COPPER:
361                 adapter->flags |= FLAG_IS_QUAD_PORT;
362                 /* mark the first port */
363                 if (global_quad_port_a == 0)
364                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
365                 /* Reset for multiple quad port adapters */
366                 global_quad_port_a++;
367                 if (global_quad_port_a == 4)
368                         global_quad_port_a = 0;
369                 break;
370         default:
371                 break;
372         }
373
374         switch (adapter->hw.mac.type) {
375         case e1000_82571:
376                 /* these dual ports don't have WoL on port B at all */
377                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
378                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
379                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
380                     (is_port_b))
381                         adapter->flags &= ~FLAG_HAS_WOL;
382                 /* quad ports only support WoL on port A */
383                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
384                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
385                         adapter->flags &= ~FLAG_HAS_WOL;
386                 /* Does not support WoL on any port */
387                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
388                         adapter->flags &= ~FLAG_HAS_WOL;
389                 break;
390
391         case e1000_82573:
392                 if (pdev->device == E1000_DEV_ID_82573L) {
393                         if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
394                                        &eeprom_data) < 0)
395                                 break;
396                         if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
397                                 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
398                                 adapter->max_hw_frame_size = DEFAULT_JUMBO;
399                         }
400                 }
401                 break;
402         default:
403                 break;
404         }
405
406         return 0;
407 }
408
409 /**
410  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
411  *  @hw: pointer to the HW structure
412  *
413  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
414  *  revision in the hardware structure.
415  **/
416 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
417 {
418         struct e1000_phy_info *phy = &hw->phy;
419         s32 ret_val;
420         u16 phy_id = 0;
421
422         switch (hw->mac.type) {
423         case e1000_82571:
424         case e1000_82572:
425                 /*
426                  * The 82571 firmware may still be configuring the PHY.
427                  * In this case, we cannot access the PHY until the
428                  * configuration is done.  So we explicitly set the
429                  * PHY ID.
430                  */
431                 phy->id = IGP01E1000_I_PHY_ID;
432                 break;
433         case e1000_82573:
434                 return e1000e_get_phy_id(hw);
435                 break;
436         case e1000_82574:
437         case e1000_82583:
438                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
439                 if (ret_val)
440                         return ret_val;
441
442                 phy->id = (u32)(phy_id << 16);
443                 udelay(20);
444                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
445                 if (ret_val)
446                         return ret_val;
447
448                 phy->id |= (u32)(phy_id);
449                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
450                 break;
451         default:
452                 return -E1000_ERR_PHY;
453                 break;
454         }
455
456         return 0;
457 }
458
459 /**
460  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
461  *  @hw: pointer to the HW structure
462  *
463  *  Acquire the HW semaphore to access the PHY or NVM
464  **/
465 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
466 {
467         u32 swsm;
468         s32 sw_timeout = hw->nvm.word_size + 1;
469         s32 fw_timeout = hw->nvm.word_size + 1;
470         s32 i = 0;
471
472         /*
473          * If we have timedout 3 times on trying to acquire
474          * the inter-port SMBI semaphore, there is old code
475          * operating on the other port, and it is not
476          * releasing SMBI. Modify the number of times that
477          * we try for the semaphore to interwork with this
478          * older code.
479          */
480         if (hw->dev_spec.e82571.smb_counter > 2)
481                 sw_timeout = 1;
482
483         /* Get the SW semaphore */
484         while (i < sw_timeout) {
485                 swsm = er32(SWSM);
486                 if (!(swsm & E1000_SWSM_SMBI))
487                         break;
488
489                 udelay(50);
490                 i++;
491         }
492
493         if (i == sw_timeout) {
494                 e_dbg("Driver can't access device - SMBI bit is set.\n");
495                 hw->dev_spec.e82571.smb_counter++;
496         }
497         /* Get the FW semaphore. */
498         for (i = 0; i < fw_timeout; i++) {
499                 swsm = er32(SWSM);
500                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
501
502                 /* Semaphore acquired if bit latched */
503                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
504                         break;
505
506                 udelay(50);
507         }
508
509         if (i == fw_timeout) {
510                 /* Release semaphores */
511                 e1000_put_hw_semaphore_82571(hw);
512                 e_dbg("Driver can't access the NVM\n");
513                 return -E1000_ERR_NVM;
514         }
515
516         return 0;
517 }
518
519 /**
520  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
521  *  @hw: pointer to the HW structure
522  *
523  *  Release hardware semaphore used to access the PHY or NVM
524  **/
525 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
526 {
527         u32 swsm;
528
529         swsm = er32(SWSM);
530         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
531         ew32(SWSM, swsm);
532 }
533
534 /**
535  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
536  *  @hw: pointer to the HW structure
537  *
538  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
539  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
540  *  for EEPROM access grant bit.  If the access grant bit is not set, release
541  *  hardware semaphore.
542  **/
543 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
544 {
545         s32 ret_val;
546
547         ret_val = e1000_get_hw_semaphore_82571(hw);
548         if (ret_val)
549                 return ret_val;
550
551         switch (hw->mac.type) {
552         case e1000_82573:
553         case e1000_82574:
554         case e1000_82583:
555                 break;
556         default:
557                 ret_val = e1000e_acquire_nvm(hw);
558                 break;
559         }
560
561         if (ret_val)
562                 e1000_put_hw_semaphore_82571(hw);
563
564         return ret_val;
565 }
566
567 /**
568  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
569  *  @hw: pointer to the HW structure
570  *
571  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
572  **/
573 static void e1000_release_nvm_82571(struct e1000_hw *hw)
574 {
575         e1000e_release_nvm(hw);
576         e1000_put_hw_semaphore_82571(hw);
577 }
578
579 /**
580  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
581  *  @hw: pointer to the HW structure
582  *  @offset: offset within the EEPROM to be written to
583  *  @words: number of words to write
584  *  @data: 16 bit word(s) to be written to the EEPROM
585  *
586  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
587  *
588  *  If e1000e_update_nvm_checksum is not called after this function, the
589  *  EEPROM will most likely contain an invalid checksum.
590  **/
591 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
592                                  u16 *data)
593 {
594         s32 ret_val;
595
596         switch (hw->mac.type) {
597         case e1000_82573:
598         case e1000_82574:
599         case e1000_82583:
600                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
601                 break;
602         case e1000_82571:
603         case e1000_82572:
604                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
605                 break;
606         default:
607                 ret_val = -E1000_ERR_NVM;
608                 break;
609         }
610
611         return ret_val;
612 }
613
614 /**
615  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
616  *  @hw: pointer to the HW structure
617  *
618  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
619  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
620  *  value to the EEPROM.
621  **/
622 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
623 {
624         u32 eecd;
625         s32 ret_val;
626         u16 i;
627
628         ret_val = e1000e_update_nvm_checksum_generic(hw);
629         if (ret_val)
630                 return ret_val;
631
632         /*
633          * If our nvm is an EEPROM, then we're done
634          * otherwise, commit the checksum to the flash NVM.
635          */
636         if (hw->nvm.type != e1000_nvm_flash_hw)
637                 return ret_val;
638
639         /* Check for pending operations. */
640         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
641                 msleep(1);
642                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
643                         break;
644         }
645
646         if (i == E1000_FLASH_UPDATES)
647                 return -E1000_ERR_NVM;
648
649         /* Reset the firmware if using STM opcode. */
650         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
651                 /*
652                  * The enabling of and the actual reset must be done
653                  * in two write cycles.
654                  */
655                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
656                 e1e_flush();
657                 ew32(HICR, E1000_HICR_FW_RESET);
658         }
659
660         /* Commit the write to flash */
661         eecd = er32(EECD) | E1000_EECD_FLUPD;
662         ew32(EECD, eecd);
663
664         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
665                 msleep(1);
666                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
667                         break;
668         }
669
670         if (i == E1000_FLASH_UPDATES)
671                 return -E1000_ERR_NVM;
672
673         return 0;
674 }
675
676 /**
677  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
678  *  @hw: pointer to the HW structure
679  *
680  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
681  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
682  **/
683 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
684 {
685         if (hw->nvm.type == e1000_nvm_flash_hw)
686                 e1000_fix_nvm_checksum_82571(hw);
687
688         return e1000e_validate_nvm_checksum_generic(hw);
689 }
690
691 /**
692  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
693  *  @hw: pointer to the HW structure
694  *  @offset: offset within the EEPROM to be written to
695  *  @words: number of words to write
696  *  @data: 16 bit word(s) to be written to the EEPROM
697  *
698  *  After checking for invalid values, poll the EEPROM to ensure the previous
699  *  command has completed before trying to write the next word.  After write
700  *  poll for completion.
701  *
702  *  If e1000e_update_nvm_checksum is not called after this function, the
703  *  EEPROM will most likely contain an invalid checksum.
704  **/
705 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
706                                       u16 words, u16 *data)
707 {
708         struct e1000_nvm_info *nvm = &hw->nvm;
709         u32 i, eewr = 0;
710         s32 ret_val = 0;
711
712         /*
713          * A check for invalid values:  offset too large, too many words,
714          * and not enough words.
715          */
716         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
717             (words == 0)) {
718                 e_dbg("nvm parameter(s) out of bounds\n");
719                 return -E1000_ERR_NVM;
720         }
721
722         for (i = 0; i < words; i++) {
723                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
724                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
725                        E1000_NVM_RW_REG_START;
726
727                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
728                 if (ret_val)
729                         break;
730
731                 ew32(EEWR, eewr);
732
733                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
734                 if (ret_val)
735                         break;
736         }
737
738         return ret_val;
739 }
740
741 /**
742  *  e1000_get_cfg_done_82571 - Poll for configuration done
743  *  @hw: pointer to the HW structure
744  *
745  *  Reads the management control register for the config done bit to be set.
746  **/
747 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
748 {
749         s32 timeout = PHY_CFG_TIMEOUT;
750
751         while (timeout) {
752                 if (er32(EEMNGCTL) &
753                     E1000_NVM_CFG_DONE_PORT_0)
754                         break;
755                 msleep(1);
756                 timeout--;
757         }
758         if (!timeout) {
759                 e_dbg("MNG configuration cycle has not completed.\n");
760                 return -E1000_ERR_RESET;
761         }
762
763         return 0;
764 }
765
766 /**
767  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
768  *  @hw: pointer to the HW structure
769  *  @active: true to enable LPLU, false to disable
770  *
771  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
772  *  this function also disables smart speed and vice versa.  LPLU will not be
773  *  activated unless the device autonegotiation advertisement meets standards
774  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
775  *  pointer entry point only called by PHY setup routines.
776  **/
777 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
778 {
779         struct e1000_phy_info *phy = &hw->phy;
780         s32 ret_val;
781         u16 data;
782
783         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
784         if (ret_val)
785                 return ret_val;
786
787         if (active) {
788                 data |= IGP02E1000_PM_D0_LPLU;
789                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
790                 if (ret_val)
791                         return ret_val;
792
793                 /* When LPLU is enabled, we should disable SmartSpeed */
794                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
795                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
796                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
797                 if (ret_val)
798                         return ret_val;
799         } else {
800                 data &= ~IGP02E1000_PM_D0_LPLU;
801                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
802                 /*
803                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
804                  * during Dx states where the power conservation is most
805                  * important.  During driver activity we should enable
806                  * SmartSpeed, so performance is maintained.
807                  */
808                 if (phy->smart_speed == e1000_smart_speed_on) {
809                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
810                                            &data);
811                         if (ret_val)
812                                 return ret_val;
813
814                         data |= IGP01E1000_PSCFR_SMART_SPEED;
815                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
816                                            data);
817                         if (ret_val)
818                                 return ret_val;
819                 } else if (phy->smart_speed == e1000_smart_speed_off) {
820                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
821                                            &data);
822                         if (ret_val)
823                                 return ret_val;
824
825                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
826                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
827                                            data);
828                         if (ret_val)
829                                 return ret_val;
830                 }
831         }
832
833         return 0;
834 }
835
836 /**
837  *  e1000_reset_hw_82571 - Reset hardware
838  *  @hw: pointer to the HW structure
839  *
840  *  This resets the hardware into a known state.
841  **/
842 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
843 {
844         u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
845         s32 ret_val;
846         u16 i = 0;
847
848         /*
849          * Prevent the PCI-E bus from sticking if there is no TLP connection
850          * on the last TLP read/write transaction when MAC is reset.
851          */
852         ret_val = e1000e_disable_pcie_master(hw);
853         if (ret_val)
854                 e_dbg("PCI-E Master disable polling has failed.\n");
855
856         e_dbg("Masking off all interrupts\n");
857         ew32(IMC, 0xffffffff);
858
859         ew32(RCTL, 0);
860         ew32(TCTL, E1000_TCTL_PSP);
861         e1e_flush();
862
863         msleep(10);
864
865         /*
866          * Must acquire the MDIO ownership before MAC reset.
867          * Ownership defaults to firmware after a reset.
868          */
869         switch (hw->mac.type) {
870         case e1000_82573:
871         case e1000_82574:
872         case e1000_82583:
873                 extcnf_ctrl = er32(EXTCNF_CTRL);
874                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
875
876                 do {
877                         ew32(EXTCNF_CTRL, extcnf_ctrl);
878                         extcnf_ctrl = er32(EXTCNF_CTRL);
879
880                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
881                                 break;
882
883                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
884
885                         msleep(2);
886                         i++;
887                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
888                 break;
889         default:
890                 break;
891         }
892
893         ctrl = er32(CTRL);
894
895         e_dbg("Issuing a global reset to MAC\n");
896         ew32(CTRL, ctrl | E1000_CTRL_RST);
897
898         if (hw->nvm.type == e1000_nvm_flash_hw) {
899                 udelay(10);
900                 ctrl_ext = er32(CTRL_EXT);
901                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
902                 ew32(CTRL_EXT, ctrl_ext);
903                 e1e_flush();
904         }
905
906         ret_val = e1000e_get_auto_rd_done(hw);
907         if (ret_val)
908                 /* We don't want to continue accessing MAC registers. */
909                 return ret_val;
910
911         /*
912          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
913          * Need to wait for Phy configuration completion before accessing
914          * NVM and Phy.
915          */
916
917         switch (hw->mac.type) {
918         case e1000_82573:
919         case e1000_82574:
920         case e1000_82583:
921                 msleep(25);
922                 break;
923         default:
924                 break;
925         }
926
927         /* Clear any pending interrupt events. */
928         ew32(IMC, 0xffffffff);
929         icr = er32(ICR);
930
931         /* Install any alternate MAC address into RAR0 */
932         ret_val = e1000_check_alt_mac_addr_generic(hw);
933         if (ret_val)
934                 return ret_val;
935
936         e1000e_set_laa_state_82571(hw, true);
937
938         /* Reinitialize the 82571 serdes link state machine */
939         if (hw->phy.media_type == e1000_media_type_internal_serdes)
940                 hw->mac.serdes_link_state = e1000_serdes_link_down;
941
942         return 0;
943 }
944
945 /**
946  *  e1000_init_hw_82571 - Initialize hardware
947  *  @hw: pointer to the HW structure
948  *
949  *  This inits the hardware readying it for operation.
950  **/
951 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
952 {
953         struct e1000_mac_info *mac = &hw->mac;
954         u32 reg_data;
955         s32 ret_val;
956         u16 i, rar_count = mac->rar_entry_count;
957
958         e1000_initialize_hw_bits_82571(hw);
959
960         /* Initialize identification LED */
961         ret_val = e1000e_id_led_init(hw);
962         if (ret_val)
963                 e_dbg("Error initializing identification LED\n");
964                 /* This is not fatal and we should not stop init due to this */
965
966         /* Disabling VLAN filtering */
967         e_dbg("Initializing the IEEE VLAN\n");
968         mac->ops.clear_vfta(hw);
969
970         /* Setup the receive address. */
971         /*
972          * If, however, a locally administered address was assigned to the
973          * 82571, we must reserve a RAR for it to work around an issue where
974          * resetting one port will reload the MAC on the other port.
975          */
976         if (e1000e_get_laa_state_82571(hw))
977                 rar_count--;
978         e1000e_init_rx_addrs(hw, rar_count);
979
980         /* Zero out the Multicast HASH table */
981         e_dbg("Zeroing the MTA\n");
982         for (i = 0; i < mac->mta_reg_count; i++)
983                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
984
985         /* Setup link and flow control */
986         ret_val = e1000_setup_link_82571(hw);
987
988         /* Set the transmit descriptor write-back policy */
989         reg_data = er32(TXDCTL(0));
990         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
991                    E1000_TXDCTL_FULL_TX_DESC_WB |
992                    E1000_TXDCTL_COUNT_DESC;
993         ew32(TXDCTL(0), reg_data);
994
995         /* ...for both queues. */
996         switch (mac->type) {
997         case e1000_82573:
998         case e1000_82574:
999         case e1000_82583:
1000                 e1000e_enable_tx_pkt_filtering(hw);
1001                 reg_data = er32(GCR);
1002                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1003                 ew32(GCR, reg_data);
1004                 break;
1005         default:
1006                 reg_data = er32(TXDCTL(1));
1007                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1008                            E1000_TXDCTL_FULL_TX_DESC_WB |
1009                            E1000_TXDCTL_COUNT_DESC;
1010                 ew32(TXDCTL(1), reg_data);
1011                 break;
1012         }
1013
1014         /*
1015          * Clear all of the statistics registers (clear on read).  It is
1016          * important that we do this after we have tried to establish link
1017          * because the symbol error count will increment wildly if there
1018          * is no link.
1019          */
1020         e1000_clear_hw_cntrs_82571(hw);
1021
1022         return ret_val;
1023 }
1024
1025 /**
1026  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Initializes required hardware-dependent bits needed for normal operation.
1030  **/
1031 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1032 {
1033         u32 reg;
1034
1035         /* Transmit Descriptor Control 0 */
1036         reg = er32(TXDCTL(0));
1037         reg |= (1 << 22);
1038         ew32(TXDCTL(0), reg);
1039
1040         /* Transmit Descriptor Control 1 */
1041         reg = er32(TXDCTL(1));
1042         reg |= (1 << 22);
1043         ew32(TXDCTL(1), reg);
1044
1045         /* Transmit Arbitration Control 0 */
1046         reg = er32(TARC(0));
1047         reg &= ~(0xF << 27); /* 30:27 */
1048         switch (hw->mac.type) {
1049         case e1000_82571:
1050         case e1000_82572:
1051                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1052                 break;
1053         default:
1054                 break;
1055         }
1056         ew32(TARC(0), reg);
1057
1058         /* Transmit Arbitration Control 1 */
1059         reg = er32(TARC(1));
1060         switch (hw->mac.type) {
1061         case e1000_82571:
1062         case e1000_82572:
1063                 reg &= ~((1 << 29) | (1 << 30));
1064                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1065                 if (er32(TCTL) & E1000_TCTL_MULR)
1066                         reg &= ~(1 << 28);
1067                 else
1068                         reg |= (1 << 28);
1069                 ew32(TARC(1), reg);
1070                 break;
1071         default:
1072                 break;
1073         }
1074
1075         /* Device Control */
1076         switch (hw->mac.type) {
1077         case e1000_82573:
1078         case e1000_82574:
1079         case e1000_82583:
1080                 reg = er32(CTRL);
1081                 reg &= ~(1 << 29);
1082                 ew32(CTRL, reg);
1083                 break;
1084         default:
1085                 break;
1086         }
1087
1088         /* Extended Device Control */
1089         switch (hw->mac.type) {
1090         case e1000_82573:
1091         case e1000_82574:
1092         case e1000_82583:
1093                 reg = er32(CTRL_EXT);
1094                 reg &= ~(1 << 23);
1095                 reg |= (1 << 22);
1096                 ew32(CTRL_EXT, reg);
1097                 break;
1098         default:
1099                 break;
1100         }
1101
1102         if (hw->mac.type == e1000_82571) {
1103                 reg = er32(PBA_ECC);
1104                 reg |= E1000_PBA_ECC_CORR_EN;
1105                 ew32(PBA_ECC, reg);
1106         }
1107         /*
1108          * Workaround for hardware errata.
1109          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1110          */
1111
1112         if ((hw->mac.type == e1000_82571) ||
1113            (hw->mac.type == e1000_82572)) {
1114                 reg = er32(CTRL_EXT);
1115                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1116                 ew32(CTRL_EXT, reg);
1117         }
1118
1119
1120         /* PCI-Ex Control Registers */
1121         switch (hw->mac.type) {
1122         case e1000_82574:
1123         case e1000_82583:
1124                 reg = er32(GCR);
1125                 reg |= (1 << 22);
1126                 ew32(GCR, reg);
1127
1128                 /*
1129                  * Workaround for hardware errata.
1130                  * apply workaround for hardware errata documented in errata
1131                  * docs Fixes issue where some error prone or unreliable PCIe
1132                  * completions are occurring, particularly with ASPM enabled.
1133                  * Without fix, issue can cause tx timeouts.
1134                  */
1135                 reg = er32(GCR2);
1136                 reg |= 1;
1137                 ew32(GCR2, reg);
1138                 break;
1139         default:
1140                 break;
1141         }
1142
1143         return;
1144 }
1145
1146 /**
1147  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Clears the register array which contains the VLAN filter table by
1151  *  setting all the values to 0.
1152  **/
1153 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1154 {
1155         u32 offset;
1156         u32 vfta_value = 0;
1157         u32 vfta_offset = 0;
1158         u32 vfta_bit_in_reg = 0;
1159
1160         switch (hw->mac.type) {
1161         case e1000_82573:
1162         case e1000_82574:
1163         case e1000_82583:
1164                 if (hw->mng_cookie.vlan_id != 0) {
1165                         /*
1166                          * The VFTA is a 4096b bit-field, each identifying
1167                          * a single VLAN ID.  The following operations
1168                          * determine which 32b entry (i.e. offset) into the
1169                          * array we want to set the VLAN ID (i.e. bit) of
1170                          * the manageability unit.
1171                          */
1172                         vfta_offset = (hw->mng_cookie.vlan_id >>
1173                                        E1000_VFTA_ENTRY_SHIFT) &
1174                                       E1000_VFTA_ENTRY_MASK;
1175                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1176                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1177                 }
1178                 break;
1179         default:
1180                 break;
1181         }
1182         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1183                 /*
1184                  * If the offset we want to clear is the same offset of the
1185                  * manageability VLAN ID, then clear all bits except that of
1186                  * the manageability unit.
1187                  */
1188                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1189                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1190                 e1e_flush();
1191         }
1192 }
1193
1194 /**
1195  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1196  *  @hw: pointer to the HW structure
1197  *
1198  *  Reads the NVM Initialization Control Word 2 and returns true
1199  *  (>0) if any manageability is enabled, else false (0).
1200  **/
1201 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1202 {
1203         u16 data;
1204
1205         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1206         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1207 }
1208
1209 /**
1210  *  e1000_led_on_82574 - Turn LED on
1211  *  @hw: pointer to the HW structure
1212  *
1213  *  Turn LED on.
1214  **/
1215 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1216 {
1217         u32 ctrl;
1218         u32 i;
1219
1220         ctrl = hw->mac.ledctl_mode2;
1221         if (!(E1000_STATUS_LU & er32(STATUS))) {
1222                 /*
1223                  * If no link, then turn LED on by setting the invert bit
1224                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1225                  */
1226                 for (i = 0; i < 4; i++)
1227                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1228                             E1000_LEDCTL_MODE_LED_ON)
1229                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1230         }
1231         ew32(LEDCTL, ctrl);
1232
1233         return 0;
1234 }
1235
1236 /**
1237  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1238  *  @hw: pointer to the HW structure
1239  *  @mc_addr_list: array of multicast addresses to program
1240  *  @mc_addr_count: number of multicast addresses to program
1241  *  @rar_used_count: the first RAR register free to program
1242  *  @rar_count: total number of supported Receive Address Registers
1243  *
1244  *  Updates the Receive Address Registers and Multicast Table Array.
1245  *  The caller must have a packed mc_addr_list of multicast addresses.
1246  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1247  *  unless there are workarounds that change this.
1248  **/
1249 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1250                                             u8 *mc_addr_list,
1251                                             u32 mc_addr_count,
1252                                             u32 rar_used_count,
1253                                             u32 rar_count)
1254 {
1255         if (e1000e_get_laa_state_82571(hw))
1256                 rar_count--;
1257
1258         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1259                                            rar_used_count, rar_count);
1260 }
1261
1262 /**
1263  *  e1000_setup_link_82571 - Setup flow control and link settings
1264  *  @hw: pointer to the HW structure
1265  *
1266  *  Determines which flow control settings to use, then configures flow
1267  *  control.  Calls the appropriate media-specific link configuration
1268  *  function.  Assuming the adapter has a valid link partner, a valid link
1269  *  should be established.  Assumes the hardware has previously been reset
1270  *  and the transmitter and receiver are not enabled.
1271  **/
1272 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1273 {
1274         /*
1275          * 82573 does not have a word in the NVM to determine
1276          * the default flow control setting, so we explicitly
1277          * set it to full.
1278          */
1279         switch (hw->mac.type) {
1280         case e1000_82573:
1281         case e1000_82574:
1282         case e1000_82583:
1283                 if (hw->fc.requested_mode == e1000_fc_default)
1284                         hw->fc.requested_mode = e1000_fc_full;
1285                 break;
1286         default:
1287                 break;
1288         }
1289
1290         return e1000e_setup_link(hw);
1291 }
1292
1293 /**
1294  *  e1000_setup_copper_link_82571 - Configure copper link settings
1295  *  @hw: pointer to the HW structure
1296  *
1297  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1298  *  for link, once link is established calls to configure collision distance
1299  *  and flow control are called.
1300  **/
1301 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1302 {
1303         u32 ctrl;
1304         s32 ret_val;
1305
1306         ctrl = er32(CTRL);
1307         ctrl |= E1000_CTRL_SLU;
1308         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1309         ew32(CTRL, ctrl);
1310
1311         switch (hw->phy.type) {
1312         case e1000_phy_m88:
1313         case e1000_phy_bm:
1314                 ret_val = e1000e_copper_link_setup_m88(hw);
1315                 break;
1316         case e1000_phy_igp_2:
1317                 ret_val = e1000e_copper_link_setup_igp(hw);
1318                 break;
1319         default:
1320                 return -E1000_ERR_PHY;
1321                 break;
1322         }
1323
1324         if (ret_val)
1325                 return ret_val;
1326
1327         ret_val = e1000e_setup_copper_link(hw);
1328
1329         return ret_val;
1330 }
1331
1332 /**
1333  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  Configures collision distance and flow control for fiber and serdes links.
1337  *  Upon successful setup, poll for link.
1338  **/
1339 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1340 {
1341         switch (hw->mac.type) {
1342         case e1000_82571:
1343         case e1000_82572:
1344                 /*
1345                  * If SerDes loopback mode is entered, there is no form
1346                  * of reset to take the adapter out of that mode.  So we
1347                  * have to explicitly take the adapter out of loopback
1348                  * mode.  This prevents drivers from twiddling their thumbs
1349                  * if another tool failed to take it out of loopback mode.
1350                  */
1351                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1352                 break;
1353         default:
1354                 break;
1355         }
1356
1357         return e1000e_setup_fiber_serdes_link(hw);
1358 }
1359
1360 /**
1361  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1362  *  @hw: pointer to the HW structure
1363  *
1364  *  Reports the link state as up or down.
1365  *
1366  *  If autonegotiation is supported by the link partner, the link state is
1367  *  determined by the result of autonegotiation. This is the most likely case.
1368  *  If autonegotiation is not supported by the link partner, and the link
1369  *  has a valid signal, force the link up.
1370  *
1371  *  The link state is represented internally here by 4 states:
1372  *
1373  *  1) down
1374  *  2) autoneg_progress
1375  *  3) autoneg_complete (the link sucessfully autonegotiated)
1376  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1377  *
1378  **/
1379 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1380 {
1381         struct e1000_mac_info *mac = &hw->mac;
1382         u32 rxcw;
1383         u32 ctrl;
1384         u32 status;
1385         s32 ret_val = 0;
1386
1387         ctrl = er32(CTRL);
1388         status = er32(STATUS);
1389         rxcw = er32(RXCW);
1390
1391         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1392
1393                 /* Receiver is synchronized with no invalid bits.  */
1394                 switch (mac->serdes_link_state) {
1395                 case e1000_serdes_link_autoneg_complete:
1396                         if (!(status & E1000_STATUS_LU)) {
1397                                 /*
1398                                  * We have lost link, retry autoneg before
1399                                  * reporting link failure
1400                                  */
1401                                 mac->serdes_link_state =
1402                                     e1000_serdes_link_autoneg_progress;
1403                                 mac->serdes_has_link = false;
1404                                 e_dbg("AN_UP     -> AN_PROG\n");
1405                         }
1406                 break;
1407
1408                 case e1000_serdes_link_forced_up:
1409                         /*
1410                          * If we are receiving /C/ ordered sets, re-enable
1411                          * auto-negotiation in the TXCW register and disable
1412                          * forced link in the Device Control register in an
1413                          * attempt to auto-negotiate with our link partner.
1414                          */
1415                         if (rxcw & E1000_RXCW_C) {
1416                                 /* Enable autoneg, and unforce link up */
1417                                 ew32(TXCW, mac->txcw);
1418                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1419                                 mac->serdes_link_state =
1420                                     e1000_serdes_link_autoneg_progress;
1421                                 mac->serdes_has_link = false;
1422                                 e_dbg("FORCED_UP -> AN_PROG\n");
1423                         }
1424                         break;
1425
1426                 case e1000_serdes_link_autoneg_progress:
1427                         if (rxcw & E1000_RXCW_C) {
1428                                 /*
1429                                  * We received /C/ ordered sets, meaning the
1430                                  * link partner has autonegotiated, and we can
1431                                  * trust the Link Up (LU) status bit.
1432                                  */
1433                                 if (status & E1000_STATUS_LU) {
1434                                         mac->serdes_link_state =
1435                                             e1000_serdes_link_autoneg_complete;
1436                                         e_dbg("AN_PROG   -> AN_UP\n");
1437                                         mac->serdes_has_link = true;
1438                                 } else {
1439                                         /* Autoneg completed, but failed. */
1440                                         mac->serdes_link_state =
1441                                             e1000_serdes_link_down;
1442                                         e_dbg("AN_PROG   -> DOWN\n");
1443                                 }
1444                         } else {
1445                                 /*
1446                                  * The link partner did not autoneg.
1447                                  * Force link up and full duplex, and change
1448                                  * state to forced.
1449                                  */
1450                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1451                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1452                                 ew32(CTRL, ctrl);
1453
1454                                 /* Configure Flow Control after link up. */
1455                                 ret_val = e1000e_config_fc_after_link_up(hw);
1456                                 if (ret_val) {
1457                                         e_dbg("Error config flow control\n");
1458                                         break;
1459                                 }
1460                                 mac->serdes_link_state =
1461                                     e1000_serdes_link_forced_up;
1462                                 mac->serdes_has_link = true;
1463                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1464                         }
1465                         break;
1466
1467                 case e1000_serdes_link_down:
1468                 default:
1469                         /*
1470                          * The link was down but the receiver has now gained
1471                          * valid sync, so lets see if we can bring the link
1472                          * up.
1473                          */
1474                         ew32(TXCW, mac->txcw);
1475                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1476                         mac->serdes_link_state =
1477                             e1000_serdes_link_autoneg_progress;
1478                         e_dbg("DOWN      -> AN_PROG\n");
1479                         break;
1480                 }
1481         } else {
1482                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1483                         mac->serdes_has_link = false;
1484                         mac->serdes_link_state = e1000_serdes_link_down;
1485                         e_dbg("ANYSTATE  -> DOWN\n");
1486                 } else {
1487                         /*
1488                          * We have sync, and can tolerate one invalid (IV)
1489                          * codeword before declaring link down, so reread
1490                          * to look again.
1491                          */
1492                         udelay(10);
1493                         rxcw = er32(RXCW);
1494                         if (rxcw & E1000_RXCW_IV) {
1495                                 mac->serdes_link_state = e1000_serdes_link_down;
1496                                 mac->serdes_has_link = false;
1497                                 e_dbg("ANYSTATE  -> DOWN\n");
1498                         }
1499                 }
1500         }
1501
1502         return ret_val;
1503 }
1504
1505 /**
1506  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1507  *  @hw: pointer to the HW structure
1508  *  @data: pointer to the NVM (EEPROM)
1509  *
1510  *  Read the EEPROM for the current default LED configuration.  If the
1511  *  LED configuration is not valid, set to a valid LED configuration.
1512  **/
1513 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1514 {
1515         s32 ret_val;
1516
1517         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1518         if (ret_val) {
1519                 e_dbg("NVM Read Error\n");
1520                 return ret_val;
1521         }
1522
1523         switch (hw->mac.type) {
1524         case e1000_82573:
1525         case e1000_82574:
1526         case e1000_82583:
1527                 if (*data == ID_LED_RESERVED_F746)
1528                         *data = ID_LED_DEFAULT_82573;
1529                 break;
1530         default:
1531                 if (*data == ID_LED_RESERVED_0000 ||
1532                     *data == ID_LED_RESERVED_FFFF)
1533                         *data = ID_LED_DEFAULT;
1534                 break;
1535         }
1536
1537         return 0;
1538 }
1539
1540 /**
1541  *  e1000e_get_laa_state_82571 - Get locally administered address state
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Retrieve and return the current locally administered address state.
1545  **/
1546 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1547 {
1548         if (hw->mac.type != e1000_82571)
1549                 return false;
1550
1551         return hw->dev_spec.e82571.laa_is_present;
1552 }
1553
1554 /**
1555  *  e1000e_set_laa_state_82571 - Set locally administered address state
1556  *  @hw: pointer to the HW structure
1557  *  @state: enable/disable locally administered address
1558  *
1559  *  Enable/Disable the current locally administered address state.
1560  **/
1561 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1562 {
1563         if (hw->mac.type != e1000_82571)
1564                 return;
1565
1566         hw->dev_spec.e82571.laa_is_present = state;
1567
1568         /* If workaround is activated... */
1569         if (state)
1570                 /*
1571                  * Hold a copy of the LAA in RAR[14] This is done so that
1572                  * between the time RAR[0] gets clobbered and the time it
1573                  * gets fixed, the actual LAA is in one of the RARs and no
1574                  * incoming packets directed to this port are dropped.
1575                  * Eventually the LAA will be in RAR[0] and RAR[14].
1576                  */
1577                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1578 }
1579
1580 /**
1581  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1582  *  @hw: pointer to the HW structure
1583  *
1584  *  Verifies that the EEPROM has completed the update.  After updating the
1585  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1586  *  the checksum fix is not implemented, we need to set the bit and update
1587  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1588  *  we need to return bad checksum.
1589  **/
1590 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1591 {
1592         struct e1000_nvm_info *nvm = &hw->nvm;
1593         s32 ret_val;
1594         u16 data;
1595
1596         if (nvm->type != e1000_nvm_flash_hw)
1597                 return 0;
1598
1599         /*
1600          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1601          * 10h-12h.  Checksum may need to be fixed.
1602          */
1603         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1604         if (ret_val)
1605                 return ret_val;
1606
1607         if (!(data & 0x10)) {
1608                 /*
1609                  * Read 0x23 and check bit 15.  This bit is a 1
1610                  * when the checksum has already been fixed.  If
1611                  * the checksum is still wrong and this bit is a
1612                  * 1, we need to return bad checksum.  Otherwise,
1613                  * we need to set this bit to a 1 and update the
1614                  * checksum.
1615                  */
1616                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1617                 if (ret_val)
1618                         return ret_val;
1619
1620                 if (!(data & 0x8000)) {
1621                         data |= 0x8000;
1622                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1623                         if (ret_val)
1624                                 return ret_val;
1625                         ret_val = e1000e_update_nvm_checksum(hw);
1626                 }
1627         }
1628
1629         return 0;
1630 }
1631
1632 /**
1633  *  e1000_read_mac_addr_82571 - Read device MAC address
1634  *  @hw: pointer to the HW structure
1635  **/
1636 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1637 {
1638         s32 ret_val = 0;
1639
1640         /*
1641          * If there's an alternate MAC address place it in RAR0
1642          * so that it will override the Si installed default perm
1643          * address.
1644          */
1645         ret_val = e1000_check_alt_mac_addr_generic(hw);
1646         if (ret_val)
1647                 goto out;
1648
1649         ret_val = e1000_read_mac_addr_generic(hw);
1650
1651 out:
1652         return ret_val;
1653 }
1654
1655 /**
1656  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1657  * @hw: pointer to the HW structure
1658  *
1659  * In the case of a PHY power down to save power, or to turn off link during a
1660  * driver unload, or wake on lan is not enabled, remove the link.
1661  **/
1662 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1663 {
1664         struct e1000_phy_info *phy = &hw->phy;
1665         struct e1000_mac_info *mac = &hw->mac;
1666
1667         if (!(phy->ops.check_reset_block))
1668                 return;
1669
1670         /* If the management interface is not enabled, then power down */
1671         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1672                 e1000_power_down_phy_copper(hw);
1673
1674         return;
1675 }
1676
1677 /**
1678  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1679  *  @hw: pointer to the HW structure
1680  *
1681  *  Clears the hardware counters by reading the counter registers.
1682  **/
1683 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1684 {
1685         e1000e_clear_hw_cntrs_base(hw);
1686
1687         er32(PRC64);
1688         er32(PRC127);
1689         er32(PRC255);
1690         er32(PRC511);
1691         er32(PRC1023);
1692         er32(PRC1522);
1693         er32(PTC64);
1694         er32(PTC127);
1695         er32(PTC255);
1696         er32(PTC511);
1697         er32(PTC1023);
1698         er32(PTC1522);
1699
1700         er32(ALGNERRC);
1701         er32(RXERRC);
1702         er32(TNCRS);
1703         er32(CEXTERR);
1704         er32(TSCTC);
1705         er32(TSCTFC);
1706
1707         er32(MGTPRC);
1708         er32(MGTPDC);
1709         er32(MGTPTC);
1710
1711         er32(IAC);
1712         er32(ICRXOC);
1713
1714         er32(ICRXPTC);
1715         er32(ICRXATC);
1716         er32(ICTXPTC);
1717         er32(ICTXATC);
1718         er32(ICTXQEC);
1719         er32(ICTXQMTC);
1720         er32(ICRXDMTC);
1721 }
1722
1723 static struct e1000_mac_operations e82571_mac_ops = {
1724         /* .check_mng_mode: mac type dependent */
1725         /* .check_for_link: media type dependent */
1726         .id_led_init            = e1000e_id_led_init,
1727         .cleanup_led            = e1000e_cleanup_led_generic,
1728         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1729         .get_bus_info           = e1000e_get_bus_info_pcie,
1730         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1731         /* .get_link_up_info: media type dependent */
1732         /* .led_on: mac type dependent */
1733         .led_off                = e1000e_led_off_generic,
1734         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1735         .write_vfta             = e1000_write_vfta_generic,
1736         .clear_vfta             = e1000_clear_vfta_82571,
1737         .reset_hw               = e1000_reset_hw_82571,
1738         .init_hw                = e1000_init_hw_82571,
1739         .setup_link             = e1000_setup_link_82571,
1740         /* .setup_physical_interface: media type dependent */
1741         .setup_led              = e1000e_setup_led_generic,
1742         .read_mac_addr          = e1000_read_mac_addr_82571,
1743 };
1744
1745 static struct e1000_phy_operations e82_phy_ops_igp = {
1746         .acquire                = e1000_get_hw_semaphore_82571,
1747         .check_polarity         = e1000_check_polarity_igp,
1748         .check_reset_block      = e1000e_check_reset_block_generic,
1749         .commit                 = NULL,
1750         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1751         .get_cfg_done           = e1000_get_cfg_done_82571,
1752         .get_cable_length       = e1000e_get_cable_length_igp_2,
1753         .get_info               = e1000e_get_phy_info_igp,
1754         .read_reg               = e1000e_read_phy_reg_igp,
1755         .release                = e1000_put_hw_semaphore_82571,
1756         .reset                  = e1000e_phy_hw_reset_generic,
1757         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1758         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1759         .write_reg              = e1000e_write_phy_reg_igp,
1760         .cfg_on_link_up         = NULL,
1761 };
1762
1763 static struct e1000_phy_operations e82_phy_ops_m88 = {
1764         .acquire                = e1000_get_hw_semaphore_82571,
1765         .check_polarity         = e1000_check_polarity_m88,
1766         .check_reset_block      = e1000e_check_reset_block_generic,
1767         .commit                 = e1000e_phy_sw_reset,
1768         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1769         .get_cfg_done           = e1000e_get_cfg_done,
1770         .get_cable_length       = e1000e_get_cable_length_m88,
1771         .get_info               = e1000e_get_phy_info_m88,
1772         .read_reg               = e1000e_read_phy_reg_m88,
1773         .release                = e1000_put_hw_semaphore_82571,
1774         .reset                  = e1000e_phy_hw_reset_generic,
1775         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1776         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1777         .write_reg              = e1000e_write_phy_reg_m88,
1778         .cfg_on_link_up         = NULL,
1779 };
1780
1781 static struct e1000_phy_operations e82_phy_ops_bm = {
1782         .acquire                = e1000_get_hw_semaphore_82571,
1783         .check_polarity         = e1000_check_polarity_m88,
1784         .check_reset_block      = e1000e_check_reset_block_generic,
1785         .commit                 = e1000e_phy_sw_reset,
1786         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1787         .get_cfg_done           = e1000e_get_cfg_done,
1788         .get_cable_length       = e1000e_get_cable_length_m88,
1789         .get_info               = e1000e_get_phy_info_m88,
1790         .read_reg               = e1000e_read_phy_reg_bm2,
1791         .release                = e1000_put_hw_semaphore_82571,
1792         .reset                  = e1000e_phy_hw_reset_generic,
1793         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1794         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1795         .write_reg              = e1000e_write_phy_reg_bm2,
1796         .cfg_on_link_up         = NULL,
1797 };
1798
1799 static struct e1000_nvm_operations e82571_nvm_ops = {
1800         .acquire                = e1000_acquire_nvm_82571,
1801         .read                   = e1000e_read_nvm_eerd,
1802         .release                = e1000_release_nvm_82571,
1803         .update                 = e1000_update_nvm_checksum_82571,
1804         .valid_led_default      = e1000_valid_led_default_82571,
1805         .validate               = e1000_validate_nvm_checksum_82571,
1806         .write                  = e1000_write_nvm_82571,
1807 };
1808
1809 struct e1000_info e1000_82571_info = {
1810         .mac                    = e1000_82571,
1811         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1812                                   | FLAG_HAS_JUMBO_FRAMES
1813                                   | FLAG_HAS_WOL
1814                                   | FLAG_APME_IN_CTRL3
1815                                   | FLAG_RX_CSUM_ENABLED
1816                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1817                                   | FLAG_HAS_SMART_POWER_DOWN
1818                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1819                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1820                                   | FLAG_APME_CHECK_PORT_B,
1821         .pba                    = 38,
1822         .max_hw_frame_size      = DEFAULT_JUMBO,
1823         .get_variants           = e1000_get_variants_82571,
1824         .mac_ops                = &e82571_mac_ops,
1825         .phy_ops                = &e82_phy_ops_igp,
1826         .nvm_ops                = &e82571_nvm_ops,
1827 };
1828
1829 struct e1000_info e1000_82572_info = {
1830         .mac                    = e1000_82572,
1831         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1832                                   | FLAG_HAS_JUMBO_FRAMES
1833                                   | FLAG_HAS_WOL
1834                                   | FLAG_APME_IN_CTRL3
1835                                   | FLAG_RX_CSUM_ENABLED
1836                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1837                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1838         .pba                    = 38,
1839         .max_hw_frame_size      = DEFAULT_JUMBO,
1840         .get_variants           = e1000_get_variants_82571,
1841         .mac_ops                = &e82571_mac_ops,
1842         .phy_ops                = &e82_phy_ops_igp,
1843         .nvm_ops                = &e82571_nvm_ops,
1844 };
1845
1846 struct e1000_info e1000_82573_info = {
1847         .mac                    = e1000_82573,
1848         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1849                                   | FLAG_HAS_JUMBO_FRAMES
1850                                   | FLAG_HAS_WOL
1851                                   | FLAG_APME_IN_CTRL3
1852                                   | FLAG_RX_CSUM_ENABLED
1853                                   | FLAG_HAS_SMART_POWER_DOWN
1854                                   | FLAG_HAS_AMT
1855                                   | FLAG_HAS_ERT
1856                                   | FLAG_HAS_SWSM_ON_LOAD,
1857         .pba                    = 20,
1858         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1859         .get_variants           = e1000_get_variants_82571,
1860         .mac_ops                = &e82571_mac_ops,
1861         .phy_ops                = &e82_phy_ops_m88,
1862         .nvm_ops                = &e82571_nvm_ops,
1863 };
1864
1865 struct e1000_info e1000_82574_info = {
1866         .mac                    = e1000_82574,
1867         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1868                                   | FLAG_HAS_MSIX
1869                                   | FLAG_HAS_JUMBO_FRAMES
1870                                   | FLAG_HAS_WOL
1871                                   | FLAG_APME_IN_CTRL3
1872                                   | FLAG_RX_CSUM_ENABLED
1873                                   | FLAG_HAS_SMART_POWER_DOWN
1874                                   | FLAG_HAS_AMT
1875                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1876         .pba                    = 20,
1877         .max_hw_frame_size      = DEFAULT_JUMBO,
1878         .get_variants           = e1000_get_variants_82571,
1879         .mac_ops                = &e82571_mac_ops,
1880         .phy_ops                = &e82_phy_ops_bm,
1881         .nvm_ops                = &e82571_nvm_ops,
1882 };
1883
1884 struct e1000_info e1000_82583_info = {
1885         .mac                    = e1000_82583,
1886         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1887                                   | FLAG_HAS_WOL
1888                                   | FLAG_APME_IN_CTRL3
1889                                   | FLAG_RX_CSUM_ENABLED
1890                                   | FLAG_HAS_SMART_POWER_DOWN
1891                                   | FLAG_HAS_AMT
1892                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1893         .pba                    = 20,
1894         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1895         .get_variants           = e1000_get_variants_82571,
1896         .mac_ops                = &e82571_mac_ops,
1897         .phy_ops                = &e82_phy_ops_bm,
1898         .nvm_ops                = &e82571_nvm_ops,
1899 };
1900