]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/e1000e/es2lan.c
e1000e: use alternate MAC address on ESB2 if available
[karo-tx-linux.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK            0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO     0x0004
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
93                                            /* 1=Enable SERDES Electrical Idle */
94
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
97
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] =
104          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128         struct e1000_phy_info *phy = &hw->phy;
129         s32 ret_val;
130
131         if (hw->phy.media_type != e1000_media_type_copper) {
132                 phy->type       = e1000_phy_none;
133                 return 0;
134         } else {
135                 phy->ops.power_up = e1000_power_up_phy_copper;
136                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137         }
138
139         phy->addr               = 1;
140         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141         phy->reset_delay_us      = 100;
142         phy->type               = e1000_phy_gg82563;
143
144         /* This can only be done after all function pointers are setup. */
145         ret_val = e1000e_get_phy_id(hw);
146
147         /* Verify phy id */
148         if (phy->id != GG82563_E_PHY_ID)
149                 return -E1000_ERR_PHY;
150
151         return ret_val;
152 }
153
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160         struct e1000_nvm_info *nvm = &hw->nvm;
161         u32 eecd = er32(EECD);
162         u16 size;
163
164         nvm->opcode_bits        = 8;
165         nvm->delay_usec  = 1;
166         switch (nvm->override) {
167         case e1000_nvm_override_spi_large:
168                 nvm->page_size    = 32;
169                 nvm->address_bits = 16;
170                 break;
171         case e1000_nvm_override_spi_small:
172                 nvm->page_size    = 8;
173                 nvm->address_bits = 8;
174                 break;
175         default:
176                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178                 break;
179         }
180
181         nvm->type = e1000_nvm_eeprom_spi;
182
183         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184                           E1000_EECD_SIZE_EX_SHIFT);
185
186         /*
187          * Added to a constant, "size" becomes the left-shift value
188          * for setting word_size.
189          */
190         size += NVM_WORD_SIZE_BASE_SHIFT;
191
192         /* EEPROM access above 16k is unsupported */
193         if (size > 14)
194                 size = 14;
195         nvm->word_size  = 1 << size;
196
197         return 0;
198 }
199
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
205 {
206         struct e1000_hw *hw = &adapter->hw;
207         struct e1000_mac_info *mac = &hw->mac;
208         struct e1000_mac_operations *func = &mac->ops;
209
210         /* Set media type */
211         switch (adapter->pdev->device) {
212         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
213                 hw->phy.media_type = e1000_media_type_internal_serdes;
214                 break;
215         default:
216                 hw->phy.media_type = e1000_media_type_copper;
217                 break;
218         }
219
220         /* Set mta register count */
221         mac->mta_reg_count = 128;
222         /* Set rar entry count */
223         mac->rar_entry_count = E1000_RAR_ENTRIES;
224         /* Set if manageability features are enabled. */
225         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
226                         ? true : false;
227         /* Adaptive IFS not supported */
228         mac->adaptive_ifs = false;
229
230         /* check for link */
231         switch (hw->phy.media_type) {
232         case e1000_media_type_copper:
233                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
234                 func->check_for_link = e1000e_check_for_copper_link;
235                 break;
236         case e1000_media_type_fiber:
237                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
238                 func->check_for_link = e1000e_check_for_fiber_link;
239                 break;
240         case e1000_media_type_internal_serdes:
241                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
242                 func->check_for_link = e1000e_check_for_serdes_link;
243                 break;
244         default:
245                 return -E1000_ERR_CONFIG;
246                 break;
247         }
248
249         return 0;
250 }
251
252 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         s32 rc;
256
257         rc = e1000_init_mac_params_80003es2lan(adapter);
258         if (rc)
259                 return rc;
260
261         rc = e1000_init_nvm_params_80003es2lan(hw);
262         if (rc)
263                 return rc;
264
265         rc = e1000_init_phy_params_80003es2lan(hw);
266         if (rc)
267                 return rc;
268
269         return 0;
270 }
271
272 /**
273  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
274  *  @hw: pointer to the HW structure
275  *
276  *  A wrapper to acquire access rights to the correct PHY.
277  **/
278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
279 {
280         u16 mask;
281
282         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
283         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
284 }
285
286 /**
287  *  e1000_release_phy_80003es2lan - Release rights to access PHY
288  *  @hw: pointer to the HW structure
289  *
290  *  A wrapper to release access rights to the correct PHY.
291  **/
292 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
293 {
294         u16 mask;
295
296         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
297         e1000_release_swfw_sync_80003es2lan(hw, mask);
298 }
299
300 /**
301  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
302  *  @hw: pointer to the HW structure
303  *
304  *  Acquire the semaphore to access the Kumeran interface.
305  *
306  **/
307 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
308 {
309         u16 mask;
310
311         mask = E1000_SWFW_CSR_SM;
312
313         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
314 }
315
316 /**
317  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
318  *  @hw: pointer to the HW structure
319  *
320  *  Release the semaphore used to access the Kumeran interface
321  **/
322 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
323 {
324         u16 mask;
325
326         mask = E1000_SWFW_CSR_SM;
327
328         e1000_release_swfw_sync_80003es2lan(hw, mask);
329 }
330
331 /**
332  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
333  *  @hw: pointer to the HW structure
334  *
335  *  Acquire the semaphore to access the EEPROM.
336  **/
337 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
338 {
339         s32 ret_val;
340
341         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
342         if (ret_val)
343                 return ret_val;
344
345         ret_val = e1000e_acquire_nvm(hw);
346
347         if (ret_val)
348                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
349
350         return ret_val;
351 }
352
353 /**
354  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
355  *  @hw: pointer to the HW structure
356  *
357  *  Release the semaphore used to access the EEPROM.
358  **/
359 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
360 {
361         e1000e_release_nvm(hw);
362         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
363 }
364
365 /**
366  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
367  *  @hw: pointer to the HW structure
368  *  @mask: specifies which semaphore to acquire
369  *
370  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
371  *  will also specify which port we're acquiring the lock for.
372  **/
373 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
374 {
375         u32 swfw_sync;
376         u32 swmask = mask;
377         u32 fwmask = mask << 16;
378         s32 i = 0;
379         s32 timeout = 50;
380
381         while (i < timeout) {
382                 if (e1000e_get_hw_semaphore(hw))
383                         return -E1000_ERR_SWFW_SYNC;
384
385                 swfw_sync = er32(SW_FW_SYNC);
386                 if (!(swfw_sync & (fwmask | swmask)))
387                         break;
388
389                 /*
390                  * Firmware currently using resource (fwmask)
391                  * or other software thread using resource (swmask)
392                  */
393                 e1000e_put_hw_semaphore(hw);
394                 mdelay(5);
395                 i++;
396         }
397
398         if (i == timeout) {
399                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
400                 return -E1000_ERR_SWFW_SYNC;
401         }
402
403         swfw_sync |= swmask;
404         ew32(SW_FW_SYNC, swfw_sync);
405
406         e1000e_put_hw_semaphore(hw);
407
408         return 0;
409 }
410
411 /**
412  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
413  *  @hw: pointer to the HW structure
414  *  @mask: specifies which semaphore to acquire
415  *
416  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
417  *  will also specify which port we're releasing the lock for.
418  **/
419 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
420 {
421         u32 swfw_sync;
422
423         while (e1000e_get_hw_semaphore(hw) != 0);
424         /* Empty */
425
426         swfw_sync = er32(SW_FW_SYNC);
427         swfw_sync &= ~mask;
428         ew32(SW_FW_SYNC, swfw_sync);
429
430         e1000e_put_hw_semaphore(hw);
431 }
432
433 /**
434  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
435  *  @hw: pointer to the HW structure
436  *  @offset: offset of the register to read
437  *  @data: pointer to the data returned from the operation
438  *
439  *  Read the GG82563 PHY register.
440  **/
441 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
442                                                   u32 offset, u16 *data)
443 {
444         s32 ret_val;
445         u32 page_select;
446         u16 temp;
447
448         ret_val = e1000_acquire_phy_80003es2lan(hw);
449         if (ret_val)
450                 return ret_val;
451
452         /* Select Configuration Page */
453         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
454                 page_select = GG82563_PHY_PAGE_SELECT;
455         } else {
456                 /*
457                  * Use Alternative Page Select register to access
458                  * registers 30 and 31
459                  */
460                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
461         }
462
463         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
464         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
465         if (ret_val) {
466                 e1000_release_phy_80003es2lan(hw);
467                 return ret_val;
468         }
469
470         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
471                 /*
472                  * The "ready" bit in the MDIC register may be incorrectly set
473                  * before the device has completed the "Page Select" MDI
474                  * transaction.  So we wait 200us after each MDI command...
475                  */
476                 udelay(200);
477
478                 /* ...and verify the command was successful. */
479                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
480
481                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
482                         ret_val = -E1000_ERR_PHY;
483                         e1000_release_phy_80003es2lan(hw);
484                         return ret_val;
485                 }
486
487                 udelay(200);
488
489                 ret_val = e1000e_read_phy_reg_mdic(hw,
490                                                   MAX_PHY_REG_ADDRESS & offset,
491                                                   data);
492
493                 udelay(200);
494         } else {
495                 ret_val = e1000e_read_phy_reg_mdic(hw,
496                                                   MAX_PHY_REG_ADDRESS & offset,
497                                                   data);
498         }
499
500         e1000_release_phy_80003es2lan(hw);
501
502         return ret_val;
503 }
504
505 /**
506  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
507  *  @hw: pointer to the HW structure
508  *  @offset: offset of the register to read
509  *  @data: value to write to the register
510  *
511  *  Write to the GG82563 PHY register.
512  **/
513 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
514                                                    u32 offset, u16 data)
515 {
516         s32 ret_val;
517         u32 page_select;
518         u16 temp;
519
520         ret_val = e1000_acquire_phy_80003es2lan(hw);
521         if (ret_val)
522                 return ret_val;
523
524         /* Select Configuration Page */
525         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
526                 page_select = GG82563_PHY_PAGE_SELECT;
527         } else {
528                 /*
529                  * Use Alternative Page Select register to access
530                  * registers 30 and 31
531                  */
532                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
533         }
534
535         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
536         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
537         if (ret_val) {
538                 e1000_release_phy_80003es2lan(hw);
539                 return ret_val;
540         }
541
542         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
543                 /*
544                  * The "ready" bit in the MDIC register may be incorrectly set
545                  * before the device has completed the "Page Select" MDI
546                  * transaction.  So we wait 200us after each MDI command...
547                  */
548                 udelay(200);
549
550                 /* ...and verify the command was successful. */
551                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
552
553                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
554                         e1000_release_phy_80003es2lan(hw);
555                         return -E1000_ERR_PHY;
556                 }
557
558                 udelay(200);
559
560                 ret_val = e1000e_write_phy_reg_mdic(hw,
561                                                   MAX_PHY_REG_ADDRESS & offset,
562                                                   data);
563
564                 udelay(200);
565         } else {
566                 ret_val = e1000e_write_phy_reg_mdic(hw,
567                                                   MAX_PHY_REG_ADDRESS & offset,
568                                                   data);
569         }
570
571         e1000_release_phy_80003es2lan(hw);
572
573         return ret_val;
574 }
575
576 /**
577  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
578  *  @hw: pointer to the HW structure
579  *  @offset: offset of the register to read
580  *  @words: number of words to write
581  *  @data: buffer of data to write to the NVM
582  *
583  *  Write "words" of data to the ESB2 NVM.
584  **/
585 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
586                                        u16 words, u16 *data)
587 {
588         return e1000e_write_nvm_spi(hw, offset, words, data);
589 }
590
591 /**
592  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
593  *  @hw: pointer to the HW structure
594  *
595  *  Wait a specific amount of time for manageability processes to complete.
596  *  This is a function pointer entry point called by the phy module.
597  **/
598 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
599 {
600         s32 timeout = PHY_CFG_TIMEOUT;
601         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
602
603         if (hw->bus.func == 1)
604                 mask = E1000_NVM_CFG_DONE_PORT_1;
605
606         while (timeout) {
607                 if (er32(EEMNGCTL) & mask)
608                         break;
609                 msleep(1);
610                 timeout--;
611         }
612         if (!timeout) {
613                 e_dbg("MNG configuration cycle has not completed.\n");
614                 return -E1000_ERR_RESET;
615         }
616
617         return 0;
618 }
619
620 /**
621  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
622  *  @hw: pointer to the HW structure
623  *
624  *  Force the speed and duplex settings onto the PHY.  This is a
625  *  function pointer entry point called by the phy module.
626  **/
627 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
628 {
629         s32 ret_val;
630         u16 phy_data;
631         bool link;
632
633         /*
634          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
635          * forced whenever speed and duplex are forced.
636          */
637         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
638         if (ret_val)
639                 return ret_val;
640
641         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
642         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
643         if (ret_val)
644                 return ret_val;
645
646         e_dbg("GG82563 PSCR: %X\n", phy_data);
647
648         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
649         if (ret_val)
650                 return ret_val;
651
652         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
653
654         /* Reset the phy to commit changes. */
655         phy_data |= MII_CR_RESET;
656
657         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
658         if (ret_val)
659                 return ret_val;
660
661         udelay(1);
662
663         if (hw->phy.autoneg_wait_to_complete) {
664                 e_dbg("Waiting for forced speed/duplex link "
665                          "on GG82563 phy.\n");
666
667                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
668                                                      100000, &link);
669                 if (ret_val)
670                         return ret_val;
671
672                 if (!link) {
673                         /*
674                          * We didn't get link.
675                          * Reset the DSP and cross our fingers.
676                          */
677                         ret_val = e1000e_phy_reset_dsp(hw);
678                         if (ret_val)
679                                 return ret_val;
680                 }
681
682                 /* Try once more */
683                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
684                                                      100000, &link);
685                 if (ret_val)
686                         return ret_val;
687         }
688
689         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
690         if (ret_val)
691                 return ret_val;
692
693         /*
694          * Resetting the phy means we need to verify the TX_CLK corresponds
695          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
696          */
697         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
698         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
699                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
700         else
701                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
702
703         /*
704          * In addition, we must re-enable CRS on Tx for both half and full
705          * duplex.
706          */
707         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
708         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
709
710         return ret_val;
711 }
712
713 /**
714  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
715  *  @hw: pointer to the HW structure
716  *
717  *  Find the approximate cable length as measured by the GG82563 PHY.
718  *  This is a function pointer entry point called by the phy module.
719  **/
720 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
721 {
722         struct e1000_phy_info *phy = &hw->phy;
723         s32 ret_val = 0;
724         u16 phy_data, index;
725
726         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
727         if (ret_val)
728                 goto out;
729
730         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
731
732         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
733                 ret_val = -E1000_ERR_PHY;
734                 goto out;
735         }
736
737         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
738         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
739
740         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
741
742 out:
743         return ret_val;
744 }
745
746 /**
747  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
748  *  @hw: pointer to the HW structure
749  *  @speed: pointer to speed buffer
750  *  @duplex: pointer to duplex buffer
751  *
752  *  Retrieve the current speed and duplex configuration.
753  **/
754 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
755                                               u16 *duplex)
756 {
757         s32 ret_val;
758
759         if (hw->phy.media_type == e1000_media_type_copper) {
760                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
761                                                                     speed,
762                                                                     duplex);
763                 hw->phy.ops.cfg_on_link_up(hw);
764         } else {
765                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
766                                                                   speed,
767                                                                   duplex);
768         }
769
770         return ret_val;
771 }
772
773 /**
774  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
775  *  @hw: pointer to the HW structure
776  *
777  *  Perform a global reset to the ESB2 controller.
778  **/
779 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
780 {
781         u32 ctrl, icr;
782         s32 ret_val;
783
784         /*
785          * Prevent the PCI-E bus from sticking if there is no TLP connection
786          * on the last TLP read/write transaction when MAC is reset.
787          */
788         ret_val = e1000e_disable_pcie_master(hw);
789         if (ret_val)
790                 e_dbg("PCI-E Master disable polling has failed.\n");
791
792         e_dbg("Masking off all interrupts\n");
793         ew32(IMC, 0xffffffff);
794
795         ew32(RCTL, 0);
796         ew32(TCTL, E1000_TCTL_PSP);
797         e1e_flush();
798
799         msleep(10);
800
801         ctrl = er32(CTRL);
802
803         ret_val = e1000_acquire_phy_80003es2lan(hw);
804         e_dbg("Issuing a global reset to MAC\n");
805         ew32(CTRL, ctrl | E1000_CTRL_RST);
806         e1000_release_phy_80003es2lan(hw);
807
808         ret_val = e1000e_get_auto_rd_done(hw);
809         if (ret_val)
810                 /* We don't want to continue accessing MAC registers. */
811                 return ret_val;
812
813         /* Clear any pending interrupt events. */
814         ew32(IMC, 0xffffffff);
815         icr = er32(ICR);
816
817         ret_val = e1000_check_alt_mac_addr_generic(hw);
818
819         return ret_val;
820 }
821
822 /**
823  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
824  *  @hw: pointer to the HW structure
825  *
826  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
827  **/
828 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
829 {
830         struct e1000_mac_info *mac = &hw->mac;
831         u32 reg_data;
832         s32 ret_val;
833         u16 i;
834
835         e1000_initialize_hw_bits_80003es2lan(hw);
836
837         /* Initialize identification LED */
838         ret_val = e1000e_id_led_init(hw);
839         if (ret_val)
840                 e_dbg("Error initializing identification LED\n");
841                 /* This is not fatal and we should not stop init due to this */
842
843         /* Disabling VLAN filtering */
844         e_dbg("Initializing the IEEE VLAN\n");
845         mac->ops.clear_vfta(hw);
846
847         /* Setup the receive address. */
848         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
849
850         /* Zero out the Multicast HASH table */
851         e_dbg("Zeroing the MTA\n");
852         for (i = 0; i < mac->mta_reg_count; i++)
853                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
854
855         /* Setup link and flow control */
856         ret_val = e1000e_setup_link(hw);
857
858         /* Set the transmit descriptor write-back policy */
859         reg_data = er32(TXDCTL(0));
860         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
861                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
862         ew32(TXDCTL(0), reg_data);
863
864         /* ...for both queues. */
865         reg_data = er32(TXDCTL(1));
866         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
867                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
868         ew32(TXDCTL(1), reg_data);
869
870         /* Enable retransmit on late collisions */
871         reg_data = er32(TCTL);
872         reg_data |= E1000_TCTL_RTLC;
873         ew32(TCTL, reg_data);
874
875         /* Configure Gigabit Carry Extend Padding */
876         reg_data = er32(TCTL_EXT);
877         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
878         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
879         ew32(TCTL_EXT, reg_data);
880
881         /* Configure Transmit Inter-Packet Gap */
882         reg_data = er32(TIPG);
883         reg_data &= ~E1000_TIPG_IPGT_MASK;
884         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
885         ew32(TIPG, reg_data);
886
887         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
888         reg_data &= ~0x00100000;
889         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
890
891         /* default to true to enable the MDIC W/A */
892         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
893
894         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
895                                       E1000_KMRNCTRLSTA_OFFSET >>
896                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
897                                       &i);
898         if (!ret_val) {
899                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
900                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
901                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
902         }
903
904         /*
905          * Clear all of the statistics registers (clear on read).  It is
906          * important that we do this after we have tried to establish link
907          * because the symbol error count will increment wildly if there
908          * is no link.
909          */
910         e1000_clear_hw_cntrs_80003es2lan(hw);
911
912         return ret_val;
913 }
914
915 /**
916  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
917  *  @hw: pointer to the HW structure
918  *
919  *  Initializes required hardware-dependent bits needed for normal operation.
920  **/
921 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
922 {
923         u32 reg;
924
925         /* Transmit Descriptor Control 0 */
926         reg = er32(TXDCTL(0));
927         reg |= (1 << 22);
928         ew32(TXDCTL(0), reg);
929
930         /* Transmit Descriptor Control 1 */
931         reg = er32(TXDCTL(1));
932         reg |= (1 << 22);
933         ew32(TXDCTL(1), reg);
934
935         /* Transmit Arbitration Control 0 */
936         reg = er32(TARC(0));
937         reg &= ~(0xF << 27); /* 30:27 */
938         if (hw->phy.media_type != e1000_media_type_copper)
939                 reg &= ~(1 << 20);
940         ew32(TARC(0), reg);
941
942         /* Transmit Arbitration Control 1 */
943         reg = er32(TARC(1));
944         if (er32(TCTL) & E1000_TCTL_MULR)
945                 reg &= ~(1 << 28);
946         else
947                 reg |= (1 << 28);
948         ew32(TARC(1), reg);
949 }
950
951 /**
952  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
953  *  @hw: pointer to the HW structure
954  *
955  *  Setup some GG82563 PHY registers for obtaining link
956  **/
957 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
958 {
959         struct e1000_phy_info *phy = &hw->phy;
960         s32 ret_val;
961         u32 ctrl_ext;
962         u16 data;
963
964         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
965         if (ret_val)
966                 return ret_val;
967
968         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
969         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
970         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
971
972         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
973         if (ret_val)
974                 return ret_val;
975
976         /*
977          * Options:
978          *   MDI/MDI-X = 0 (default)
979          *   0 - Auto for all speeds
980          *   1 - MDI mode
981          *   2 - MDI-X mode
982          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
983          */
984         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
985         if (ret_val)
986                 return ret_val;
987
988         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
989
990         switch (phy->mdix) {
991         case 1:
992                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
993                 break;
994         case 2:
995                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
996                 break;
997         case 0:
998         default:
999                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1000                 break;
1001         }
1002
1003         /*
1004          * Options:
1005          *   disable_polarity_correction = 0 (default)
1006          *       Automatic Correction for Reversed Cable Polarity
1007          *   0 - Disabled
1008          *   1 - Enabled
1009          */
1010         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1011         if (phy->disable_polarity_correction)
1012                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1013
1014         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1015         if (ret_val)
1016                 return ret_val;
1017
1018         /* SW Reset the PHY so all changes take effect */
1019         ret_val = e1000e_commit_phy(hw);
1020         if (ret_val) {
1021                 e_dbg("Error Resetting the PHY\n");
1022                 return ret_val;
1023         }
1024
1025         /* Bypass Rx and Tx FIFO's */
1026         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1027                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1028                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1029                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1030         if (ret_val)
1031                 return ret_val;
1032
1033         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1034                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1035                                        &data);
1036         if (ret_val)
1037                 return ret_val;
1038         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1039         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1040                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1041                                         data);
1042         if (ret_val)
1043                 return ret_val;
1044
1045         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1046         if (ret_val)
1047                 return ret_val;
1048
1049         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1050         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1051         if (ret_val)
1052                 return ret_val;
1053
1054         ctrl_ext = er32(CTRL_EXT);
1055         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1056         ew32(CTRL_EXT, ctrl_ext);
1057
1058         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1059         if (ret_val)
1060                 return ret_val;
1061
1062         /*
1063          * Do not init these registers when the HW is in IAMT mode, since the
1064          * firmware will have already initialized them.  We only initialize
1065          * them if the HW is not in IAMT mode.
1066          */
1067         if (!e1000e_check_mng_mode(hw)) {
1068                 /* Enable Electrical Idle on the PHY */
1069                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1070                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1071                 if (ret_val)
1072                         return ret_val;
1073
1074                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1075                 if (ret_val)
1076                         return ret_val;
1077
1078                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1079                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1080                 if (ret_val)
1081                         return ret_val;
1082         }
1083
1084         /*
1085          * Workaround: Disable padding in Kumeran interface in the MAC
1086          * and in the PHY to avoid CRC errors.
1087          */
1088         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1089         if (ret_val)
1090                 return ret_val;
1091
1092         data |= GG82563_ICR_DIS_PADDING;
1093         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1094         if (ret_val)
1095                 return ret_val;
1096
1097         return 0;
1098 }
1099
1100 /**
1101  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1102  *  @hw: pointer to the HW structure
1103  *
1104  *  Essentially a wrapper for setting up all things "copper" related.
1105  *  This is a function pointer entry point called by the mac module.
1106  **/
1107 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1108 {
1109         u32 ctrl;
1110         s32 ret_val;
1111         u16 reg_data;
1112
1113         ctrl = er32(CTRL);
1114         ctrl |= E1000_CTRL_SLU;
1115         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1116         ew32(CTRL, ctrl);
1117
1118         /*
1119          * Set the mac to wait the maximum time between each
1120          * iteration and increase the max iterations when
1121          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1122          */
1123         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1124                                                    0xFFFF);
1125         if (ret_val)
1126                 return ret_val;
1127         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1128                                                   &reg_data);
1129         if (ret_val)
1130                 return ret_val;
1131         reg_data |= 0x3F;
1132         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1133                                                    reg_data);
1134         if (ret_val)
1135                 return ret_val;
1136         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1137                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1138                                       &reg_data);
1139         if (ret_val)
1140                 return ret_val;
1141         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1142         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1143                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1144                                         reg_data);
1145         if (ret_val)
1146                 return ret_val;
1147
1148         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1149         if (ret_val)
1150                 return ret_val;
1151
1152         ret_val = e1000e_setup_copper_link(hw);
1153
1154         return 0;
1155 }
1156
1157 /**
1158  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1159  *  @hw: pointer to the HW structure
1160  *  @duplex: current duplex setting
1161  *
1162  *  Configure the KMRN interface by applying last minute quirks for
1163  *  10/100 operation.
1164  **/
1165 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1166 {
1167         s32 ret_val = 0;
1168         u16 speed;
1169         u16 duplex;
1170
1171         if (hw->phy.media_type == e1000_media_type_copper) {
1172                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1173                                                              &duplex);
1174                 if (ret_val)
1175                         return ret_val;
1176
1177                 if (speed == SPEED_1000)
1178                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1179                 else
1180                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1181         }
1182
1183         return ret_val;
1184 }
1185
1186 /**
1187  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1188  *  @hw: pointer to the HW structure
1189  *  @duplex: current duplex setting
1190  *
1191  *  Configure the KMRN interface by applying last minute quirks for
1192  *  10/100 operation.
1193  **/
1194 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1195 {
1196         s32 ret_val;
1197         u32 tipg;
1198         u32 i = 0;
1199         u16 reg_data, reg_data2;
1200
1201         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1202         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1203                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1204                                        reg_data);
1205         if (ret_val)
1206                 return ret_val;
1207
1208         /* Configure Transmit Inter-Packet Gap */
1209         tipg = er32(TIPG);
1210         tipg &= ~E1000_TIPG_IPGT_MASK;
1211         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1212         ew32(TIPG, tipg);
1213
1214         do {
1215                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1216                 if (ret_val)
1217                         return ret_val;
1218
1219                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1220                 if (ret_val)
1221                         return ret_val;
1222                 i++;
1223         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1224
1225         if (duplex == HALF_DUPLEX)
1226                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1227         else
1228                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1229
1230         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1231
1232         return 0;
1233 }
1234
1235 /**
1236  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1237  *  @hw: pointer to the HW structure
1238  *
1239  *  Configure the KMRN interface by applying last minute quirks for
1240  *  gigabit operation.
1241  **/
1242 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1243 {
1244         s32 ret_val;
1245         u16 reg_data, reg_data2;
1246         u32 tipg;
1247         u32 i = 0;
1248
1249         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1250         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1251                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1252                                        reg_data);
1253         if (ret_val)
1254                 return ret_val;
1255
1256         /* Configure Transmit Inter-Packet Gap */
1257         tipg = er32(TIPG);
1258         tipg &= ~E1000_TIPG_IPGT_MASK;
1259         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1260         ew32(TIPG, tipg);
1261
1262         do {
1263                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1264                 if (ret_val)
1265                         return ret_val;
1266
1267                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1268                 if (ret_val)
1269                         return ret_val;
1270                 i++;
1271         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1272
1273         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1274         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1275
1276         return ret_val;
1277 }
1278
1279 /**
1280  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1281  *  @hw: pointer to the HW structure
1282  *  @offset: register offset to be read
1283  *  @data: pointer to the read data
1284  *
1285  *  Acquire semaphore, then read the PHY register at offset
1286  *  using the kumeran interface.  The information retrieved is stored in data.
1287  *  Release the semaphore before exiting.
1288  **/
1289 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1290                                            u16 *data)
1291 {
1292         u32 kmrnctrlsta;
1293         s32 ret_val = 0;
1294
1295         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1296         if (ret_val)
1297                 return ret_val;
1298
1299         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1300                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1301         ew32(KMRNCTRLSTA, kmrnctrlsta);
1302
1303         udelay(2);
1304
1305         kmrnctrlsta = er32(KMRNCTRLSTA);
1306         *data = (u16)kmrnctrlsta;
1307
1308         e1000_release_mac_csr_80003es2lan(hw);
1309
1310         return ret_val;
1311 }
1312
1313 /**
1314  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1315  *  @hw: pointer to the HW structure
1316  *  @offset: register offset to write to
1317  *  @data: data to write at register offset
1318  *
1319  *  Acquire semaphore, then write the data to PHY register
1320  *  at the offset using the kumeran interface.  Release semaphore
1321  *  before exiting.
1322  **/
1323 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1324                                             u16 data)
1325 {
1326         u32 kmrnctrlsta;
1327         s32 ret_val = 0;
1328
1329         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1330         if (ret_val)
1331                 return ret_val;
1332
1333         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1334                        E1000_KMRNCTRLSTA_OFFSET) | data;
1335         ew32(KMRNCTRLSTA, kmrnctrlsta);
1336
1337         udelay(2);
1338
1339         e1000_release_mac_csr_80003es2lan(hw);
1340
1341         return ret_val;
1342 }
1343
1344 /**
1345  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1346  *  @hw: pointer to the HW structure
1347  **/
1348 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1349 {
1350         s32 ret_val = 0;
1351
1352         /*
1353          * If there's an alternate MAC address place it in RAR0
1354          * so that it will override the Si installed default perm
1355          * address.
1356          */
1357         ret_val = e1000_check_alt_mac_addr_generic(hw);
1358         if (ret_val)
1359                 goto out;
1360
1361         ret_val = e1000_read_mac_addr_generic(hw);
1362
1363 out:
1364         return ret_val;
1365 }
1366
1367 /**
1368  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1369  * @hw: pointer to the HW structure
1370  *
1371  * In the case of a PHY power down to save power, or to turn off link during a
1372  * driver unload, or wake on lan is not enabled, remove the link.
1373  **/
1374 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1375 {
1376         /* If the management interface is not enabled, then power down */
1377         if (!(hw->mac.ops.check_mng_mode(hw) ||
1378               hw->phy.ops.check_reset_block(hw)))
1379                 e1000_power_down_phy_copper(hw);
1380
1381         return;
1382 }
1383
1384 /**
1385  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1386  *  @hw: pointer to the HW structure
1387  *
1388  *  Clears the hardware counters by reading the counter registers.
1389  **/
1390 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1391 {
1392         e1000e_clear_hw_cntrs_base(hw);
1393
1394         er32(PRC64);
1395         er32(PRC127);
1396         er32(PRC255);
1397         er32(PRC511);
1398         er32(PRC1023);
1399         er32(PRC1522);
1400         er32(PTC64);
1401         er32(PTC127);
1402         er32(PTC255);
1403         er32(PTC511);
1404         er32(PTC1023);
1405         er32(PTC1522);
1406
1407         er32(ALGNERRC);
1408         er32(RXERRC);
1409         er32(TNCRS);
1410         er32(CEXTERR);
1411         er32(TSCTC);
1412         er32(TSCTFC);
1413
1414         er32(MGTPRC);
1415         er32(MGTPDC);
1416         er32(MGTPTC);
1417
1418         er32(IAC);
1419         er32(ICRXOC);
1420
1421         er32(ICRXPTC);
1422         er32(ICRXATC);
1423         er32(ICTXPTC);
1424         er32(ICTXATC);
1425         er32(ICTXQEC);
1426         er32(ICTXQMTC);
1427         er32(ICRXDMTC);
1428 }
1429
1430 static struct e1000_mac_operations es2_mac_ops = {
1431         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1432         .id_led_init            = e1000e_id_led_init,
1433         .check_mng_mode         = e1000e_check_mng_mode_generic,
1434         /* check_for_link dependent on media type */
1435         .cleanup_led            = e1000e_cleanup_led_generic,
1436         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1437         .get_bus_info           = e1000e_get_bus_info_pcie,
1438         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1439         .led_on                 = e1000e_led_on_generic,
1440         .led_off                = e1000e_led_off_generic,
1441         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1442         .write_vfta             = e1000_write_vfta_generic,
1443         .clear_vfta             = e1000_clear_vfta_generic,
1444         .reset_hw               = e1000_reset_hw_80003es2lan,
1445         .init_hw                = e1000_init_hw_80003es2lan,
1446         .setup_link             = e1000e_setup_link,
1447         /* setup_physical_interface dependent on media type */
1448         .setup_led              = e1000e_setup_led_generic,
1449 };
1450
1451 static struct e1000_phy_operations es2_phy_ops = {
1452         .acquire                = e1000_acquire_phy_80003es2lan,
1453         .check_polarity         = e1000_check_polarity_m88,
1454         .check_reset_block      = e1000e_check_reset_block_generic,
1455         .commit                 = e1000e_phy_sw_reset,
1456         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1457         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1458         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1459         .get_info               = e1000e_get_phy_info_m88,
1460         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1461         .release                = e1000_release_phy_80003es2lan,
1462         .reset                  = e1000e_phy_hw_reset_generic,
1463         .set_d0_lplu_state      = NULL,
1464         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1465         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1466         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1467 };
1468
1469 static struct e1000_nvm_operations es2_nvm_ops = {
1470         .acquire                = e1000_acquire_nvm_80003es2lan,
1471         .read                   = e1000e_read_nvm_eerd,
1472         .release                = e1000_release_nvm_80003es2lan,
1473         .update                 = e1000e_update_nvm_checksum_generic,
1474         .valid_led_default      = e1000e_valid_led_default,
1475         .validate               = e1000e_validate_nvm_checksum_generic,
1476         .write                  = e1000_write_nvm_80003es2lan,
1477 };
1478
1479 struct e1000_info e1000_es2_info = {
1480         .mac                    = e1000_80003es2lan,
1481         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1482                                   | FLAG_HAS_JUMBO_FRAMES
1483                                   | FLAG_HAS_WOL
1484                                   | FLAG_APME_IN_CTRL3
1485                                   | FLAG_RX_CSUM_ENABLED
1486                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1487                                   | FLAG_RX_NEEDS_RESTART /* errata */
1488                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1489                                   | FLAG_APME_CHECK_PORT_B
1490                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1491                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1492         .pba                    = 38,
1493         .max_hw_frame_size      = DEFAULT_JUMBO,
1494         .get_variants           = e1000_get_variants_80003es2lan,
1495         .mac_ops                = &es2_mac_ops,
1496         .phy_ops                = &es2_phy_ops,
1497         .nvm_ops                = &es2_nvm_ops,
1498 };
1499