]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/e1000e/ethtool.c
e1000e: add missing tests for 82583 in ethtool functions
[karo-tx-linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 enum {NETDEV_STATS, E1000_STATS};
39
40 struct e1000_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int type;
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define E1000_STAT(m)           E1000_STATS, \
48                                 sizeof(((struct e1000_adapter *)0)->m), \
49                                 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
51                                 sizeof(((struct net_device *)0)->m), \
52                                 offsetof(struct net_device, m)
53
54 static const struct e1000_stats e1000_gstrings_stats[] = {
55         { "rx_packets", E1000_STAT(stats.gprc) },
56         { "tx_packets", E1000_STAT(stats.gptc) },
57         { "rx_bytes", E1000_STAT(stats.gorc) },
58         { "tx_bytes", E1000_STAT(stats.gotc) },
59         { "rx_broadcast", E1000_STAT(stats.bprc) },
60         { "tx_broadcast", E1000_STAT(stats.bptc) },
61         { "rx_multicast", E1000_STAT(stats.mprc) },
62         { "tx_multicast", E1000_STAT(stats.mptc) },
63         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
64         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
65         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66         { "multicast", E1000_STAT(stats.mprc) },
67         { "collisions", E1000_STAT(stats.colc) },
68         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
69         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(stats.mpc) },
74         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
75         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(stats.latecol) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "tx_restart_queue", E1000_STAT(restart_queue) },
85         { "rx_long_length_errors", E1000_STAT(stats.roc) },
86         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
87         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
88         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
89         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
90         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
91         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
92         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
93         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
95         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
96         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
97         { "rx_header_split", E1000_STAT(rx_hdr_split) },
98         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99         { "tx_smbus", E1000_STAT(stats.mgptc) },
100         { "rx_smbus", E1000_STAT(stats.mgprc) },
101         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
102         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
103         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
104 };
105
106 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116                               struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120         u32 status;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         status = er32(STATUS);
159         if (status & E1000_STATUS_LU) {
160                 if (status & E1000_STATUS_SPEED_1000)
161                         ecmd->speed = 1000;
162                 else if (status & E1000_STATUS_SPEED_100)
163                         ecmd->speed = 100;
164                 else
165                         ecmd->speed = 10;
166
167                 if (status & E1000_STATUS_FD)
168                         ecmd->duplex = DUPLEX_FULL;
169                 else
170                         ecmd->duplex = DUPLEX_HALF;
171         } else {
172                 ecmd->speed = -1;
173                 ecmd->duplex = -1;
174         }
175
176         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179         /* MDI-X => 2; MDI =>1; Invalid =>0 */
180         if ((hw->phy.media_type == e1000_media_type_copper) &&
181             !hw->mac.get_link_status)
182                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
183                                                       ETH_TP_MDI;
184         else
185                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187         return 0;
188 }
189
190 static u32 e1000_get_link(struct net_device *netdev)
191 {
192         struct e1000_adapter *adapter = netdev_priv(netdev);
193
194         return e1000_has_link(adapter);
195 }
196
197 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
198 {
199         struct e1000_mac_info *mac = &adapter->hw.mac;
200
201         mac->autoneg = 0;
202
203         /* Fiber NICs only allow 1000 gbps Full duplex */
204         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
205                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
206                 e_err("Unsupported Speed/Duplex configuration\n");
207                 return -EINVAL;
208         }
209
210         switch (spddplx) {
211         case SPEED_10 + DUPLEX_HALF:
212                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
213                 break;
214         case SPEED_10 + DUPLEX_FULL:
215                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
216                 break;
217         case SPEED_100 + DUPLEX_HALF:
218                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
219                 break;
220         case SPEED_100 + DUPLEX_FULL:
221                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
222                 break;
223         case SPEED_1000 + DUPLEX_FULL:
224                 mac->autoneg = 1;
225                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_HALF: /* not supported */
228         default:
229                 e_err("Unsupported Speed/Duplex configuration\n");
230                 return -EINVAL;
231         }
232         return 0;
233 }
234
235 static int e1000_set_settings(struct net_device *netdev,
236                               struct ethtool_cmd *ecmd)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         /*
242          * When SoL/IDER sessions are active, autoneg/speed/duplex
243          * cannot be changed
244          */
245         if (e1000_check_reset_block(hw)) {
246                 e_err("Cannot change link characteristics when SoL/IDER is "
247                       "active.\n");
248                 return -EINVAL;
249         }
250
251         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
252                 msleep(1);
253
254         if (ecmd->autoneg == AUTONEG_ENABLE) {
255                 hw->mac.autoneg = 1;
256                 if (hw->phy.media_type == e1000_media_type_fiber)
257                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
258                                                      ADVERTISED_FIBRE |
259                                                      ADVERTISED_Autoneg;
260                 else
261                         hw->phy.autoneg_advertised = ecmd->advertising |
262                                                      ADVERTISED_TP |
263                                                      ADVERTISED_Autoneg;
264                 ecmd->advertising = hw->phy.autoneg_advertised;
265                 if (adapter->fc_autoneg)
266                         hw->fc.requested_mode = e1000_fc_default;
267         } else {
268                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
269                         clear_bit(__E1000_RESETTING, &adapter->state);
270                         return -EINVAL;
271                 }
272         }
273
274         /* reset the link */
275
276         if (netif_running(adapter->netdev)) {
277                 e1000e_down(adapter);
278                 e1000e_up(adapter);
279         } else {
280                 e1000e_reset(adapter);
281         }
282
283         clear_bit(__E1000_RESETTING, &adapter->state);
284         return 0;
285 }
286
287 static void e1000_get_pauseparam(struct net_device *netdev,
288                                  struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292
293         pause->autoneg =
294                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
295
296         if (hw->fc.current_mode == e1000_fc_rx_pause) {
297                 pause->rx_pause = 1;
298         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
299                 pause->tx_pause = 1;
300         } else if (hw->fc.current_mode == e1000_fc_full) {
301                 pause->rx_pause = 1;
302                 pause->tx_pause = 1;
303         }
304 }
305
306 static int e1000_set_pauseparam(struct net_device *netdev,
307                                 struct ethtool_pauseparam *pause)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310         struct e1000_hw *hw = &adapter->hw;
311         int retval = 0;
312
313         adapter->fc_autoneg = pause->autoneg;
314
315         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
316                 msleep(1);
317
318         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319                 hw->fc.requested_mode = e1000_fc_default;
320                 if (netif_running(adapter->netdev)) {
321                         e1000e_down(adapter);
322                         e1000e_up(adapter);
323                 } else {
324                         e1000e_reset(adapter);
325                 }
326         } else {
327                 if (pause->rx_pause && pause->tx_pause)
328                         hw->fc.requested_mode = e1000_fc_full;
329                 else if (pause->rx_pause && !pause->tx_pause)
330                         hw->fc.requested_mode = e1000_fc_rx_pause;
331                 else if (!pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_tx_pause;
333                 else if (!pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_none;
335
336                 hw->fc.current_mode = hw->fc.requested_mode;
337
338                 if (hw->phy.media_type == e1000_media_type_fiber) {
339                         retval = hw->mac.ops.setup_link(hw);
340                         /* implicit goto out */
341                 } else {
342                         retval = e1000e_force_mac_fc(hw);
343                         if (retval)
344                                 goto out;
345                         e1000e_set_fc_watermarks(hw);
346                 }
347         }
348
349 out:
350         clear_bit(__E1000_RESETTING, &adapter->state);
351         return retval;
352 }
353
354 static u32 e1000_get_rx_csum(struct net_device *netdev)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
358 }
359
360 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
361 {
362         struct e1000_adapter *adapter = netdev_priv(netdev);
363
364         if (data)
365                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
366         else
367                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
368
369         if (netif_running(netdev))
370                 e1000e_reinit_locked(adapter);
371         else
372                 e1000e_reset(adapter);
373         return 0;
374 }
375
376 static u32 e1000_get_tx_csum(struct net_device *netdev)
377 {
378         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
379 }
380
381 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
382 {
383         if (data)
384                 netdev->features |= NETIF_F_HW_CSUM;
385         else
386                 netdev->features &= ~NETIF_F_HW_CSUM;
387
388         return 0;
389 }
390
391 static int e1000_set_tso(struct net_device *netdev, u32 data)
392 {
393         struct e1000_adapter *adapter = netdev_priv(netdev);
394
395         if (data) {
396                 netdev->features |= NETIF_F_TSO;
397                 netdev->features |= NETIF_F_TSO6;
398         } else {
399                 netdev->features &= ~NETIF_F_TSO;
400                 netdev->features &= ~NETIF_F_TSO6;
401         }
402
403         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
404         adapter->flags |= FLAG_TSO_FORCE;
405         return 0;
406 }
407
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         return adapter->msg_enable;
412 }
413
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416         struct e1000_adapter *adapter = netdev_priv(netdev);
417         adapter->msg_enable = data;
418 }
419
420 static int e1000_get_regs_len(struct net_device *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423         return E1000_REGS_LEN * sizeof(u32);
424 }
425
426 static void e1000_get_regs(struct net_device *netdev,
427                            struct ethtool_regs *regs, void *p)
428 {
429         struct e1000_adapter *adapter = netdev_priv(netdev);
430         struct e1000_hw *hw = &adapter->hw;
431         u32 *regs_buff = p;
432         u16 phy_data;
433         u8 revision_id;
434
435         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
436
437         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
438
439         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
440
441         regs_buff[0]  = er32(CTRL);
442         regs_buff[1]  = er32(STATUS);
443
444         regs_buff[2]  = er32(RCTL);
445         regs_buff[3]  = er32(RDLEN);
446         regs_buff[4]  = er32(RDH);
447         regs_buff[5]  = er32(RDT);
448         regs_buff[6]  = er32(RDTR);
449
450         regs_buff[7]  = er32(TCTL);
451         regs_buff[8]  = er32(TDLEN);
452         regs_buff[9]  = er32(TDH);
453         regs_buff[10] = er32(TDT);
454         regs_buff[11] = er32(TIDV);
455
456         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
457
458         /* ethtool doesn't use anything past this point, so all this
459          * code is likely legacy junk for apps that may or may not
460          * exist */
461         if (hw->phy.type == e1000_phy_m88) {
462                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
463                 regs_buff[13] = (u32)phy_data; /* cable length */
464                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
467                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
468                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
469                 regs_buff[18] = regs_buff[13]; /* cable polarity */
470                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
471                 regs_buff[20] = regs_buff[17]; /* polarity correction */
472                 /* phy receive errors */
473                 regs_buff[22] = adapter->phy_stats.receive_errors;
474                 regs_buff[23] = regs_buff[13]; /* mdix mode */
475         }
476         regs_buff[21] = 0; /* was idle_errors */
477         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
478         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
479         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
480 }
481
482 static int e1000_get_eeprom_len(struct net_device *netdev)
483 {
484         struct e1000_adapter *adapter = netdev_priv(netdev);
485         return adapter->hw.nvm.word_size * 2;
486 }
487
488 static int e1000_get_eeprom(struct net_device *netdev,
489                             struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491         struct e1000_adapter *adapter = netdev_priv(netdev);
492         struct e1000_hw *hw = &adapter->hw;
493         u16 *eeprom_buff;
494         int first_word;
495         int last_word;
496         int ret_val = 0;
497         u16 i;
498
499         if (eeprom->len == 0)
500                 return -EINVAL;
501
502         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
503
504         first_word = eeprom->offset >> 1;
505         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506
507         eeprom_buff = kmalloc(sizeof(u16) *
508                         (last_word - first_word + 1), GFP_KERNEL);
509         if (!eeprom_buff)
510                 return -ENOMEM;
511
512         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
513                 ret_val = e1000_read_nvm(hw, first_word,
514                                          last_word - first_word + 1,
515                                          eeprom_buff);
516         } else {
517                 for (i = 0; i < last_word - first_word + 1; i++) {
518                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
519                                                       &eeprom_buff[i]);
520                         if (ret_val)
521                                 break;
522                 }
523         }
524
525         if (ret_val) {
526                 /* a read error occurred, throw away the result */
527                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
528         } else {
529                 /* Device's eeprom is always little-endian, word addressable */
530                 for (i = 0; i < last_word - first_word + 1; i++)
531                         le16_to_cpus(&eeprom_buff[i]);
532         }
533
534         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
535         kfree(eeprom_buff);
536
537         return ret_val;
538 }
539
540 static int e1000_set_eeprom(struct net_device *netdev,
541                             struct ethtool_eeprom *eeprom, u8 *bytes)
542 {
543         struct e1000_adapter *adapter = netdev_priv(netdev);
544         struct e1000_hw *hw = &adapter->hw;
545         u16 *eeprom_buff;
546         void *ptr;
547         int max_len;
548         int first_word;
549         int last_word;
550         int ret_val = 0;
551         u16 i;
552
553         if (eeprom->len == 0)
554                 return -EOPNOTSUPP;
555
556         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
557                 return -EFAULT;
558
559         if (adapter->flags & FLAG_READ_ONLY_NVM)
560                 return -EINVAL;
561
562         max_len = hw->nvm.word_size * 2;
563
564         first_word = eeprom->offset >> 1;
565         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
566         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
567         if (!eeprom_buff)
568                 return -ENOMEM;
569
570         ptr = (void *)eeprom_buff;
571
572         if (eeprom->offset & 1) {
573                 /* need read/modify/write of first changed EEPROM word */
574                 /* only the second byte of the word is being modified */
575                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
576                 ptr++;
577         }
578         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
579                 /* need read/modify/write of last changed EEPROM word */
580                 /* only the first byte of the word is being modified */
581                 ret_val = e1000_read_nvm(hw, last_word, 1,
582                                   &eeprom_buff[last_word - first_word]);
583
584         if (ret_val)
585                 goto out;
586
587         /* Device's eeprom is always little-endian, word addressable */
588         for (i = 0; i < last_word - first_word + 1; i++)
589                 le16_to_cpus(&eeprom_buff[i]);
590
591         memcpy(ptr, bytes, eeprom->len);
592
593         for (i = 0; i < last_word - first_word + 1; i++)
594                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
595
596         ret_val = e1000_write_nvm(hw, first_word,
597                                   last_word - first_word + 1, eeprom_buff);
598
599         if (ret_val)
600                 goto out;
601
602         /*
603          * Update the checksum over the first part of the EEPROM if needed
604          * and flush shadow RAM for applicable controllers
605          */
606         if ((first_word <= NVM_CHECKSUM_REG) ||
607             (hw->mac.type == e1000_82583) ||
608             (hw->mac.type == e1000_82574) ||
609             (hw->mac.type == e1000_82573))
610                 ret_val = e1000e_update_nvm_checksum(hw);
611
612 out:
613         kfree(eeprom_buff);
614         return ret_val;
615 }
616
617 static void e1000_get_drvinfo(struct net_device *netdev,
618                               struct ethtool_drvinfo *drvinfo)
619 {
620         struct e1000_adapter *adapter = netdev_priv(netdev);
621         char firmware_version[32];
622
623         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
624         strncpy(drvinfo->version, e1000e_driver_version, 32);
625
626         /*
627          * EEPROM image version # is reported as firmware version # for
628          * PCI-E controllers
629          */
630         sprintf(firmware_version, "%d.%d-%d",
631                 (adapter->eeprom_vers & 0xF000) >> 12,
632                 (adapter->eeprom_vers & 0x0FF0) >> 4,
633                 (adapter->eeprom_vers & 0x000F));
634
635         strncpy(drvinfo->fw_version, firmware_version, 32);
636         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
637         drvinfo->regdump_len = e1000_get_regs_len(netdev);
638         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
639 }
640
641 static void e1000_get_ringparam(struct net_device *netdev,
642                                 struct ethtool_ringparam *ring)
643 {
644         struct e1000_adapter *adapter = netdev_priv(netdev);
645         struct e1000_ring *tx_ring = adapter->tx_ring;
646         struct e1000_ring *rx_ring = adapter->rx_ring;
647
648         ring->rx_max_pending = E1000_MAX_RXD;
649         ring->tx_max_pending = E1000_MAX_TXD;
650         ring->rx_mini_max_pending = 0;
651         ring->rx_jumbo_max_pending = 0;
652         ring->rx_pending = rx_ring->count;
653         ring->tx_pending = tx_ring->count;
654         ring->rx_mini_pending = 0;
655         ring->rx_jumbo_pending = 0;
656 }
657
658 static int e1000_set_ringparam(struct net_device *netdev,
659                                struct ethtool_ringparam *ring)
660 {
661         struct e1000_adapter *adapter = netdev_priv(netdev);
662         struct e1000_ring *tx_ring, *tx_old;
663         struct e1000_ring *rx_ring, *rx_old;
664         int err;
665
666         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
667                 return -EINVAL;
668
669         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
670                 msleep(1);
671
672         if (netif_running(adapter->netdev))
673                 e1000e_down(adapter);
674
675         tx_old = adapter->tx_ring;
676         rx_old = adapter->rx_ring;
677
678         err = -ENOMEM;
679         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
680         if (!tx_ring)
681                 goto err_alloc_tx;
682         /*
683          * use a memcpy to save any previously configured
684          * items like napi structs from having to be
685          * reinitialized
686          */
687         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
688
689         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
690         if (!rx_ring)
691                 goto err_alloc_rx;
692         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
693
694         adapter->tx_ring = tx_ring;
695         adapter->rx_ring = rx_ring;
696
697         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
698         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
699         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
700
701         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
702         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
703         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
704
705         if (netif_running(adapter->netdev)) {
706                 /* Try to get new resources before deleting old */
707                 err = e1000e_setup_rx_resources(adapter);
708                 if (err)
709                         goto err_setup_rx;
710                 err = e1000e_setup_tx_resources(adapter);
711                 if (err)
712                         goto err_setup_tx;
713
714                 /*
715                  * restore the old in order to free it,
716                  * then add in the new
717                  */
718                 adapter->rx_ring = rx_old;
719                 adapter->tx_ring = tx_old;
720                 e1000e_free_rx_resources(adapter);
721                 e1000e_free_tx_resources(adapter);
722                 kfree(tx_old);
723                 kfree(rx_old);
724                 adapter->rx_ring = rx_ring;
725                 adapter->tx_ring = tx_ring;
726                 err = e1000e_up(adapter);
727                 if (err)
728                         goto err_setup;
729         }
730
731         clear_bit(__E1000_RESETTING, &adapter->state);
732         return 0;
733 err_setup_tx:
734         e1000e_free_rx_resources(adapter);
735 err_setup_rx:
736         adapter->rx_ring = rx_old;
737         adapter->tx_ring = tx_old;
738         kfree(rx_ring);
739 err_alloc_rx:
740         kfree(tx_ring);
741 err_alloc_tx:
742         e1000e_up(adapter);
743 err_setup:
744         clear_bit(__E1000_RESETTING, &adapter->state);
745         return err;
746 }
747
748 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
749                              int reg, int offset, u32 mask, u32 write)
750 {
751         u32 pat, val;
752         static const u32 test[] =
753                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
754         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
755                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
756                                       (test[pat] & write));
757                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
758                 if (val != (test[pat] & write & mask)) {
759                         e_err("pattern test reg %04X failed: got 0x%08X "
760                               "expected 0x%08X\n", reg + offset, val,
761                               (test[pat] & write & mask));
762                         *data = reg;
763                         return 1;
764                 }
765         }
766         return 0;
767 }
768
769 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
770                               int reg, u32 mask, u32 write)
771 {
772         u32 val;
773         __ew32(&adapter->hw, reg, write & mask);
774         val = __er32(&adapter->hw, reg);
775         if ((write & mask) != (val & mask)) {
776                 e_err("set/check reg %04X test failed: got 0x%08X "
777                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
778                 *data = reg;
779                 return 1;
780         }
781         return 0;
782 }
783 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
784         do {                                                                   \
785                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
786                         return 1;                                              \
787         } while (0)
788 #define REG_PATTERN_TEST(reg, mask, write)                                     \
789         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
790
791 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
792         do {                                                                   \
793                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
794                         return 1;                                              \
795         } while (0)
796
797 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
798 {
799         struct e1000_hw *hw = &adapter->hw;
800         struct e1000_mac_info *mac = &adapter->hw.mac;
801         u32 value;
802         u32 before;
803         u32 after;
804         u32 i;
805         u32 toggle;
806         u32 mask;
807
808         /*
809          * The status register is Read Only, so a write should fail.
810          * Some bits that get toggled are ignored.
811          */
812         switch (mac->type) {
813         /* there are several bits on newer hardware that are r/w */
814         case e1000_82571:
815         case e1000_82572:
816         case e1000_80003es2lan:
817                 toggle = 0x7FFFF3FF;
818                 break;
819         default:
820                 toggle = 0x7FFFF033;
821                 break;
822         }
823
824         before = er32(STATUS);
825         value = (er32(STATUS) & toggle);
826         ew32(STATUS, toggle);
827         after = er32(STATUS) & toggle;
828         if (value != after) {
829                 e_err("failed STATUS register test got: 0x%08X expected: "
830                       "0x%08X\n", after, value);
831                 *data = 1;
832                 return 1;
833         }
834         /* restore previous status */
835         ew32(STATUS, before);
836
837         if (!(adapter->flags & FLAG_IS_ICH)) {
838                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
839                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
840                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
841                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
842         }
843
844         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
845         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
846         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
847         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
848         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
849         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
850         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
851         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
852         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
853         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
854
855         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
856
857         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
858         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
859         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
860
861         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
862         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
863         if (!(adapter->flags & FLAG_IS_ICH))
864                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
865         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
866         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
867         mask = 0x8003FFFF;
868         switch (mac->type) {
869         case e1000_ich10lan:
870         case e1000_pchlan:
871                 mask |= (1 << 18);
872                 break;
873         default:
874                 break;
875         }
876         for (i = 0; i < mac->rar_entry_count; i++)
877                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
878                                        mask, 0xFFFFFFFF);
879
880         for (i = 0; i < mac->mta_reg_count; i++)
881                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
882
883         *data = 0;
884         return 0;
885 }
886
887 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
888 {
889         u16 temp;
890         u16 checksum = 0;
891         u16 i;
892
893         *data = 0;
894         /* Read and add up the contents of the EEPROM */
895         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
896                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
897                         *data = 1;
898                         return *data;
899                 }
900                 checksum += temp;
901         }
902
903         /* If Checksum is not Correct return error else test passed */
904         if ((checksum != (u16) NVM_SUM) && !(*data))
905                 *data = 2;
906
907         return *data;
908 }
909
910 static irqreturn_t e1000_test_intr(int irq, void *data)
911 {
912         struct net_device *netdev = (struct net_device *) data;
913         struct e1000_adapter *adapter = netdev_priv(netdev);
914         struct e1000_hw *hw = &adapter->hw;
915
916         adapter->test_icr |= er32(ICR);
917
918         return IRQ_HANDLED;
919 }
920
921 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
922 {
923         struct net_device *netdev = adapter->netdev;
924         struct e1000_hw *hw = &adapter->hw;
925         u32 mask;
926         u32 shared_int = 1;
927         u32 irq = adapter->pdev->irq;
928         int i;
929         int ret_val = 0;
930         int int_mode = E1000E_INT_MODE_LEGACY;
931
932         *data = 0;
933
934         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
935         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
936                 int_mode = adapter->int_mode;
937                 e1000e_reset_interrupt_capability(adapter);
938                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
939                 e1000e_set_interrupt_capability(adapter);
940         }
941         /* Hook up test interrupt handler just for this test */
942         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
943                          netdev)) {
944                 shared_int = 0;
945         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
946                  netdev->name, netdev)) {
947                 *data = 1;
948                 ret_val = -1;
949                 goto out;
950         }
951         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
952
953         /* Disable all the interrupts */
954         ew32(IMC, 0xFFFFFFFF);
955         msleep(10);
956
957         /* Test each interrupt */
958         for (i = 0; i < 10; i++) {
959                 /* Interrupt to test */
960                 mask = 1 << i;
961
962                 if (adapter->flags & FLAG_IS_ICH) {
963                         switch (mask) {
964                         case E1000_ICR_RXSEQ:
965                                 continue;
966                         case 0x00000100:
967                                 if (adapter->hw.mac.type == e1000_ich8lan ||
968                                     adapter->hw.mac.type == e1000_ich9lan)
969                                         continue;
970                                 break;
971                         default:
972                                 break;
973                         }
974                 }
975
976                 if (!shared_int) {
977                         /*
978                          * Disable the interrupt to be reported in
979                          * the cause register and then force the same
980                          * interrupt and see if one gets posted.  If
981                          * an interrupt was posted to the bus, the
982                          * test failed.
983                          */
984                         adapter->test_icr = 0;
985                         ew32(IMC, mask);
986                         ew32(ICS, mask);
987                         msleep(10);
988
989                         if (adapter->test_icr & mask) {
990                                 *data = 3;
991                                 break;
992                         }
993                 }
994
995                 /*
996                  * Enable the interrupt to be reported in
997                  * the cause register and then force the same
998                  * interrupt and see if one gets posted.  If
999                  * an interrupt was not posted to the bus, the
1000                  * test failed.
1001                  */
1002                 adapter->test_icr = 0;
1003                 ew32(IMS, mask);
1004                 ew32(ICS, mask);
1005                 msleep(10);
1006
1007                 if (!(adapter->test_icr & mask)) {
1008                         *data = 4;
1009                         break;
1010                 }
1011
1012                 if (!shared_int) {
1013                         /*
1014                          * Disable the other interrupts to be reported in
1015                          * the cause register and then force the other
1016                          * interrupts and see if any get posted.  If
1017                          * an interrupt was posted to the bus, the
1018                          * test failed.
1019                          */
1020                         adapter->test_icr = 0;
1021                         ew32(IMC, ~mask & 0x00007FFF);
1022                         ew32(ICS, ~mask & 0x00007FFF);
1023                         msleep(10);
1024
1025                         if (adapter->test_icr) {
1026                                 *data = 5;
1027                                 break;
1028                         }
1029                 }
1030         }
1031
1032         /* Disable all the interrupts */
1033         ew32(IMC, 0xFFFFFFFF);
1034         msleep(10);
1035
1036         /* Unhook test interrupt handler */
1037         free_irq(irq, netdev);
1038
1039 out:
1040         if (int_mode == E1000E_INT_MODE_MSIX) {
1041                 e1000e_reset_interrupt_capability(adapter);
1042                 adapter->int_mode = int_mode;
1043                 e1000e_set_interrupt_capability(adapter);
1044         }
1045
1046         return ret_val;
1047 }
1048
1049 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1050 {
1051         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1052         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1053         struct pci_dev *pdev = adapter->pdev;
1054         int i;
1055
1056         if (tx_ring->desc && tx_ring->buffer_info) {
1057                 for (i = 0; i < tx_ring->count; i++) {
1058                         if (tx_ring->buffer_info[i].dma)
1059                                 pci_unmap_single(pdev,
1060                                         tx_ring->buffer_info[i].dma,
1061                                         tx_ring->buffer_info[i].length,
1062                                         PCI_DMA_TODEVICE);
1063                         if (tx_ring->buffer_info[i].skb)
1064                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1065                 }
1066         }
1067
1068         if (rx_ring->desc && rx_ring->buffer_info) {
1069                 for (i = 0; i < rx_ring->count; i++) {
1070                         if (rx_ring->buffer_info[i].dma)
1071                                 pci_unmap_single(pdev,
1072                                         rx_ring->buffer_info[i].dma,
1073                                         2048, PCI_DMA_FROMDEVICE);
1074                         if (rx_ring->buffer_info[i].skb)
1075                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1076                 }
1077         }
1078
1079         if (tx_ring->desc) {
1080                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1081                                   tx_ring->dma);
1082                 tx_ring->desc = NULL;
1083         }
1084         if (rx_ring->desc) {
1085                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1086                                   rx_ring->dma);
1087                 rx_ring->desc = NULL;
1088         }
1089
1090         kfree(tx_ring->buffer_info);
1091         tx_ring->buffer_info = NULL;
1092         kfree(rx_ring->buffer_info);
1093         rx_ring->buffer_info = NULL;
1094 }
1095
1096 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1097 {
1098         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1099         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1100         struct pci_dev *pdev = adapter->pdev;
1101         struct e1000_hw *hw = &adapter->hw;
1102         u32 rctl;
1103         int i;
1104         int ret_val;
1105
1106         /* Setup Tx descriptor ring and Tx buffers */
1107
1108         if (!tx_ring->count)
1109                 tx_ring->count = E1000_DEFAULT_TXD;
1110
1111         tx_ring->buffer_info = kcalloc(tx_ring->count,
1112                                        sizeof(struct e1000_buffer),
1113                                        GFP_KERNEL);
1114         if (!(tx_ring->buffer_info)) {
1115                 ret_val = 1;
1116                 goto err_nomem;
1117         }
1118
1119         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1120         tx_ring->size = ALIGN(tx_ring->size, 4096);
1121         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1122                                            &tx_ring->dma, GFP_KERNEL);
1123         if (!tx_ring->desc) {
1124                 ret_val = 2;
1125                 goto err_nomem;
1126         }
1127         tx_ring->next_to_use = 0;
1128         tx_ring->next_to_clean = 0;
1129
1130         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1131         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1132         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1133         ew32(TDH, 0);
1134         ew32(TDT, 0);
1135         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1136              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1137              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1138
1139         for (i = 0; i < tx_ring->count; i++) {
1140                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1141                 struct sk_buff *skb;
1142                 unsigned int skb_size = 1024;
1143
1144                 skb = alloc_skb(skb_size, GFP_KERNEL);
1145                 if (!skb) {
1146                         ret_val = 3;
1147                         goto err_nomem;
1148                 }
1149                 skb_put(skb, skb_size);
1150                 tx_ring->buffer_info[i].skb = skb;
1151                 tx_ring->buffer_info[i].length = skb->len;
1152                 tx_ring->buffer_info[i].dma =
1153                         pci_map_single(pdev, skb->data, skb->len,
1154                                        PCI_DMA_TODEVICE);
1155                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1156                         ret_val = 4;
1157                         goto err_nomem;
1158                 }
1159                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1160                 tx_desc->lower.data = cpu_to_le32(skb->len);
1161                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1162                                                    E1000_TXD_CMD_IFCS |
1163                                                    E1000_TXD_CMD_RS);
1164                 tx_desc->upper.data = 0;
1165         }
1166
1167         /* Setup Rx descriptor ring and Rx buffers */
1168
1169         if (!rx_ring->count)
1170                 rx_ring->count = E1000_DEFAULT_RXD;
1171
1172         rx_ring->buffer_info = kcalloc(rx_ring->count,
1173                                        sizeof(struct e1000_buffer),
1174                                        GFP_KERNEL);
1175         if (!(rx_ring->buffer_info)) {
1176                 ret_val = 5;
1177                 goto err_nomem;
1178         }
1179
1180         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1181         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1182                                            &rx_ring->dma, GFP_KERNEL);
1183         if (!rx_ring->desc) {
1184                 ret_val = 6;
1185                 goto err_nomem;
1186         }
1187         rx_ring->next_to_use = 0;
1188         rx_ring->next_to_clean = 0;
1189
1190         rctl = er32(RCTL);
1191         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1192         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1193         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1194         ew32(RDLEN, rx_ring->size);
1195         ew32(RDH, 0);
1196         ew32(RDT, 0);
1197         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1198                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1199                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1200                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1201                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1202         ew32(RCTL, rctl);
1203
1204         for (i = 0; i < rx_ring->count; i++) {
1205                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1206                 struct sk_buff *skb;
1207
1208                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1209                 if (!skb) {
1210                         ret_val = 7;
1211                         goto err_nomem;
1212                 }
1213                 skb_reserve(skb, NET_IP_ALIGN);
1214                 rx_ring->buffer_info[i].skb = skb;
1215                 rx_ring->buffer_info[i].dma =
1216                         pci_map_single(pdev, skb->data, 2048,
1217                                        PCI_DMA_FROMDEVICE);
1218                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1219                         ret_val = 8;
1220                         goto err_nomem;
1221                 }
1222                 rx_desc->buffer_addr =
1223                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1224                 memset(skb->data, 0x00, skb->len);
1225         }
1226
1227         return 0;
1228
1229 err_nomem:
1230         e1000_free_desc_rings(adapter);
1231         return ret_val;
1232 }
1233
1234 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1235 {
1236         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1237         e1e_wphy(&adapter->hw, 29, 0x001F);
1238         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1239         e1e_wphy(&adapter->hw, 29, 0x001A);
1240         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1241 }
1242
1243 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1244 {
1245         struct e1000_hw *hw = &adapter->hw;
1246         u32 ctrl_reg = 0;
1247         u32 stat_reg = 0;
1248         u16 phy_reg = 0;
1249
1250         hw->mac.autoneg = 0;
1251
1252         if (hw->phy.type == e1000_phy_m88) {
1253                 /* Auto-MDI/MDIX Off */
1254                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1255                 /* reset to update Auto-MDI/MDIX */
1256                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1257                 /* autoneg off */
1258                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1259         } else if (hw->phy.type == e1000_phy_gg82563)
1260                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1261
1262         ctrl_reg = er32(CTRL);
1263
1264         switch (hw->phy.type) {
1265         case e1000_phy_ife:
1266                 /* force 100, set loopback */
1267                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1268
1269                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1270                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1271                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1272                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1273                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1274                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1275                 break;
1276         case e1000_phy_bm:
1277                 /* Set Default MAC Interface speed to 1GB */
1278                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1279                 phy_reg &= ~0x0007;
1280                 phy_reg |= 0x006;
1281                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1282                 /* Assert SW reset for above settings to take effect */
1283                 e1000e_commit_phy(hw);
1284                 mdelay(1);
1285                 /* Force Full Duplex */
1286                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1287                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1288                 /* Set Link Up (in force link) */
1289                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1290                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1291                 /* Force Link */
1292                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1293                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1294                 /* Set Early Link Enable */
1295                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1296                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1297                 /* fall through */
1298         default:
1299                 /* force 1000, set loopback */
1300                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1301                 mdelay(250);
1302
1303                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304                 ctrl_reg = er32(CTRL);
1305                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1306                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1307                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1308                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1309                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1310
1311                 if (adapter->flags & FLAG_IS_ICH)
1312                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1313         }
1314
1315         if (hw->phy.media_type == e1000_media_type_copper &&
1316             hw->phy.type == e1000_phy_m88) {
1317                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1318         } else {
1319                 /*
1320                  * Set the ILOS bit on the fiber Nic if half duplex link is
1321                  * detected.
1322                  */
1323                 stat_reg = er32(STATUS);
1324                 if ((stat_reg & E1000_STATUS_FD) == 0)
1325                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1326         }
1327
1328         ew32(CTRL, ctrl_reg);
1329
1330         /*
1331          * Disable the receiver on the PHY so when a cable is plugged in, the
1332          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1333          */
1334         if (hw->phy.type == e1000_phy_m88)
1335                 e1000_phy_disable_receiver(adapter);
1336
1337         udelay(500);
1338
1339         return 0;
1340 }
1341
1342 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1343 {
1344         struct e1000_hw *hw = &adapter->hw;
1345         u32 ctrl = er32(CTRL);
1346         int link = 0;
1347
1348         /* special requirements for 82571/82572 fiber adapters */
1349
1350         /*
1351          * jump through hoops to make sure link is up because serdes
1352          * link is hardwired up
1353          */
1354         ctrl |= E1000_CTRL_SLU;
1355         ew32(CTRL, ctrl);
1356
1357         /* disable autoneg */
1358         ctrl = er32(TXCW);
1359         ctrl &= ~(1 << 31);
1360         ew32(TXCW, ctrl);
1361
1362         link = (er32(STATUS) & E1000_STATUS_LU);
1363
1364         if (!link) {
1365                 /* set invert loss of signal */
1366                 ctrl = er32(CTRL);
1367                 ctrl |= E1000_CTRL_ILOS;
1368                 ew32(CTRL, ctrl);
1369         }
1370
1371         /*
1372          * special write to serdes control register to enable SerDes analog
1373          * loopback
1374          */
1375 #define E1000_SERDES_LB_ON 0x410
1376         ew32(SCTL, E1000_SERDES_LB_ON);
1377         msleep(10);
1378
1379         return 0;
1380 }
1381
1382 /* only call this for fiber/serdes connections to es2lan */
1383 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1384 {
1385         struct e1000_hw *hw = &adapter->hw;
1386         u32 ctrlext = er32(CTRL_EXT);
1387         u32 ctrl = er32(CTRL);
1388
1389         /*
1390          * save CTRL_EXT to restore later, reuse an empty variable (unused
1391          * on mac_type 80003es2lan)
1392          */
1393         adapter->tx_fifo_head = ctrlext;
1394
1395         /* clear the serdes mode bits, putting the device into mac loopback */
1396         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1397         ew32(CTRL_EXT, ctrlext);
1398
1399         /* force speed to 1000/FD, link up */
1400         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1401         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1402                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1403         ew32(CTRL, ctrl);
1404
1405         /* set mac loopback */
1406         ctrl = er32(RCTL);
1407         ctrl |= E1000_RCTL_LBM_MAC;
1408         ew32(RCTL, ctrl);
1409
1410         /* set testing mode parameters (no need to reset later) */
1411 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1412 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1413         ew32(KMRNCTRLSTA,
1414              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1415
1416         return 0;
1417 }
1418
1419 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422         u32 rctl;
1423
1424         if (hw->phy.media_type == e1000_media_type_fiber ||
1425             hw->phy.media_type == e1000_media_type_internal_serdes) {
1426                 switch (hw->mac.type) {
1427                 case e1000_80003es2lan:
1428                         return e1000_set_es2lan_mac_loopback(adapter);
1429                         break;
1430                 case e1000_82571:
1431                 case e1000_82572:
1432                         return e1000_set_82571_fiber_loopback(adapter);
1433                         break;
1434                 default:
1435                         rctl = er32(RCTL);
1436                         rctl |= E1000_RCTL_LBM_TCVR;
1437                         ew32(RCTL, rctl);
1438                         return 0;
1439                 }
1440         } else if (hw->phy.media_type == e1000_media_type_copper) {
1441                 return e1000_integrated_phy_loopback(adapter);
1442         }
1443
1444         return 7;
1445 }
1446
1447 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1448 {
1449         struct e1000_hw *hw = &adapter->hw;
1450         u32 rctl;
1451         u16 phy_reg;
1452
1453         rctl = er32(RCTL);
1454         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1455         ew32(RCTL, rctl);
1456
1457         switch (hw->mac.type) {
1458         case e1000_80003es2lan:
1459                 if (hw->phy.media_type == e1000_media_type_fiber ||
1460                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1461                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1462                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1463                         adapter->tx_fifo_head = 0;
1464                 }
1465                 /* fall through */
1466         case e1000_82571:
1467         case e1000_82572:
1468                 if (hw->phy.media_type == e1000_media_type_fiber ||
1469                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1470 #define E1000_SERDES_LB_OFF 0x400
1471                         ew32(SCTL, E1000_SERDES_LB_OFF);
1472                         msleep(10);
1473                         break;
1474                 }
1475                 /* Fall Through */
1476         default:
1477                 hw->mac.autoneg = 1;
1478                 if (hw->phy.type == e1000_phy_gg82563)
1479                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1480                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1481                 if (phy_reg & MII_CR_LOOPBACK) {
1482                         phy_reg &= ~MII_CR_LOOPBACK;
1483                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1484                         e1000e_commit_phy(hw);
1485                 }
1486                 break;
1487         }
1488 }
1489
1490 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1491                                       unsigned int frame_size)
1492 {
1493         memset(skb->data, 0xFF, frame_size);
1494         frame_size &= ~1;
1495         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1496         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1497         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1498 }
1499
1500 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1501                                     unsigned int frame_size)
1502 {
1503         frame_size &= ~1;
1504         if (*(skb->data + 3) == 0xFF)
1505                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1506                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1507                         return 0;
1508         return 13;
1509 }
1510
1511 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1512 {
1513         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1514         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1515         struct pci_dev *pdev = adapter->pdev;
1516         struct e1000_hw *hw = &adapter->hw;
1517         int i, j, k, l;
1518         int lc;
1519         int good_cnt;
1520         int ret_val = 0;
1521         unsigned long time;
1522
1523         ew32(RDT, rx_ring->count - 1);
1524
1525         /*
1526          * Calculate the loop count based on the largest descriptor ring
1527          * The idea is to wrap the largest ring a number of times using 64
1528          * send/receive pairs during each loop
1529          */
1530
1531         if (rx_ring->count <= tx_ring->count)
1532                 lc = ((tx_ring->count / 64) * 2) + 1;
1533         else
1534                 lc = ((rx_ring->count / 64) * 2) + 1;
1535
1536         k = 0;
1537         l = 0;
1538         for (j = 0; j <= lc; j++) { /* loop count loop */
1539                 for (i = 0; i < 64; i++) { /* send the packets */
1540                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1541                                                   1024);
1542                         pci_dma_sync_single_for_device(pdev,
1543                                         tx_ring->buffer_info[k].dma,
1544                                         tx_ring->buffer_info[k].length,
1545                                         PCI_DMA_TODEVICE);
1546                         k++;
1547                         if (k == tx_ring->count)
1548                                 k = 0;
1549                 }
1550                 ew32(TDT, k);
1551                 msleep(200);
1552                 time = jiffies; /* set the start time for the receive */
1553                 good_cnt = 0;
1554                 do { /* receive the sent packets */
1555                         pci_dma_sync_single_for_cpu(pdev,
1556                                         rx_ring->buffer_info[l].dma, 2048,
1557                                         PCI_DMA_FROMDEVICE);
1558
1559                         ret_val = e1000_check_lbtest_frame(
1560                                         rx_ring->buffer_info[l].skb, 1024);
1561                         if (!ret_val)
1562                                 good_cnt++;
1563                         l++;
1564                         if (l == rx_ring->count)
1565                                 l = 0;
1566                         /*
1567                          * time + 20 msecs (200 msecs on 2.4) is more than
1568                          * enough time to complete the receives, if it's
1569                          * exceeded, break and error off
1570                          */
1571                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1572                 if (good_cnt != 64) {
1573                         ret_val = 13; /* ret_val is the same as mis-compare */
1574                         break;
1575                 }
1576                 if (jiffies >= (time + 20)) {
1577                         ret_val = 14; /* error code for time out error */
1578                         break;
1579                 }
1580         } /* end loop count loop */
1581         return ret_val;
1582 }
1583
1584 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1585 {
1586         /*
1587          * PHY loopback cannot be performed if SoL/IDER
1588          * sessions are active
1589          */
1590         if (e1000_check_reset_block(&adapter->hw)) {
1591                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1592                 *data = 0;
1593                 goto out;
1594         }
1595
1596         *data = e1000_setup_desc_rings(adapter);
1597         if (*data)
1598                 goto out;
1599
1600         *data = e1000_setup_loopback_test(adapter);
1601         if (*data)
1602                 goto err_loopback;
1603
1604         *data = e1000_run_loopback_test(adapter);
1605         e1000_loopback_cleanup(adapter);
1606
1607 err_loopback:
1608         e1000_free_desc_rings(adapter);
1609 out:
1610         return *data;
1611 }
1612
1613 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1614 {
1615         struct e1000_hw *hw = &adapter->hw;
1616
1617         *data = 0;
1618         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1619                 int i = 0;
1620                 hw->mac.serdes_has_link = false;
1621
1622                 /*
1623                  * On some blade server designs, link establishment
1624                  * could take as long as 2-3 minutes
1625                  */
1626                 do {
1627                         hw->mac.ops.check_for_link(hw);
1628                         if (hw->mac.serdes_has_link)
1629                                 return *data;
1630                         msleep(20);
1631                 } while (i++ < 3750);
1632
1633                 *data = 1;
1634         } else {
1635                 hw->mac.ops.check_for_link(hw);
1636                 if (hw->mac.autoneg)
1637                         msleep(4000);
1638
1639                 if (!(er32(STATUS) &
1640                       E1000_STATUS_LU))
1641                         *data = 1;
1642         }
1643         return *data;
1644 }
1645
1646 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1647 {
1648         switch (sset) {
1649         case ETH_SS_TEST:
1650                 return E1000_TEST_LEN;
1651         case ETH_SS_STATS:
1652                 return E1000_STATS_LEN;
1653         default:
1654                 return -EOPNOTSUPP;
1655         }
1656 }
1657
1658 static void e1000_diag_test(struct net_device *netdev,
1659                             struct ethtool_test *eth_test, u64 *data)
1660 {
1661         struct e1000_adapter *adapter = netdev_priv(netdev);
1662         u16 autoneg_advertised;
1663         u8 forced_speed_duplex;
1664         u8 autoneg;
1665         bool if_running = netif_running(netdev);
1666
1667         set_bit(__E1000_TESTING, &adapter->state);
1668         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1669                 /* Offline tests */
1670
1671                 /* save speed, duplex, autoneg settings */
1672                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1673                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1674                 autoneg = adapter->hw.mac.autoneg;
1675
1676                 e_info("offline testing starting\n");
1677
1678                 /*
1679                  * Link test performed before hardware reset so autoneg doesn't
1680                  * interfere with test result
1681                  */
1682                 if (e1000_link_test(adapter, &data[4]))
1683                         eth_test->flags |= ETH_TEST_FL_FAILED;
1684
1685                 if (if_running)
1686                         /* indicate we're in test mode */
1687                         dev_close(netdev);
1688                 else
1689                         e1000e_reset(adapter);
1690
1691                 if (e1000_reg_test(adapter, &data[0]))
1692                         eth_test->flags |= ETH_TEST_FL_FAILED;
1693
1694                 e1000e_reset(adapter);
1695                 if (e1000_eeprom_test(adapter, &data[1]))
1696                         eth_test->flags |= ETH_TEST_FL_FAILED;
1697
1698                 e1000e_reset(adapter);
1699                 if (e1000_intr_test(adapter, &data[2]))
1700                         eth_test->flags |= ETH_TEST_FL_FAILED;
1701
1702                 e1000e_reset(adapter);
1703                 /* make sure the phy is powered up */
1704                 e1000e_power_up_phy(adapter);
1705                 if (e1000_loopback_test(adapter, &data[3]))
1706                         eth_test->flags |= ETH_TEST_FL_FAILED;
1707
1708                 /* restore speed, duplex, autoneg settings */
1709                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1710                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1711                 adapter->hw.mac.autoneg = autoneg;
1712
1713                 /* force this routine to wait until autoneg complete/timeout */
1714                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1715                 e1000e_reset(adapter);
1716                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1717
1718                 clear_bit(__E1000_TESTING, &adapter->state);
1719                 if (if_running)
1720                         dev_open(netdev);
1721         } else {
1722                 e_info("online testing starting\n");
1723                 /* Online tests */
1724                 if (e1000_link_test(adapter, &data[4]))
1725                         eth_test->flags |= ETH_TEST_FL_FAILED;
1726
1727                 /* Online tests aren't run; pass by default */
1728                 data[0] = 0;
1729                 data[1] = 0;
1730                 data[2] = 0;
1731                 data[3] = 0;
1732
1733                 clear_bit(__E1000_TESTING, &adapter->state);
1734         }
1735         msleep_interruptible(4 * 1000);
1736 }
1737
1738 static void e1000_get_wol(struct net_device *netdev,
1739                           struct ethtool_wolinfo *wol)
1740 {
1741         struct e1000_adapter *adapter = netdev_priv(netdev);
1742
1743         wol->supported = 0;
1744         wol->wolopts = 0;
1745
1746         if (!(adapter->flags & FLAG_HAS_WOL) ||
1747             !device_can_wakeup(&adapter->pdev->dev))
1748                 return;
1749
1750         wol->supported = WAKE_UCAST | WAKE_MCAST |
1751                          WAKE_BCAST | WAKE_MAGIC |
1752                          WAKE_PHY | WAKE_ARP;
1753
1754         /* apply any specific unsupported masks here */
1755         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1756                 wol->supported &= ~WAKE_UCAST;
1757
1758                 if (adapter->wol & E1000_WUFC_EX)
1759                         e_err("Interface does not support directed (unicast) "
1760                               "frame wake-up packets\n");
1761         }
1762
1763         if (adapter->wol & E1000_WUFC_EX)
1764                 wol->wolopts |= WAKE_UCAST;
1765         if (adapter->wol & E1000_WUFC_MC)
1766                 wol->wolopts |= WAKE_MCAST;
1767         if (adapter->wol & E1000_WUFC_BC)
1768                 wol->wolopts |= WAKE_BCAST;
1769         if (adapter->wol & E1000_WUFC_MAG)
1770                 wol->wolopts |= WAKE_MAGIC;
1771         if (adapter->wol & E1000_WUFC_LNKC)
1772                 wol->wolopts |= WAKE_PHY;
1773         if (adapter->wol & E1000_WUFC_ARP)
1774                 wol->wolopts |= WAKE_ARP;
1775 }
1776
1777 static int e1000_set_wol(struct net_device *netdev,
1778                          struct ethtool_wolinfo *wol)
1779 {
1780         struct e1000_adapter *adapter = netdev_priv(netdev);
1781
1782         if (!(adapter->flags & FLAG_HAS_WOL) ||
1783             !device_can_wakeup(&adapter->pdev->dev) ||
1784             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1785                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1786                 return -EOPNOTSUPP;
1787
1788         /* these settings will always override what we currently have */
1789         adapter->wol = 0;
1790
1791         if (wol->wolopts & WAKE_UCAST)
1792                 adapter->wol |= E1000_WUFC_EX;
1793         if (wol->wolopts & WAKE_MCAST)
1794                 adapter->wol |= E1000_WUFC_MC;
1795         if (wol->wolopts & WAKE_BCAST)
1796                 adapter->wol |= E1000_WUFC_BC;
1797         if (wol->wolopts & WAKE_MAGIC)
1798                 adapter->wol |= E1000_WUFC_MAG;
1799         if (wol->wolopts & WAKE_PHY)
1800                 adapter->wol |= E1000_WUFC_LNKC;
1801         if (wol->wolopts & WAKE_ARP)
1802                 adapter->wol |= E1000_WUFC_ARP;
1803
1804         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1805
1806         return 0;
1807 }
1808
1809 /* toggle LED 4 times per second = 2 "blinks" per second */
1810 #define E1000_ID_INTERVAL       (HZ/4)
1811
1812 /* bit defines for adapter->led_status */
1813 #define E1000_LED_ON            0
1814
1815 static void e1000e_led_blink_task(struct work_struct *work)
1816 {
1817         struct e1000_adapter *adapter = container_of(work,
1818                                         struct e1000_adapter, led_blink_task);
1819
1820         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1821                 adapter->hw.mac.ops.led_off(&adapter->hw);
1822         else
1823                 adapter->hw.mac.ops.led_on(&adapter->hw);
1824 }
1825
1826 static void e1000_led_blink_callback(unsigned long data)
1827 {
1828         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1829
1830         schedule_work(&adapter->led_blink_task);
1831         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1832 }
1833
1834 static int e1000_phys_id(struct net_device *netdev, u32 data)
1835 {
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         struct e1000_hw *hw = &adapter->hw;
1838
1839         if (!data)
1840                 data = INT_MAX;
1841
1842         if ((hw->phy.type == e1000_phy_ife) ||
1843             (hw->mac.type == e1000_pchlan) ||
1844             (hw->mac.type == e1000_82583) ||
1845             (hw->mac.type == e1000_82574)) {
1846                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1847                 if (!adapter->blink_timer.function) {
1848                         init_timer(&adapter->blink_timer);
1849                         adapter->blink_timer.function =
1850                                 e1000_led_blink_callback;
1851                         adapter->blink_timer.data = (unsigned long) adapter;
1852                 }
1853                 mod_timer(&adapter->blink_timer, jiffies);
1854                 msleep_interruptible(data * 1000);
1855                 del_timer_sync(&adapter->blink_timer);
1856                 if (hw->phy.type == e1000_phy_ife)
1857                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1858         } else {
1859                 e1000e_blink_led(hw);
1860                 msleep_interruptible(data * 1000);
1861         }
1862
1863         hw->mac.ops.led_off(hw);
1864         clear_bit(E1000_LED_ON, &adapter->led_status);
1865         hw->mac.ops.cleanup_led(hw);
1866
1867         return 0;
1868 }
1869
1870 static int e1000_get_coalesce(struct net_device *netdev,
1871                               struct ethtool_coalesce *ec)
1872 {
1873         struct e1000_adapter *adapter = netdev_priv(netdev);
1874
1875         if (adapter->itr_setting <= 3)
1876                 ec->rx_coalesce_usecs = adapter->itr_setting;
1877         else
1878                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1879
1880         return 0;
1881 }
1882
1883 static int e1000_set_coalesce(struct net_device *netdev,
1884                               struct ethtool_coalesce *ec)
1885 {
1886         struct e1000_adapter *adapter = netdev_priv(netdev);
1887         struct e1000_hw *hw = &adapter->hw;
1888
1889         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1890             ((ec->rx_coalesce_usecs > 3) &&
1891              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1892             (ec->rx_coalesce_usecs == 2))
1893                 return -EINVAL;
1894
1895         if (ec->rx_coalesce_usecs <= 3) {
1896                 adapter->itr = 20000;
1897                 adapter->itr_setting = ec->rx_coalesce_usecs;
1898         } else {
1899                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1900                 adapter->itr_setting = adapter->itr & ~3;
1901         }
1902
1903         if (adapter->itr_setting != 0)
1904                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1905         else
1906                 ew32(ITR, 0);
1907
1908         return 0;
1909 }
1910
1911 static int e1000_nway_reset(struct net_device *netdev)
1912 {
1913         struct e1000_adapter *adapter = netdev_priv(netdev);
1914         if (netif_running(netdev))
1915                 e1000e_reinit_locked(adapter);
1916         return 0;
1917 }
1918
1919 static void e1000_get_ethtool_stats(struct net_device *netdev,
1920                                     struct ethtool_stats *stats,
1921                                     u64 *data)
1922 {
1923         struct e1000_adapter *adapter = netdev_priv(netdev);
1924         int i;
1925         char *p = NULL;
1926
1927         e1000e_update_stats(adapter);
1928         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1929                 switch (e1000_gstrings_stats[i].type) {
1930                 case NETDEV_STATS:
1931                         p = (char *) netdev +
1932                                         e1000_gstrings_stats[i].stat_offset;
1933                         break;
1934                 case E1000_STATS:
1935                         p = (char *) adapter +
1936                                         e1000_gstrings_stats[i].stat_offset;
1937                         break;
1938                 }
1939
1940                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1941                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1942         }
1943 }
1944
1945 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1946                               u8 *data)
1947 {
1948         u8 *p = data;
1949         int i;
1950
1951         switch (stringset) {
1952         case ETH_SS_TEST:
1953                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1954                 break;
1955         case ETH_SS_STATS:
1956                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1957                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1958                                ETH_GSTRING_LEN);
1959                         p += ETH_GSTRING_LEN;
1960                 }
1961                 break;
1962         }
1963 }
1964
1965 static const struct ethtool_ops e1000_ethtool_ops = {
1966         .get_settings           = e1000_get_settings,
1967         .set_settings           = e1000_set_settings,
1968         .get_drvinfo            = e1000_get_drvinfo,
1969         .get_regs_len           = e1000_get_regs_len,
1970         .get_regs               = e1000_get_regs,
1971         .get_wol                = e1000_get_wol,
1972         .set_wol                = e1000_set_wol,
1973         .get_msglevel           = e1000_get_msglevel,
1974         .set_msglevel           = e1000_set_msglevel,
1975         .nway_reset             = e1000_nway_reset,
1976         .get_link               = e1000_get_link,
1977         .get_eeprom_len         = e1000_get_eeprom_len,
1978         .get_eeprom             = e1000_get_eeprom,
1979         .set_eeprom             = e1000_set_eeprom,
1980         .get_ringparam          = e1000_get_ringparam,
1981         .set_ringparam          = e1000_set_ringparam,
1982         .get_pauseparam         = e1000_get_pauseparam,
1983         .set_pauseparam         = e1000_set_pauseparam,
1984         .get_rx_csum            = e1000_get_rx_csum,
1985         .set_rx_csum            = e1000_set_rx_csum,
1986         .get_tx_csum            = e1000_get_tx_csum,
1987         .set_tx_csum            = e1000_set_tx_csum,
1988         .get_sg                 = ethtool_op_get_sg,
1989         .set_sg                 = ethtool_op_set_sg,
1990         .get_tso                = ethtool_op_get_tso,
1991         .set_tso                = e1000_set_tso,
1992         .self_test              = e1000_diag_test,
1993         .get_strings            = e1000_get_strings,
1994         .phys_id                = e1000_phys_id,
1995         .get_ethtool_stats      = e1000_get_ethtool_stats,
1996         .get_sset_count         = e1000e_get_sset_count,
1997         .get_coalesce           = e1000_get_coalesce,
1998         .set_coalesce           = e1000_set_coalesce,
1999 };
2000
2001 void e1000e_set_ethtool_ops(struct net_device *netdev)
2002 {
2003         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2004 }